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a b s t r a c t 

In this paper we initiate the study of the Minkowski dimension, also called the box dimen- 

sion, of degenerate spiral trajectories of a class of ordinary differential equations. A class 

of singularities of focus type with two zero eigenvalues (nilpotent or more degenerate) has 

been studied. We find the box dimension of a polynomial degenerate focus of type (n, n ) 

by exploiting the well-known fractal results for α-power spirals. In the general (m, n ) case, 

we formulate a conjecture about the box dimension of a degenerate focus using numerical 

experiments. Further, we reduce the fractal analysis of planar nilpotent contact points to 

the study of the box dimension of a slow-fast spiral generated by their “entry-exit” func- 

tion. There exists a bijective correspondence between the box dimension of the slow-fast 

spirals and the codimension of contact points. We also construct a three-dimensional vec- 

tor field that contains a degenerate spiral, called an elliptical power spiral, as a trajectory. 

© 2022 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

A fractal-dimensional analysis of the weak focus of a planar vector field (−y + . . . ) ∂ 
∂x 

+ (x + . . . ) ∂ 
∂y 

has been completed

in [30,32] using a box dimension approach. The box dimension of trajectories spiralling around a weak focus has been com-

puted. Furthermore, an explicit relation between the box dimension and the leading power in the asymptotic expansion of 

the Poincaré map of the weak focus has been obtained (for more details see [30,32] ). The box dimension of spiral trajecto-

ries changes from trivial to nontrivial for parameter values at which some bifurcations occur (Hopf-Takens bifurcations [30] , 

Bogdanov-Takens bifurcations [12,13] , discrete saddle-node and period doubling bifurcations [6,11] , etc.) The quality and the 

quantity of the objects born in the bifurcation is related to the box dimension of a trajectory at the bifurcation parameter. 

Our paper is a natural continuation of [30] . We deal with a class of planar singular points of focus type (we assume that

the linear part has both eigenvalues equal to zero) and compute their box dimension. Degenerate spirals near such singular 

points (hence spirals different from weak focus spirals) appear in complex swirling flows. We cite [2] : “Most naturally

occurring spirals are anisotropic, developing in systems with inherent asymmetry, such as elliptical whirlpools forming in 

a flowing body of water. Another simple example arises in Newtonian mechanics: suppose a weight attached to an elastic 

band is rotated about an axis parallel to the ground. At high velocities the centripetal force dominates gravity and the
∗ Corresponding author. 
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Fig. 1. (a) A phase portrait of the vector field X . (b) Dynamics of Y with indication of the curve of singularities C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

orbit is circular. However, if the system is allowed to decelerate, the weight will follow a spiral trajectory that will become

increasingly elongated in the vertical direction as the relative contribution of gravitational force grows.” (Burrell, [2] , p. 1) 

We focus on a particular deformation (to be specified later) of X = −ny 2 n −1 ∂ 
∂x 

+ mx 2 m −1 ∂ 
∂y 

, with m, n ∈ N \ { 0 } and m +
n > 2 , or Y = (y − x 2 n ) ∂ 

∂x 
with n ∈ N \ { 0 } . The vector field X has a center at (x, y ) = (0 , 0) , with H(x, y ) = x 2 m + y 2 n as a first

integral, while Y has the curve of singularities C = { y = x 2 n } and horizontal regular orbits (see Fig. 1 ). We say that a vector

field X is degenerate if m > 1 and n > 1 , while in the case m = 1 or n = 1 the vector field X is said to be nilpotent. The

vector field Y has a nilpotent singularity at the origin. The fractal-dimensional analysis of such a deformation is far more

difficult than the analysis of weak foci due to absence of “regularity” of spiral trajectories. For example, the r-component of

a point on any given spiral near the weak focus, is a decreasing function of time (see Theorem 5 of [30] ). This is not true

if we deal with the degenerate or nilpotent case. Moreover, the Poincaré map near the focus of the perturbation of X with

m � = n has two different asymptotics, one along the x -axis and the other one along the y -axis. For some other examples of

“irregular” spiral trajectories and the calculation of their box dimensions and Minkowski content see e.g. [2,18,20,24,26,27] . 

In this paper we will often speak about a trajectory “near the origin (x, y ) = (0 , 0) ”. This stands for its part spiraling

around the origin and contained in an open disk centered at the origin. 

When m = n and n is odd in X , then we prove the following result (see Theorem 1 in Section 3 ): 

• Let k be a positive integer. Then any trajectory of the vector field 

X n := X ± n 

(
x n y n −1 (x 2 n + y 2 n ) k 

∂ 

∂x 
+ x n −1 y n (x 2 n + y 2 n ) k 

∂ 

∂y 

)
(1) 

near the origin (x, y ) = (0 , 0) is Minkowski nondegenerate and its box dimension is equal to 2 − 2 
1+2 kn 

. If k = 0 , any trajectory

of ( 1 ) near the origin is Minkowski measurable and its box dimension is equal to 1. 

This has been proved in [30] for n = 1 (see also Section 2 ). When the sign in X n is negative (resp. positive), we deal with

a stable (resp. unstable) focus at the origin. When n is even, then the origin is a center (see Remark 1 in Section 3.1 ). In the

proof of Theorem 1 , we construct a bi-Lipschitz map between spiral trajectories of (1) and α-power spirals [28] with a well-

known box dimension. We use the fact that bi-Lipschitz maps preserve the box dimension (see Section 2 ). Such (degenerate)

focus of type (n, n ) has the same asymptotic of the Poincaré map in each radial direction (see [23] ). 

Based on [2] ( Remark 4 in Section 4.1 ) and extensive numerical observations ( Section 4.2 ), in the general case ( m and n

may be different) we propose the following conjecture: 

• Let k be a positive integer, m ≥ n and let m, n be odd. Then any trajectory of 

X m,n := X ±
(

nx m y n −1 (x 2 m + y 2 n ) k 
∂ 

∂x 
+ mx m −1 y n (x 2 m + y 2 n ) k 

∂ 

∂y 

)
(2) 

near the origin (x, y ) = (0 , 0) is Minkowski nondegenerate and its box dimension is equal to 2 − 1+ n m 
1+2 nk 

. 

Note that X n,n = X n . When m is even (resp. n is even), then the system X m,n is invariant under the symmetry (x, t) →
(−x, −t) (resp. (y, t) → (−y, −t) ) and has a center at the origin (x, y ) = (0 , 0) (see Remark 2 in Section 4.1 ). In the rest of

the paper we assume that m and n are odd. A spiral trajectory of (2) cannot be (bi-Lipschitz) mapped onto some regular

α-power spiral, for m � = n , due to the presence of different asymptotic expansions of the Poincaré map of (2) depending on

the radial direction. 

In the case of k = 0 in (2) we refer to Theorem 2 in Section 4.1 . 

We obtain X m,n after applying transformation F m,n : R 

2 → R 

2 , defined by 

(x, y ) �→ ( ̄x , ȳ ) = (( sign x ) | x | 1 /m , ( sign y ) | y | 1 /n ) , 

to X 1 , and using multiplication by mn | ̄x | m −1 | ̄y | n −1 . The map F m,n transforms spiral trajectories of X 1 to spiral trajectories of

X m,n . It is clear that F m,n is not bi-Lipschitz as (x, y ) → (0 , 0) , and the box dimension is not necessarily preserved. 
2
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The main advantage of working with the model (2) is that in polar coordinates the vector field can be reduced to a

Bernoulli or linear differential equation which can be solved. When m = n (resp. m � = n ), we use the standard (resp. gener-

alized) polar coordinates. See Section 3.1 (resp. Section 4.1 ). 

If k = 0 (resp. k > 0 ) in X n or X m,n , then trajectories near the origin are comparable with exponential spirals (resp. α–

power spirals). As it will be clear in Theorem 1 and Theorem 2 , comparability with an α–power spiral is not sufficient to

say something about the box dimension of the trajectories near the origin. 

