
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Multi-objective hyperparameter optimization with performance uncertainty

Non Peer-reviewed author version

MORALES HERNANDEZ, Alejandro; VAN NIEUWENHUYSE, Inneke & NAPOLES

RUIZ, Gonzalo (2022) Multi-objective hyperparameter optimization with performance

uncertainty. In: Proceedings of International Conference on Optimization and Learning,.

DOI: 10.1007/978-3-031-22039-5_4

Handle: http://hdl.handle.net/1942/38775



Multi-objective hyperparameter optimization
with performance uncertainty?

Alejandro Morales-Hernández1,2,3[0000−0003−0053−4902], Inneke Van
Nieuwenhuyse1,2,3[0000−0003−2759−3726], and Gonzalo

Nápoles4[0000−0003−1936−3701]

1 Core Lab VCCM, Flanders Make, Limburg, Belgium
2 Research Group Logistics, Hasselt University, Agoralaan Gebouw D, Diepenbeek,

3590, Limburg, Belgium
3 Data Science Institute, Hasselt University, Agoralaan Gebouw D , Diepenbeek,

3590, Limburg, Belgium
{alejandro.moraleshernandez, inneke.vannieuwenhuyse}@uhasselt.be

4 Department of Cognitive Science & Artificial Intelligence, Tilburg University, The
Netherlands

g.r.napoles@uvt.nl

Abstract. The performance of any Machine Learning algorithm is im-
pacted by the choice of its hyperparameters. As training and evaluating
a ML algorithm is usually expensive, the hyperparameter optimization
(HPO) method needs to be computationally efficient to be useful in prac-
tice. Most of the existing approaches on multi-objective HPO use evo-
lutionary strategies and metamodel-based optimization. However, few
methods account for uncertainty in the performance measurements. This
paper presents results on multi-objective HPO with uncertainty on the
performance evaluations of the ML algorithms. We combine the sampling
strategy of Tree-structured Parzen Estimators (TPE) with the meta-
model obtained after training a Gaussian Process Regression (GPR) with
heterogeneous noise. Experimental results on three analytical test func-
tions and three ML problems show the improvement in the hypervolume
obtained, when compared with HPO using stand-alone multi-objective
TPE and GPR.

Keywords: hyperparameter optimization · multi-objective optimization
· Bayesian optimization · uncertainty

1 Introduction

In Machine Learning (ML), an hyperparameter is a parameter that needs to
be specified before training the algorithm: it influences the learning process,
but it is not optimized as part of the training algorithm. The time needed to
train a ML algorithm with a given hyperparameter configuration on a given
dataset may already be substantial, particularly for moderate to large datasets,

? Correspondence to: Alejandro Morales-Hernández

ar
X

iv
:2

20
9.

04
34

0v
1 

 [
cs

.L
G

] 
 9

 S
ep

 2
02

2



2 A. Morales-Hernández et al.

so the HPO algorithm should be as efficient as possible in detecting the optimal
hyperparameter setting.

Many of the current algorithms in the literature focus on optimizing a single
(often error-based) objective [2,14,11]. In practical applications, however, it is
often required to consider the trade-off between two or more objectives, such
as the error-based performance of a model and its resource consumption [8], or
objectives relating to different types of error-based performance measures [6].
The goal in multi-objective HPO is to obtain the Pareto-optimal solutions, i.e.,
those hyperparameter values for which none of the performance measures can
be improved without negatively affecting any other.

In the literature, most HPO approaches take a deterministic perspective using
the mean value of the performance observed in subsets of data (cross validation
protocol). However, depending on the chosen sets, the outcome may differ: a
single HP configuration may thus yield different results for each performance
objective, implying that the objective contains uncertainty (hereafter referred
to as noise). We conjecture that a HPO approach that considers this uncer-
tainty will outperform alternative approaches that assume the relationships to
be deterministic. Stochastic algorithms (such as [3,5]) can potentially be useful
for problems with heterogeneous noise (the noise level varies from one setting to
another). To the best of our knowledge, such approaches have not yet been stud-
ied in the context of HPO optimization. The main contributions of our approach
include:

– Multi-objective optimization using a Gaussian Process Regression (GPR)
surrogate that explicitly accounts for the heterogeneous noise observed in
the performance of the ML algorithm.

