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a b s t r a c t 

Objectives: Southern Vietnam experienced a large measles outbreak of over 26,0 0 0 cases during 2018- 

2020. We aimed to understand and quantify the measles spread in space-time dependence and the trans- 

missibility during the outbreak. 

Methods: Measles surveillance reported cases between January 2018 and June 2020, vaccination cover- 

age, and population data at provinicial level were used. To illustrate the spatio-temporal pattern of dis- 

ease spread, we employed the endemic-epidemic multivariate time series model decomposing measles 

risk additively into autoregressive, spatio-temporal, and endemic components. Likelihood-based estima- 

tion procedures were performed to determine the time-varying reproductive number R e of measles. 

Results: Our analysis showed that the incidence of measles was associated with vaccination coverage 

heterogeneity and spatial interaction between provincial units. The risk of infections was dominated 

by between-province transmission (36.1% to 78.8%), followed by local endogenous transmission (4.1% 

to 61.5%). In contrast, the endemic behavior had a relatively small contribution (2.4% to 33.4%) across 

provinces. In the exponential phase of the epidemic, R e was above the threshold with a maximum value 

of 2.34 (95% CI: 2.20-2.46). 

Conclusion: Local vaccination coverage and human mobility are important factors contributing to the 

measles dynamics in Southern Vietnam, and the high risk of inter-provincial transmission is of most 

concern. Strengthening the disease surveillance is recommended, and further research is essential to un- 

derstand the relative contribution of population immunity and control measures in measles epidemics. 

© 2022 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Measles is an infectious disease transmitted via the respira- 

ory route. Despite remarkable progress in reducing global disease 

ncidence especially from 20 0 0 to 2016, the incidence increased 

gain in 2019 and major outbreaks occurred in a number of coun- 

ries ( Andrianou et al. , 2019 ; Nimpa et al. , 2020 ; Patel et al. , 2020 ;

ogka et al. , 2020 ; Zucker et al. , 2020 ). Many studies indicated the

patio-temporal variability of measles incidence and transmission 

s because of the discrepancy in vaccination coverage between geo- 

raphical units ( Herzog et al. , 2011 ; Robert et al. , 2022 ) and human

ovement ( Parpia et al. , 2020 ; Qin et al. , 2019 ), which plays an im-
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ortant role in the spatial spreading of the virus. Furthermore, un- 

bserved heterogeneity such as underreporting may affect the het- 

rogeneity of incidence levels ( Paul and Held, 2011 ). Understanding 

hese characteristics and their impacts on transmission dynamics 

f measles outbreaks is therefore crucial for effectively tailoring 

ontrol strategies, including immunization and surveillance activ- 

ties. 

Between 2018 and 2020, Vietnam experienced the largest 

easles outbreak in the last two decades. The Southern region 

as the worst affected area, where the incidence in 2019 exceeded 

y sevenfold the government’s annual indicator of 7.5 cases per 

0 0,0 0 0 population ( Vietnam Ministry of Health, 2020 ). In this re-

ion, measles cases were disproportionately distributed, and inci- 

ence was greatly heterogeneous across cities and provinces (here- 

nafter referred to as provinces). In this study, we aimed to quan- 

ify the spatio-temporal variability of the transmission of measles 
ty for Infectious Diseases. This is an open access article under the CC BY-NC-ND 
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n this outbreak by performing an analysis of the time series 

f measles cases in Southern Vietnam from January 1, 2018, to 

une 30, 2020. We used the endemic-epidemic statistical model- 

ng framework ( Held et al. , 2005 ; Paul et al. , 2008 ), which decom-

oses the risk of infections additively into autoregressive, spatio- 

emporal, and endemic components. Accordingly, the occasional 

utbreaks are determined by autoregression on past counts of 

ithin- and between localities, whereas the disease background 

s described by the endemic component that is explained by ex- 

genous factors independent of the epidemic. We also estimated 

he time-varying reproduction number R e (t) to understand the dis- 

ase transmission intensity of the outbreak using the procedure by 

allinga and Teunis (2004) . Routine surveillance data of measles 

aily counts stratified by provincial level and other additional data 

ources such as the population data and the vaccination coverage 

ata of measles-containing vaccine (MCV) were included in the 

nalysis. 

ethods 

ata sources 

outine surveillance data 

Our study focused on two cities and 18 provinces of South- 

rn Vietnam, including the province of Lam Dong and 19 provin- 

ial units in the Mekong River Delta and South East areas. On Oc- 

ober 11, 2020, we extracted 26,047 individual measles cases re- 

orted between January 1, 2018, to June 30, 2020, in the study set- 

ing from the Electronic Communicable Disease Surveillance sys- 

em ( https://baocaobtn.vncdc.gov.vn/ ). To analyze spatio-temporal 

pread of the disease, we aggregated the number of cases by date 

f onset and by province. Data cleaning and descriptive analysis 

ere carried out using the Microsoft Excel and R software version 

.0.2. 

