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Single-cell (sc) omics has become a powerful tool to unravel a tissue’s cell

landscape across health and disease. In recent years, sc transcriptomic

interrogation has been applied to a variety of tooth tissues of both human

and mouse, which has considerably advanced our fundamental understanding

of tooth biology. Now, an overarching and integrated bird’s-view of the human

and mouse tooth sc transcriptomic landscape would be a powerful multi-

faceted tool for dental research, enabling further decipherment of tooth

biology and development through constantly progressing state-of-the-art

bioinformatic methods as well as the exploration of novel hypothesis-driven

research. To this aim, we re-assessed and integrated recently published scRNA-

sequencing datasets of different dental tissue types (healthy and diseased) from

human and mouse to establish inclusive tooth sc atlases, and applied the

consolidated data map to explore its power. For mouse tooth, we identified

novel candidate transcriptional regulators of the ameloblast lineage. Regarding

human tooth, we provide support for a developmental connection, not

advanced before, between specific epithelial compartments. Taken together,

we established inclusivemouse and human tooth sc atlases as powerful tools to

potentiate innovative research into tooth biology, development and disease.

Themaps are provided online in an accessible format for interactive exploration.
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1 Introduction

Teeth play crucial roles in life, being essential for eating, speaking and psychosocial

wellbeing (Militi et al., 2021). Tooth pathologies, originating from a variety of causes such

as traumatic injury, poor oral hygiene, and congenital disease, are highly prevalent with a

large socio-economic burden (Dye, 2017; Kassebaum et al., 2017; Peres et al., 2019).
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Therefore, it is essential that tooth biology and pathology

becomes more deeply understood, not only for fundamental

insights but also for translational prospects toward better

treatments through, among others, biological or bioengineered

tooth replacements (reviewed in Angelova Volponi et al., 2018;

Latimer et al., 2021; Pagella et al., 2021a).

In recent years, sc transcriptomic interrogations have been

applied to mouse and human tooth. Regarding mouse, single-cell

RNA-sequencing (scRNA-seq) datasets were generated from the

constantly (re-)growing incisor and the more static, human-

resembling molar at different timepoints, either of whole tooth or

specific tissue components (Sharir et al., 2019; Takahashi et al.,

2019; Chen et al., 2020; Chiba et al., 2020, 2021; Krivanek et al.,

2020; Wen et al., 2020; Nagata et al., 2021; Zhao et al., 2021).

Human sc transcriptomic data were predominantly generated

from dental pulp and periodontal tissues of molars in both

healthy and diseased states (Krivanek et al., 2020; Pagella

et al., 2021b; Shi et al., 2021; Yin et al., 2021; Hemeryck et al.,

2022; Lin et al., 2022; Opasawatchai et al., 2022). All these sc

analyses generated deeper insight into the tooth molecular and

cellular landscape, furthering the understanding of dental cell

type heterogeneity and tooth biology. Among others, novel

markers were identified for mouse dental epithelial and

mesenchymal subsets allowing better discrimination of the cell

populations (Sharir et al., 2019; Krivanek et al., 2020; Nagata

et al., 2021) Similarly, in humans, the heterogeneity of dental

pulp and periodontal mesenchymal (stem) cells was further

elucidated (Krivanek et al., 2020; Pagella et al., 2021b; 2021c).

Within the research community, large efforts are being made

in combining sc omics datasets to establish comprehensive cell

atlases of all tissues and organs, both in healthy and diseased

conditions (Regev et al., 2017; Han et al., 2018; Schaum et al.,

2018; Almanzar et al., 2020), epitomized in large consortia such

as the Mouse Cell Atlas (MCA) and Human Cell Atlas (HCA). In

addition, the constant stream of progressing as well as new

bioinformatic tools and pipelines allows deeper and innovative

mining of these powerful datasets, thereby precipitating novel

insights in tissue biology, development and disease.

At present, a comprehensive tooth atlas is not available yet.

To address this important lacuna, we here set out to establish

inclusive sc atlases of mouse and human tooth starting from

recently published, publicly available sc transcriptome datasets,

and to make these maps available online for easily accessible

interactive interrogation. By applying state-of-the-art

computational tools, we show that our newly consolidated

tooth atlases are strongly applicable to retrieve novel insights

in tooth biology and disease. Hence, the comprehensive and

integrated atlases will provide a powerful tool to advance and

enrich research into tooth development, biology and disease, and

an essential cornerstone, both as driver and backing, for further

hypothesis-driven research as well as for tooth bioengineering

endeavors (Aibar et al., 2017; Efremova et al., 2020; Alquicira-

Hernandez and Powell, 2021).

2 Materials and methods

2.1 Analysis of publicly available scRNA-
seq datasets

Publicly available datasets used in this study were retrieved

from the Gene Expression Omnibus (GEO), FaceBase,

ArrayExpress and Mendeley Data databases (Tables 1, and

4). In general, deposited data, pre-processed by the

originators, were available as count matrices. If not (as

applying to Chen et al., 2020; Wen et al., 2020), raw

sequencing data were processed using Cell Ranger (v3.1.0).

All datasets were individually imported in Seurat (v4.0.0) for

further downstream analyses (Stuart et al., 2019; Hao et al.,

2021). Quality control was performed on each individual

dataset. Low-quality cells and potential doublets were

identified and removed based on number of counts and

genes per cell as well as the percentage of mitochondrial

genes expressed per cell (Tables 2 and 5).

2.2 Establishment of themouse tooth atlas

Following quality control, mouse datasets were divided into

three groups, i.e., incisor, molar and periodontal tissue, and

datasets from each individual group were separately

integrated. For each integrated group, after normalization and

identification of variable features (using the NormalizeData and

FindVariableFeatures functions), the FindIntegrationAnchors

function was used with default parameters and dims = 1:30,

and each group was integrated across all features using the

IntegrateData function. Subsequently, expression levels were

scaled and subjected to principal component analysis (PCA).

Uniform Manifold Approximation and Projection (UMAP)

dimensionality reduction was performed with the umap-learn

package (v0.4.2) using the top 30 PC, after which clusters were

determined with the FindClusters function using resolutions 0.3,

0.6 and 0.8 for the incisor, molar and periodontal groups,

respectively (McInnes et al., 2018). Next, each group was

roughly annotated before the count matrices were corrected

for ambient/background RNA using the SoupX (v1.5.0)

package (Young and Behjati, 2020). The global contamination

fractions were estimated to be 4.7, 1 and 1% for incisor, molar

and periodontal groups, respectively, well within the normal

range (0–10%).

Then, all datasets were merged and, using the SoupX-

corrected counts, integrated with the reciprocal PCA (rPCA)

method which is a conservative tool that facilitates integration in

case of many datasets and/or non-overlapping cell types (Hao

et al., 2021). Therefore, after data normalization and

identification of variable features, each individual dataset was

scaled and subjected to PCA analysis, which was used as input to

the FindIntegrationAnchors function (with dims = 1:30 and
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reduction = ‘rpca’) after which the datasets were integrated

across all features using the IntegrateData function. During

the scaling of the data, cell cycle regression was performed.