– The selection of infill points according to the sampling strategy of multi-
objective TPE (MOTPE), and the maximization of an infill criterion. This
method allows sequential selection of hyperparameter configurations that are
likely to be non-dominated, and that yield the largest expected improvement
in the Pareto front.

The remainder of this article is organized as follows. Section 2 discusses
the basics of GPR and MOTPE. Section 3 presents the algorithm. Section 4
describes the experimental setting designed to evaluate the proposed algorithm,
and Section 5 shows the results. Finally, Section 6 summarizes the findings and
highlights some future research directions.

2 GPR and TPE: Basics

Gaussian Process Regression (GPR) (also referred to as kriging, [16]) is com-
monly used to model an unknown target function. The function value predic-
tion at an unsampled point x(∗) is obtained through the conditional probability
P (f(x(∗))|X,Y) that represents how likely the response f(x(∗)) is, given that we
observed the target function at n input locations x(i), i = 1, . . . , n (contained in
matrix X), yielding function values y(i), i = 1, . . . , n (contained in matrix Y)



Multi-objective hyperparameter optimization with performance uncertainty 3

that may or may not be affected by noise. Ankenman et al. [1] provides a GPR
model (referred to as stochastic kriging) that takes into account the heteroge-
neous noise observed in the data, and models the observed response value in the
r -th replication at design point x(i) as:

fr(x(i)) = m(x(i)) +M(x(i)) + εr(x(i)) (1)

where m(x) represents the mean of the process, M(x) is a realization of a Gaus-
sian random field with mean zero (also referred to as the extrinsic uncertainty
[1]), and εr(x(i)) is the intrinsic uncertainty observed in replication r. Popular
choices for m(x) are m(x) =

∑
h βhfh(x) (where the fh(x) are known linear or

nonlinear functions of x, and the βh are unknown coefficients to be estimated),
m(x) = β0 (an unknown constant to be estimated), or m(x) = 0. M(x) can be
seen as a function, randomly sampled from a space of functions that, by assump-
tion, exhibit spatial correlation according to a covariance function (also referred
to as kernel).

Whereas GPR models the probability distribution of f(x) given a set of
observed points (P (f(x)|X,Y)), TPE tries to model the probability of sampling
a point that is directly associated to the set of observed responses (P (x|X,Y))
[2]. TPE defines P (x|X,Y) using two densities:

P (x|X,Y) =

{
l(x) if f(x) < y∗,x ∈ X
g(x) o.w

(2)

where l(x) is the density estimated using the points x(i) for which f(x(i)) < y∗,
and g(x) is the density estimated using the remaining points. The value y∗

is a user-defined quantile γ (splitting parameter of Algorithm 1 in [13]) of the
observed f(x) values, so that P (f(x) < y∗) = γ. Here, we can see l as the density
of the hyperparameter configurations that may have the best response. A multi-
objective implementation of TPE (MOTPE) was proposed by [13]; this multi-
objective version splits the known observations according to their nondomination
rank. Contrary to GPR, neither TPE nor MOTPE provide an estimator of the
response at unobserved hyperparameter configurations.

3 Proposed algorithm

The algorithm (Figure 1) starts by evaluating an initial set of hyperparameter
vectors through a Latin hypercube sample; simulation replications are used to
estimate the objective values at these points. We then perform two processes
in parallel. On the one hand, we use the augmented Tchebycheff scalarization
function [10] (with a random combination of weights) to transform the multiple
objectives into a single objective using these training data. Throughout this
article, we will assume that the individual objectives need to be minimized;
hence, the resulting scalarized objective function also needs to be minimized.
We then train a (single) stochastic GPR metamodel on these scalarized objective
function outcomes; the replication outcomes are used to compute the variance
of this scalarized objective.



4 A. Morales-Hernández et al.

INITIAL SAMPLE
Design experiments

SIMULATION
Compute expensive

responses
Stop?