The curve of singularities C of Y is divided into a normally attracting part x > 0 , a normally repelling part x < 0 and

a nilpotent contact point (x, y ) = (0 , 0) between them. To study dynamics of a small O (ε) -perturbation Y ε of Y ( ε ≥ 0

is a small singular perturbation parameter), one typically uses geometric singular perturbation theory due to Fenichel 

[8] (Fenichel describes the dynamics of Y ε near normally hyperbolic parts). Near the contact point where the normal hy-

perbolicity is lost one uses family blow-up (see [4,21] ). The deformation Y ε (often called slow-fast system), with ε > 0 , may

have spiral trajectories (i.e., a focus) near the origin and a natural question arises: How to compute the box dimension of

the spiral and does the box dimension tell us something about the type of the contact point (the codimension, cyclicity,

etc.)? Instead of computing the box dimension of the spiral at level ε > 0 , it is more natural to calculate the box dimension

of a slow-fast spiral when ε → 0 (see Definition 1 in Section 5 ). Such slow-fast spiral is a union of a geometric chirp (see

[22] ) and a part of the curve C near the origin. The geometric chirp is defined using fast and slow subsystems of Y ε and

so-called entry-exit relation [1,3] (see Section 5 ). We find the box dimension of the slow-fast spiral and establish a bijective

correspondence between its box dimension and the codimension of generic or non-generic contact points (see Theorem 3 in 

Section 5 ). One of the reasons why it is more convenient to work with slow-fast spirals ( ε = 0 ) instead of regular spirals at

level ε > 0 is that then we don’t have to use the family blow-up. We point out that a box dimension approach has already

been used in the planar slow-fast setting to study limit cycles configurations Hausdorff close to so-called canard cycles 

(hence, not contact points). See [14,15,17] . 

As far as we know, the ideas we use to find the box dimension of a degenerate focus ( Theorem 1 ) and the box dimension

of a slow-fast spiral ( Theorem 3 ) are original and novel. 

Although, for the sake of readability, in this paper we develop techniques for the specific perturbations of X and Y , we

believe that similar ideas can be used in a more general framework. 

In Section 2 we recall some of the properties of the box dimension that will be often used throughout the paper.

Section 3 is devoted to the study of the box dimension of (1) and numerical examples. In Section 4 we find the box di-

mension of spiral trajectories of (2) for k = 0 and numerically verify the conjecture for different values of m , n and k .

Our numerical method in Section 3 and Section 4 is based on a so-called decomposition of ε-neighborhoods into tail and

nucleus (see [28] ). For some other numerical techniques (e.g. differential box counting methods) we refer to [25] and ref-

erences therein. The fractal analysis of planar nilpotent turning points is given in Section 5 . In Section 6 we construct a

3-dimensional vector field having an elliptical power spiral as a trajectory. The conclusion can be found in Section 7 . 

2. The box dimension and its properties 

In this section we briefly recall the notion of box dimension in R 

N (for more details we refer the reader to [7,22,28] and

references therein). For a bounded set A ⊂ R 

N we define the ε-neighbourhood of A as A ε := { y ∈ R 

N d(y, A ) < ε} . By the lower

s -dimensional Minkowski content of A , for s ≥ 0 , we mean 

M 

s 
∗(A ) := lim inf 

ε→ 0 

| A ε | 
ε N−s 

, 

and analogously for the upper s -dimensional Minkowski content M 

∗s (A ) (we replace lim inf ε→ 0 with lim sup ε→ 0 ). If M 

∗s (A ) =
M 

s ∗(A ) , the common value is called the s -dimensional Minkowski content of A , and denoted by M 

s (A ) . The lower and upper

box dimensions of A are 

dim B A := inf { s ≥ 0 M 

s 
∗(A ) = 0 } 

and analogously dim B A := inf { s ≥ 0 M 

∗s (A ) = 0 } . If these two values coincide, we call it simply the box dimension of A , and

denote it by dim B A . The upper box dimension is finitely stable, i.e. dim B (A 1 ∪ A 2 ) = max { dim B A 1 , dim B A 2 } , with A 1 , A 2 ⊂ R 

N .

If 0 < M 

d ∗ (A ) ≤ M 

∗d (A ) < ∞ for some d, then we say that A is Minkowski nondegenerate . In this case obviously d = dim B A .

In the case when the lower or upper d-dimensional Minkowski content of A is equal to 0 or ∞ , where d = dim B A , we say

that A is degenerate . If there exists M 

d (A ) for some d such that M 

d (A ) ∈ (0 , ∞ ) , then we say that A is Minkowski measurable .

Suppose that F : A ⊂ R 

N → R 

M is a Lipschitz map. Then 

dim B F (A ) ≤ dim B A, dim B F (A ) ≤ dim B A. 

If F : A ⊂ R 

N → R 

M is a bi-Lipschitz map (i.e., there exist constants κ1 > 0 and κ2 > 0 such that κ1 ‖ x − y ‖ ≤ ‖ F (x ) − F (y ) ‖ ≤
κ2 ‖ x − y ‖ , for every x, y ∈ A ), then 

dim B A = dim B F (A ) , dim B A = dim B F (A ) . 

If F is a bi-Lipschitz map and A is Minkowski nondegenerate, then F (A ) is Minkowski nondegenerate (see Theorem 4.1 in

[31] ). 
3 
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We use the following notation in Section 5 . For any two sequences of positive real numbers (a l ) l∈ N and (b l ) l∈ N converging

to zero we write a l  b l , as l → ∞ , if there exist positive constants ˜ A < 

˜ B such that a l /b l ∈ [ ̃  A , ˜ B ] for all l ∈ N . 

A spiral r = f (ϕ) of focus type is said to be comparable with the α- power spiral r = ϕ 

−α if f (ϕ ) / | ϕ | −α ∈ [ ̃  A , ˜ B ] for some

positive constants ˜ A and 

˜ B and for all ϕ ∈ [1 , ∞ ) (resp. ϕ ∈ (−∞ , −1] ) if the spiral has positive (resp. negative) orientation.

Similarly, we say that a spiral r = f (ϕ) of focus type is comparable with the exponential spiral r = e −βϕ if f (ϕ) /e −βϕ ∈ [ ̃  A , ˜ B ]

for positive constants ˜ A and 

˜ B , a positive (resp. negative) constant β and for all ϕ ∈ [0 , ∞ ) (resp. ϕ ∈ (−∞ , 0] ) if the spiral

has positive (resp. negative) orientation. In Section 3.1 (resp. Section 4.1 ) (r, ϕ) denotes the standard (resp. generalized)

polar coordinates. 

Let ˜ 	 be a trajectory of the vector field 

−y 
∂ 

∂x 
+ x 

∂ 

∂y 
± (x 2 + y 2 ) k 

(
x 

∂ 

∂x 
+ y 

∂ 

∂y 

)
, k ≥ 0 , 

near the origin (x, y ) = (0 , 0) , expressed in (standard) polar coordinates as r = f (ϕ) . If k ≥ 1 , then 

˜ 	 is comparable with the

power spiral r = ϕ 

−1 / 2 k and dim B 
˜ 	 = 

4 k 
2 k +1 

. If k = 0 , then 

˜ 	 is comparable with the exponential spiral r = e ±ϕ and hence

dim B 
˜ 	 = 1 . In both cases ˜ 	 is Minkowski measurable. See Theorem 9 of [30] . 

3. Box dimension of degenerate focus of type \ boldmath (n, n ) and numerical examples 

In Section 3.1 we provide a complete study of the box dimension of spiral trajectories of X n . Section 3.2 is devoted to

numerical examples. 

3.1. The box dimension of degenerate focus 

In this section we prove a result about the box dimension of trajectories of X n near the origin. We have 

Theorem 1. Let n ≥ 1 be odd and let ˜ 	 be a trajectory of X n , given in (1) , near the origin. The following statements are true. 

1. If k = 0 , then the spiral ˜ 	 is comparable with the exponential spiral r = e ±ϕ/n , dim B 
˜ 	 = 1 , and ˜ 	 is Minkowski measurable. 

