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Abstract. The κ-Minkoswki space-time provides a quantum noncommutative-

deformation of the usual Minkowski space-time. However, a notion of causality is

difficult to be defined in such a space with noncommutative time. In this paper, we

define a notion of causality on a (1+1)-dimensional κ-Minkoswki space-time using the

more general framework of Lorentzian noncommutative geometry. We show that this

notion allows specific causal relations, but limited by a general constraint which is a

quantum generalization of the traditional speed of light limit.

1. Introduction

It is needless to say that causality is an essential property of any physical theory

or model. Some approaches to Quantum Gravity, under developments, are mainly

based on causality, as building block. These approaches are causal-set [1] which mixes

causality and discreteness, or the causal fermion systems [2] which seem to reduce to

the Standard Model and/or General Relativity in some suitably chosen limits. Both

of these approaches belong to the commutative world and use basically a somehow

standard description of causality.

However, it turns out that the notion of causality is not unique whenever a

noncommutative geometry framework is assumed. For a review on different approaches

to noncommutative (quantum) causality, see for instance [3, 4] and references therein.

For a recent phenomenological review on possible tests of physics at the Planck scale

including causality aspects, see [5].

Among these approaches, Lorentzian noncommutative geometry [6] has been

introduced as an attempt to accommodate Lorentzian signature in the by-now standard

noncommutative geometry framework usually developed in Euclidean signature [7, 8].

This natural evolution of noncommutative geometry is now arrived at a point where
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applications in fundamental physics are possible. One essential related feature is that

Lorentzian noncommutative geometry can be linked to a well defined notion of causality

[9], thus opening the possibility to equip a quantum (i.e. noncommutative) space-time

with causal structures. This type of noncommutative causality, which exactly reduces

to the usual one at the commutative (low energy) limit, is connected to the Dirac

operator acting as a metric. Recall that in the usual Euclidean set-up, the Dirac

operator is the building block of the Connes spectral distance [7, 8] extending the notion

of geodesic distance in a noncommutative world. For explicit constructions on various

noncommutative spaces, see [10, 11, 12].

This notion of noncommutative causality has already been used to almost non-

commutative manifolds [13, 14] for which the inherent causal structures give rise to a

Zitterbewegung of a Dirac fermion [15]. A somewhat similar analysis has been carried

out for the Moyal plane equipped with a Minkowskian metric, sometimes called the

”quantum Minkowski space-time” [16], where it was shown that causal structures can

actually exist in this quantum space, a point which has been subject to controversy in

the area on (noncommutative) quantum field theories [17, 18], and by the way suggest-

ing that, contrary to the common belief [19, 20], causal structure need not breakdown

at the Planck scale. In particular, it was shown that the causal structure occurring

within a particular class of pure states is similar to the causal structure on the usual

Minkowski space, while the notion of locality is lost.

The purpose of this paper is to present a first exploration of the above quantum

causality on κ-Minkowski space-time [21, 22], which is one of the most studied

noncommutative spaces and an interesting candidate in the developpement of some

Quantum Gravity. κ-Minkowski space-time can be defined as the dual of a subalgebra of

the κ-Poincaré algebra involving the so-called deformed translation, and may be viewed

as the universal enveloping algebra of the Lie algebra of coordinates [x0, xi] = i
κ
xi,

[xi, xj] = 0, under a deformation parameter κ > 0. Studying different notions of

quantum causality which may be relevant at the Planck scale is far from being of a

purely academic interest. For instance, it is worth pointing out that current experiments

on in-vacuo dispersion relations of very highly energetic cosmological photons might be

definitely unable to detect signals stemming from some κ-deformation if causality at

the Planck scale is of the type proposed in [23] whereas observation might eventually

remain possible if the usual ”classical” causality at the Planck scale holds true.

In this paper, we show that a valid causal structure can be defined on an interesting

set of pure states on κ-Minkowski space-time, here limited to the (1+1)-dimensional case.

While it is difficult to have an explicit characterisation of the entire causal structure,

we are able to extract some specific causality constraints. In particular, we show that

there exists some specific sufficient conditions of allowed causal relations corresponding

to a phase-momentum transport between two quantum states. Then we highlight an in-

teresting necessary constraint, hence a clear limit of causal evolution between quantum

states, which can be interpreted as a quantification of the classical speed of light limit.
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The paper is organized as follows:

• The first part (Section 2) describes the necessary basic elements to introduce the

κ-Minkowski space-time and the construction of a Lorentzian spectral triple on it:

in Section 2.1, we present the general definition of a Lorentzian spectral triple; in

Section 2.2 the algebra of the spectral triple and the related Hilbert space; and in

Section 2.3 the associated Dirac operator.

• The second part (Section 3) presents a first exploration of the notion of causality

on κ-Minkowski space-time with particular results: in Section 3.1, we present

and apply the notion of causality to κ-Minkowski yielding to a general unsolved

condition; in Section 3.2 a particular solution of the general condition is presented

as a sufficient causality condition corresponding to a phase-momentum transport;

and in Section 3.3 we present another specific solution giving rise to a necessary

quantum causality constraint.

2. Quantum space-time and Lorentzian spectral triple

2.1. Basic features of Lorentzian spectral triple

The main tool used within this paper is the so called Lorentzian spectral triple [6].

Such a spectral triple with Lorentzian signature is not very different from its Rieman-

nian counterpart [7, 8], except that the Dirac operator is naturally self-adjoint in a Krein

space [24]. Recall that a Krein space is a space with indefinite inner product, supple-

mented by additional conditions [25]. This space replaces the Hilbert space which is

one of the main data defining a standard spectral triple. However, a Hilbert space can

still be used in the definition of a Lorentzian spectral triple thanks to the introduction

of a specific operator J , called the fundamental symmetry‡ which permits one to trade

the Krein space for a Hilbert space (and vice versa). Different definitions of Lorentzian

spectral triples appeared in the literature, e.g. [26, 27] which however are compatible.

In the sequel, we will use an adapted case of these latter [28] whose advantage is that

no signature other than the Lorentzian one is allowed so a notion of causality is always

well defined.