RETURN non-
dominated points

SCALARIZATION
Transform the problem

BUILD METAMODEL
based on simulations outputs

SEARCH using an infill
criterion SPLIT OBSERVATIONS 

ESTIMATE DENSITY
FUNCTIONS using poor and

good observations

Start

End

Yes

No

Add new design(s)

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Fig. 1: Proposed multi-objective HPO using GPR with heterogeneous noise and
TPE to sample the search space

At the same time, we perform the splitting process used by [13] to divide
the hyperparameter vectors into two subsets (those yielding “good” and “poor”
observations) to estimate the densities l(x) and g(x) for each separate input
dimension (Eq. 2). To that end, our approach uses a greedy selection according
to the nondomination rank of the observations, and controlled by the parameter
γ 5. The strategy thus preferably selects the HP configurations with highest
nondomination rank to enter in the ”good” subset.

Using the densities l(x), we randomly select a candidate set of nc configu-
rations for each input dimension. These individual values are sorted according

to their log-likelihood ratio log l(x)
g(x) , such that the higher this score, the larger

the probability that the input value is sampled under l(xi) (and/or the lower
the probability under g(xi)). Instead of selecting the single configuration with
highest score on each dimension (as in [2,13]), we compute the aggregated score

AS(x) =
∑d

i=1 log
l(xi)
g(xi)

for each configuration, and select the one that maxi-

mizes the Modified Expected Improvement (MEI) [?] of the scalarized objective
function in the set of configurations Q with an aggregated score greater than
zero (see Eq. 3).

arg max
q∈Q

(Ẑmin−Ẑq)Φ(
Ẑmin − Ẑq

ŝq
)+ŝqφ(

Ẑmin − Ẑq

ŝq
) , Q = {x |AS(x) > 0} (3)

where Ẑmin is the stochastic kriging prediction at xmin (i.e. the hyperpa-
rameter configuration with the lowest sample mean among the already known
configurations), φ(·) and Φ(·) are the standard normal density and standard

normal distribution function respectively, the Ẑq is the stochastic kriging pre-
diction at configuration q, and ŝq is the ordinary kriging standard deviation for

5 Notice that both in [13] and in our algorithm, the parameter γ represents a percent-
age of the known observations that may be considered as “good”.



Multi-objective hyperparameter optimization with performance uncertainty 5

that configuration [17]. The search using MEI focuses on new points located in
promising regions (i.e., with low predicted responses; recall that we assume that
the scalarized objective need to be minimized), or in regions with high meta-
model uncertainty (i.e., where little is known yet about the objective function).
Consequently, the sampling behavior automatically trades off exploration and
exploitation of the configuration search space.

Once a new hyperparameter configuration has been selected as infill point,
the ML algorithm is trained on this configuration, yielding (again) noisy esti-
mates of the performance measures. Following this infill strategy, we choose that
configuration for which we expect the biggest improvement in the scalarized ob-
jective function, among the configurations that are likely to be non-dominated.

4 Numerical simulations

In this section, we evaluate the performance of the proposed algorithm for solv-
ing multi-objective optimization problems (GP MOTPE), comparing the results
with those that would be obtained by using GP modelling and MOTPE indi-
vidually. In a first experiment, we analyze the performance on three well-known
bi-objective problems (ZDT1, WFG4 and DTLZ7 with input dimension d = 5;
see [7]), to which we add artificial heterogeneous noise (as in [5]). More specifi-

cally, we obtain noisy observations f̃ jp (Xi) = fj(Xi)+εp(Xi), p = {1, . . . , r}, j =
{1, . . . ,m}, with εp(Xi) ∼ N (0, τj(Xi)). The standard deviation of the noise
(τj(X)) varies for each objective between 0.01 × Ωj and 0.5 × Ωj , where Ωj is
the range of objective j. In between these limits, τj(X) decreases linearly with
the objective value: τj(X) = aj(fj(X) + bj),∀j ∈ {1, . . . ,m}, where a and b are
the linear coefficients obtained from the noise range [9].

Table 1: Details of the ML datasets

Dataset ID Inst. (Feat.)

Balance-scale 997 625 (4)
Optdigits 980 5620 (64)
Stock 841 950 (9)
Pollen 871 6848 (5)
Sylvine 41146 5124 (20)
Wind 847 6574 (14)

Dataset ID Inst. (Feat.)