2. If k > 0 , then the spiral ˜ 	 is comparable with the power spiral r = ϕ 

−1 / 2 nk , 

dim B 
˜ 	 = 2 − 2 

1 + 2 kn 

, (3) 

and ˜ 	 is Minkowski nondegenerate. 

Proof. We prefer to work with the system 

˙ x = −y 2 n −1 ± x n y n −1 (x 2 n + y 2 n ) k 

˙ y = x 2 n −1 ± x n −1 y n (x 2 n + y 2 n ) k , 
(4) 

obtained by dividing X n by n (the trajectories near the origin remain unchanged after division by a nowhere zero factor).

It suffices to prove Theorem 1 for (4) with the negative sign (stable focus). The case with the positive sign in (4) (unstable

focus) can be reduced to the negative sign by reversing the time and applying the coordinate change (x, y ) → (y, x ) . Thus,

in the rest of the proof we focus on the system 

˙ x = −y 2 n −1 − x n y n −1 (x 2 n + y 2 n ) k 

˙ y = x 2 n −1 − x n −1 y n (x 2 n + y 2 n ) k , 
(5) 

with arbitrary but fixed trajectory ˜ 	 near the origin, given by the initial condition (x 0 , y 0 ) � = (0 , 0) . In the polar coordinates


(r, ϕ) = (r cos ϕ , r sin ϕ ) system (5) becomes 

˙ r = r 2 n −1 
(
cos 2 n −1 ϕ sin ϕ − sin 

2 n −1 ϕ cos ϕ 

)
−r 2 nk +2 n −1 sin 

n −1 ϕ cos n −1 ϕ 

(
sin 

2 n ϕ + cos 2 n ϕ 

)k 

˙ ϕ = r 2 n −2 
(
sin 

2 n ϕ + cos 2 n ϕ 

) (6) 

and the initial condition corresponds to (r 0 , ϕ 0 ) , where ϕ 0 > 0 . The spiral ˜ 	 is given in polar coordinates by r = ̃  r (ϕ) , ϕ ∈
[ ϕ 0 , ∞ ) , and ˜ r (ϕ 0 ) = r 0 . Dividing the first by the second equation in the system (6) we get the equation 

r ′ (ϕ) + p(ϕ ) r(ϕ ) = q (ϕ ) r(ϕ ) 2 nk +1 , (7) 

where functions p and q are given by 

p(ϕ) = 

sin 2 n −1 ϕ cos ϕ−cos 2 n −1 ϕ sin ϕ 

sin 2 n ϕ+ cos 2 n ϕ 
, 

q (ϕ) = − sin 

n −1 ϕ cos n −1 ϕ 

(
sin 

2 n ϕ + cos 2 n ϕ 

)k −1 
. 

(8) 

When k = 0 (resp. k > 0 ), in (7) we deal with a linear equation (resp. Bernoulli differential equation). First we prove State-

ment 2. 
4
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Statement 2. Suppose that k > 0 . The idea of the proof is to construct a bi-Lipschitz equivalence between 

˜ 	 and some

regular α-power spiral [28] ( Section 2 ), with a well known box dimension, and to use the invariance of the box dimension

under bi-Lipschitz mappings. We divide the proof into three parts. In the first part we explicitly find the function ˜ r (ϕ) . In

the second part we introduce a radial map which we use to define the bi-Lipschitz map, and the third part is devoted to

conclusions. 

(a) Finding the spiral r = ̃  r (ϕ) . Using substitution z = r −2 nk we transform (7) to the linear equation 

− z ′ (ϕ) 

2 nk 
+ p(ϕ) z(ϕ) = q (ϕ) . (9) 

We solve (9) using standard techniques and get the solution 

z(ϕ) = 

(
sin 

2 n ϕ + cos 2 n ϕ 

)k 
(I(ϕ) + C) , (10) 

with C ∈ R and 

I(ϕ) = 2 nk 

ϕ ∫ 
0 

sin 

n −1 τ cos n −1 τ

sin 

2 n τ + cos 2 n τ
dτ. (11) 

Now, we can write the function I from (11) in the form 

I(ϕ) = Kϕ + P (ϕ) , (12) 

where K := I(2 π) / (2 π) . Because n is odd, it easily follows that K > 0 . The function P is given by 

P (ϕ) = 2 nk 

ϕ−2 lπ∫ 
0 

sin 

n −1 τ cos n −1 τ

sin 

2 n τ + cos 2 n τ
dτ − K(ϕ − 2 lπ) , (13) 

where l = l(ϕ) is the largest integer such that 2 lπ ≤ ϕ, that is, l = � ϕ/ (2 π) � , and we used the 2 π-periodicity of the subin-

tegral function. It follows from (12) and (13) that P is an analytic and 2 π-periodic function, thus bounded. 

Now respecting substitution z = r −2 nk , (10) and (12) we get the solution of (7) , 

r(ϕ) = 

(
sin 

2 n ϕ + cos 2 n ϕ 

)− 1 
2 n (Kϕ + P (ϕ) + C) −

1 
2 nk . (14) 

Introducing K 2 := K 

− 1 
2 nk , P 2 (ϕ) := P (ϕ) /K and C 2 := C/K we rewrite (14) in the form 

r(ϕ) = K 2 

(
sin 

2 n ϕ + cos 2 n ϕ 

)− 1 
2 n (ϕ + P 2 (ϕ) + C 2 ) 

− 1 
2 nk . (15) 

Thus, ˜ r (ϕ) from the definition of ˜ 	 is given by (15) with C 2 uniquely defined by the initial condition (r 0 , ϕ 0 ) . 

(b) Constructing a bi-Lipschitz map S. We take the α-power spiral ˆ 	 from [28] , given in polar coordinates by 

ˆ r (ϕ) = (ϕ + 

ˆ C ) −α, (16) 

with α := 

1 
2 nk 

∈ (0 , 1) and 

ˆ C := C 2 . We define a radial map T : (0 , ∞ ) × [0 , 2 π) → (0 , ∞ ) × [0 , 2 π) by 

T (r, ϕ) := (rH(r, ϕ) , ϕ) , (17) 

where the map H : (0 , ∞ ) × [0 , 2 π) → (0 , ∞ ) is defined by 

H(r, ϕ) := K 2 

(
sin 

2 n ϕ + cos 2 n ϕ 

)− 1 
2 n (1 + P 2 (ϕ) r 2 nk ) −

1 
2 nk . (18) 

The functions T in (17) and H in (18) are chosen in such a way that the composition S := 
 ◦ T ◦ 
−1 : R 

2 \ (0 , 0) → R 

2 \
(0 , 0) maps ˆ 	 to ˜ 	, because P 2 (ϕ) is a 2 π-periodic function. 

Also, notice that function H in (18) is bounded and bounded away from zero for r sufficiently small and partial derivatives

∂H 

∂r 
(r, ϕ) = −r 2 nk −1 P 2 (ϕ)(1 + P 2 (ϕ) r 2 nk ) −1 H(r, ϕ) , 

∂H 

∂ϕ 

(r, ϕ) = 

(
sin 

2 n ϕ + cos 2 n ϕ 

)−1 
( cos 2 n −1 ϕ sin ϕ − cos ϕ sin 

2 n −1 ϕ ) H(r, ϕ ) 

− 1 

2 nk 
r 2 nk P ′ 2 (ϕ)(1 + P 2 (ϕ) r 2 nk ) −1 H(r, ϕ) 

exist and are bounded for sufficiently small r, as from (11) and (12) it follows that P ′ 2 is also bounded. Now, all of the

conditions of Lemma 1 are satisfied, so we see that function S is a bi-Lipschitz map in a sufficiently small neighborhood of

the origin. 
5 
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(c) Conclusions. As box dimension and Minkowski nondegeneracy is invariant under the bi-Lipschitz mapping (see 

Section 2 ), it follows from [28] and Theorem 6.1 in [29] that 

dim B 
˜ 	 = dim B 

ˆ 	 = 2 − 2 α

α + 1 

= 2 − 2 

1 + 2 kn 

, (19) 

and that ˜ 	 is Minkowski nondegenerate. Since P 2 is bounded and the term in front of (ϕ + · · · ) −1 / 2 nk in (15) is bounded

and bounded away from zero, it is clear that the spiral ˜ 	 is comparable with the power spiral r = ϕ 

−1 / 2 nk , as ϕ → ∞ . This

completes the proof of Statement 2. 