We will use as general definition for a Lorentzian spectral triple the set of data:

{
A, Ã, π, H, D, J

}
, (1)

where A is a non-unital pre-C∗ algebra with a preferred unitalization (still a pre-C∗

algebra) Ã with A as an ideal, while π is a faithful ∗-representation of A on B(H), the

algebra of bounded operators on a Hilbert space H, π : A → B(H) which also acts as a

‡ In the case of ”Minkowskian Moyal plane” mentioned above, J = iγ0, the time-like Dirac gamma

matrice.
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faithful ∗-representation of Ã on B(H). In (1), D is the unbounded Dirac operator with

dense domain Dom(D) in H satisfying

∀a ∈ Ã, [D, π(a)] ∈ B(H), (2)

∀a ∈ A, π(a)(1 + 〈D〉2)−
1

2 ∈ K(H), with 〈D〉2 :=
1

2
(D†D +DD†), (3)

where K(H) denotes the algebra of compact operators on H and † is the involution of

A.
The operator J ∈ B(H) related to the fundamental symmetry must satisfy

J 2 = 1, J † = J , [J , π(a)] = 0, ∀a ∈ Ã, (4)

together with

D†J = −JD (5)

which must hold true on Dom(D) = Dom(D†).

Finally, the conditions (2)-(5) are supplemented by the additional condition that there

exists a densely-defined self-adjoint operator T and a positive element N ∈ Ã such that

Dom(D) ∩ Dom(T ) is dense in H and

(1 + T )−
1

2 ∈ Ã, (6)

J = −N [D, T ]. (7)

At this point, some comments are in order.

i) As already mentioned above, J corresponds to the fundamental symmetry

connecting Hilbert space and Krein space. If 〈. , .〉 denotes the positive definite

product equipping a Hilbert space H, then the corresponding indefinite inner

product on the corresponding Krein space is given by (. , .)J = 〈 . ,J .〉.

ii) According to the above comment, (5) expresses the fact that the operator iD is

self-adjoint w.r.t the indefinite inner product (. , .)J .

iii) We note that the resolvent condition of the standard (Riemannian) spectral triple§

does not appear in the definition of a Lorentzian spectral triple, stemming from

the fact that D is no longer an elliptic operator in this non-Riemannian context.

This explains the appearance of 〈D〉2 := 1
2
(D†D+DD†) in (3) leading to an elliptic

operator (1 + 〈D〉2)
1

2 , self-adjoint for the Krein product (. , .)J , whose inverse (3)

must be compact [24].

• T in (6), (7) can be viewed as a global time function for the Lorentzian spectral

triple [28].

• The unital algebra Ã serves for technical purpose only. It could not support a notion

of causality since a unital algebra corresponds to a compact space on which no

causality can be defined. Notice that the Riemannian spectral triple for the Moyal

plane [29] also uses a preferred unitalization of the non unital algebra modeling the

Moyal plane.

§ Recall that this latter states that for any a ∈ A and any λ not in the spectrum of D, one has

π(a)(D − λ)−1 ∈ K(H).
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2.2. Lorentzian spectral triple for κ-Minkowski space-time: the algebra

In this paper, we will consider the (1 + 1)-dimensional version of the κ-Minkowski

space-time. It can be defined [21] as the dual of a subalgebra of the κ-Poincaré algebra

involving the so-called deformed translations. See Appendix A for useful formulas. Its

simplest presentation is provided by the universal enveloping algebra of the following

solvable Lie algebra of coordinates

[x0, x] =
i

κ
x, (8)

where κ > 0 is the deformation parameter. The corresponding, hence solvable, Lie

group denoted by G is known to be the orientation-preserving affine group of the real

line, see e.g. [30], [31], namely

G = R⋉φ R. (9)

It is a simply connected Lie group which is non unimodular, with group product, inverse

and unit respectively defined by the following map W : R× R → G

W (p0, p1)W (q0, q1) = W (p0 + q0, p1 + e−p0/κq1), (10)

W−1(p0, p1) = W (−p0,−e
p0/κp1), (11)

IG = W (0, 0), (12)

while the automorphism φ in (9) is defined for any q ∈ R by

φ : R → Aut(R), φ(p0)q = e−p0/κq. (13)

A suitable characterization of the associative algebra modeling the quantum

(i.e. noncommutative) κ-Minkowski space-time can be obtained [32], [33], [34] by starting

from the convolution algebra of G, denoted by (L1(G), dρ), where dρ is some Haar

measure on G to be fixed in a while, which is (isomorphic to) the completion w.r.t.

the L1-norm ||F ||1 =
∫
G
F (u)dρ(u) of the algebra involving the C-valued continuous

functions on G with compact support Cc(G). The resulting algebra (L1(G), dρ) is a

Banach ∗-algebra with has a natural involution defined by

F ‡(u) = F (u−1)∆(u−1), (14)

for any F ∈ (L1(G), dρ), where F denotes the complex conjugate of F and the group

homomorphism ∆ : G → R+ is the modular function linking together the left-invariant

and right-invariant Haar measures of G, respectively denoted by dµ and dν, through the

well known relation

dν(u) = ∆(u−1)dµ(u), (15)

leading to the useful formulas

dν(u−1) = ∆(u)dν(u), dµ(u−1) = ∆(u−1)dµ(u). (16)
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In the present situation, the modular function is given by

∆(u) = ∆(p0, p1) = e
p0
κ . (17)

The convolution product equipping the convolution algebra can be expressed in terms of

either the left -invariant Haar measure dµ or alternatively its right-invariant counterpart

dν as given below

(F ◦G)(s) =

∫

G

F (us)G(s−1)dµ(s) =

∫

G

F (us−1)G(s)dν(s). (18)

Note that (L1(G), dµ) and (L1(G), dν) are isometrically isomorphic through the follow-

ing map ω : Cc(G) → Cc(G), (ω(F ))(u) = F (u−1). The above properties are standard

results form harmonic analysis of locally compact groups.

In what follows, we will use the formulation based on the left-invariant Haar

measure. This later is given by

dµ(u) = dµ(p0, p1) = e
p0
κ dp0dp1. (19)

By combining (19) with (10) and (11), the convolution product and the involution (14)

can then be cast into the form

(F ◦G)(p0, p1) =

∫
dq0dq1e

q0
κ F (q0, q1)G(p0 − q0, e

q0
κ (p1 − q1)), (20)

F ‡(p0, p1) = F (−p0,−p1e
p0
κ )e−

p0
κ . (21)

A suitable associative algebra modeling the κ-deformation which can be used to define

the Lorentzian spectral triple for κ-Minkowski space-time can be determined from the

characterization of the group C*-algebra for G, denoted by C∗(G). One first observes

that since G is a solvable group, it is amenable, thus one has C∗(G) = C∗
red(G) where

C∗
red(G) is the reduced algebra obtained by completing (L1(G), dµ) with the left regular

representation on (L2(G), dµ). For our purpose, il will be sufficient to restrict ourselves

to its generating dense subalgebra of smooth functions on G with compact support,

denoted by C∞
c (G).