accination coverage data 

The yearly vaccination coverage data of the first doses of MCV 

MCV1) reported in 2019 were sourced from the Expanded Pro- 

ram on Immunization (EPI) Unit at the Pasteur Institute in Ho Chi 

inh City for modeling purposes. The MCV1 coverage was strat- 

fied by province, ranging from 82.7% in Binh Phuoc to 99.8% in 

am Dong. This coverage was taken fixed through time. 

opulation data 

We adopted the province-specific demographic data from the 

019 Vietnam Population and Housing Census ( General Statis- 

ics Office of Vietnam, 2020 ). The total population comprised 

6,399,443 people in 2019 and was assumed to be constant over 

018-2020. 

stimation of R e 

We estimated R e at time t following the approach by 

allinga and Teunis (2004) , which is a likelihood-based estima- 

ion procedure based on reported cases, and assuming fixed se- 

ial interval distribution (i.e., the time between onset days of two 

aired cases). We assumed that the serial interval of measles is 

ormally distributed with a mean of 11.9 days and a standard de- 

iation of 2.6 days ( Vink et al. , 2014 ). R e and the 95% confidence in-

ervals (95% CIs) were estimated using the EpiEstim package ( Cori 

t al. , 2013 ). To increase the precision of the estimated R e , we

an 100 simulations and used 21-day time windows corresponding 

o the definition of outbreak termination in the National Surveil- 

ance Guideline ( Vietnam Ministry of Health, 2012 ). An outbreak 

f measles is declared terminated if no new cases are identified 

ithin 21 days after the symptom onset of the last laboratory- 

onfirmed or epidemiologically linked case. 
1010 
he endemic-epidemic multivariate time series model 

The model we employed was introduced by Held et al. 

2005) and assumes that conditionally on past counts, the number 

f cases reported in province r ( r = 1 , . . . , R ) at time t = 1 , . . . , T ,

enoted as Y rt , follows a negative binomial distribution with mean 

rt and a conditional variance μrt (1 + μrt ψ) with overdispersion 

arameter ψ > 0 . Note that when ψ ≡ 0 , it simplifies to the Pois-

on distribution. Generally, the mean μrt is decomposed into an 

ndemic component, which serves as baseline number of cases, 

nd an observation-driven epidemic component, which represents 

he impact of number of past cases at time t − 1 in the same (i.e.,

utoregressive effects) or other regions (i.e., neighborhood effects): 

rt = e rt νrt + λrt Y r,t−1 + φrt 

∑ 

r′� = r 
w r p rimer Y r p rime,t−1 (i) 

ith transmission weights w r′ r , for which w rr = 0 . The non- 

egative factors νrt , λrt , φrt are modeled on a log scale: 

og ( νt ) = α( ν) + b ( 
ν) 

r + βt t + γ sin ( ωt ) + δ cos ( ωt ) 

+ αv ac log ( 1 − υr ) , (ii) 

og ( λrt ) = α( λ) + b ( 
λ) 

r + βv ac log ( 1 − υr ) , (iii) 

og ( φrt ) = α( φ) + b ( 
φ) 

r + τ log ( e rt ) . (iv) 

The three equations above contain component-specific fixed 

ntercepts ( α(ν) , α(λ) , α(φ) ), random effects ( b (ν) 
r , b (λ) 

r , b 
(φ) 
r ), and

egression terms, which allow for seasonal varying incidence 

 Held and Paul, 2012 ; Paul et al. , 2008 ; Paul and Held, 2011 ),

ut may also include exogenous covariate vectors such as vac- 

ination coverage ( Herzog et al. , 2011 ) and population size ( Xia

t al. , 2004 ). First, assuming that the epidemic incorporates cases 

ithin a province and from adjacent provinces only (i.e., first- 

rder neighbors, w r′ r = 1 ), the basic model formulation follows the 

quation (i) where the endemic component is assumed to vary 

easonally with a trend parameter βt , a sine-cosine term with am- 

litude A = 

√ 

γ 2 + δ2 , a phase shift ϕ ( tan (ϕ ) = δ/γ ), and the si-

usoidal wave of frequency ω identified as 2 π/ 365 for daily con- 

inuous measurements and is modeled proportional to the popula- 

ion e rt ( Held and Paul, 2012 ), the two epidemic components only 

ontain intercepts. Second, as an extension to this model, the vac- 

ination coverage of MCV1, υr , is included in the model as a covari- 

te ( Herzog et al. , 2011 ). Specifically, the province-specific propor- 

ion of unvaccinated population, 1 − υr , used as a proxy for sus- 

eptibility of the population to measles, was log-transformed in 

he endemic and autoregressive components with coefficients αv ac 

nd βv ac , respectively. Next, the inclusion of the log-population ef- 

ects in the spatio-temporal component (i.e., neighborhood effects) 