Statement 1. Let k = 0 and let n ≥ 1 be odd. Using (7) the spiral ˜ 	 is given by 

˜ r (ϕ) = Ce −
∫ ϕ 

0 (p(τ ) −q (τ )) dτ (20) 

where C = r 0 e 
∫ ϕ 0 

0 
(p(τ ) −q (τ )) dτ and p and q are given in (8) . Since the function p is odd and 2 π-periodic, it follows that the 

integral 
∫ ϕ 

0 
p(τ ) dτ is even and 2 π-periodic (thus, bounded). On the other hand, the integral − ∫ ϕ 

0 
q (τ ) dτ is equal to the 

integral given in (11) and can therefore be written as (12) , for some new positive constant K := − ∫ 2 π
0 q (τ ) dτ/ (2 π) and

a new 2 π-periodic function P (for the exact value of K see the end of the proof of Statement 1). Now, the expression in

(20) changes into 

˜ r (ϕ) = Ce −( Kϕ + R (ϕ ) ) (21) 

where K is given above and the function R is 2 π-periodic and thus bounded. It follows directly from (21) that the spiral ˜ 	

is comparable with the exponential spiral r(ϕ) = e −Kϕ as ϕ → ∞ . Further, the derivative of (20) is equal to 

˜ r ′ (ϕ) = (q (ϕ) − p(ϕ )) ̃ r (ϕ ) . (22) 

Using (21), (22) and the fact that p and q are bounded, we get 

| ̃ r ′ (ϕ) | ≤ Me −Kϕ 

where M is a positive constant. This, together with (21) , implies that the length of the spiral ˜ 	 is finite. Thus, dim B 
˜ 	 = 1

and 

˜ 	 is Minkowski measurable (see [7] and [28, p. 106] ). Notice that the function τ �→ 

1 
n arctan ( tan 

n τ ) is a primitive

function of −q (τ ) , and this implies that K = 

1 
n . This completes the proof of Statement 1. �

Remark 1. Notice that for n even and k > 0 (resp. k = 0 ) it follows from (14) (resp. (20) ) that ˜ r (ϕ) is 2 π-periodic, so the

system (5) only has closed periodic trajectories and the fixed point at the origin is of center type. 

In the rest of this section we prove the following lemma used in the proof of Theorem 1 . 

Lemma 1. Let T : (0 , ∞ ) × R → (0 , ∞ ) × R be a radial map, i.e., 

T (r, φ) = (rH(r, φ) , φ) , 

where H : (0 , ∞ ) × R → (0 , ∞ ) is a differentiable function. Suppose that there exist positive real constants r 1 , C 1 and C 2 such

that 

A. C 1 ≤ H(r, φ) ≤ C 2 for r ∈ (0 , r 1 ] ; 

B. the partial derivatives ∂H 
∂r 

(r, φ) and ∂H 
∂φ

(r, φ) are bounded for r ∈ (0 , r 1 ] . 

Then the map S : R 

2 \ (0 , 0) → R 

2 \ (0 , 0) , defined by S := 
 ◦ T ◦ 
−1 , where 
(r, φ) = (r cos φ, r sin φ) , has an inverse

map S −1 and both S and S −1 are Lipschitz maps in some punctured neighborhood of the origin. 

Proof. It is easy to see that T −1 exists and S −1 = 
 ◦ T −1 ◦ 
−1 . To finish the proof we need to see that all of the com-

ponents of the Jacobian matrices J S and J S −1 are bounded. It is sufficient to prove that S and S −1 are Lipschitz maps on

the intersection of some punctured neighborhood of the origin and the half-plane R 

+ × R . As the rotation in the plane is

isometry, it follows that S and S −1 are Lipschitz maps on the intersection of some punctured neighborhood of the origin 

and any half-plane given by an arbitrary rotation around the origin of the R 

+ × R half-plane. So, by rotating this half-plane

around the origin, we can cover a neighborhood of the origin by a finite number of such bi-Lipschitz maps, which proves

the Lemma. 

We proceed by computing partial derivatives of S = (S 1 , S 2 ) in respect to variables x and y , on a half-plane R 

+ × R , where


−1 is explicitly given by 


−1 (x, y ) = 

(√ 

x 2 + y 2 , arctan 

(
y 

x 

))
. 

After meticulous calculation we get 

∂S 1 
∂x 

(x, y ) = H(r, φ) 
(

x 

r 
cos φ + 

y 

r 
sin φ

)
− ∂H 

∂φ
(r, φ) 

y 

r 
cos φ + 

∂H 

∂r 
(r, φ) x cos φ, (23) 
6 
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∂S 1 
∂y 

(x, y ) = H(r, φ) 
(

y 

r 
cos φ − x 

r 
sin φ

)
+ 

∂H 

∂φ
(r, φ) 

x 

r 
cos φ + 

∂H 

∂r 
(r, φ) y cos φ, (24) 

∂S 2 
∂x 

(x, y ) = H(r, φ) 
(
−y 

r 
cos φ + 

x 

r 
sin φ

)
− ∂H 

∂φ
(r, φ) 

y 

r 
sin φ + 

∂H 

∂r 
(r, φ) x sin φ, (25) 

∂S 2 
∂y 

(x, y ) = H(r, φ) 
(

x 

r 
cos φ + 

y 

r 
sin φ

)
+ 

∂H 

∂φ
(r, φ) 

x 

r 
sin φ + 

∂H 

∂r 
(r, φ) y sin φ, (26) 

where we write r := 

√ 

x 2 + y 2 and φ := arctan 

(
y 
x 

)
. As x, | y | ≤ r, from assumptions A and B we see that terms in expressions

(23) –(26) are bounded on the punctured ball B (0 ; r 1 ) , so it follows that all components of the Jacobian J S are bounded on

the punctured ball B (0 ; r 1 ) . 

To prove the boundness of J S −1 , we use the inverse function theorem. It suffices to see that all of the components of the

matrix [ J S ] 
−1 are bounded. This follows by an elementary computation using well known formula for the inverse of 2 × 2

matrix and using the fact that 

det J S = H (r, φ) 

(
H (r, φ) + r 

∂H 

∂r 
(r, φ) 

)
is bounded away from zero for sufficiently small r, using assumptions A and B. �

3.2. Numerical examples 

In this section we develop a numerical estimate of the box dimension of trajectories of X n near the origin. The exact

theoretical result has already been proven in the Section 3.1 . Here we verify that result numerically and lay ground for later

developing numerical verification of conjecture formulated in Section 1 . 

3.2.1. Numerical estimate of the box dimension 

Our goal here is to design a numerical scheme for estimating the box dimension of trajectory ˜ 	 of X n , from Theorem 1 .

We focus on k > 0 (the numerical computation of the box dimension of ˜ 	 when k = 0 is similar to the case where k > 0 ).

We proceed by dividing trajectory ˜ 	 to L disjoint parts ˜ 	 j such that 

˜ 	 j := 

˜ 	 ∩ K j , ∀ j, 1 ≤ j ≤ L, 

where K j is an unbounded circular sector between angles 2( j−1) π
L and 

2 jπ
L . 

Next, we estimate the box dimension D j of set ˜ 	 j for a fixed j. The first step is to estimate the area of ε-neighborhood

of ˜ 	 j , which we designate by | ̃  	 j,ε | . Notice that ˜ 	 j is actually a disjoint union of countably many curves of finite length,

each curve spanning between two rays: 

R j−1 . . . ϕ = 

2( j − 1) π

L 
, 

R j . . . ϕ = 

2 jπ

L 
. 