Lists of human S and G2M genes were obtained from Seurat

and converted to their mouse orthologues as input for the

CellCycleScoring function. Following integration, the

dataset was subjected to PCA, after which the top 50 PC

were used for UMAP dimensionality reduction (with

min. dist = 0.5) and clustering. The Seurat function

AddModuleScore was used to evaluate the expression of

gene marker profiles or ‘modules’. Each cell receives a

module score based on the difference between the average

expression of genes within the module and randomly

selected control features.

2.3 Subclustering and pseudotime analysis
of the mouse ameloblast lineage

The mouse ameloblast trajectory (encompassing the IEE-

OEE, cycling DEP, DEP, preAB, sAB and mAB clusters) was

extracted from the total mouse tooth atlas. Next, data integration

was performed using the rPCA method on the SoupX-corrected

counts as described above. Following integration, the top 40 PC

were used for UMAP dimensionality reduction. Pseudotime

analysis of the mouse ameloblast lineage was performed using

Monocle3 (Trapnell et al., 2014; Qiu et al., 2017; Cao et al., 2019).

The Monocle3 cell_data_set object was derived from the

subclustered mouse ameloblast lineage Seurat object, including

the computed UMAP dimensional reduction. Cells were ordered

TABLE 2 Parameters used for quality control of the mouse tooth scRNA-seq datasets.

Study nFeatures
(range)

nCounts
(cut-off)

%Mitochondrial genes
(cut-off)

#Cells
pre QC

# Cells
post QC

Sharir et al. (2019) [1,000:4,500] <40,000 <5 3,599 3,093

Takahashi et al. (2019) [1,000:6,000] <40,000 <20 11,152 2,319

Chen et al. (2020) [1,000:6,000] <40,000 <20 7,413 3,634

Chiba et al. (2020) [1,500:6,000] <40,000 <5 6,260 6,062

Krivanek et al. (2020) [750:2000] <40,000 <15 4,236 869

Wen et al. (2020) [1,000:6,000] <40,000 <8 1844 1,205

Chiba et al. (2021) [1,000:6,000] <40,000 <20 4,293 2,553

Nagata et al. (2021) [1,000:4,500] <40,000 <5 6,010 5,842

Zhao et al. (2021) [1,000:4,500] <40,000 <5 6,064 5,872

Sharir et al. (2019) [500:7,000] <40,000 <20 8,073 4,854

Takahashi et al. (2019) [1,000:7,000] <40,000 <8 2,203 1,645

Abbreviations: QC, quality control.

TABLE 1 Publicly available mouse scRNA-seq datasets re-analyzed and integrated toward the comprehensive mouse tooth atlas.

Study Accession
number

Group Tissue of
interest

Age Notes

Sharir et al. (2019) GSE131204 (GEO) Incisor Dental epithelium 8–12 weeks Only data generated from
healthy controls were used

Takahashi et al. (2019) GSE120108 (GEO) Periodontal (molar) Dental follicle PD6

Chen et al. (2020) FB00001104 (FaceBase) Incisor Dental mesencyhme 4 weeks

Chiba et al. (2020) GSE146855 (GEO) Incisor Dental epithelium PD7

Krivanek et al. (2020) GSE146123 (GEO) Incisor, molar Whole tooth 8–16 weeks Only data produced with the
10X Genomics platform were included (GSM4365604,
GSM4365605, GSM4365611)

Wen et al. (2020) FB00001105 (FaceBase) Molar Whole tooth PD7 Only data generated
from healthy controls were used

Chiba et al. (2021) GSE167989 (GEO) Molar Whole tooth PD1

Nagata et al. (2021) GSE168450 (GEO) Periodontal (molar) Periodontal PD25

Zhao et al. (2021) GSE160358 (GEO) Periodontal (molar) Periodontal Adult

Abbreviations: GEO, gene expression omnibus; wk, weeks; PD, postnatal day.
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in pseudotime by manually selecting a root group within the IEE-

OEE cluster. DEG along the pseudotime-ordered trajectory were

computed using the Monocle3 graph_test function. Only DEG

with Moran’s I > 0.1 and q < 0.01 were retained for further

analysis. To create a heatmap of DEG along pseudotime using the

ComplexHeatmap package (v2.10.0), genes were normalized

using z-score transformation, and clustered using k-means

clustering with k = 6 (Gu et al., 2016). GO analysis of DEG

along the ameloblast trajectory was performed using Metascape

(www.metascape.org) (Zhou et al., 2019).

2.4 Establishment of the human tooth
atlas

Following quality control, the healthy or diseased human

tooth datasets were provisionally integrated using the rPCA

method, and cell cycle regression was performed (both as

described above). Following integration, each integrated

dataset was subjected to PCA (npcs = 100), after which

the top 80 PC were used for UMAP dimensionality

reduction and clustering. Next, the healthy or diseased

human tooth datasets were corrected for ambient/

background RNA using the SoupX (v1.5.0) package (1 and

9.8% estimated global contamination fraction, respectively).

Then, the datasets were definitively integrated using the

rPCA method, and cell cycle regression was performed.

Following integration, the dataset was subjected to PCA

(npcs = 100), after which the top 80 PC were used for

UMAP dimensionality reduction. Using the FindClusters

function and evaluation of marker profiles, the distinct

clusters were annotated.

2.5 Integration of healthy and diseased
human tooth atlases

Finalized healthy and diseased human tooth atlases were

merged, and integrated using the rPCA method (using npcs =

30 and approx = FALSE). Following integration, the dataset

was subjected to PCA (npcs = 100), after which the top 80 PC

were used for UMAP dimensionality reduction (with min.

dist = 0.5).

2.6 Subclustering of human dental
epithelium

Human ‘Epithelial’ and ‘Cycling’ clusters were extracted from

the main Seurat object and subjected to rPCA-based integration

(using the SoupX-corrected count matrices; with non-default

RunPCA parameters npcs = 30 and approx = FALSE), PCA

analysis, UMAP dimensionality reduction (using the top 30 PC),

clustering (resolution 1.2) and annotation based on marker

expression profiles and tissue of origin.

2.7 Integration of mouse and human
dental epithelium

All mouse DE clusters were extracted from the main mouse

tooth atlas. Annotated human DE clusters, excluding the

‘Cycling’ group, were extracted from the DE-subclustered

healthy human tooth atlas. Human gene names were

converted to their mouse orthologues. Integration was

performed using the rPCA method as described above, using

default parameters. Subsequently, the integrated dataset was

subjected to PCA (npcs = 30), after which the top 40 PC were

used for UMAP dimensionality reduction.

2.8 Weighted kernel density estimation of
gene expression using nebulosa

The Nebulosa (v1.0.2) package was used to perform (joint)

weighted kernel density estimation of gene expression using the

plot_density function with default parameters (Alquicira-

Hernandez and Powell, 2021).