s worth considering in our study, as it has proven useful reflect- 

ng the agglomeration effects, in which the power of the popula- 

ion scaling factor τ is to be estimated ( Meyer and Held, 2014 ; Xia

t al. , 2004 ). Furthermore, the importance of higher-order neigh- 

oring provinces in disease transmission can be assessed using the 

ower law model, which allows for measuring of the transmission 

eights w r′ r = o −d 
r′ r , where the decay parameter d > 0 is to be es-

imated ( Meyer and Held, 2014 ) and o r′ r is the adjacency order. 

e considered that two distinct units r ′ and r are k th-order neigh- 

ors (i.e., o r′ r = o r r ′ = k ) if the shortest distance between them has 

 steps across geographical units. In our setting, k ranges from 1 

o 7. Finally, to address the unobserved heterogeneity of disease 

ransmission such as underreporting and “edge effects” (i.e., cases 

an be sourced from areas outside of the study setting), we in- 

roduced independent random effects b (ν) 
r , b (λ) 

r , b 
(φ) 
r in the three 

omponents of the model ( Paul and Held, 2011 ). The influence of 
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Table 1 

Glossary of notation for spatio-temporal model parameters. 

Notation Parameter 

� Log-likelihood 

� pen Penalized log-likelihood 

� marg Marginal log-likelihood 

maxEV Maximum eigenvalue 

AIC Akaike information criterion 

α(λ) Fixed effect, autoregressive component 

α(φ) Fixed effect, spatio-temporal component (neighborhood effects) 

α(ν) Fixed effect, endemic component 

b (λ) 
r Random effects, autoregressive component 

b 
(φ) 
r Random effects, spatio-temporal component (neighborhood effects) 

b (ν) 
r Random effects, endemic component 

σ 2 
λ

Variance, autoregressive random effects 

σ 2 
φ

Variance, spatio-temporal random effects 

σ 2 
ν Variance, endemic random effects 

d Distance decay 

τ The power of the population scaling factor 

αv ac Covariate (vaccination coverage) coefficient in endemic component 

βv ac Covariate (vaccination coverage) coefficient in autoregressive component 

ψ Overdispersion 

βt Trend parameter 

ω The sinusoidal wave of frequency identified as 2 π/ 365 

A Amplitude of seasonal variation, A = 

√ 

γ 2 + δ2 

ϕ Phase shift ϕ, with tan (ϕ) = δ/γ
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he epidemic component on the overall disease incidence is inves- 

igated by the dominant eigenvalue ( maxEV ). If the eigenvalue is 

 1 , it can be interpreted as the proportion of epidemic poten- 

ial of disease incidence, otherwise it expresses an outbreak pe- 

iod ( Meyer and Held, 2014 ; Held and Paul, 2012 ). We assumed

hat the mixing behavior is homogeneous. Our multivariate time 

eries models were fitted via (penalized) maximum likelihood. All 

he notations are listed in Table 1 . 

The performance of models was based on the comparison of 

ne-step-ahead predictions based on the observed data by using 

roper scoring rules ( Czado et al. , 2009 ; Paul and Held, 2011 ).

ower scores correspond to better prediction. In our study, we 

tilized the logarithmic score (logS) and ranked probability score 

RPS) regarding both sharpness, the concentration of the predictive 

istributions, and calibration, the statistical consistency between 

he probabilistic forecasts and the observation ( Czado et al. , 2009 ). 

he difference between scores from two models was tested by the 

ermutation test ( Czado et al. , 2009 ; Paul and Held, 2011 ). 

All procedures were performed using the R package surveillance 

ersion 1.19.1, “hhh4” class ( Meyer et al. , 2017 ). 