For the purpose of computing | ̃  	 j,ε | , from (15) it follows that for sufficiently large L and sufficiently close to the origin, we

can successfully approximate these countably many curves with parts of circular arcs between rays R j−1 and R j . We denote

this set of arcs with A j , so it approximately holds that | ̃  	 j,ε | ≈ |A j,ε | , for any small ε > 0 , that is, the area of ε-neighborhood

of ˜ 	 j is approximately the same as the area of ε-neighborhood of A j . To get the radii of these circular arcs we compute r(ϕ)

from (15) , by taking ϕ = ϕ j + 2 iπ , for every i ∈ N 0 , where ϕ j := 

2 jπ
L . By using 2 π-periodicity of trigonometric functions and

function P 2 , from (15) we get 

r(ϕ) = K 2 

(
sin 

2 n ϕ j + cos 2 n ϕ j 

)− 1 
2 n (ϕ j + 2 iπ + P 2 (ϕ j ) + C 2 ) 

− 1 
2 nk . (27) 

Next, we define new constants: 

α := 

1 

2 nk 
, 

K 5 := 

ϕ j + P 2 (ϕ j ) + C 2 

2 π
, 

K 6 := K 2 

(
sin 

2 n ϕ j + cos 2 n ϕ j 

)− 1 
2 n 

2 π−α, 
7 
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so we can rewrite (27) as 

r(ϕ) = K 6 (i + K 5 ) 
−α. (28) 

Now each i ∈ N 0 indexes a single circular arc having the radius equal to 

r i := r(ϕ j + 2 iπ) = K 6 (i + K 5 ) 
−α. (29) 

We generalize the approach from [28] , where the concept of nucleus and tail part of ε-neighborhood was introduced. For

a fixed ε > 0 , we define critical i 1 = i 1 (ε) as the smallest integer i such that r i − r i +1 ≤ 2 ε. This critical i 1 divides the tail

part from the nucleus part of the ε-neighbourhood of the set A j . The tail part corresponds to ε-neighbourhood of all arcs

from A j having indices i ≤ i 1 . These arcs all have disjoint ε-neighbourhoods. On the contrary, the nucleus part corresponds

to ε-neighbourhood of all arcs from A j having indices i > i 1 . These arcs have overlapping ε-neighborhoods. 

To proceed, we first solve the equation r β − r β+1 = 2 ε, allowing β ≥ 0 to be a real number, and then taking i 1 := � β� .
We rewrite the equation as 

f (β + K 5 ) − f ((β + K 5 ) + 1) = 

2 ε

K 6 

, (30) 

where f (x ) = x −α . As function f is an analytic function for all x > 0 , and we can make K 5 arbitrarily large by choosing the

initial condition close to the origin and ε close to 0, we can develop the second term on the left hand side of (30) in Taylor

series around point x 0 = β + K 5 . By taking only the first two terms in this Taylor series, we get an approximate form of

Eq. (30) , 

α(β + K 5 ) 
−α−1 ≈ 2 ε

K 6 

, (31) 

which can easily be solved. Notice that it is not possible to find solution β of the original Eq. (30) in closed form. We get

the approximate solution β and compute 

i 1 = � β� = 

⌈(
αK 6 

2 ε

) 1 
α+1 

− K 5 

⌉
. (32) 

Last, we estimate the area of the tail and nucleus part of |A j,ε | . The sum of this tail and nucleus is then approximately equal

to | ̃  	 j,ε | . 
To get the area of the tail part we first have to compute the sum S j := 

i 1 ∑ 

i =0 

r i . As i 1 could be very large and thus impos-

sible for exact summation, we approximate S j using method of the interval test for convergence, where we compute the 

approximation error to be smaller than K 6 / (K 5 ) 
α . We can take K 5 to be sufficiently large, as before, so the approximation

error can be made arbitrarily small. For sum S j , we get 

S j ≈ K 6 

i 1 +1 ∫ 
0 

dt 

(t + K 5 ) α
= K 6 

(i 1 + 1 + K 5 ) 
1 −α − K 

1 −α
5 

1 − α
. (33) 

The area of the tail part is equal to the sum of ε-neighborhoods of all circular arcs in the tail part of A j . We approximate

ε-neighborhood of every circular arc in tail part arc using the ε-neighborhood of a segment having the same length as the

arc. As all of this ε-neighborhoods are disjoint, we compute the total sum of this ε-neighborhoods to be S j (2 π/L ) · 2 ε +
(i 1 + 1) ε2 . On the other hand, the area of the nucleus part is equal to (r i 1 ) 

2 π/L . Finally, using (33) we get 

| ̃  	 j,ε | ≈
(

K 6 

(i 1 + 1 + K 5 ) 
1 −α − K 

1 −α
5 

1 − α

)
4 π

L 
ε + (i 1 + 1) ε2 + (r i 1 ) 

2 π

L 
. (34) 

We estimate the box dimension of set ˜ 	 j using a standard formula from [7] , 

D j := dim B 
˜ 	 j = 2 − lim 

ε→ 0 

log | ̃  	 j,ε | 
log ε

. (35) 

Precisely, we approximate D j by evaluating (35) for some fixed ε0 > 0 , that is very close to zero, 

D j ≈ 2 − log | ̃  	 j,ε0 
| 

log ε0 

. (36) 

Using the area of the tail and the nucleus part from (34) and substituting to (36) , we compute 

D j ≈ 2 −
log 

[ (
K 6 

(i 1 +1+ K 5 ) 1 −α−K 1 −α
5 

1 −α

)
4 π
L 

ε0 + (i 1 + 1) ε2 
0 + (r i 1 ) 

2 π
L 

] 
log ε

. (37) 

0 

8 
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Table 1 

Theoretical and numerical box dimensions computed for differ- 

ent values of n and k . 

n k theoretical dimension numerical dimension 

3 0 1 1.00000 0.99982 

11 0 1 1.00000 0.99986 

21 0 1 1.00000 0.99988 

3 2 24 / 13 1.84615 1.84593 

3 11 132 / 67 1.97015 1.96992 

11 2 88 / 45 1.95556 1.95534 

11 11 484 / 243 1.99177 1.99155 

21 2 168 / 85 1.97647 1.97625 

21 11 924 / 463 1.99568 1.99546 

 

 

 

 

 

 

 

 

 

 

Finally, we use estimates D j from (36) of the box dimension of ˜ 	 j to estimate upper and lower bounds on the box dimension 

of ˜ 	. We assume that dim B 
˜ 	 j exists and is approximately equal to previously obtained D j . We use monotonicity of the

upper and lower box dimension, and also finite stability of the upper box dimension (see [7] ) to compute required estimates.

For the estimate on the upper bound, we have 

dim B ̃
 	 = max 

1 ≤ j≤L 
dim B ̃

 	 j ≈ max 
1 ≤ j≤L 

D j . (38) 

For the lower bound we first see that 

D j ≈ dim B ̃
 	 j ≤ dim B ̃

 	, ∀ j, 1 ≤ j ≤ L, 

from which follows that 

max 
1 ≤ j≤L 

D j ≈ max 
1 ≤ j≤L 

dim B ̃
 	 j ≤ dim B ̃

 	. (39) 

Using estimates (39) and (38) , as dim B ̃
 	 ≤ dim B 

˜ 	 ≤ dim B ̃
 	, we finally see that 

dim B 
˜ 	 ≈ max 

1 ≤ j≤L 
D j . (40) 

3.2.2. Implementation details and test results 

We implemented the algorithm for computing our numerical estimate of the box dimension using Wolfram Mathematica, 

version 12. See https://github.com/FRABDYN/DegenerateSpirals where our code is available for download. All computations 

have been done symbolically, using exact fractions where appropriate, having essentially infinite numerical precision. The 

box dimension results were only numericalized in step (37) when computing D j . 

We present numerically computed dimension for different examples having different values of n and k in Table 1 . The

rest of the comments in this section refer specifically to cases when k > 0 . Case k = 0 is similar. Refer to the Mathematica

code for more information. 

We used the initial condition values of r 0 = 1 / 10 and ϕ 0 = 0 , corresponding to the constant C from (10) equal to 100 nk .