Now from standard results on C*-algebras of crossed products of groups [31], one infers

that C∗(G) = C∗(R ⋉ R) ≃ R ⋉ C∗(R) generated by the dense subalgebra of smooth

functions of variables p0 and p1, having compact support for p0 and taking their values

in the set of smooth functions of p1 with compact support. We denote this algebra by

C∞
c (G) := C∞

c (R, C∞
c (R)). (22)

From now on, we choose this algebra, denoted by Ap as the starting algebra for the

spectral triple, whenever the functions depend on the variables p0, p1, interpreted from

now on as momenta. Namely, one has

Ap := C∞
c (G). (23)
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In order to make contact with the physics literature, we further interpret any of the above

functions F (p0, p1) as the Fourier transform of some function f(x0, x1) where x0, x1 are

space-time variables. Namely, F (p0, p1) = Ff(p0, p1) =
∫
d2x e−i(p0x0+p1x1)f(x0, x1). As

a consequence of the Paley-Wiener theorem, the algebra Ap is isomorphically mapped

by inverse Fourier transform into the algebra Ax of functions which are analytic and

of exponential type in the variable x0 with values in the space of analytic functions of

exponential type in the variable x1. Namely

Ax := F−1Ap = E(R,E(R)), (24)

where E(R) is the set of functions whose analytic continuation f : z ∈ C → f(z) is

an entire function on C verifying the ”exponential” bound |f(z)| ≤ K1e
K2| Im{z}|, with

K1 > 0, K2 > 0. The product equipping Ax, of course related to the product (20), is

defined by

F(f ⋆ g) = Ff ◦ Fg. (25)

A simple calculation yields

(f ⋆ g)(x0, x1) =

∫
dp0

2π
dy0 e

−iy0p0f(x0 + y0, x1)g(x0, e
−p0/κx1). (26)

In the same way, the involution (21) translates into

f †(x0, x1) =

∫
dp0

2π
dy0 e

−iy0p0f(x0 + y0, e
−p0/κx1). (27)

Three remarks are in order here:

• Notice that (26) and (27) are nothing but the star-product and involution used in

[32], [33], [34] to describe the κ-deformation of the Minkowski space-time. This

latter was obtained from a mere Weyl quantization. Recall that the corresponding

quantization map is a morphism of ∗-algebra defined by Q(f) = π(Ff) where

the non-degenerate unitary ∗-representation π : L1(G, dµ) → B(H), with H some

Hilbert space to be defined in a while, is given by π(f) =
∫
G
dµ(s)f(s)πU(s), where

πU : G → B(H) denotes some irreducible unitary representation of G. Simply

writing Q(f ⋆ g) = Q(f)Q(g) = π(F(f))π(F(g)) = π(F(f) ◦ F(g)) yields (25)

leading to (26). A similar argument yields (27).

• The unitary irreducible representations of G = R ⋉ R, πU : G → H = L2(R, ds),
have been classified in [35] (see also [30]). The only non-trivial one are defined by

(πU±(p0, p1)φ)(s) = e±ip1e−s

φ(s+ p0), (28)

for any φ ∈ H while all the other unitary irreducible one are 1-dimensional. It

follows that the non-trivial unitary representations of the corresponding group

algebra of G are given by

(π±(f)φ)(s) =

∫
dp0dp1e

p0−sFf(p0 − s, p1)e
±ip1e−s

φ(u), (29)
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while the trivial 1-dimensional one is

(π0(f)φ)(s) =

∫
dp0dp1e

p0−sFf(p0 − s, p1)φ(u). (30)

Expressed in the spatial variables, (29) takes the form

(π±(f)φ)(s) =
1
2π

∫
dudv f(v,±e−s) e−iv(u−s) φ(u), (31)

while (30) takes the compatible degenerate form

(π0(f)φ)(s) =
1
2π

∫
dudv f(v, 0) e−iv(u−s) φ(u). (32)

Recall also that

π̂ = π+ ⊕ π− (33)

is a faithful representation.

• In the course of the analysis, we will need to work with functions depending on

mixed variables (p0, x1) obtained by partial Fourier transform. The relevant algebra

becomes

Apx = C∞
c (R,E(R)), (34)

stemming from the Paley-Wiener theorem. It is a straightforward calculation to

obtain the product between functions in the above mixed variables, denoted by

f̃(p0, x1). It is given by

(f̃ ⋆ g̃)(p0, x1) =

∫
dq0 f̃(q0, x1) g̃(p0 − q0, e

−q0/κx1). (35)

Under this mixed formalism, the representations (31)-(32) take the form

(πν(f̃)φ)(s) =

∫
du f̃(u− s, νe−s)φ(u), (36)

where ν is used to represent elements in {+, 0,−}.

At this stage, we have characterized above a suitable algebra for the Lorentzian

spectral triple, expressed by (23), (24), (34) according to the choice of variables for the

functions. Set now

H+,0,− := (L2(R), ds)⊗ C2. (37)

Since we will deal with a 2-dimensional Dirac operator, a suitable choice for the Hilbert

space involved in the triple is

H = H+ ⊕H0 ⊕H−. (38)

Besides, keeping in mind (33), a suitable choice for the faithful representation entering

the spectral triple is

Π = (π+ ⊕ π0 ⊕ π−)⊗ I2. (39)
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As recalled in the subsection 2.1, the algebra involved in the spectral triple must

be supplemented by an unitized counterpart. We will denote is by Ã with the same

subscripts than those used for A according to the used set of variables. We will choose

the multiplier algebra of A,M(A) characterized in [32]. Recall thatM(A)x is the algebra
of smooth functions with polynomial bounds whose derivatives are also with polynomial

bounds. It involves in particular the coordinate functions and the constants. Expressed

in the different set of variables, the unit function is expressed as

1(p0, p1) = (δ(p0), δ(p1)), 1(p0, x1) = δ(p0), 1(x0, x1) = 1, (40)

respectively corresponding to the unit of Ãp, Ãpx and Ãx. The mixed variable

unitalization Ãpx, which we will use later on, contains functions with compact support

on the first variable p0. Note that Π (39) extends to a faithful representation of Ã on

B(H).

2.3. Lorentzian spectral triple for κ-Minkowski space-time: the Dirac operator

In the subsequent analysis, we will consider the Dirac operator obtained from natural

one-parameter groups of automorphisms of C∗(G), which has already been considered

in [36]. It is known [31] that C∗(G) has a natural group of automorphisms defined by

the modular group of ∗-automorphisms t ∈ R 7→ σt ∈ Aut(C∗(G)),

σt(f) = eiP0/κ ⊲ f = et∂0/κ ⊲ f (41)

for any f ∈ Ax, in the notations of [33]. It follows that κdσt

dt
|t=0 ⊲ f for any f ∈ Ax

defines (the action of) a derivation which is simply D0 = ∂0.