See Supplementary for more details on the used models. 

esults 

escriptive analysis 

A total of 26,047 measles cases (55.4% male) and one measles- 

ttributable death were reported in Southern Vietnam between 

anuary 1, 2018, and June 30, 2020. The number of infections 

tarted to increase in August 2018 ( Figure 1 a). Two peaks in the

ncidence of measles were observed in March 2019 (8.94/10 0,0 0 0; 

5% CI: 8.64-9.25) and January 2020 (2.38/10 0,0 0 0; 95% CI: 2.23- 

.55) (Supplementary Figure 1). The incidence (per 10 0,0 0 0 pop- 

lation) in 2018, 2019, and the first half of 2020 was 13.1 (95% 

I: 12.7-13.5), 53.8 (95% CI: 53.0-54.5), and 4.8 (95% CI: 4.6-5.0), 

espectively. The majority of cases (61.4%) were children aged < 5 

ears and the median age at disease onset was 3 years (range: 

 1-84 years). The 0-4 years age group had the highest incidence 

er 10 0,0 0 0 population, followed by the 5-14 years and 15 + years

ge groups. The 2019 incidence of measles was 482.9/10 0,0 0 0 (95% 

I: 474.2-491.7) in the 0-4 years, 82.3/10 0,0 0 0 (95% CI: 79.9-84.7) 
1011 
n the 5-14 years, and 11.9/10 0,0 0 0 (95% CI: 11.5-12.3) in the 15 +
ears age groups. The resurgence heavily affected the Ho Chi Minh 

ity, Dong Nai, and Binh Duong, accounting for 57.4% of total cases. 

n 2018, 5 of 20 provinces had an incidence per 10 0,0 0 0 popula-

ion greater than the national threshold of 7.5/10 0,0 0 0, rising to 

9 of 20 provinces in 2019 (except Lam Dong), whereas in only 

wo provinces (Can Tho City and Hau Giang) the incidences per 

0 0,0 0 0 population in 2020 were still higher than the national in- 

icator ( Figure 2 ). 

Figure 1 b shows the estimates of the time-dependent R e of the 

easles outbreak. At the early stage of the epidemic, R e was es- 

imated at 1.46 (95% CI: 1.26-1.62). Although there was a small 

rough one week later, R e sharply increased and peaked to 2.34 

95% CI: 2.20-2.46) in late August 2018. The trajectory of R e was 

bove the threshold of 1 until late January 2019 and then exhibited 

uctuations between February and March 2019. R e showed a de- 

rease below unity by the end of September 2019 before it surged 

gain one month later with a peak of 1.16 (95% CI: 1.12-1.21). R e 
as close to unity for the next 2 months and then decreased fur- 

her as the outbreak came to an end. 

patio-temporal analysis 

The estimated parameters of the different models are summa- 

ized in Table 2 . The model presented in the last column provides 

he best predictive performance, as it has the lowest scores of 

ogS and RPS. The adoption of the negative binomial distribution 

n the model is more appropriate (estimated ψ = 0 . 154 ; 95% CI:

.14-0.17) than the Poisson distribution (corresponding to ψ ≡ 0 ). 

n general, the model that best characterizes the measles outbreak 

n the Southern region is the model that incorporates vaccination 

overage, includes the population effect into the spatio-temporal 

omponent, assumes spatial interaction (i.e., commuter-driven and 

ong-range spread via the use of the power law model), and in- 

ludes random effects to account for spatial heterogeneity in each 

f the components. The distribution of the predicted number of 

ases (as immersed from the selected model) captured well the 

bserved daily cases (Supplementary Figure 2). The risk of infec- 

ions was explained for 44.5% by transmission within provinces 

nd 50.5% by transmission between provinces, whereas only 5% of 

he risk was attributable to the endemic component. This result 
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Figure 1. (a) Epidemic curve of measles cases by date of symptom onset in Southern Vietnam from January 1, 2018, to June 30, 2020, and (b) the corresponding effective 

reproduction number R e over time. The black dots show the mean estimates, and the gray zone shows 95% confidence interval. The horizontal dashed line illustrates the 

threshold value R e = 1. The blue areas indicate the timing of supplementary immunization activities from December 2018 to January 2019 and March-July 2019. 

Figure 2. Spatial distribution of (a) the crude reported measles cases from January 1, 2018, to June 30, 2020, and (b), (c), (d) the measles incidence per 10 0,0 0 0 population 

in 2018, 2019, and the first 6 months of 2020, respectively. 

1012 
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Table 2 

Parameters estimates in different models. Glossary of parameters is available in Table 1 . The standard errors (SE) of the parameters are shown in parentheses. 