By computing the integral I from (11) we get that constant K = 2 k . Furthermore, to speed up the calculation we approximate

constant K 5 by C 2 / (2 π) as ϕ j + P 2 (ϕ j ) is at least 10 10 times less than C 2 . 

For all test cases we decided to use ε0 = 10 −10 0 0 0 and L = 10 0 0 . Using this values we produced results having high

numerical precision compared to the theoretical result from Theorem 1 and computations last no more than few seconds 

on a modern PC computer. For even higher precision, value of ε could be further decreased and L increased, which would

increase the computation time. 

4. Box dimension of degenerate focus of type \ boldmath (m, n ) 

In Section 4.1 we introduce generalized polar coordinates and show that for k = 0 the box dimension of spiral trajectories

of X m,n is equal to one ( Theorem 2 ). In Section 4.2 we illustrate the method used in Section 4.1 with numerical examples,

and (numerically) verify the conjecture formulated in Section 1 for different values of m , n and k . 

4.1. Generalized polar coordinates 

We study the box dimension of spiral trajectories of X m,n –given in (2) –near the origin. We write the system as 

˙ x = −ny 2 n −1 ± nx m y n −1 (x 2 m + y 2 n ) k 

˙ y = mx 2 m −1 ± mx m −1 y n (x 2 m + y 2 n ) k . 
(41) 

We introduce (see [9,10] ) the (n, m ) –polar coordinates 

(x, y ) = (r n Cs (ϕ ) , r m Sn (ϕ )) 
9 
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where Cs (ϕ) and Sn (ϕ) are a generalization of cos ϕ and sin ϕ, and satisfy 

˙ Cs (ϕ) = −n Sn 

2 n −1 (ϕ ) , ˙ Sn (ϕ ) = m Cs 2 m −1 (ϕ) 

and ( Cs (0) , Sn (0)) = (1 , 0) . Notice that Cs 2 m (ϕ) + Sn 

2 n (ϕ) = 1 , Cs (ϕ) (resp. Sn (ϕ) ) is even (resp. odd) and both are T -

periodic, with 

T = 

2 

mn 

	( 1 
2 m 

)	( 1 
2 n 

) 

	( 1 
2 m 

+ 

1 
2 n 

) 
, 

where 	 is the gamma function. In these polar coordinates system (41) becomes 

dr 

dϕ 

= ±Sn 

n −1 (ϕ) Cs m −1 (ϕ) r 2 mnk +1 , (42) 

upon division of ˙ r by ˙ ϕ . We use the following simple lemma (see [9] ) in the proof of Theorem 2 . 

Lemma 2. Let T be the period of the functions Cs (ϕ) and Sn (ϕ) . The following statements are true. 

1. If either m or n is even, then 
∫ T 

0 Sn 

n −1 (ϕ) Cs m −1 (ϕ) dϕ = 0 . 

2. If both m and n are odd, then 
∫ T 

0 Sn 

n −1 (ϕ) Cs m −1 (ϕ) dϕ = 

2 π
mn . 

Theorem 2. Let T be the period of the functions Cs (ϕ) and Sn (ϕ) . If both m and n are odd, then the following statements are

true for a spiral trajectory ˜ 	 of (41) near the origin. 

1. If k = 0 , then the spiral ˜ 	 is comparable with the exponential spiral r = e ±
2 π

Tmn 
ϕ , dim B 

˜ 	 = 1 , and ˜ 	 is Minkowski measurable.

2. If k > 0 , then spiral ˜ 	 is comparable with the power spiral r = ϕ 

−1 / 2 mnk . 

Proof. First we prove Statement 1. When k = 0 , then the spiral ˜ 	 is given by 

˜ r (ϕ) = Ce ±
∫ ϕ 

0 Sn n −1 (τ ) Cs m −1 (τ ) dτ (43) 

where the constant C > 0 is uniquely determined by the initial condition on 

˜ 	. We used (42) . Now we proceed exactly as

in the proof of Theorem 1 . We have ∫ ϕ 

0 

Sn 

n −1 (τ ) Cs m −1 (τ ) dτ = 

(
1 

T 

∫ T 

0 

Sn 

n −1 (τ ) Cs m −1 (τ ) dτ

)
ϕ + P (ϕ) , (44) 

with 

P (ϕ) = 

∫ ϕ−lT 

0 

Sn 

n −1 (τ ) Cs m −1 (τ ) dτ − 1 

T 

∫ T 

0 

Sn 

n −1 (τ ) Cs m −1 (τ ) dτ ( ϕ − lT ) , 

where l is the largest integer such that lT ≤ ϕ, that is, l = � ϕ/T � (we use that the integrand function is T -periodic). The

function P is bounded and T -periodic. Now, using this, Lemma 2 .2, (43) and (44) , we have that ˜ 	 is comparable with the

exponential spiral r = e ±
2 π

Tmn 
ϕ . Since Cs (ϕ) and Sn (ϕ) are bounded, the length of ˜ 	 is finite. This completes the proof of

Statement 1. 

To prove Statement 2, it suffices to notice that the spiral ˜ 	 is given by 

˜ r (ϕ) = 

(
∓2 mnk 

∫ ϕ 

0 

Sn 

n −1 (τ ) Cs m −1 (τ ) dτ + C 

)− 1 
2 mnk 

(45) 

and to use (44) . �

Remark 2. If either m or n is even, then the first statement of Lemma 2 implies that system (41) has a center at the origin.

Remark 3. When n = m , then we deal with the (n, n ) –polar coordinates (x, y ) = (r n Cs (ϕ ) , r n Sn (ϕ )) . Notice that in Section 3 ,

instead of these generalized polar coordinates, we worked with the standard polar coordinates in which the α–power spirals 

[28] are expressed. This was important in the proof of Theorem 1 when k > 0 . 

Remark 4. In [2] it is proved that the box dimension of the planar elliptical spiral (x (ϕ) , y (ϕ)) = (ϕ 

−p 0 cos ϕ, ϕ 

−q 0 sin ϕ) ,

1 < ϕ < ∞ , with 0 < p 0 ≤ q 0 and p 0 < 1 , is equal to 2 − p 0 + q 0 
1+ q 0 . If we replace Cs (ϕ) and Sn (ϕ ) with cos ϕ and sin ϕ , in

the definition of (n, m ) –polar coordinates, and (45) with ˜ r (ϕ) = ϕ 

− 1 
2 mnk , then we obtain a natural candidate for the box

dimension of the spiral ˜ 	 when k > 0 and m ≥ n , which is equal to 2 − 1+ n m 
1+2 nk 

. Note that p 0 = 

1 
2 mk 

and q 0 = 

1 
2 nk 

. 
10 
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Table 2 

Conjectured and numerical box dimensions computed for different val- 

ues of m , n and k . 

m n k conjectured dimension numerical dimension 

5 3 2 122 / 65 1.87692 1.87287 

11 3 2 272 / 143 1.90210 1.89615 

21 3 2 174 / 91 1.91209 1.90574 

21 11 2 1858 / 945 1.96614 1.96561 

5 3 11 662 / 335 1.97612 1.97581 

11 3 11 1460 / 737 1.98100 1.98063 

21 3 11 930 / 469 1.98294 1.98255 

21 11 11 10174 / 5103 1.99373 1.99355 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Numerical verification of conjecture 

Let m > n and k > 0 . To verify the conjecture formulated in Section 1 , we use a method similar to that used in

Section 3.2.1 . Instead of using the (n, m ) –polar coordinates introduced in Section 4.1 , from a numerical point of view it

is better to express a spiral trajectory ˜ 	 of (41) in r, ϕ where (x, y ) = (r n cos ϕ , r m sin ϕ ) . In this way, we avoid the computa-

tion of Cs (ϕ) and Sn (ϕ) . Like in Section 3.2.1 , we numerically compute the box dimension of ˜ 	 in sectors K j ( K j between

ϕ = 

(2( j−1)+1) π
L and ϕ = 

(2 j+1) π
L , 1 ≤ j ≤ L ). We find r i which has a form similar to (29) . This corresponds to circular arcs

having the radius equal to R i where (R, θ ) are the standard polar coordinates (x, y ) = (R cos θ, R sin θ ) . R i can also be brought

into the form (29) . The length �θi of the circular arc with the radius R i can be expressed in terms of r i and ϕ j . Finally, we

compute the tail part and the nucleus part, like in Section 3.2.1 . 