Another group of automorphisms can be obtained by making use of Fourier transform

in C∗(G) = R ⋉ C∗(R). Indeed, by Fourier transform, one has C∗(R) ≃ C0(R), the
C∗-algebra of continuous functions vanishing at infinity. Hence C∗(G) = R ⋉ C0(R),
generated by Apx, with action of R on C0(R) given by ωp0(f)(x1) = f(e−p0/κx1)

for any f ∈ C0(R). This therefore corresponds to the group of automorphisms

t ∈ R 7→ ω−t ∈ Aut(C0(R)), extending to t ∈ R 7→ ωt ∈ Aut(C∗(G)) with

ωt(f̃)(p0, x1) = f̃(p0, e
tx1) (42)

for any f ∈ Apx which gives also ωt(f)(x0, x1) = f(x0, e
tx1) for any f ∈ Ax. Thus, the

second derivative is defined by dωt(f)
dt

|t=0 which corresponds to the derivation D1 = x1∂1.

At this point, two comments are in order:

• It turns out that the derivation D1 is inner. Indeed, a simple computation yields

(x0 ⋆ f)(x0, x1) = x0f(x0, x1) +
i
κ
x1∂1f(x0, x1) and (f ⋆ x0)(x0, x1) = x0f(x0, x1)

where we used (26). Therefore, one obtains

ix1∂1f = κ[x0, f ] (43)

for any f ∈ Ax. Hence the result. The derivations D0, D1 are obviously real

derivations and obeying an untwisted Leibnitz rule. Note however that D1 vanishes
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at the commutative limit κ → ∞. These derivations have been used to build the

Dirac operator underlying [36] as an attempt to obtain a regular spectral triple for

a two-dimensional κ-deformation of (Euclidean version of) the Minkowski space,

thus working in the Euclidean set-up of the standard spectral triples.

We will consider such a Dirac operator in the following and study causal structures

arising in this κ-deformation, thus initiating a first exploration of the causality in

κ-deformed Minkowski space.

• Notice that other choices for the derivations are possible. In particular, one could

start from the twisted derivations used in [37], [38] (see also [34]) to construct a

κ-Poincaré invariant gauge theory on κ-Minkowski space-time which can be viewed

as a noncommutative analog of a Yang-Mills theory. These are given by

X0 = κEγ(1− E), X = EγP (44)

with [X0, X ] = 0, where γ ∈ R. The derivations (44) obviously reduce to the

usual derivations at the commutative limit κ→ ∞. However, they obeys a twisted

Leibnitz rule given by

Xµ(f ⋆ g) = Xµ(f) ⋆ (E
γ ⊲ g) + (E1+γ ⊲ f) ⋆ Xµ(g), (45)

for any f, g ∈ Ax where the action of E and P on the algebra is given by (A.8).

Observe that the derivations (44) are not real derivations since the following identity

holds true

(Xµ(f))
† = −E−2γ−1 ⊲ (Xµ(f

†)) 6= Xµ(f
†), (46)

contrary to the above derivations D0, D1. The causal structures stemming from a

Dirac operator built from the derivations (44) will be examined in a future publi-

cation.

As it is now clear that the derivation corresponding to the second spatial variable

D1 = x1∂1 vanishes as κ→ ∞ and that the non-trivial unitary representations π± (31)

can only be distinguished from the trivial one π0 (32) by this second variable, we have

that our spectral triple is inconsistent and collapses as κ → ∞. For the simplicity of

future expressions, we will work from now with a fixed finite κ = 1 as others finite values

are pure rescaling.

We set now

∂± = ∂0 ± x1∂1. (47)

The Dirac operator entering the Lorentzian spectral triple is defined as

D = −γk∂k ⊗ 13 = −i

(
0 ∂−

∂+ 0

)
⊗ 13 := D ⊗ 13, (48)
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where the Dirac gamma matrices are

γ0 =

(
0 i

i 0

)
, γ1 =

(
0 −i

i 0

)
. (49)

The domain of D is Dom(D) = S(R)⊗ C2 which is obviously dense in each of the

Hilbert spaces defined in (37). Hence Dom(D) = S(R)⊗ C6.

The derivations ∂± (47) act on the algebra. This can be translated as an action of the

derivations on the Hilbert space (38) which can be determined from the following action

on L2(R, ds)
(∂0φ)(s) = s φ(s), (∂1φ)(s) = −i(∂sφ)(s), (50)

for any φ ∈ L2(R, ds).

The fundamental symmetry J ∈ B(H) is given by

J = iγ0 ⊗ 13. (51)

It is a simple matter of algebra to verify that J 2 = I, J † = J and [J ,Π(a)] = 0 for

any a in the algebra, thus consistent with (5).

We set

〈Φ,Ψ〉 =
∑

ν=+,−,0

〈ϕ(ν), ψ(ν)〉Hν
, (52)

for any Φ,Ψ ∈ H with Φ = ⊕νϕ
(ν) according to the decomposition of H (38) (and

a similar decomposition for Ψ), where 〈., .〉Hν
, ν = +,−, 0 is the Hilbert product on

L2(R)⊗ C2 given by

〈ϕ(ν), ψ(ν)〉Hν
=

∫
ds ϕ(ν)†(s)ψ(ν)(s). (53)

The Krein product related to J is defined by

(Φ,Ψ)J := 〈Φ,JΨ〉 =
∑

ν=+,−,0

〈ϕ(ν), iγ0ψ(ν)〉Hν
. (54)

It can be easily verified that one has

(Φ,DΨ)J = (DΦ,Ψ)J (55)

and thus

D†J = −JD, (56)

which agrees with (4).

Set now

T = −i ⊕ν (πν(x0)⊗ I2) (57)
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with domain Dom(T ) = Dom(D). The operator T is self-adjoint which simply stems

from

(πν(x0)ϕ)(s) = −i∂sϕ(s), (58)

for any ϕ ∈ L2(R), obtained from (31). From (57), one obtains the following blockwise

decomposition

[D, T ] = −i⊕ν [D, πν(x0)⊗ I2], (59)

so that one has to compute [D, πν(x0)⊗ I2]. Indeed, by using (31) and (50), one infers

(∂0πν(a)ϕ)(s) =

∫
dudv sf(v, e−sν)e−iv(u−s)ϕ(u), (60)

(πν(a)∂0ϕ)(s) =

∫
dudv f(v, e−sν)e−iv(u−s)uϕ(u), (61)

for any a ∈ Ax, ϕ ∈ L2(R) and ν = +,−, 0. From (60) and (61), one easily obtains

[∂0, πν(a)] = iπν(∂0a) (62)

for any a ∈ Ax and ν = +,−, 0. A similar computation yields

[∂1, πν(a)] = iπν(∂1a), (63)

for any a ∈ Ax and ν = +,−, 0. (62) and (63) imply

[∂0, πν(x0)] = i, [∂1, πν(x0)] = 0 (64)

which gives rise to

[D, T ] = −J , (65)

which fulfills (7) provided N is the identity operator while the self-adjoint operator T

(57) verifies the condition (6).