Basic Negative 

Binomial model 

Model extension 

Adding covariate 

(vaccination coverage) 

Adding population 

effects 

Adding the power 

law model 

Adding random 

effects 

� −18,218.36 −18,130.89 −18,089.93 -17,819.41 � pen = −16 , 964 . 17 

� marg = −129 . 79 

AIC 36,450.71 36,279.78 36,199.87 35,660.81 —

maxEV 0.83 0.84 0.91 0.92 0.95 

ψ

(SE) 

0.357 

(0.015) 

0.351 

(0.015) 

0.320 

(0.015) 

0.273 

(0.013) 

0.154 

(0.009) 

Autoregressive 

component 

α(λ) (SE) −0.511 

(0.010) 

−0.028 

(0.064) 

−0.118 

(0.068) 

0.091 

(0.070) 

−0.105 

(0.566) 

βv ac 

(SE) 

— 0.158 

(0.020) 

0.172 

(0.022) 

0.257 

(0.024) 

0.434 

(0.167) 

σ 2 
λ

— — — — 0.433 

Spatio-temporal 

component 

α(φ) (SE) −2.997 

(0.031) 

−3.041 

(0.032) 

−14.710 

(0.761) 

−18.750 

(0.594) 

−13.060 

(4.245) 

τ

(SE) 

— — 0.830 

(0.053) 

1.223 

(0.041) 

0.847 

(0.298) 

d

(SE) 

— — — 1.512 

(0.140) 

1.848 

(0.128) 

σ 2 
φ

— — — — 0.489 

Endemic 

component 

α(ν) 

(SE) 

−17.870 

(0.091) 

−16.760 

(0.146) 

−16.900 

(0.151) 

−17.230 

(0.219) 

−18.580 

(0.322) 

αv ac 

(SE) 

— 0.320 

(0.036) 

0.300 

(0.037) 

0.403 

(0.054) 

0.063 

(0.079) 

σ 2 
ν — — — — 0.076 

βt 

(SE) 

0.003 

(0.0001) 

0.003 

(0.0001) 

0.003 

(0.0001) 

0.003 

(0.0002) 

0.003 

(0.0002) 

A 

(SE) 

1.158 

(0.054) 

1.177 

(0.052) 

1.175 

(0.055) 

1.203 

(0.074) 

0.987 

(0.097) 

ϕ

(SE) 

2.401 

(0.018) 

2.410 

(0.017) 

2.366 

(0.018) 

2.418 

(0.022) 

2.405 

(0.030) 

Model assessment a logS ( P -value) 1.276 

(0.001) 

1.269 

(0.001) 

1.267 

(0.001) 

1.249 

(0.001) 

1.186 

(—) 

RPS 

( P -value) 

0.780 

(0.001) 

0.785 

(0.001) 

0.759 

(0.001) 

0.731 

(0.001) 

0.660 

(—) 

a The logarithmic score (logS) and ranked probability score (RPS) of the random effects model are compared with the remaining models. The P -values are calculated 

from the permutation test for paired observation with 999 permutations (significance level α = 0 . 05 ). 
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Table 3 

The contribution in proportion (%) of each of the three components in the cu- 

mulative cases estimated from the selected model by province and the whole 

Southern region. 

Province 

Estimated proportion of each component 

Endemic Within-province Between-province 

Lam Dong 33.4 4.1 62.5 

Ho Chi Minh City 2.4 61.5 36.1 

Binh Phuoc 2.8 34.3 62.9 

Tay Ninh 8.4 25.7 65.9 

Binh Duong 3.8 35.9 60.3 

Dong Nai 3.2 50.7 46.1 

Ba Ria Vung Tau 15.0 6.3 78.8 

Long An 6.5 18.8 74.7 

Dong Thap 6.4 25.2 68.4 

An Giang 19.7 12.8 67.5 

Tien Giang 17.6 7.1 75.3 

Vinh Long 10.6 11.3 78.2 

Ben Tre 20.4 12.7 66.8 

Kien Giang 3.8 53.3 42.9 

Can Tho City 6.9 42.1 50.7 

Hau Giang 6.4 23.5 70.1 

Tra Vinh 17.0 15.5 67.5 

Soc Trang 22.2 10.1 67.7 

Bac Lieu 6.3 24.0 69.7 

Ca Mau 3.5 50.3 46.2 

Southern Vietnam 5.0 44.5 50.5 

0

p

orresponds to the estimated dominant eigenvalue of 0.95, which 

eflects the proportion of epidemic behavior. Substantial variation 

n the relative contribution of each of the three components across 

rovinces is depicted in Figure 3 and described in Table 3. The 

ithin-locality transmission proportion varied from 4.1% in Lam 

ong to 61.5% in Ho Chi Minh City (median: 23.75%). The between- 

ocality transmission showed larger impact in most provinces with 

ess variation in proportions, ranging from 36.1% in Ho Chi Minh 

ity to 78.8% in Ba Ria Vung Tau (median: 67.15%). The proportion 

f cases attributable to the endemic component fluctuated with a 

edian 6.7% (range: 2.4% in Ho Chi Minh City to 33.4% in Lam 

ong). 