2.9 Differentially expressed gene analysis

DEG analysis was performed in Seurat with the SoupX-

corrected counts using the FindAllMarkers function with

logfc. threshold = 0.25 and min. pct = 0.25.

2.10 Analysis of gene-regulatory networks

GRN (or regulons) were identified using pySCENIC (v.0.9.15)

as described before (Vennekens et al., 2021). In short, co-expression

modules were generated, and regulons inferred with default

parameters. For mouse, mm10__refseqr80__10

kb_up_and_down_tss.mc9nr and mm10__refseqr80__500

bp_up_and_100 bp_down_tss.mc9nrmotif collections were used.

The hg38__refseq-r80__10 kb_up_and_down_tss.mc9nr.feather

and hg38__refseq-r80__500 bp_up_and_100

bp_down_tss.mc9nr.feather motif collections were used for

human data. The analysis results in a matrix of AUCell values

that represent the activity of each regulon in each cell. Using the

AUCell matrix as input, the datasets were re-integrated using Seurat

and subjected to PCA analysis and UMAP dimensional reduction.

For the complete mouse atlas, the top 15 PC were used. The AUCell

matrix was imported into the original integrated Seurat objects, and

regulons were projected on the integrated UMAP plots. Regulon

specificity scores (RSS), i.e., the cell-type specificity of a regulon,
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were calculated using the SCENIC function

regulon_specificity_scores (Suo et al., 2018). Mean regulon

activity (MRA) was calculated as the mean activity of each

regulon per cluster. Min-max normalization was used to scale

each parameter. Both scores were co-assessed by scatter plots of

both metrics, and by multiplying RSS with the MRA for each

regulon, allowing the ranking of regulons based on both parameters.

2.11 Inference of ligand-receptor
interactions using CellPhoneDB

The CellPhoneDB package (v2.1.5) was used to project

ligand-receptor interactions between annotated cell types

using the SoupX-filtered and normalized count matrices as

input and with default parameters (Efremova et al., 2020).

Mouse gene names were converted to their human

orthologues prior to running CellPhoneDB analysis.

2.12 Establishment of loom files for
interactive exploration in SCope

Loom files were established from the mouse atlas (as well as

from its subclustered DE) and from the human healthy and

diseased atlases (as well as from the integrated healthy and

diseased atlas, and from the subclustered DE) using Loompy

v2.0.17 (Linnarsson lab, www.loompy.org). Loom files can be

uploaded into SCope (available from https://scope.aertslab.org),

where they can be interactively explored (Davie et al., 2018).

3 Results and discussion

3.1 Establishing a comprehensive single-
cell atlas of mouse tooth

With the aim of establishing an inclusive sc atlas of postnatal

mouse teeth, we set out to integrate the at present nine publicly

available scRNA-seq datasets (Figure 1A; Table 1) (Sharir et al.,

2019; Takahashi et al., 2019; Chen et al., 2020; Chiba et al., 2020;

Krivanek et al., 2020; Wen et al., 2020; Chiba et al., 2021; Nagata

et al., 2021; Zhao et al., 2021). After rigorous quality control

(i.e., removal of low-quality cells and doublets), 37,948 cells were

retained for further analysis, with the datasets contributing

between 1,645 and 11,714 cells to the total pool, and with

24,290 and 13,658 cells obtained from molars and incisors,

respectively (Supplementary Figures S1A,B, Table 2). Based on

expression of known markers and marker profiles (‘modules’)

established from literature, as well as of novel cell type markers

identified in the original scRNA-seq datasets, 35 distinct cell

clusters were annotated (Figure 1B, Supplementary Figures

S1C,D, Table 3). Cells from each dataset (i.e., from the

different tooth (tissue) types and across timepoints) nicely

integrated in their respective clusters (Figure 1C).

Regarding the epithelial compartment, which comprises

36.9% of all annotated cells, 10 distinct dental epithelium

(DE) lineages were identified: DE progenitors (DEP), cycling

DEP, pre-ameloblasts (preAB), secretory-stage ameloblasts

(sAB), maturation-stage ameloblasts (mAB), stratum

intermedium (SI), cycling SI, stellate reticulum (SR), ventral/

outer enamel epithelium (VEE-OEE) and inner/outer enamel

epithelium (IEE-OEE) (Figure 1B, Supplementary Figures

S1E,F). Concerning the mesenchymal part, containing 38.4%

of classified cells, 13 dental mesenchyme (DM) clusters were

catalogued: apical pulp, distal pulp, cycling pulp, early

odontoblasts (OB), mature OB (mOB), cementoblasts (CB),

osteoblasts, dental follicle (DF), cycling DF, periodontal

ligament (PDL), fibroblasts, mesenchymal stem cells (MSC)

and marrow stromal cells (Figure 1B, Supplementary Figure

S1E). Further designated clusters encompass endothelial,

perivascular, red blood (RBC), Schwann and glial cells, and a

large population (14.4%) of immune cells (Figure 1B,

Supplementary Figure S1E). The latter is subdivided in

macrophages, neutrophils, B, NK and T cells, and

plasmacytoid dendritic cells (pDC). Finally, a small cluster

containing remnant low-quality cells originating from all nine

datasets was distinguished, which could not be clearly

annotated. Of note, clustering based on gene regulatory

networks (GRN; i.e., regulons, being modules of a core

transcription factor (TF) with its predicted target genes co-

expressed in the same cell) as identified using the pySCENIC

pipeline (Aibar et al., 2017), revealed highly similar regulatory

landscapes of cell clusters within their respective overarching

cell group (e.g., co-clustering of apical with distal and cycling

pulp ito ‘pulp’, or of preAB with sAB and mAB into ‘AB

lineage’) (Figure 1D). Taken together, through aggregating

recently published, publicly available sc transcriptomic

datasets of mouse molars and incisors, a comprehensive sc

transcriptome atlas of mouse tooth could be established,

capturing its cellular diversity. This atlas provides an

interesting resource to advance research into mouse tooth

biology which can be exploited using state-of-the-art

bioinformatic tools, as demonstrated below.

3.2 Identifying projected dental epithelial
stem cells using the newly built mouse
tooth atlas

Using the above applied standard bioinformatic approaches,

we could not identify a distinct dental epithelial stem cell (DESC)

cluster in the newly composed mouse tooth atlas (Figure 1B).