Delta ailerons 803 7129 (5)
Heart-statlog 53 270 (13)
Chscase vine2 814 468 (2)
Ilpd 41945 583 (10)
Bodyfat 778 252 (14)
Strikes 770 625 (6)

In a second experiment, we test the algorithm on a number of OpenML
datasets, shown in Table 1. We optimize five hyperparameters for a simple (one
hidden layer) Multi-Layer Perceptron (MLP), two for a support vector machine
(SVM), and five for a Decision Tree (DT) (see Appendix A). In each experiment,
the goal is to find the HPO configurations that minimize classification error while
simultaneously maximizing recall. In all experiments, we used 20% of the initial
dataset as test set, and the remainder for HPO. We apply stratified k-fold cross-
validation (k = 10) to evaluate each hyperparameter configuration.

We used a fixed, small number of iterations (100) as a stopping criterion
in all algorithms; this keeps optimization time low, and resembles real-world



6 A. Morales-Hernández et al.

optimization settings where limited resources (e.g., time) may exist. Table 2
summarizes the rest of the parameters used in the experiments.

Table 2: Summary of the parameters for the experiments

Setting Problem GP MOTPE GP MOTPE
Initial design Analytical fcts LHS: 11d− 1

HPO Random sampling: 11d− 1
Replications Analytical fcts 50

HPO 10
Acquisition function MEI EITPE MEI
Acquisition function optimization PSO* Maximization on a candidate set
Number of candidates to sample - nc = 1000 , γ = 0.3
Kernel Gaussian - Gaussian
* PSO algorithm (Pyswarm library): swarm size = 300, max iterations = 1800,
cognitive parameter=0.5, social parameter=0.3, and inertia=0.9

5 Results

Figure 3 shows the evolution of the hypervolume indicator during the optimiza-
tion of the analytical test functions. The combined algorithm GP MOTPE yields
a big improvement over both GP and MOTPE algorithms for the ZDT1 and
DTLZ7 functions, reaching a superior hypervolume already after a small num-
ber of iterations. Results also show that for ZDT1 and DTLZ7, the standard
deviation on the final hypervolume obtained by GP and GP MOTPE is small,
which indicates that a Pareto front of similar quality is obtained regardless of
the initial design. MOTPE, by contrast, shows higher uncertainty in the hyper-
volume results at the end of the optimization. For the concave Pareto front of
WFG4, MOTPE provides the best results, while GP MOTPE still outperforms
GP.

Table 3 shows the average rank of the optimization algorithms according to
the hypervolume indicator. The experiments did not highlight significant dif-
ferences between GP MOTPE, GP and MOTPE (p value = 0.565 > 0.05 for
the non-parametric Friedman test where H0 states that the mean hypervolume
of the solutions is equal). However, GP MOTPE has the lowest average rank
in the validation set, indicating that on average, the Pareto front obtained with
our algorithm tends to outperform those found by GP and MOTPE individually,
yielding a larger hypervolume.

Once the Pareto-optimal set of HP configurations has been obtained on the
validation set, the ML algorithm (trained with those configurations) is evaluated
on the test set. The difference between the hypervolume values obtained from
the validation and test set can be used as a measure of reliability: in general,
one would prefer HP configurations that generate a similar hypervolume in the
test set. Figure 4 shows that the difference between both hypervolume values
is almost zero when GP MOTPE is used, for all ML algorithms. In general,



Multi-objective hyperparameter optimization with performance uncertainty 7

0.0 0.2 0.4 0.6 0.8 1.0
f1

0.0

0.2

0.4

0.6

0.8

1.0

f2

True PF
PF GP
PF MOTPE
PF GP_MOTPE

(a) ZDT1

0.0 0.5 1.0 1.5 2.0 2.5 3.0
f1

0

1

2

3

4

5

f2

True PF
PF GP
PF MOTPE
PF GP_MOTPE

(b) WFG4

0.0 0.2 0.4 0.6 0.8 1.0
f1

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

f2

True PF
PF GP
PF MOTPE
PF GP_MOTPE

(c) DTLZ7

Fig. 2: Observed Pareto front (PF) obtained at the end of a single macroreplica-
tion, for the analytical test functions. The uncertainty of each solution is shown
by a shaded ellipse, and reflects the mean± std of the simulation replications.