The estimated effect of measles susceptibility derived from the 

CV1 coverage in the autoregressive component in the selected 

odel is clearly significant with βv ac = 0.43 (95% CI: 0.11-0.76). 

his indicates that provinces with a high susceptible proportion 

ere associated with an increase in the number of infections in the 

utoregressive component. In contrast, if the number of susceptible 

ersons in a particular province decrease (by vaccination), for ex- 

mple, by half, the measles incidence in the autoregressive compo- 

ent is estimated to decrease by 26% ( 0 . 5 0 . 43 = 0 . 74 ; 95% CI: 0.59-

.93). However, such association was not significant in the endemic 

omponent ( αv ac = 0 . 063 , 95% CI: −0.09 to 0.22). We found strong

vidence of computer-driven spread when accounting for the area- 

pecific population in the spatio-temporal component. The corre- 

ponding power of the population scaling factor τ = 0.85 (95% 

I: 0.26-1.43) provides such an association. In addition, the geo- 

raphical spread exhibits a strong distance decay of transmission, 

ith the decay parameter d = 1.85 (95% CI: 1.60-2.10). The weights 

 r′ r = o −d yield estimates of 1.00, 0.28, 0.13, 0.08, 0.05, 0.04, and 
r′ r s  

1013 
.03 corresponding with adjacency orders 1 to 7, respectively (Sup- 

lementary Figure 3). 

The variance of random effects is largest in the autoregres- 

ive ( σ 2 
λ

= 0 . 433 ) and spatio-temporal ( σ 2 
φ

= 0 . 489 ) components,
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Figure 3. Fitted components of the random effects model for two cities and 18 provinces in Southern Vietnam between January 1, 2018, and June 30, 2020. The y-axis 

represents the daily number of cases and the x-axis represents the time in days. The dots indicate the observed number of daily infections. The autoregressive, the spatio- 

temporal, and the endemic components are illustrated by blue, orange, and gray areas, respectively. 
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hereas there is little variation in the random effect in the en- 

emic component ( σ 2 
ν = 0 . 076 ) ( Figure 4 ). This indicates that a

ubstantial spatial heterogeneity of incidence levels in the epi- 

emic component was explained by the random effects and that 

he heterogeneity in the endemic component was better described 

y the covariates in the model. The orange provinces in Figure 4 a 

uggest that these areas have been affected by local outbreaks. 

evertheless, Binh Phuoc, Bac Lieu, Hau Giang, Dong Thap, and 

inh Duong are estimated with relatively low autoregressive fac- 

ors but high estimates in spatio-temporal random effects, im ply- 

ng that cases were more likely imported from other provinces 

 Figure 4 b). In provinces such as An Giang, Soc Trang, Tien Giang, 

a Ria Vung Tau, and Lam Dong with the relatively high random 

ffects in the endemic component compared with other two com- 

onents, the disease dynamics exhibited more of an endemic than 

pidemic behavior ( Figure 4 c). 

iscussion 

We performed a meticulous retrospective analysis of the resur- 

ence of measles based on spatio-temporal surveillance data col- 

ected from Southern Vietnam from January 1, 2018, to June 30, 

020. The magnitude of the outbreak was illustrated by a two- 

eak temporal pattern, and the outbreak lasted for nearly 2 years, 

hich was longer than any other previous outbreaks in the region 
1014 
 Phan Trong Lan et al., 2014 ; Sniadack et al. , 2011 ). Different fac-

ors could have contributed to the ending of the epidemic, such as 

eductions in the susceptible population caused by the epidemic it- 

elf and the implemented public health interventions ( e.g. , supple- 

entary immunization activities - SIAs). Though one should also 

ote that the measures taken against the COVID-19 pandemic that 

tarted at the end of January 2020 (lockdown and social distanc- 

ng, Quach et al. , 2021 ) likely further added to the interruption of 

easles transmission. Besides, the persistence of the outbreak was 

mplied by the prolonged R e beyond unity during August 2018 to 

anuary 2019. Theoretically, R e reflects the impact of containment 

easures and the reduction of susceptible population in an epi- 

emic ( Gay, 2004 ; Wallinga and Teunis, 2004 ). R e below one was 

n accordance with the timing of SIAs (targeted children aged 1- 

 years) between March and July 2019, illustrating that these SIAs 

ay have contributed in reducing the susceptible population and 

hus mitigating the epidemic. However, its applicability to assess 

he effectiveness of SIAs may be limited in our study because of 

wo possible reasons. First, the calculation relied on the aggre- 

ated observed cases of all provinces instead of province-specific 

stimates. Second, only 67% of the districts of 18 provinces in the 

outh (except Ba Ria Vung Tau and An Giang) were involved in 

he national SIAs. Moreover, interventions other than the vaccina- 

ion strategy could have contributed to the change of R e but are 

ot explicitly discussed here because of lack of information. To as- 
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Figure 4. The estimated province-specific random intercepts in the random effects model. The random intercepts b (λ) 
r , b 