This observation corresponds to previous reports which also

could not pinpoint a DESC cluster in their datasets (Sharir et al.,

2019; Chiba et al., 2020; reviewed in Fresia et al., 2021). One
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study, which also applied the Smart-seq2 platform yielding

higher-depth sequencing data than 10X Genomics, was able to

identify putative DESC clusters (Krivanek et al., 2020). DESC

have been reported to represent a mixed population,

characterized by (combinations of) expressed markers such as

Sox2, Lgr5, Gli1, Lrig1, Bmi1 and Ptch1 (Seidel et al., 2010, 2017;

Juuri et al., 2012; Biehs et al., 2013; Sanz-Navarro et al., 2018;

Hermans et al., 2021). Since one of the limitations of sc

transcriptomics, especially when sequenced at lower depth, is

the occurrence of ‘dropouts’ (i.e. absence of parts of the cell’s

transcriptome due to low mRNA expression and/or inefficient

mRNA capture (Qiu, 2020)), we applied a novel bioinformatic

tool, i.e., weighted kernel density estimation as implemented in

the Nebulosa package, which endeavors to recover signals

(‘densities’) from dropped-out features (in other words,

‘rescuing’ expression signals of dropped-out genes) through

incorporating cellular similarities (Alquicira-Hernandez and

Powell, 2021). The individually estimated gene densities can

then be aggregated into a joint density for the panel of

assessed genes. Determining the individual densities of well-

reported DESC markers (Sox2, Lgr5, Gli1, Lrig1, Bmi1, Ptch1),

together with those of the DEP indicator Sfrp5 (Juuri et al., 2012)

and of potential novel markers identified through deep-

sequencing interrogation (Pcp4, Pknox2, Zfp273, Spock1

(Krivanek et al., 2020)) (Supplementary Figure S1G), followed

by their assembling into joint density, revealed putative DESC

localized within the IEE-OEE and VEE-OEE clusters (Figure 1E),

consistent with the most recent DESC projections (Gan et al.,

2020; Fresia et al., 2021; Hermans et al., 2021). Because a number

of the applied markers may also denote DM stem cells, the

weighted kernel density estimation also identified a potential

stem cell cluster within the DF (Biehs et al., 2013; Seidel

et al., 2017; Hermans et al., 2021). Taken together, by

applying the novel bioinformatic density estimation tool

on our newly composed atlas, we were able to discern

projected DESC clusters using datasets which previously

did not reveal these cells, hence showing the high potential of

the inclusive mouse tooth sc atlas by elevating the analytical

power.

3.3 Leveraging the mouse tooth atlas to
decipher the ameloblast lineage

We explored whether the created tooth sc atlas was

instrumental to delve into the still poorly understood AB

lineage and differentiation. Subclustering and pseudotime

analysis using Seurat and Monocle projected a linear

trajectory starting from the IEE-OEE cluster toward the

cycling DEP, DEP, preAB, sAB and mAB clusters (Figure 2A).

Again, weighted kernel density estimation of the DESC marker

panel applied to this focused dataset designated the IEE-OEE

cluster to contain the putative DESC (Figure 2A).

Our initial GRN analysis revealed a highly similar regulatory

landscape among related DE cell types, as indicated by joint

clustering of, amongst others, preAB, sAB and mAB (‘AB

lineage’); DEP and cycling DEP (‘DEP’); and non-AB

epithelium (‘Non-AB DE’) (see Figure 1D). By combining

regulon specificity score (RSS), mean regulon activity (MRA)

and expression pattern of regulon TFs, to our knowledge in such

combination previously not performed, candidate transcriptional

regulators across the AB differentiation trajectory could be

identified, with dynamic gene expression patterns and varying

degrees of regulon specificity and activity along the trajectory

(Figure 2B). Whereas Dlx2 and Msx2 are predominantly

expressed in the developmentally early IEE-OEE and (cycling)

DEP, and Trp63 is more constant throughout the trajectory

(albeit with slowly declining expression and regulon activity),

the applied metrics advanced Mafb and Sox21 as strong-

candidate transcriptional regulators of the AB lineage. Mafb

and Sox21 share a similar expression pattern, being

upregulated from the (late) DEP stage onward (Figure 2B).

Also, Klf5 was found to display an intriguing expression

profile and regulon specificity/activity, being prominent

throughout AB development except during the secretory stage

(Figure 2B). The projected target genes of the characterized TF, as

determined by the pySCENIC pipeline (using co-expression and

binding motif analysis), include key factors associated with AB

differentiation, enamel matrix formation and amelogenesis

(Figure 2C, Supplementary Figure S2A). For example, Satb1, a

key regulator of ameloblast polarity, is projected to be regulated

byMsx2 and Klf5. Furthermore, target genes ofMafb include the

amelogenesis-associated genes Itgb6 and Lama3. Congenital

mutations in laminins (Lama3 as well as Lamb3, target gene

of Klf5) are associated with amelogenesis imperfecta. Target genes

of Sox21 encompass the enamel matrix proteins Enam and

Amelx, as well as Mmp20 and Sox21 itself (suggesting a

positive feedback loop, as also seen for Dlx2, Msx2 and

Trp63). Interestingly, Sox21 has recently been independently

identified as a key regulator of AB identity and function

(Saito et al., 2020).

Assessment of differentially expressed genes (DEG) across

the pseudotime-ordered trajectory provides another tool to

monitor and identify candidate regulators of the AB lineage

(Figure 2D). For example, a shift in TF expression is observed

from Meis1, Sox9 and Sox11 in DEP towards Irx3, Meis2, Sox21

and Mafb in committed and differentiating AB (Figure 2D). Of

note, gene ontology (GO) exploration of the DEG shows an

evolution from cell cycle-associated processes (e.g., ‘DNA

replication’, ‘DNA strand elongation’, ‘mitotic cell cycle’) to

differentiation-linked terms (e.g., ‘odontogenesis’, ‘extracellular

matrix organization’, ‘biomineral tissue development’),

concordant with the projected AB development trajectory

(Figure 2E, Supplementary Figure S2B).

Taken together, the inclusive mouse tooth cell atlas

composed here provides a valuable tool to generate new
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FIGURE 1
Establishment of an inclusive mouse tooth single-cell atlas. (A) Schematic overview of workflow and datasets incorporated in the mouse tooth
atlas with tooth type and animal age. Colors indicate the tissue types derived from each dataset (red, incisor; blue, molar; purple, incisor and molar;
gray, periodontal). Abbreviations: wk, weeks; PD, postnatal day. (B,C) UMAP plots of annotated clusters with top marker genes for each cluster (B),
and of tooth type and dataset (C). (D) UMAP plot displaying regulon-based clustering of the mouse tooth atlas. Dotted lines indicate the
overarching cell groups identified. (E) UMAP plots showing the joint Nebulosa expression densities for the DESC marker panel (consisting of Sox2,
Lgr5, Gli1, Lrig1, Bmi1, Ptch1, Sfrp5, Pcp4, Pknox2, Zfp273 and Spock1, see text and Supplementary Figure S1G).
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insights, thereby opening the path toward deeper understanding

of mouse tooth biology and development. For instance, the novel

regulators of AB differentiation surfacing from the bioinformatic

analysis of the atlas can now be further examined in vivo (e.g.,

using genetically modified mice) or in vitro (e.g., using CRISPR/

Cas gene editing in tooth organoid models (Hemeryck et al.,

2022)). Detailed mapping of interactions between cell types (e.g.,

DE and DM) using the new atlas is expected to shed light on

tooth development which is known to encompass key epithelial-

mesenchymal interactions underlying the joint differentiation

processes of OB and AB (Hermans et al., 2021). Once gathered,

this knowledge can be used to compose in vitro (complex

organoid) models that capture the odontogenesis and

amelogenesis processes. Such study models are currently

lacking, thereby obstructing tooth mineralization research.