0 20 40 60 80 100
Infill points

7.5

8.0

8.5

9.0

9.5

Hy
pe

rv
ol

um
e 

in
di

ca
to

r

GP MOTPE GP_MOTPE

(a) ZDT1 ref = [1, 10]

0 20 40 60 80 100
Infill points

6.5

7.0

7.5

8.0
GP MOTPE GP_MOTPE

(b) WFG4 ref = [3, 5]

0 20 40 60 80 100
Infill points

14

16

18

GP MOTPE GP_MOTPE

(c) DTLZ7 ref = [1, 23]

Fig. 3: Hypervolume evolution during the optimization of the analytical test
functions. Shaded area represents mean±std of 13 macro-replications. Captions
contain the reference point used to compute the hypervolume indicator



8 A. Morales-Hernández et al.

MOTPE and GP MOTPE have the smallest (almost identical) mean absolute
hypervolume difference (0.0444 and 0.0445 respectively), compared with that of
GP (0.051). However, GP MOTPE has the smallest standard deviation (0.054),
followed by MOTPE (0.066) and GP (0.067).

Table 3: Average rank (given by the hypervolume indicator) of each algorithm

Validation set Test set

GP MOTPE GP MOTPE GP MOTPE GP MOTPE

Avg. rank 2.125 1.9861 1.8889 2.1528 1.875 1.9722

V T0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Hy
pe

rv
ol

um
e 

(L
in

es
 c

on
ne

ct
 m

ea
ns

) GP
MOTPE
GP_MOTPE

(a) MLP

V T0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Hy
pe

rv
ol

um
e 

(L
in

es
 c

on
ne

ct
 m

ea
ns

) GP
MOTPE
GP_MOTPE

(b) SVM

V T0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Hy
pe

rv
ol

um
e 

(L
in

es
 c

on
ne

ct
 m

ea
ns

) GP
MOTPE
GP_MOTPE

(c) DT

Fig. 4: Hypervolume generated by the HP configurations found using the valida-
tions set (V) and then evaluated with the test set (T)

It is somehow surprising that the combined GP MOTPE algorithm does not
always obtain an improvement over the individual MOTPE and GP algorithms.
By combining both approaches, we ensure that we select configurations that (1)
have high probability to be nondominated (according to the candidate selection
strategy), and (2) has the highest MEI value for the scalarized objective. In
the individual GP algorithm, (1) is neglected, which increases the probability of
sampling a non-Pareto optimal point, especially at the start of the algorithm. In
the original MOTPE algorithm, (2) is neglected, which may cause the algorithm
to focus too much on exploitation, which increases the probability of ending up in
a local optimum. We suspect that the MOTPE approach for selecting candidate
points may actually be too restrictive: it will favor candidate points close to
already sampled locations, inherently limiting the exploration opportunities the
algorithm still has when optimizing MEI.



Multi-objective hyperparameter optimization with performance uncertainty 9

6 Concluding remarks

In this paper, we proposed a new algorithm (GP MOTPE) for multi-objective
HPO of ML algorithms. This algorithm combines the predictor information (both
predictor and predictor variance) obtained from a GPR model with heterogenous
noise, and the sampling strategy performed by Multi-objective Tree-structured
Parzen Estimators (MOTPE). In this way, the algorithm should select new points
that are likely to be non-dominated, and that are expected to cause the maximum
improvement in the scalarized objective function.

The experiments conducted report that our approach performed relatively
well for the analytical test functions of study. It appears to outperform the
pure GP algorithm in all analytical instances; yet, it does not always outper-
form the original MOTPE algorithm. Further research will focus on why this is
the case, which may yield further improvements in the algorithm. In the HPO
experiments, GP MOTPE shows the best average rank w.r.t. the hypervolume
computed on the validation set. In addition, it showed promising reliability prop-
erties (small changes in hypervolume when the ML algorithm is evaluated on the
test set). Based upon these first results, we believe that the combination of GP
and TPE is promising enough to warrant further research. The observation that
it outperforms the pure GP algorithm (which used PSO to maximize the infill
criterion) is useful in its own right, as the optimization of infill criteria is known
to be challenging. Using MOTPE, a candidate set can be generated that can
be evaluated efficiently, and which (from these first results) appears to yield
superior results.

Acknowledgements

This research was supported by the Flanders Artificial Intelligence Research
Program (FLAIR).