(φ) 
r , b (ν) 

r of the autoregressive, spatio-temporal, and 

endemic components, respectively, are visualized in maps. 
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ess the impact of control measures on measles incidence, there is 

 need to have in-depth surveys or reviews of data such as vacci- 

ation status of individuals, reported administrative MCV coverage 

rom routine programs, and time frame of implemented measures 

ith geographical extent, targeted groups and size, etc., in combi- 

ation with measles surveillance data. Based on case numbers and 

nowledge of the serial interval, our estimated R e should be con- 

idered a realized R e that differs from the expected R e , which can 

e calculated based on the population immunity levels and other 

emediable factors ( e.g. , context-specific contact patterns, popula- 

ion size). Whereas the latter is to determine the disease resur- 

ence risk ( Béraud et al. , 2018 ; Funk et al ., 2019 ; Hens et al. , 2015 ),

he former allows us to retrospectively observe the actual evo- 

ution during the epidemic. We believe that both measures offer 

enefits in an epidemic. 

To study the spatio-temporal spread of the disease, stochastic 

odels such as compartmental models ( Lau et al. , 2020 ; Xia et al. ,

004 ; Yang, 2020 ) and chain-binomial models ( Robert et al. , 2020 )

re desirable. These models describe the infection process at the 

ndividual level. However, they require information on susceptibil- 

ty that is not always available in surveillance data and sometimes 

equire intensive calculations. In contrast, the endemic-epidemic 

pproach allows us to use the routinely collected surveillance data 

nd flexibly incorporate potential variables that may have a signif- 

cant impact on the spatio-temporal spread of the disease. In addi- 

ion, the model parameters are easily estimated using regular opti- 
1015 
ization techniques ( e.g. , maximum likelihood) ( Held et al. , 2005 ;

aul et al. , 2008 ). An important feature of our modeling strategy 

s that it distinguishes between cases transmitted within or be- 

ween regions, taking into account endemic behavior. This is useful 

n determining appropriate public health interventions for specific 

reas. For instance, implementation of more stringent measures 

s necessary for provinces with high local transmission, whereas 

nhancing routine surveillance is more appropriate for “endemic- 

ransmission” provinces. 

The modeling results revealed that heterogeneity in vaccina- 

ion coverage between geographical units has a strong link to 

easles incidence. It is anticipated that the local vaccination cov- 

rage has been shown to be useful in speculating about at-risk re- 

ions. Provinces with lower vaccination coverage were associated 

ith increasing cases in the localities. In our context, Binh Phuoc, 

or example, had the lowest 2019 MCV1 coverage in the region and 

as one of the worst affected provinces in that year. Our study 

lso showed that local coverage of the first dose of measles vac- 

ine is a good indicator of the level of immunity in the population, 

onsistent with the findings of Robert et al. (2022) . Nevertheless, 

mmunity levels depend on age groups ( Béraud et al. , 2018 ; Funk

t al. , 2019 ; Hens et al. , 2015 ) and outbreaks will occur if there

re immunity gaps in the age cohorts. The predominance of chil- 

ren aged under 5 years (61.4% of total cases) in the study could be 

ue to the low vaccination coverage among them. In the 2013-2014 

utbreak, a cross-sectional study demonstrated that only 54.9% of 
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hildren aged 9 months-10 years completed the two-dose sched- 

le in contrast with the 82.4% vaccination coverage reported in Ho 

hi Minh City in the same year ( Cuong et al. , 2019 ). Moreover, a

erosurvey in Northern Vietnam in 2013-2014 also revealed that 

0% to 80% of children aged < 5 years were seropositive ( Choisy 

t al. , 2019 ). Such level of protection is obviously inadequate to 

revent measles infections in this age group. In addition, 17.3% of 

ases aged < 9 months in our study were found to be infected be-

ore they were eligible for routine vaccination. This is likely due to 

 strong decay of maternal antibodies of measles in infants from 

mmune mothers, making them susceptible at an early stage in life 

 Guerra et al. , 2018 ; Leuridan et al. , 2010 ). A small fraction of young

dult cases in the study were not protected by vaccination in the 

ast, especially during the period when measles vaccination cov- 

rage was scaling up to the routine immunization program (1983- 

989) ( Sniadack et al. , 2011 ). Our study re-emphasizes that vaccina- 

ion has largely contributed to the significant reduction in measles 

ncidence. To better understand the relative contribution of under- 

accination to further disease occurrence, it is beneficial and nec- 

ssary to critically evaluate measles vaccine uptake in the popula- 

ion by both age and space. Serological surveys can provide useful 

nformation in this regard. 