Establishing such biomimetic systems would open up the

avenue to a wide array of aspirations, from elucidating

congenital tooth disorders to accomplishing bioengineered

tooth replacement strategies. Of note, the currently existing

mouse scRNA-seq studies provide fragmented information

regarding tooth/tissue type and age/developmental stage,

which may still hinder straightforward in-depth comparisons.

Hence, a more systematic sampling of several different dental

tissues across consecutive postnatal timepoints would be highly

valuable (as recently reported for mouse embryonic molar and

incisor tooth germs (Wang et al., 2022)).

3.4 Establishing a comprehensive atlas of
adult human tooth

To complement the mouse tooth sc atlas, we also set out to

establish an inclusive sc transcriptomic atlas of healthy human

teeth (molars) by combining the at present six publicly available

datasets (Figure 3A; Table 4) (Krivanek et al., 2020; Pagella et al.,

2021b; Shi et al., 2021; Yin et al., 2021; Hemeryck et al., 2022;

Opasawatchai et al., 2022). Following stringent quality control,

57,906 cells were found suitable for further bioinformatic

analysis, with the datasets contributing between 524 and

21,453 cells to the total set, and cells sampled from various

dental tissue types (e.g., 24,412 cells from DP and 7,119 fromDF)

(Supplementary Figures S3A,B, Table 5). Mapping established

marker profiles resulted in the annotation of 23 distinct cell

clusters (Figure 3B, Supplementary Figure S3C, Table 6). Cells

from each dataset and the corresponding different tissue parts

appropriately integrated (Figure 3C). Within the mesenchymal

compartment, comprising 38% of total cells, six cell clusters were

pinpointed, i.e., distal pulp, apical papilla (AP), DF, apical pulp,

PDL and OB (Figure 3B, Supplementary Figure S3D). Of note,

only one small epithelial cluster (1.1% of total cells) was

discerned (Figure 3B, Supplementary Figure S3D), in clear

contrast with the multitude of DE clusters surfacing in the

mouse atlas, which may be due to the overrepresentation of

mesenchymal input tissues (in particular, dental pulp) in the

TABLE 3 Gene panels used for cluster annotation of mouse tooth cell types.

Cluster Genes Cluster Genes

mAB Klk4, Amtn, Odam, Csn3 DF Bmp3, Acta2, Igfbp5, Tnmd, Spon1, Hhip

sAB Ambn, Amelx, Mmp20, Enam, Lama2, Nrn1l, Cd55, Plod2, Galnt12, Cd24a Cycling DF Bmp3, Acta2, Igfbp5, Tnmd, Spon1, Hhip, Mki67,
Top2a

preAB Amelx, Mmp20, Dspp, Tgfb2, Vwde, Irx2, Mme, Cyp26a1, Shh, Igfbpl1, Col22a1 Fibroblasts S100a4, Spon2

DEP Sfrp5, Vwde, Cyp26a1, Shh, Igfbpl1, Col22a1, Kif5c Marrow
stromal

Ebf3

Cycling
DEP

Sfrp5, Vwde, Cyp26a1, Shh, Igfbpl1, Col22a1, Kif5c, Mki67, Top2a MSC Foxd1, Cd34, Ly6a

VEE-OEE Krt15, Igfbp2, Chchd10, Sparcl1, Cltb, Notch2, Igfbp7, Gas6, Sparc Perivascular Rgs5, Pdgfrb, Kcnj8

IEE-OEE Isl1, Cldn10, Sfrp5, Pthlh, Grp, Shisa2, Crabp1, Fam19a4, Shh, Aplf, Krt18, Endothelial Pecam1, Emcn, Col4a1, Cdh5

SR Krt17, Tacstd2, Sfn, Tagln, Igfbp3, Pthlh B Ptprc, Cd19, Ms4a1

SI Rhov, Nrarp, Tacstd2, Krt17, Cldn10, Enpp2 T Ptprc, Il7r, Ablim1, Cd8a

Cycling SI Rhov, Nrarp, Tacstd2, Krt17, Cldn10, Mki67, Enpp2, Top2a pDC Siglech, Cd209d

mOB Dspp, Dmp1, Phex, Cox4i2, Nupr1, Bglap Neutrophil S100a8, S100a9, Camp, Lcn2

Early OB Sall1, Notum, Dkk1, Smpd3, Bglap NK Cd209a, Cd209c, Dpp4

Apical pulp Sfrp2, Dio3, Smoc2, Shisa2, Hhip Macrophage Csf1r, Aif1, C1qa, Lyve1

Distal pulp Sox9, Itga4, Bglap Schwann Plp1, Cnp, Mag, Sox10, Mbp, S100b

Cycling pulp Sox9, Itga4, Sostdc1, Mki67, Top2a Glial Plp1, Sox10, Itga1, Mcam, Gfap, S100b

CB Pthlh, Smpd3, Sparcl1, Spp1, Olfml2b, Tubb3, Omd, Ibsp, Dmp1, Bglap, Postn, S100a4,
Sfrp2, Col12a1

RBC Hba-a2

Osteoblast Col2a1, Car3, Phex, Bglap, Col22a1 Low Quality No clear markers, low QC metrics

PDL Scx, Tnn, Postn, Bmp3
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FIGURE 2
Subclustering of the mouse ameloblast lineage. (A) UMAP plots of subclustered ameloblast lineage (left), pseudotime trajectory (starting from
the IEE-OEE cluster; middle) and joint Nebulosa expression density for the DESC marker panel (right). (B) Scatter plots (per annotated epithelial cell
cluster, color-coded) of scaled RSS and MRA with each dot corresponding to an individual regulon and black dots indicating the marked regulons
(top), and ridge (middle) and feature (bottom) plots indicating gene expression of selected TF/regulons. (C)Map indicating key predicted target
genes of identified TF. Genes are color-coded based on association with AB differentiation (brown), enamel matrix formation (green) or
amelogenesis (purple). Cross marks indicate potential self-Induction/upregulation. (D) Pseudotime-ordered (from left to right) gene expression
heatmap of the ameloblast trajectory in panel (A). Color intensity indicates z-score normalized gene expression (legend at bottom). Genes were
clustered into six groups using k-means clustering. Boxes indicate examples of genes for each cluster (in-text mentioned genes are underlined). (E)
Heatmap of GO analysis on clustered genes from panel (D). Color intensity indicates the p values of displayed GO terms (legend on top).
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FIGURE 3
Establishment of an inclusive human tooth single-cell atlas. (A) Schematic overview of workflow and datasets incorporated in the healthy
human tooth atlas with tooth (being molar) and tissue type. Abbreviations: perio, periodontal; AP, apical papilla; WM, whole molar; DF, dental follicle.
(B–E)UMAP plots of the annotated clusters of the healthy human tooth atlas with topmarker genes for each cluster (B), of tissue type and dataset (C),
of the annotated diseased tooth atlas (D), and of the integrated healthy and diseased tooth atlas (E).
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human datasets (Supplementary Figure S3B, Table 4), but also

the different biology of human and mouse tooth, the latter being

highly dynamic in turnover while human tooth loses the

preponderance of DE cells upon completion of crown

development. Similarly, only a limited number of OB were

found (0.9% of total cells versus 5.3% mOB and early OB in

the mouse atlas), likely due to completion of dentinogenesis in

the collected human tooth samples and/or limited number of

periodontal tissues in the composed human atlas’ dataset. In

accordance, periodontal CB were not detected (Figure 3B;

Supplementary Figure S3D). On the other hand, endothelial,

smooth muscle (SMC), perivascular, glial, Schwann and cycling

cells could be discriminated (Figure 3B; Supplementary

Figure S3D).