Furthermore, since πν(a) is bounded for any a ∈ Ax, it follows from (62) and (63)

that the operators [∂k, πν(a)], k = 0, 1, are bounded operators on L2(R) for any a ∈ Ax.

Hence

∀a ∈ Ax, [D,Π(a)] ∈ B(H), (66)

which extend to any a ∈ Ãx, thus verifying the condition (2).

Let us consider the compactness condition (3). First, one easily realises that

Π(a)(1 + D2)−1/2 for any a ∈ A, with Π and D respectively given by (39) and (48),

has a diagonal action on H (38). Hence, it is enough to consider the compactness of

πν(a)(1 +D2)−1/2 := πν(a)T
−1/2 as an operator on Hν .

Now a simple calculation using (50) and (51) yields

(Tϕ)(s) = (1− s2 + ∂2s )ϕ(s) (67)

for any ϕ ∈ Hν where the last two terms in (67) correspond to the operator of a one

dimensional harmonic oscillator. It follows that the spectrum of T is discrete with
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eigenvalues ∼ n, n ∈ N, with finite multiplicity so that the eigenvalues for T−1 vanishes

for n → ∞. Notice by the way that T−1 alone is therefore compact on Hν and thus

T−1/2 is also compact.

Then, since (67) holds true, the situation is similar to the one covered by [36, Prop. 5.12]

which insures that

πν(a)(1 +D2)−1/2 ∈ L1,∞(Hν), (68)

for any a ∈ A where L1,∞(Hν) is the 1st weak Schatten class. Hence πν(a)(1 +D2)−1/2

is compact on Hν , implying that Π(a)(1 + D2)−1/2 is a compact operator on H for any

a ∈ A.
Finally, upon using the p, x variables to express the unity (40) together with the

representations πν defined by (πν(a)ϕ)(s) =
∫
du a(u − s, νe−s)ϕ(u), a simple

computation yields Π(I)(1 + D2)−1/2 = (1 + D2)−1/2 which is compact in view of the

compactness of T−1/2. Therefore, Π(a)(1+D2)−1/2 is compact on H for any a ∈ Ã which

satisfies condition (3).

3. Causal behaviour of κ-Minkowski space-time

We turn now to the exploration of the notion of causality on κ-Minkowski space-time.

The goal here is not to have a complete characterization of the causal sructure, which is

still out of sight, but to present a first exploration showing that some specific causality

constraints can be extracted using the tool of Lorentzian noncommutative geometry.

3.1. Introducing causality on a noncommutative quantum space

In the usual (commutative) framework, the causality is an essential property of any

physically relevant theory/model arising as a basic axiom in quantum field theory. The

building ingredients are geometric: points, i.e. events, in a given space-time M‖, can

eventually be linked together through curves of various types according to the nature

of their tangent vectors, e.g. timelike, causal, etc. Then, two points/events are causally

related if there exists one causal curve linking them.

This geometric description can be translated into an algebraic framework, at least for

globally hyperbolic manifolds M , the case of interest here. Indeed, trade points and

causal curves respectively for pure states and causal functions. Recall that a state of

an algebra, ϕ : A → C, is a positive linear functional with norm 1. Let S(A) denotes
the space of states of A = C∞

0 (M). Causal functions are real-valued functions on M

which are non-decreasing along every future-directed causal curve, and it is sufficient to

restrict to the set of smooth bounded causal functions belonging to Ã = C∞
b (M). The

set of these functions has the structure of a convex cone C, C ⊂ Ã, called the causal

cone. The technical role of the unitalization Ã = C∞
b (M) is clear here, since if we use

the algebra A = C∞
0 (M), the cone of causal functions is restricted to constant functions,

‖ The associated manifold is assumed to be locally compact. Recall that a compact manifold cannot

accommodate causality.
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which are not sufficient to separate points. For globally hyperbolic manifolds M , this

causal cone determines completely [4] the usual causal structure of M given by

p � q ⇐⇒ f(p) ≤ f(q), ∀f ∈ C (69)

for any p, q ∈ M .

A convenient algebraic characterization of the causal cone using the data involved in

the Lorentzian spectral triple coding M , thus corresponding to a commutative algebra

A = C∞
0 (M) in (1), has been achieved in [9]. Indeed, if we define the causal cone C as

the convex cone of all real-valued functions f ∈ Ã verifying

∀φ ∈ H, 〈φ,J [D, π(f)]φ〉 ≤ 0, (70)

then [9, Theorem 7] guaranties that, for globally hyperbolic manifolds, the causal

structure defined by

∀ω, η ∈ S(Ã), ω � η ⇐⇒ ∀f ∈ C, ω(f) ≤ η(f), (71)

when restricted to the pure states in S(A) is exactly the usual causal structure of M .

This algebraic framework naturally extends to the noncommutative framework,

i.e. for noncommutative algebra A in (1) to give rise to the following definition of

causality which actually defines a reasonable notion of quantum causality:

• The causal cone C of a noncommutative Lorentzian spectral triple {A, Ã, π,HD,J}

is the convex cone of all hermitian elements f ∈ Ã satisfying the condition:

∀φ ∈ H, 〈φ,J [D, π(f)]φ〉 ≤ 0. (72)

• The causal relation between (pure) states is defined by the following relation:

∀ω, η ∈ S(Ã), ω � η ⇐⇒ ∀f ∈ C, ω(f) ≤ η(f), (73)

which is a well defined partial order relation on all states and if the condition

spanC(C) = Ã is respected, ensuring that all states can be separated.

Note that the causality should be viewed as a partial order relation between all the

states of the unitized algebra, which may be eventually restricted to pure states of the

algebra. This definition of quantum causality has been used in past works [13, 16, 14, 15]

and is the notion of causality which will be examined in the subsequent analysis.

Coming back to the case of κ-Minkowski space-time described above, one easily

infers that the relevant causal cone involves the functions f of the group algebra Ax (or

Apx according to the chosen pair of variables) such that

⊕

ν=+,0,−

(
πν(∂+f) 0

0 πν(∂−f)

)
≥ 0, (74)
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i.e. (74) is a positive operator, where (48), (51) and(72) have been used.