Appendix 1. Setup of hyperparameters in the HPO
experiments

HP Description Type Range
Multilayer Perceptron (MLP)

max iter Iterations to optimize weights Int. [1, 1000]
neurons Number of neurons in the hidden layer Int. [5, 1000]
lr init Initial learning rate Int. [1, 6]
b1 First exponential decay rate Real [10−7, 1]
b2 Second exponential decay rate Real [10−7, 1]

Support Vector Machine (SVM)

C Regularization parameter Real [0.1, 2]
kernel Kernel type to be used in the algorithm Cat. [linear, poly, rbf,

sigmoid]
Decision Tree (DT)

Continued on next page



10 A. Morales-Hernández et al.

HP Description Type Range

max depth Maximum depth of the tree. If 0, then
None is used

Int. [0, 20]

mss Minimum number of samples required
to split an internal node

Real [0, 0.99]

msl Minimum number of samples required
to be at a leaf node

Int. [1, 10]

max f Features in the best split Cat. [auto, sqrt, log2]
criterion Measure the quality of a split Cat. [gini, entropy]

References

1. Ankenman, B., Nelson, B.L., Staum, J.: Stochastic kriging for sim-
ulation metamodeling. Operations Research 58(2), 371–382 (2010).
https://doi.org/10.1109/WSC.2008.4736089

2. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. Advances in neural information processing systems 24 (2011)

3. Binois, M., Huang, J., Gramacy, R.B., Ludkovski, M.: Replication or exploration?
sequential design for stochastic simulation experiments. Technometrics 61(1), 7–23
(2019). https://doi.org/10.1080/00401706.2018.1469433

4. Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling meth-
ods for meta-model validation with recommendations for evolution-
ary computation. Evolutionary Computation 20(2), 249–275 (2012).
https://doi.org/10.1162/EVCO a 00069

5. Gonzalez, S.R., Jalali, H., Van Nieuwenhuyse, I.: A multiobjective stochastic simu-
lation optimization algorithm. European Journal of Operational Research 284(1),
212–226 (2020). https://doi.org/10.1016/j.ejor.2019.12.014

6. Horn, D., Bischl, B.: Multi-objective parameter configuration of machine
learning algorithms using model-based optimization. In: 2016 IEEE Sympo-
sium Series on Computational Intelligence (SSCI). pp. 1–8. IEEE (2016).
https://doi.org/10.1109/SSCI.2016.7850221

7. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary
Computation 10(5), 477–506 (2006)

8. Igel, C.: Multi-objective model selection for support vector machines. In: Inter-
national conference on evolutionary multi-criterion optimization. pp. 534–546.
Springer (2005). https://doi.org/10.1007/978-3-540-31880-4 37

9. Jalali, H., Van Nieuwenhuyse, I., Picheny, V.: Comparison of kriging-based algo-
rithms for simulation optimization with heterogeneous noise. European Journal of
Operational Research 261(1), 279–301 (2017)

10. Knowles, J.: Parego: A hybrid algorithm with on-line landscape ap-
proximation for expensive multiobjective optimization problems. IEEE
Transactions on Evolutionary Computation 10(1), 50–66 (2006).
https://doi.org/10.1109/TEVC.2005.851274

11. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband:
A novel bandit-based approach to hyperparameter optimization. The Journal of
Machine Learning Research 18(1), 6765–6816 (2017)



Multi-objective hyperparameter optimization with performance uncertainty 11

12. Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Marben, J., Müller,
P., Hutter, F.: Boah: A tool suite for multi-fidelity bayesian optimization & analysis
of hyperparameters. arXiv:1908.06756 [cs.LG]

13. Ozaki, Y., Tanigaki, Y., Watanabe, S., Onishi, M.: Multiobjective tree-structured
parzen estimator for computationally expensive optimization problems. In: Pro-
ceedings of the 2020 Genetic and Evolutionary Computation Conference. pp. 533–
541 (2020)

14. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems 25 (2012)

15. Viana, F.A.: Things you wanted to know about the latin hypercube design and
were afraid to ask. In: 10th World Congress on Structural and Multidisciplinary
Optimization. vol. 19. sn (2013)

16. Williams, C.K., Rasmussen, C.E.: Gaussian processes for machine learning, vol. 2.
MIT press Cambridge, MA (2006)

17. Zhan, D., Xing, H.: Expected improvement for expensive optimiza-
tion: a review. Journal of Global Optimization 78(3), 507–544 (2020).
https://doi.org/10.1007/s10898-020-00923-x