Regarding the immune component, the composed human

tooth atlas revealed a larger population than exposed in mouse

tooth (23.5% versus 14.4%, respectively), moreover showing a

distinct composition (Supplementary Figure S3E). Overall, the

proportions of immune cells as surfacing here in the human

atlas are comparable to previously reported flow-cytometric

TABLE 4 Publicly available human scRNA-seq datasets re-analyzed and integrated toward the comprehensive human tooth atlas.

Study Accession number Group Tissue of
interest

Age Notes

Healthy human

Krivanek et al. (2020) GSE146123 (GEO) Molar Dental pulp, apical papilla,
Whole molar

18–31 yo

Pagella et al. (2021b) GSE161267 (GEO) Molar Dental pulp, periodontium 18–35 yo

Shi et al. (2021) NA Molar Tooth germ Unknown Data are publicly available on Mendeley Data via https://data.
mendeley.com/datasets/7ryrp25y6z

Yin et al. (2021) GSE167251 (GEO) Molar Dental pulp 15 yo

Hemeryck et al.
(2022)

E-MTAB-10596
(ArrayExpress)

Molar Dental follicle 15–18 yo

Opasawatchai et al.
(2022)

GSE185222 (GEO) Molar Dental pulp 21 yo Only data generated from healthy controls were used

Diseased Human

Lin et al. (2022) GSE181688 (GEO) Molar Periapical tissue 26–44 yo CAP, periapical granuloma

Opasawatchai et al.
(2022)

GSE185222 (GEO) Molar Dental pulp 20–36 yo Enamel caries, deep caries

Abbrevations: GEO, gene expression omnibus; yo, years old; CAP: chronical apical periodontitis.

TABLE 5 Parameters used for quality control of the healthy human tooth scRNA-seq datasets.

Study nFeatures (range) nCounts (cut-off) % Mitochondrial
genes (cut-off)

#Cells pre QC # Cells
post QC

Healthy human

Krivanek et al., 2020 (dental pulp) [400:1,500] <40,000 <5 3,386 2,632

Krivanek et al., 2020 (apical papilla) [500:1,500] <40,000 <6 13,830 9,936

Krivanek et al., 2020 (whole tooth) [1,000:3,000] <40,000 <10 23,178 8,885

Pagella et al. (2021b) (pulp) [800:3,000] <40,000 <15 32,851 15,524

Pagella et al. (2021b) (periodontal) [750:4,000] <40,000 <10 2,914 1,590

Shi et al., 2021 (tooth germ) [750:2,500] <40,000 <20 9,855 5,964

Yin et al., 2021 (dental pulp) [500:3,000] <40,000 <15 7,121 5,732

Hemeryck et al., 2022 (dental follicle) [450:5,500] <40,000 <10 7,891 7,119

Opasawatchai et al., 2022 (dental pulp) [900:3,000] <40,000 <3 890 524

Diseased Human

Lin et al., 2022 (CAP) [1,000:3,500] <40,000 <6 19,089 10,540

Lin et al., 2022 (periapical granuloma) [1,100:3,500] <40,000 <5 7,265 2,914

Opasawatchai et al., 2022 (deep caries) [900: 3,500] <40,000 <3 3,677 2,586

Opasawatchai et al., 2022 (enamel caries) [800: 3,500] <40,000 <3 2015 976

Abbreviations: CAP, chronical apical periodontitis; QC, quality control.
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FIGURE 4
Subclustering of human tooth epithelial cells. (A) Annotated UMAP plot of subclustered ‘Epithelial’ and ‘Cycling’ clusters. (B) Dotplot displaying
the percentage of cells (dot size) expressing key marker genes of the different epithelial subclusters (average expression levels indicated by color
intensity). (C) Scatter plots (per annotated epithelial cell cluster, color-coded) of scaled RSS and MRA with each dot corresponding to an individual
regulon. Black dots indicate the marked regulons. (D) Feature plots of gene expression (top row) and regulon activity (bottom row) of indicated
TF/regulons in the epithelial subclusters. Average expression and activity levels are indicated by color intensity (see scale). (E) Table showing the top
10 regulon TFs for DF-ERM, perio-ERM and JE as identified through combined RSS and MRA (RSS*MRA) analysis. The overlapping regulatory
landscape is mapped and color-coded to annotate common TFs (red), TFs present in both DF-ERM and perio-ERM (green) and TFs common to
perio-ERM and JE (blue). (F) UMAP plot of integrated mouse and human DE. Dotted lines indicate co-clustering of human DF-ERM andmouse VEE-
OEE, and of perio-ERM and JE.
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data (in particular derived from dental pulp) (Gaudin et al.,

2015). Several immune cell types were identified in human but

not mouse tooth including mast cells, monocytes,

granulocytes, double negative (DN) T and naïve B cells

(compare Figure 3B with Figure 1B, and Supplementary

Figure S3D with Supplementary Figure S1E). Human tooth

appears to contain a markedly smaller population of

macrophages and neutrophils than mouse tooth (‘Macro/

Neut’; 46.5% versus 81.1% of the total immune cells,

respectively) and a much larger population of T cells

(34.7% versus 4%) (Supplementary Figure S3E). Again, one

has to take into account that the included tooth samples from

mouse and human differ in developmental state and turnover

activity (as well as tissue type representation). For instance, the

higher percentage of macrophages as observed in mouse tooth

may have to do with the younger (developmental) ages

included, as macrophages have been proposed to play an

important role in dentinogenesis and amelogenesis

processes (Park et al., 2017; Neves et al., 2020; Vieira and

Modesto, 2020).

In parallel to composing the healthy tooth atlas, we

established a sc transcriptome atlas of diseased human

tooth, integrating the at present publicly available datasets

from patients with deep caries, enamel caries, chronic apical

periodontitis (CAP) and periapical granuloma (Table 4) (Lin

et al., 2022; Opasawatchai et al., 2022). Following strict quality

control, 17,016 cells were retained of which 3,562 and

13,454 cells were derived from dental pulp and periapical

diseases (corresponding to the individual datasets),

respectively (Supplementary Figures S3F,G, Table 5).