Similarly as in Section 3.2.2 , in Table 2 we present numerically computed dimension for different values of m , n and k .

We also include our Mathematica code available for download. 

For the initial condition we used again r 0 = 1 / 10 and ϕ 0 = 0 . For computing the ε-neighborhood to approximate limit

from (35) , we used ε0 = 10 −10 0 0 0 and we divided 

˜ 	 in L = 10 0 0 sectors. Using these values we were able to compute

dimension to high precision compared to the conjectured result. 

5. The box dimension of slow-fast spirals near nilpotent contact points 

Notation n, C, k, . . . that we will use in this section has nothing to do with n, C, k, . . . used in Sections 3 and 4 . We

consider a C ∞ -smooth family of Liénard slow-fast systems 

˙ x = y − x 2 n 

˙ y = ε(a + F (x, ρ)) + O (ε2 ) 
(46) 

where ε ≥ 0 is a (small) singular parameter, a ∼ 0 ∈ R , ρ ∼ 0 ∈ R 

m , n ≥ 1 is an integer, F (x, ρ) and O (ε2 ) are C ∞ -functions

and F (x, ρ) = −x 2 n −1 + O (x 2 n ) . We denote system (46) by X ε,a,ρ . When ε = 0 , system X ε,a,ρ has a curve of singularities given

by C = { y − x 2 n = 0 } . All the singularities are normally hyperbolic (i.e. precisely one eigenvalue of the linear part of X 0 ,a,ρ

at p ∈ C is zero). An exception is the point p = (0 , 0) ∈ C which is a nilpotent singularity (i.e., the normal hyperbolicity at

the origin is lost). When n = 1 (resp. n > 1 ), we call the origin in X ε,a,ρ a generic (resp. non-generic) contact point (see e.g.

[16] ). We focus on the fractal analysis of the slow-fast spirals near the contact point (see Definition 1 ) in both generic and

non-generic case. We use the notion of box dimension in two dimensional ambient space and geometric chirps. 

We denote by � a section inside { x = 0 } , parametrized by y ≥ 0 , y ∼ 0 ( y = 0 corresponds to the origin (x, y ) = (0 , 0) ).

We define the slow divergence integral along the attracting part { x > 0 , x ∼ 0 } (resp. the repelling part { x < 0 , x ∼ 0 } ) of C: 

J −(y, ρ) := 

∫ 0 

ω(y ) 

−(2 nx 2 n −1 ) 2 dx 

F (x, ρ) 
< 0 (

resp. J + (y, ρ) := 

∫ 0 

α(y ) 

−(2 nx 2 n −1 ) 2 dx 

F (x, ρ) 
< 0 

)
where (y, ρ) ∼ (0 , 0) , y > 0 and ω(y ) = y 

1 
2 n > 0 (resp. α(y ) = −y 

1 
2 n < 0 ) is the ω-limit (resp. α-limit) of the fast horizontal

orbit of X 0 ,a,ρ through y ∈ �. The divergence of X 0 ,a,ρ is given by −2 nx 2 n −1 and the slow dynamics along C is dx 
dτ

= 

F (x,ρ) 

2 nx 2 n −1 

where τ is the slow time. Note that J ± are well-defined (i.e. finite) because the leading term of F is x 2 n −1 . 

We assume that (J − − J + )(y, 0) � = 0 for all y ∼ 0 and y > 0 . (In the limit y = 0 , we have (J − − J + )(0 , 0) = 0 because

α(0) = ω(0) = 0 .) If (J − − J + )(y, 0) < 0 for y ∼ 0 and y > 0 (resp. (J − − J + )(y, 0) > 0 for y ∼ 0 and y > 0 ), then the orbit

O = { y 0 , y 1 , y 2 , . . . } , defined recursively by 

J −(y l+1 , 0) = J + (y l , 0) ( resp. J −(y l , 0) = J + (y l+1 , 0) ) , l ≥ 0 , (47) 

with y 0 > 0 small and fixed, is decreasing and converges to zero. This is a simple consequence of the fact that the integrand

in J ± changes sign as x varies through x = 0 . 
11 
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Fig. 2. The geometric (δ1 , δ2 ) -chirp, with δ1 := 

1 
2 n 

and δ2 := 

2(k −n )+1 
2 n 

, defined near the contact point of X ε,a,ρ with codimension k ( k ≥ n ). 

Fig. 3. Slow-fast spirals with x = ω(y l ) as entry and x = α(y l ) as exit for all l ∈ N . The slow segments are contained in the critical curve C and the slow 

dynamics along C points from the right to the left. (a) The stable slow-fast spiral. (b) The unstable slow-fast spiral. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using the orbit O we define a geometric chirp near the contact point of X ε,a,ρ (at level (ε, a, ρ) = (0 , 0 , 0) ): 

U = 

⋃ 

y l ∈O 
U l ⊂ R 

2 , U l = (α(y l ) , ω(y l )) × { y l } . (48) 

The geometric chirp U is the union of horizontal open intervals (α(y l ) , ω(y l )) at level y = y l (see Fig. 2 ). The type (δ1 , δ2 )

of the geometric chirp U is given in Theorem 3 . 

Definition 1. Let (J − − J + )(y, 0) < 0 (resp. > 0 ), for y ∼ 0 and y > 0 , and let O = { y 0 , y 1 , y 2 , . . . } be the orbit with the initial

point y 0 > 0 defined in (47) . The unstable (resp. stable) slow-fast spiral of the contact point of X ε,a,ρ , for (ε, a, ρ) = (0 , 0 , 0) ,

is the union of the geometric chirp U , defined in (48) , and the part of the curve of singularities C between α(y 0 ) and ω(y 1 )

(resp. α(y 1 ) and ω(y 0 ) ). See Fig. 3 . 

Remark 5. Following Definition 1 , the stable slow-fast spiral consists of the intervals U l , pointing from the left to the right,

and a part of C. We follow U 0 until we hit C in x = ω(y 0 ) (entry). Then we follow the curve C from x = ω(y 0 ) to x = α(y 1 )

(exit), then U 1 , the curve C from x = ω(y 1 ) (entry) to x = α(y 2 ) (exit), etc. This way we “spiral” around the origin (x, y ) =
(0 , 0) (and approach the origin). We call this “spiral” the slow-fast spiral because it contains fast and slow intervals of X ε,a,ρ

in the limit ε → 0 (thus, the “spiral” is not regular). The unstable slow-fast spiral can be explained in similar fashion. 

Remark 6. The upper box dimension of the stable or unstable slow-fast spiral from Definition 1 is equal to the upper box

dimension of the geometric chirp U defined in (48) because the upper box dimension is finitely stable (see Section 2 ),

dim B C = 1 and dim B U ≥ 1 . In the rest of this section we therefore focus on the computation of the upper box dimension of

U . 

Let denote by f i (ρ) , i ≥ 2 n , the coefficients of the Taylor expansion of F at x = 0 , i.e. j ∞ F (x, ρ) = −x 2 n −1 + 

∑ ∞ 

i =2 n f i (ρ) x i .

If there exists a nonzero even coefficient f 2 k (0) , we say that X ε,a,ρ has a finite codimension (the smallest k ≥ n with this

property is the codimension of the contact point in X ε,a,ρ ). In the generic case ( n = 1 ), a similar definition of the codimen-

sion can be found in [5] . 