In order to apply the notion of causality, we need to define the noncommutative

equivalent of the notion of point, i.e. pure states in S(A). The complete set of pure

states of κ-Minkowski space-time is unknown, but an interesting set of pure states can

be readily determined by considering the following family of vector states

ϕΦ
± : A → C, ϕΦ

±(f) = 〈Φ, π±(f)Φ〉 (75)

for any Φ ∈ H± with ||Φ|| = 1. Any state belonging to the family (75) is a pure state.

To see that, one observes that irreducibility of (πU±,H±) (28) is equivalent to the ir-

reducibility of (π±,H±) (29). Then, any non-zero Φ ∈ H± is cyclic for H±. But any

vector state of the form 〈v, π(f)v〉 where f ∈ A, A some algebra, and v ∈ H , H some

Hilbert space, is a cyclic vector for an irreducible representation (π,H) of the algebra

is a pure state of A. The statement follows.

Using (31) and (75), one easily obtains the following explicit formulation of pure

states applied on Ax

ϕΦ
±(f) =

1
2π

∫∫∫
dsdudv f(v,±e−s) e−iv(u−s)Φ(s)Φ(u), (76)

or alternatively on Apx

ϕΦ
±(f̃) =

∫ ∫
duds f̃(u− s,±e−s)Φ(s)Φ(u), (77)

for any Φ ∈ H±.

At this stage, two comments are in order.

• We only have here a subset of the total set of pure states, however since those states

correspond to irreducible unitary representations, the specific interest of this subset

is given by Gel’fand–Raikov theorem.

• The above states (76), (77) must be extended so as to be well defined on Ã. This

can be consistently achieved by further restricting the vectors Φ ∈ H± to smooth

compactly supported functions in H±. This restriction will be assumed in the rest

of the discussion.

• We can see that the considered pure states are divided into two separated subsets

defined by + and − and the only difference separating those subsets is the sign

of the second variable of function to which the state applies. Hence the causal

structure is completely symmetric, and results concerning the minus representation

π− can be easily recovered from the results concerning the plus representation π+
from a simple substitution e−s → −e−s. Hence from now we will restrict most of

the time our analyse to the π+ side only when the π− side can be trivially recovered.
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Now from the condition (73), one realizes that the causality relation between two states

is

ϕΦ1

± � ϕΦ2

± ⇐⇒ ∀f ∈ Cx, ϕΦ1

± (f) ≤ ϕΦ2

± (f), (78)

where in obvious notations Cx is the causal cone defined by (74) expressed in the x’s

variables. These conditions for the existence of a causal evolution from the state Φ1 to

the state Φ2 can be easily rewritten as

∫∫∫
dsdudv f(v,±e−s) e−iv(u−s)

[
Φ2(s)Φ2(u)− Φ1(s)Φ1(u)

]
≥ 0, ∀f ∈ Cx (79)

or alternatively in the mixed variable formalism

∫∫
dsduf̃(u− s,±e−s)

[
Φ2(s)Φ2(u)− Φ1(s)Φ1(u)

]
≥ 0, ∀f̃ ∈ Cpx. (80)

3.2. A sufficient condition: the phase-momentum transport

In the following, we will derive a sufficient condition generating causal evolutions of

states and we will show that phase-momentum transport is a particular solution, hence

showing a particular non-trivial possibility of causal evolution on κ-Minkowski space-

time.

We will use here the formalism expressed in term of the mixed variables (p0, x1)

corresponding to the algebra Apx and its preferred unitalization Ãpx and restrict our

computations to the π+ side of the set of pure states. Using the second fundamental

theorem of calculus, the causal constraint (80) becomes

∫∫
dsdu f̃(u− s, e−s)

d

dt

(
Φt(s)Φt(u)

)
≥ 0, ∀f̌ ∈ Cpx (81)

where Φt represents a step by step evolution in H+ from Φ1 to Φ2 under a continuous

parameter t ∈ [1, 2], hence corresponding to a continuous evolution from the state ϕΦ1

+

to the state ϕΦ2

+ .

We need to identify the causal functions in the set Cpx which are all functions in Ãpx

respecting the semi-definite positive constraint (74). Note that we will see in Section

3.3 that this set is non-empty. Since this constraint is fully diagonal, a function f̃ ∈ Ãpx

is in Cpx if and only if

〈ψ, πν(∂±f)ψ〉 ≥ 0, ∀ψ ∈ L2(R) and ν = +, 0,−. (82)

Using the representations in the mixed variables formalism (36), and the derivations ∂±
which become in this formalism

∂±(f̃)(p0, x1) = (D0 ±D1)(f̃)(p0, x1) = (ip0 ± x1∂1)(f̃)(p0, x1), (83)
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we get

〈ψ, πν(∂±f)ψ〉 =

∫
ds ψ(s) [πν(∂±f)ψ] (s) (84)

=

∫
ds ψ(s)

∫
du ∂±f̃(u− s, νe−s)φ(u) (85)

=

∫∫
dsdu

[
i(u− s)f̃(u− s, νe−s)± νe−s∂1f̃(u− s, νe−s)

]
ψ(s)ψ(u).

(86)

We must note here that, since we are only considering states ϕΦ
+ corresponding to the

representation π+, the constraint (81) only dependent on the positive part of the second

variable of causal functions f̃(u − s, e−s), so we can ignore all ν = 0,− and get the

following inequalities for an arbitrary causal function f̃ ∈ Cpx and ψ ∈ L2(R)
∫∫

dsdu
[
i(u− s)f̃(u− s, e−s)± e−s∂1f̃(u− s, e−s)

]
ψ(s)ψ(u) ≥ 0. (87)

Since (87) is valid for every ψ ∈ L2(R), it is valid for every ψ ∈ C∞
c (R) (recall that we

have restricted our set of states to pure states defined from smooth compactly supported

functions Φ).

Let us consider the function

F (s, u) = f̃(u− s, e−s)ψ(s)ψ(u) (88)

for ψ ∈ C∞
c (R). Then F is smooth with compact support, therefore its limits s, u→ ∞

are null and Stokes’ theorem provides

∫∫
dsdu ~∇ · F (s, u)~1 =

∫∫
dsdu(

∂F

∂s
+
∂F

∂u
) = 0. (89)

However,

∂F

∂s
= −∂0f̃(u− s, e−s)ψ(s)ψ(u)− e−s∂1f̃(u− s, e−s)ψ(s)ψ(u) + f̃(u− s, e−s)ψ

′
(s)ψ(u)

(90)
∂F

∂u
= ∂0f̃(u− s, e−s)ψ(s)ψ(u) + f̌(u− s, e−s)ψ(s)ψ′(u) (91)

which gives

∫∫
dsdu e−s∂1f̃(u− s, e−s)ψ(s)ψ(u) =

∫∫
dsduf̃(u− s, e−s)(ψ

′
(s)ψ(u) + ψ(s)ψ′(u))

(92)

and the inequalities (87) holding for every f̃ ∈ Cpx and ψ ∈ C∞
c (R) become

∫∫
dsdu f̃(u− s, e−s)

[
i(u− s)ψ(s)ψ(u)±

(
ψ

′
(s)ψ(u) + ψ(s)ψ′(u)

)]
≥ 0 (93)
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which can be turned using a convex combination of the + and − formulations into a

continuous set of inequalities

∫∫
dsdu f̃(u− s, e−s)

[
i(u− s)ψ(s)ψ(u) + α

(
ψ

′
(s)ψ(u) + ψ(s)ψ′(u)

)]
≥ 0 (94)

with α ∈ [−1, 1].