Applying the established cell type markers (Table 6)

revealed annotated cell clusters comparable between healthy

and diseased tooth (Figure 3D, Supplementary Figures S3H,I),

moreover well overlapping following integration (Figure 3E,

Supplementary Figure S3J). Not unexpectedly, the diseased

tooth overall seems to contain a larger proportion of immune

cells than healthy tooth (52.1% versus 23.5%; Supplementary

Figures S3D,K), particularly epitomized in the B cell

component (compare Figures 3D,E with Figure 3B, and

Supplementary Figure S3K with Supplementary Figure

S3D). When stratified according to disease type, it appears

that periapical pathologies (CAP and periapical granuloma)

have a more pronounced immune cell component (55.8–74.9%

of total cells) (thus, elicit a stronger immune cell activation

and/or influx, most prominently from B cells, which may

relate to their chronic nature) than carious teeth

(14.4–25.1%), of which the immune cell proportion more

resembles healthy human tooth (Supplementary Figure

S3K). Further zooming in on those healthy tooth

compartments that relate to the diseased tissue type

(i.e., pulp for caries and periodontal tissue (including DF)

for periodontal disease), the above-described observations

hold (Supplementary Figure S3L). Furthermore, deep and

enamel caries show a different composition of the immune

cell component. Among others, T cell numbers appear

elevated in enamel caries as compared to deep caries,

whereas the latter shows a large increase in naïve B cells

(Supplementary Figure S3L). This observation correlates

with previous findings that the immune response elicited by

caries (i.e., as recapitulated in the early enamel caries) is

initially driven by T cells, and only in a later, more

advanced, stage (i.e., as recapitulated in deep caries)

enhanced by B cells (Izumi et al., 1995; Hahn and Liewehr,

2007; Farges et al., 2015). Thus, although the number of

diseased tooth samples currently available is limited and

more datasets are needed for definitive conclusions, our

new inclusive human tooth atlas shows valuable potential

for exploring tooth disease and differences between disease

subtypes. Also, it will enable to dive deeper into human tooth

biology as further demonstrated below. Overall, the composed

TABLE 6 Gene panels used for cluster annotation of human tooth cell types.

Cluster Genes Cluster Genes

Epithelial KRT14, ODAM B CD79A, IGHG1, IGHG4, IGHG4

Cycling KRT14, ODAM, TOP2A DN T CD3D, CD3E, IL4 (CD4−, CD8−)

OB DMP1, PHEX T CD3D, CD3E, CD4, CD8A, CD8B

Distal pulp SOX9, BGLAP, ITGA4 NK KLRD1, KLRF1, GNLY

Apical pulp SFRP2, SMOC2, TNN pDC CD4, IRF7, IL3RA, PLD4

AP TNN, ITGA4 Macro/Neut S100A9, FCGR3B, CD14, CSF1R, LYZ, AIF1, ITGAX, SPI1, CD83

DF SPON1, IGFBP5, FOXF1, POSTN, BMP3, TNN, COL12A1, ACTA2 Monocytes LYZ, SPI1, CD83, CCR7, CD86

PDL IGFBP5, POSTN, BMP3, TNN, COL12A1 Granulocytes CSF1R, LYZ, AIF1, ITGAX, SPI1, CD83, CD86, ANPEP

SMC MYH11, RGS5 Mast TPSB2, TPSAB1, CPA3

Perivascular RGS5, KCNJ8 Schwann MBP, CNP, S100B, PLP1, SOX10

Endothelial PECAM1, EMCN, CDH5 Glial S100B, PLP1, SOX10, FOXD3, NCAM1, NGFR

Naïve B MS4A1, CD79A
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healthy and diseased tooth atlas may serve as a roadmap for

future studies that capture various (additional) human dental

tissues, moreover from a variety of different pathologies, and

as a tool to compare the response of the different tooth

components to a wide range of noxious impacts.

3.5 Scrutinizing the diversity of late-stage
human dental epithelium using the
healthy tooth atlas

We took advantage of the newly established healthy human

tooth atlas to further resolve the DE compartment, at present not

well explored and understood. Subclustering of this population,

including the neighboring cycling cluster also expressing KRT14

and ODAM (Figure 3B, Supplementary Figure S3D), revealed six

cell groups (Figure 4A) by marker expression (Figure 4B) and

DEG profile (Supplementary Figure S4A), largely separated by

tissue of origin (corresponding to dataset) (Supplementary

Figure S4B). The periodontal DE could be subdivided into the

early-developmental epithelial cell rests of Malassez (ERM)

within the DF (DF-ERM), the more mature ERM within the

periodontium (Perio-ERM) and the junctional epithelium (JE)

(i.e., the odontogenic epithelium-derived interface between tooth

surface and gingiva (Yajima-Himuro et al., 2014)). In addition,

the AP-lining epithelium could be discriminated into an

epithelial part and an epithelial-to-mesenchymal transition

(EMT)-associated cell group (AP-Epi and AP-EMT,

respectively). The cycling cluster was comprised of cells from

all source tissues, suggesting a certain degree of proliferative

activity or turnover in these tooth epithelial compartments.

Intriguingly, expression overlap was observed between JE,

Perio-ERM and DF-ERM, with Perio-ERM displaying

intermediate characteristics of both JE and DF-ERM

(Figure 4B, Supplementary Figure S4A). Along the same line,

regulon analysis showed that, within the top 10 regulons for each

cluster (identified based on a per cluster combination of RSS and

MRA), multiple regulons are shared, with Perio-ERM again

displaying an intermediate regulatory landscape. For instance,

JE and Perio-ERM show high HES1, MYC and HIF1A regulon

activity, while Perio-ERM and DF-ERM display high SOX2 and

TP63 activity (Figures 4C–E). These hints of connection between

JE and ERM are remarkable since both cell types have been

attributed separate developmental origins as well as distinct

biological functions. While ERM has been reported to be

involved in enamel, cementum and PDL regeneration

following tooth injury and inflammation, JE is ascribed an

important role in attaching the oral gingival epithelium to the

tooth surface as well as in providing protection to the constant

microbial challenge from the oral cavity (Hamamoto et al., 1996;

Davis, 2018; Hermans et al., 2021; Fischer and Aparicio, 2022).