Theorem 3. Let y 0 > 0 be small and fixed and let O = { y 0 , y 1 , y 2 , . . . } be the orbit defined by (47) tending monotonically to

y = 0 . Suppose that the codimension of the contact point in X ε,a,ρ is finite and equal to k . Then we have y l  l 
− 2 n 

2(k −n )+1 as l → ∞ ,

y l − y l+1  l 
− 2 k +1 

2(k −n )+1 as l → ∞ and dim B O = 

2(k −n )+1 
2 k +1 

∈ (0 , 1) . Moreover, U is the geometric (δ1 , δ2 ) -chirp, with δ1 := 

1 
2 n and

δ2 := 

2(k −n )+1 
2 n , and dim B U = 

4 k −2 n +1 
2 k +1 

∈ [1 , 2) . The box dimensions are independent of the initial point y 0 . 
12 
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Proof. Suppose that the assumptions of Theorem 3 are satisfied. The function J − − J + , for ρ = 0 , can be written as 

(J − − J + )(y, 0) = 

∫ y 
1 

2 n 

−y 
1 

2 n 

4 n 

2 x 2 n −1 dx 

D (x ) 
(49) 

where y > 0 , y ∼ 0 , f i := f i (0) , k ≥ n is the codimension of X ε,a,ρ ( f 2 k � = 0 ) and D (x ) = −1 + 

∑ k −1 
i = n f 2 i +1 x 

2(i −n +1) +
f 2 k x 

2(k −n )+1 + O (x 2(k −n +1) ) . The integrand function in (49) has the following form: 

4 n 

2 x 2 n −1 

−1 + 

∑ k −1 
i = n f 2 i +1 x 2(i −n +1) 

− 4 n 

2 f 2 k x 
2 k (1 + O (x )) , (50) 

where the first term is an odd function. From (49) and (50) follows now that 

(J − − J + )(y, 0) = − 8 n 

2 

2 k + 1 

f 2 k y 
2 k +1 

2 n (1 + o(1)) (51) 

where o(1) tends to zero when y → 0 . In the rest of the proof we assume that (J − − J + )(y, 0) < 0 for y ∼ 0 and y > 0 , i.e.

f 2 k > 0 (the case where (J − − J + )(y, 0) > 0 for y ∼ 0 and y > 0 ( f 2 k < 0 ) can be treated in a similar way). We have 

(J − − J + )(y l , 0) = 

∫ y 
1 

2 n 
l 

−y 
1 

2 n 
l 

(2 nx 2 n −1 ) 2 dx 

F (x, 0) 

= 

∫ y 
1 

2 n 
l 

−y 
1 

2 n 
l 

(2 nx 2 n −1 ) 2 dx 

F (x, 0) 
−

∫ y 
1 

2 n 
l+1 

−y 
1 

2 n 
l 

(2 nx 2 n −1 ) 2 dx 

F (x, 0) 

= −
∫ y 

1 
2 n 

l+1 

y 
1 

2 n 
l 

(2 nx 2 n −1 ) 2 dx 

F (x, 0) 

= 

∫ y l+1 

y l 

2 n (1 + o(1)) du (52) 

where in the second step we use (47) ( 
∫ y 1 

2 n 
l+1 

−y 
1 

2 n 
l 

= 0 ) and in the last step we use the coordinate change x 2 n = u (the o(1) -term

in the last integral tends to zero as u → 0 ). Note that the integrand function in (52) is positive and at least continuous in

u ≥ 0 and u ∼ 0 . Finally, The Mean Value Theorem for Integrals, (51) and (52) imply 

y l − y l+1  y 
2 k +1 

2 n 

l 
, l → ∞ . (53) 

Since γ := 

2 k +1 
2 n > 1 ( k ≥ n ), Theorem 1 of [6] implies that 

y l  l −
2 n 

2(k −n )+1 , l → ∞ . (54) 

This together with (53) implies 

y l − y l+1  l −
2 k +1 

2(k −n )+1 , l → ∞ . 

Using Theorem 1 of [6] once more we get 

dim B O = 1 − 1 

γ
= 

2(k − n ) + 1 

2 k + 1 

∈ (0 , 1) . 

The results are clearly independent of the chosen y 0 > 0 (see [6] ). 

It remains to find the upper box dimension of the geometric chirp U . We write U = U 1 ∪ U 2 where 

U 1 = 

⋃ 

y l ∈O 
(−y 

1 
2 n 

l 
, 0] × { y l } , U 2 = 

⋃ 

y l ∈O 
[0 , y 

1 
2 n 

l 
) × { y l } . 

From Section 3.6.1 in [22] and (54) follows that U 1 and U 2 are geometric (δ1 , δ2 ) -chirps where δ1 := 

1 
2 n and δ2 := 

2(k −n )+1 
2 n .

Now we have (see [22] once more) 

dim B U 1 = dim B U 2 = max 

{
1 , 2 − 1 + δ1 

1 + δ2 

}
= 

4 k − 2 n + 1 

2 k + 1 

∈ [1 , 2) . 

This completes the proof of Theorem 3 since dim B U = max 
{

dim B U 1 , dim B U 2 
}

. �

Remark 7. Let n ≥ 1 be fixed. Following Theorem 3 , there is a one-one correspondence between dim B O (or dim B U) and the

codimension k of the contact point of X ε,a,ρ . When k → ∞ , then dim B O → 1 and dim B U → 2 . 

2 k −1 
Remark 8. In [15] it has been proved that dim B O = 

2 k +1 
in the generic case. 

13 
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6. Box dimension of 3-dimensional spiral 

Using results from [2] for the planar elliptical spiral ˜ 	

x (t) = t −p 0 cos t 
y (t) = t −q 0 sin t, 

(55) 

where 0 < p 0 ≤ q 0 ≤ 1 , we can obtain the box dimension of trajectory of 3-dimensional systems. We formulate this result

as an example; a generalization is possible combining the results from [2,19] . 

Example 1. The spiral (55) is the projection of a trajectory of the system 

˙ x = −y − p 0 xz q 0 −p 0 +1 

˙ y = xz 2(q 0 −p 0 ) − q 0 yz q 0 −p 0 +1 (56) 

˙ z = −z 2+ q 0 −p 0 , 

to the (x, y ) -plane. The system (56) is obtained by computing the derivative of (55) , using z = t −1 , and multiplying it by

z q 0 −p 0 > 0 . The parametrization of the initial curve has been changed, but not the curve itself, so the box dimension of

(55) has been preserved, and equal to (see [2] ) 

dim B 
˜ 	 = 2 − p 0 + q 0 

1 + q 0 
. 

Using the parametrization 

x (t) = t −p 0 cos t 

y (t) = t −q 0 sin t (57) 

z(t) = t −1 , 

obtained before the time rescaling, we can compute the invariant surface x 2 

z 2 p 0 
+ 

y 2 

z 2 q 0 
= 1 containing the trajectories of (56) .

Derivatives ∂z 
∂x 

and 

∂z 
∂y 

are bounded, so the map z(x, y ) is Lipschitz. Using [31] we can conclude that the 3-dimensional

trajectory of the system (56) has the same box dimension as the projection curve ˜ 	. 

The projection 

˜ 	xz of the trajectory of (56) to the (x, z) -plane is a curve called chirp x (z) = z p 0 cos 1 /z, for z > 0 small.

We use (see [28] ) 

X α,β (τ ) = τα sin (τ−β ) . 

For 0 < α ≤ β we have 

dim B X α,β = 2 − α + 1 

β + 1 

, 

and obtain 

dim B 
˜ 	xz = 

3 

2 

− p 0 
2 

. 

Analogously, the projection 

˜ 	yz of the trajectory of (56) to (y, z) -plane is y (z) = z q 0 sin 1 /z, with the box dimension 

dim B 
˜ 	yz = 

3 

2 

− q 0 
2 

. 

7. Conclusion 

In this paper we have studied the box dimension and Minkowski nondegeneracy/measurability of degenerate spiral tra- 

jectories in a class of ordinary differential equations. We give a complete analysis of a polynomial degenerate focus of type

(n, n ) by connecting it with α-power spirals (see Theorem 1 ). We also numerically verify this box dimension result. We

partially solve the (m, n ) case (see Theorem 2 ) and formulate a conjecture about the box dimension based on numerical ex-

periments. We introduce the notion of slow-fast spiral for planar contact points and find its box dimension (see Theorem 3 ).

We give an example of a 3-dimensional differential equation in presence of an elliptical power spiral as a trajectory. 
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