By comparing (81) and (94), we get a sufficient condition for a causal evolution

between two states ϕΦ1

+ � ϕΦ2

+ represented by the continuous evolution of Φt if there

exists ∀t ∈ [1, 2] a function ψt ∈ C∞
c (R) and αt ∈ [−1, 1] such that

d

dt

(
Φt(s)Φt(u)

)
= i(u− s)ψt(s)ψt(u) + αt

(
ψ

′

t(s)ψt(u) + ψt(s)ψ
′
t(u)

)
. (95)

The sufficient condition (95) accepts of course trivial solutions given by Φt constant

on t and ψt = 0, which correspond to stationary states. While it is difficult to catalog

all possibilities, we can highlights a simple and interesting no trivial set of solutions.

Indeed, if we equalize ψt = Φt, the condition (95) becomes

d

dt

(
Φt(s)Φt(u)

)
=

(
d

dt
Φt(s)

)
Φt(u) + Φt(s)

(
d

dt
Φt(u)

)
(96)

= isΦt(s)Φt(u) + Φt(s)iuΦt(u) + αt

(
Φ

′

t(s)Φt(u) + Φt(s)Φ
′
t(u)

)
(97)

which is solved by
d

dt
Φt(u)− αtΦ

′
t(u) = iuΦt(u). (98)

For αt = α constant, this equation is a transport equation whose general solution can

be derived using the method of characteristics and is given by

Φt(u) = Φ0(u+ αt)eitueαi
t
2

2 . (99)

Since only the product Φt(s)Φt(u) appears in the definition of a state ϕΦt

+ , the coefficient

eαi
t
2

2 can be ignored, and we can say that a state ϕΦt

+ can causally evolve from a state

ϕΦ1

+ to a state ϕΦ2

+ if ϕΦt

+ is defined with the following vector

Φt(u) = Φ0(u+ αt)eitu (100)

where Φ0 ∈ C∞
c (R) and α ∈ [−1, 1]. This evolution represents a αt translation at the

level of Φt simultaneously to a t translation at the level of FΦt, hence can be interpreted

as a ”phase-momentum transport” within the κ-Minkowski space-time.
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3.3. A necessary condition: the quantum causality constraint

In the previous section, we have shown that the causal constraint (79)-(80) can be

turned into a sufficient condition which accepts some specific solutions, hence causal

evolution is allowed inside the κ-Minkowski space-time. In this section, we will take the

opposite path, showing that there exists a necessary condition and that such a condition

prevents some causal relations inside the κ-Minkowski space-time. Thereby, while having

a complete characterisation of allowed and forbidden causal relations on this quantum

space-time is for the moment out of scope, we prove that the causal constraint implies

at the same time valid possibilities and restrictions concerning causality.

The formalism in space-time variables (x0, x1) is easier to handle concerning the

study of the necessary condition. In order to extract a counterexample ϕΦ1

+ � ϕΦ2

+ from

the causal constraint (79), it is sufficient to find a specific causal function f ∈ Cx not

respecting the inequality
∫∫∫

dsdudv f(v, e−s) e−iv(u−s)
[
Φ2(s)Φ2(u)− Φ1(s)Φ1(u)

]
≥ 0. (101)

An easy way to construct some causal functions is the use of a ”split” formalism

f(x0, x1) = h(x0) + g(x1). Indeed, the application of a state on such a split function

gives

ϕΦ
±(h+ g) = 1

2π

∫∫∫
dsdudv [h(v) + g(±e−s)] e−iv(u−s) Φ(s)Φ(u) (102)

= 1
2π

∫∫∫
dsdudv h(v) e−iv(u−s) Φ(s)Φ(u) (103)

+ 1
2π

∫∫∫
dsdudv g(±e−s) e−iv(u−s)Φ(s)Φ(u) (104)

= 1
2π

∫
dv h(v)

∫
ds e−ivsΦ(s)

∫
du e−ivuΦ(u) (105)

+

∫
ds g(±e−s)Φ(s)

[
1
2π

∫
dv eivs

(∫
du e−ivuΦ(u)

)]
(106)

= 1
2π

∫
dv h(v)|FΦ(v)|2 +

∫
ds g(±e−s)|Φ(s)|2. (107)

Using the same splitting process, the condition (74) becomes f(x0, x1) = h(x0)+g(x1) ∈

Cx if and only if :

1
2π

∫
dv h′(v)|Fψ(v)|2 ±

∫
ds νe−sg′(νe−s)|ψ(s)|2 ≥ 0, ∀ψ ∈ L2(R) (108)

where ν = +1, 0,−1.

Due to Plancherel’s theorem, the inequality (108) is automatically satisfied by

functions f(x0, x1) = h(x0) + g(x1) respecting h′(v) = 1 and |e−sg′(νe−s)| ≤ 1, hence

with h(x0) = x0 and g(x1) at most logarithmically increasing. In particular, the first

coordinate function f(x0, x1) = x0 with g(x1) = 0, corresponding to a global time as in

(57), is a causal function.



Quantum causality constraints on kappa-Minkowski space-time 20

In order to reach an interesting necessary condition, we need to construct causal

functions leading to the equality case of (108) either for the plus or the minus sign.

Once more we will focus on the π+ side (the π− side is similar) and we will only be

interested by the behaviour of the causal functions for the positive side of the second

variable x0 ∈ R+, hence with ν = +1, with an implicit smooth extension on R. An

easy way would be to take a function f(x0, x1) = h(x0) + g(x1) constructed such that

h(x0) = x0 and e−sg′(e−s) = ∓1, which is the case for g(x1) = ± ln(x1). However,

such a function cannot be smoothly extended to R. Therefore we must consider two

sequences of functions g±ǫ (x1) = ± ln(x1 + ǫ) defined on R+ and easily extendable on R
such that the inequality (108) is still respected (the exact behaviour of this extension

has no implication on (101)). Since we have
∣∣e−sg±ǫ

′
(e−s)

∣∣ = e−s

e−s+ǫ
≤ 1, the functions

f±
ǫ = h+ g±ǫ are causal, which means in the meantime that the set Cx is non-empty and

contains non-trivial functions.