Whereas the ERM developmentally results from disintegration of

Hertwig’s epithelial root sheath (HERS), JE is considered to

develop upon tooth eruption from the reduced enamel

epithelium (REE), the layer of mAB and OEE covering the

developed enamel before eruption (Supplementary Figure

S4C) (Luan et al., 2006; Kato et al., 2019). Our observation

that perio-ERM displays an intermediate transcriptional and

regulatory profile between DF-ERM and JE may indicate that

the developmental origins of ERM and JE are not as distinct as

previously thought, and advances the possibility that HERS-

derived ERM contributes to JE formation and/or REE to ERM

development (and then further to JE) (Supplementary Figure

S4C), both not excluded by current knowledge. To further

explore this hypothesis, we integrated all identified DE

clusters across human and mouse. Interestingly, whereas

perio-ERM and JE clustered together, human DF-ERM

grouped with mouse VEE-OEE which gives rise to REE,

further strengthening the possibility that REE may also

contribute to ERM and/or vice versa (Figure 4F). Moreover,

the VEE-OEE enriches for stem cells (Figure 1E) which is in line

with the ERM being proposed, and recently supported, to contain

DESC (Xiong et al., 2012; Tsunematsu et al., 2016; Hemeryck

et al., 2022). Lineage tracing studies in mice will be essential to

support these hypotheses and to definitively determine the

developmental origins of JE and ERM.

Taken together, the newly composed atlas, in concert with

advanced bioinformatic tools, may shed new light on the still

poorly understood epithelial component of the human tooth

regarding both origin and function. Moreover, this establishment

of healthy and diseased tooth atlases provides a roadmap for

future human tooth scRNA-seq studies, allowing to integrate

and/or project newly generated data (e.g., of other tooth types or

diseases, or at different stages in development) onto the

consolidated maps.

3.6 Exploiting the tooth atlases to unravel
cell-cell signaling interactions

Sc transcriptomic data analysis can be enriched using

advanced computational tools that have become available in

recent years (and are continuously being further developed).

As an important illustration, we applied CellPhoneDB that

enables to infer potential signaling interactions between a

tissue’s cell types (Efremova et al., 2020).

Since Schwann cells have been described to play crucial roles

during tooth development (i.e., by giving rise to dental MSC and

OB) and regeneration (i.e., by co-orchestrating the pulpal

inflammatory response and peripheral nerve repair) (Kaukua

et al., 2014; Couve and Schmachtenberg, 2018), we focused on

potential ligand-receptor interactions originating from the

Schwann cell cluster towards the various DE and DM cell

subsets. Interestingly, both in mouse and human, Fgf1-Fgfr1

interactions between Schwann cells and the majority of

annotated cell types were projected, as well as Fgf1-Fgfr2 and
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FIGURE 5
Cell-cell signaling analysis projecting FGF1 asmessenger from Schwann to other cell types in human andmouse tooth. (A,B)Dotplot of selected
ligand-receptor interactions originating from the Schwann cell cluster, identified by CellPhoneDB analysis, in mouse (left) and human (right). Size of
dots indicates the p value of the projected interaction, and color intensity the means of the average expression levels of ligand (L) in the Schwann cell
cluster and receptor (R) in the other clusters. (B) Gene expression plots of identified ligands/receptors in mouse and human (top), and mouse
and human tooth atlases with relevant clusters highlighted (bottom).
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Fgf1-Fgfr3 interactions although with more distinct clusters, all

with Fgf1 originating from the Schwann cells (Figure 5A). FGF

signaling has been well documented in various stages of

(embryonic) tooth development and homeostasis, in particular

between DE and DM (Du et al., 2018). For instance, FGF3 and

FGF10 are DM signals regulating DE development and

maintenance of the incisor DESC niche, while FGF4 and

FGF9 from the DE are crucial regulators of DM development

(Kettunen and Thesleff, 1998; Kettunen et al., 2000; Du et al.,

2018). Previously, Fgf1 has been shown to promote

differentiation of OB and self-renewal of DESC (Unda et al.,

2001; Chang et al., 2013). Here, our analysis prompts to

hypothesize a role for FGF1 signaling also in postnatal tooth

homeostasis, emanating from Schwann cells. In accordance, a

recent sc analysis of peripheral nerves also identified high

expression of Fgf1 in Schwann cells compared to the neurons

and mesenchymal cells in the nerves (Toma et al., 2020).

Fgf1-Fgfr1 signaling activity appears lower in mouse VEE-

OEE and human epithelium, both instead characterized by

higher Fgf1-Fgfr2 activity (Figure 5A). Curiously, both Fgf1

and Fgfr1 appear more expressed in molars than incisors

(Figure 5B). Moreover, Fgfr1 appears to be the predominant

FGFR expressed in the tooth, detected in most cell types

(Figure 5B), whereas Fgfr2 and Fgfr3 are mainly found in DM

clusters (albeit at lower levels in human tooth, and Fgfr2

expression also present in some epithelial cell types).

Remarkably, Fgfr2 and Fgfr3 show non-overlapping expression

patterns within the mouse DM, with Fgfr2 predominantly found

in periodontium and Fgfr3 expressed by apical and distal pulp. Of

note, mutations in all three FGF receptors are associated with

dental defects in various congenital diseases, such as

osteoglyphonic dysplasia (mutations in FGFR1), Apert

syndrome (in FGFR2) and lacrimo-auriculo-dento-digital

syndrome (in FGFR2 and FGFR3) (Rohmann et al., 2006; Lu

et al., 2016; Marzin et al., 2020). Moreover, Fgfr1 and Fgfr2 were

also demonstrated to be necessary for proper odontogenesis in

mouse (Takamori et al., 2008; Hosokawa et al., 2009).

Taken together, cell-cell signaling inference using the

developed tooth atlases exposed FGF signaling as candidate

Schwann cell-initiated regulatory niche process conserved in

mouse and human tooth, thereby further illustrating the

important potential of the newly composed inclusive tooth

atlases when subjected to state-of-the-art (or newly developed)

bioinformatic tools.

4 Conclusion

By re-assessing and combining recently created scRNA-seq

datasets from mouse and human teeth, we established

comprehensive sc atlases capturing the broad cellular diversity

of the tooth spanning health and disease. Moreover, we make the

composed atlases, as well as a set of subclustered compartments,

available online to the dental research community in a highly

accessible format by providing the loom files which can be

uploaded into SCope (available from https://scope.aertslab.org)

(Davie et al., 2018), an online application allowing to map the

separate clusters and interrogate expression of genes of interest.

Taken together, the atlases will provide a powerful resource and

tool for the dental research community. In addition to being a

strong activator or accelerator of hypothesis-driven research, i.e.

exposing or supporting novel hypotheses which can then further

be experimentally investigated, the atlases can be used as a

technical resource and roadmap for future tooth scRNA-seq

studies, allowing integration of newly generated data which

can lead to enriched insights. Also, further developments in

bioinformatic programs, as well as in sc (multi-)omics

technologies enabling the (co-)assessment of the sc

epigenome, metabolome and proteome and the inclusion of

spatial information (spatial transcriptomics), will undoubtedly

highly advance our understanding of fundamental tooth

biology, with significant translational and clinical

implications. In particular, further deep unraveling of the

tooth cellular and molecular landscape will pave the way to

tissue engineering and the (re-)construction of a biological or

biomimetic tooth, which essentially relies on detailed

knowledge of needed cell types and extracellular matrix

players.
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scRNAseq-tooth-atlas. Loom files for interactive exploration will be

made available via Mendeley Data (DOI: 10.17632/2kskdknngb.1).
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