Spatial patterns in our outbreak, as expected, were shared by 

wo major drivers including commuter movement and long-range 

ransmission. Specifically, 36.1% to 78.8% of cases in 20 provinces 

ere introduced by human mobility outside their home residence. 

dding a population effect in the spatio-temporal component suc- 

essfully reflected the idea that a denser population increases the 

isk of importing cases from neighbors. Ho Chi Minh City, Dong 

ai, and Binh Duong are the most populous provinces in the South, 

nd hence, a larger number of infections were prone to importa- 

ion from neighboring areas to such metropoles. In the absence of 

ovement data, our analysis also highlighted the substantial im- 

act of population traveling from different levels of neighboring 

rders on the disease dissemination. This is comparable with the 

ransmission pattern in Cameroon and China ( Parpia et al. , 2020 ; 

in et al. , 2019 ). The behavior of rural-to-urban and urban-to-rural 

hort-term movement could worsen the risk of outbreaks in differ- 

nt localities. Many clusters and small outbreaks were discovered 

n shelters located within industrial zones, with a floating popu- 

ation, especially in metropolitan provinces. Such sub-population 

s usually seen with low immunization coverage because of so- 

ioeconomic inequalities, which are barriers to EPI ( Cuong et al. , 

019 ; Kien et al. , 2017 ; Nguyen et al. , 2019 ). In addition, the Lunar

ew Year (between late January and February), which is marked 

y high human mobility in weeks before and after the holiday, 

as an important contributor to measles diffusion ( Sniadack et al. , 

011 ; Yang et al. , 2017 ). The efflux of infected individuals from ur-

an cities into distant provinces might have introduced the disease 

n rural communities. This mechanism was consistent with the oc- 

urrence of the first epidemic peak in March 2019. Caution about 

he potentiality of increased incidence of measles facilitated by 

etween-locality transmission, especially during holidays, should 

e concerted in future control strategies, e.g. , in health promotion 

nd vaccination programs in under-immunized areas. 

In our model, a substantial level of difference in reporting was 

aptured by using random effects. Underreporting is common in 

ny surveillance system. In our setting, measles cases could have 

een misreported due to diagnosis practices ( e.g. , diagnosed as 

yphus fever [ICD10 A75] instead of measles [ICD10 B05]) and 

ack of medical attention in older patients or community cases. 

pecifically, children are prone to hospitalization more frequently 

han adults and might be diagnosed with measles because of clas- 

ic symptoms, whereas older cases may be less likely to be sus- 

ected for measles owing to milder illness with less intense symp- 

oms ( Augusto et al. , 2018 ; Barrett et al. , 2018 ). Moreover, potential
1016 
ources of infections can possibly import from areas outside the 

tudy setting including cross-border infections (i.e., edge effects). 

uture research should focus on the impact of underreporting dur- 

ng the measles epidemic and expanding the spatio-temporal anal- 

sis at regional and national levels. 

We recorded several limitations. First, we assumed a homoge- 

eous mixing population without accounting for social contact pat- 

erns, which at least partly are available for Vietnam ( Horby et al. ,

011 ) and which may provide a better understanding of the trans- 

ission within and between age and/or gender groups ( Meyer and 

eld, 2017 ). Second, the susceptible population might be overes- 

imated because we only used MCV1 coverage as a proxy to in- 

er susceptibility to measles in the model, regardless of age. Given 

hat the immunity levels are age-dependent ( Béraud et al. , 2018 ; 

unk et al. , 2019 ; Hens et al. , 2015 ), an age-stratified analysis would

e recommended, provided that data on age-specific MCV1 cov- 

rage would be available. Third, the calculation of the reproduc- 

ion numbers may have potential bias due to the assumption of 

erial interval, incomplete case observation ( e.g. , underreporting), 

nd the choice of time window ( Cori et al. , 2013 ; Gostic et al. ,

020 ). Finally, we did not assume (spatially) correlated random ef- 

ects, which might be more satisfactory to account for the unob- 

erved heterogeneities because, for example, effects are presum- 

bly more alike in adjacent areas than in distant areas ( Paul and 

eld, 2011 ). However, the limited overdispersion in our final model 

ndicates that the model performed reasonably well. 

In conclusion, our study highlights that the measles transmis- 

ion across provinces was characterized by the heterogeneous con- 

ribution of the endemic and observation-driven epidemic compo- 

ents, which was influenced by factors such as vaccination cov- 

rage and spatial interaction between localities, especially nearby 

rovinces. The estimates R e (t) helped explain the prolonged dura- 

ion of the measles epidemic. Strengthening surveillance systems is 

ecommended and further research is essential to understand the 

elative contribution of the population immunity and control mea- 

ures in the measles epidemic. 
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