We can now check those specific causal functions on the phase-momentum transport

specific solution (100) but with an arbitrary α ∈ R

Φt(u) = Φ0(u+ αt)eitu. (109)

Using the split functions formalism and similar Fourier transforms on (79), we get that,

in order to have a valid causal evolution ϕΦ0

+ � ϕΦt

+ , the following inequality should

necessarily be respected for every causal function f = h+ g ∈ Cx

1
2π

∫
dv h(v)

(
|FΦt(v)|

2 − |FΦ0(v)|
2)+

∫
ds g(e−s)

(
|Φt(s)|

2 − |Φ0(s)|
2) ≥ 0. (110)

We can note that

FΦt(u) = Φ0(u− t), |Φt(u)| = |Φ0(u+ αt)| (111)

which leads to

1
2π

∫
dv h(v)

(
|FΦ0(v − t)|2 − |FΦ0(v)|

2)+
∫

ds g(e−s)
(
|Φ0(s+ αt)|2 − |Φ0(s)|

2) ≥ 0

(112)

and using standard substitutions

1
2π

∫
dv (h(v + t)− h(v)) |FΦ0(v)|

2 +

∫
ds
(
g(e−s+αt)− g(e−s)

)
|Φ0(s)|

2 ≥ 0. (113)

Now using the specific causal functions f±
ǫ (x0, x1) = h(x0) + g±ǫ (x1) = x0 ± ln(x1 + ǫ),

we obtain the necessary condition

1
2π

∫
dv t |FΦ0(v)|

2 ±

∫
ds
(
ln
(
e−s+αt + ǫ

)
− ln

(
e−s + ǫ

))
|Φ0(s)|

2 ≥ 0 (114)

which provides when ǫ→ 0

1
2π

∫
dv t |FΦ0(v)|

2 ±

∫
ds αt |Φ0(s)|

2 ≥ 0 (115)



Quantum causality constraints on kappa-Minkowski space-time 21

leading to

t± αt ≥ 0 (116)

using Plancherel’s theorem. Hence the causal evolution of the phase-momentum

transport specific solution is clearly forbidden for |α| > 1.

If we apply the same process on two generic states ϕΦ
+ � ϕ

ξ
+ with a causal relation,

we have for every causal function in the split form f = h+ g ∈ Cx

1
2π

∫
dv h(v)

(
|Fξ(v)|2 − |FΦ(v)|2

)
+

∫
ds g(e−s)

(
|ξ(s)|2 − |Φ(s)|2

)
≥ 0 (117)

and if we consider the same specific sequences of functions f±
ǫ (x0, x1) = h(x0)+g

±
ǫ (x1) =

x0 ± ln(x1 + ǫ) and the induced limit ǫ → 0 on the inequality, we obtain the following

general necessary condition

1
2π

∫
dv v|Fξ(v)|2 − 1

2π

∫
dv v|FΦ(v)|2 ≥

∣∣∣∣
∫

ds s|ξ(s)|2 −

∫
ds s|Φ(s)|2

∣∣∣∣. (118)

We can show that (118) possesses an interpretation in term of quantum operators

on the space L2(R). Indeed, if X represent the position operator, then

∫
ds s|ξ(s)|2 = 〈ξ|X|ξ〉 . (119)

Using Fourier transform on derivative and Parseval’s theorem, we also get

1
2π

∫
dv v|Fξ(v)|2 = 1

2π

∫
dv Fξ(v)vFξ(v) (120)

= 1
2π

∫
dv Fξ(v)F

(
−i

d

ds
ξ

)
(v) (121)

=

∫
ds ξ(s)

(
−i

d

ds

)
ξ (122)

= 〈ξ|P |ξ〉 (123)

where P is the momentum operator. Therefore, the necessary condition (118) can be

interpreted as

〈ξ|P |ξ〉 − 〈Φ|P |Φ〉 ≥ | 〈ξ|X|ξ〉 − 〈Φ|X|Φ〉| (124)

⇐⇒ δ 〈P 〉 ≥ |δ 〈X〉| (125)

where δ 〈X〉 represent the variation of the expectation value.

This necessary condition is clearly a quantum analogous to the classical speed of

light limit. Indeed, on a two dimensional Minkowski spacetime, two events are causally

related if and only if variations of the spatial coordinate δx and time coordinate δt

respect the inequality δt ≥ |δx|. A similar restriction occurs within the κ-Minkowski

space-time, with the correspondence X ∼ x, P ∼ t.
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Appendix A. The 2-dimensional κ-Poincaré algebra.

It is convenient to make use of the bicrossproduct basis [21]. Thorough this paper,

∆ : Pκ ⊗ Pκ → Pκ, ǫ : Pκ → C and S : Pκ → Pκ denote respectively the

coproduct, counit and antipode, giving to Pκ a Hopf algebra structure. We denote

by P0, P,N, E , E
−1, the energy, spatial momentum, boosts and E := e−P0/κ. These are

the generators of the following Lie algebra

[P0, E ] = [P, P0] = [P, E ] = 0, [N, E ] =
i

κ
PE , [N,P ] = −

iκ

2
(1− E2) +

i

2κ
P 2. (A.1)

The relations defining the Hopf algebra structure of Pκ

∆P0 = P0 ⊗ I+ I⊗ P0, ∆P = P ⊗ I+ E ⊗ P, ∆E = E ⊗ E , (A.2)

∆N = N ⊗ I+ E ⊗N, (A.3)

ǫ(P0) = ǫ(P ) = ǫ(N) = 0, ǫ(E) = 1, (A.4)

S(P0) = −P0, S(E) = E−1, S(P ) = −E−1P, S(N) = −E−1N. (A.5)

We denote by Tκ the deformed translation algebra which is the dual of Mκ. It is a

Hopf subalgebra of Pκ generated by Pµ, E , with involutive structure thanks to P †
µ = Pµ,

E † = E . One has for any t in Tκ and any f ∈ Mκ the useful relation:

(t ⊲ f)† = S(t)† ⊲ f †, . (A.6)

From this follow

(P0 ⊲ f)
† = −P0 ⊲ (f

†), (P ⊲ f)† = −E−1P ⊲ (f †), (E ⊲ f)† = E−1 ⊲ (f †). (A.7)

The action of Tκ on Mκ is

(E ⊲ f)(x) = f(x0 +
i

κ
, ~x), (Pµ ⊲ f)(x) = −i(∂µf)(x). (A.8)
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