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Abstract: The following work presents algorithms for semi-automatic validation, feature extraction
and ranking of time series measurements acquired from MOX gas sensors. Semi-automatic mea-
surement validation is accomplished by extending established curve similarity algorithms with a
slope-based signature calculation. Furthermore, a feature-based ranking metric is introduced. It
allows for individual prioritization of each feature and can be used to find the best performing sensors
regarding multiple research questions. Finally, the functionality of the algorithms, as well as the
developed software suite, are demonstrated with an exemplary scenario, illustrating how to find the
most power-efficient MOX gas sensor in a data set collected during an extensive screening consisting
of 16,320 measurements, all taken with different sensors at various temperatures and analytes.

Keywords: time series analysis; MOX gas sensors; slope based signature; automatic measurement
validation; prioritizable ranking; feature extraction

1. Introduction

Since metal-oxide (MOX) gas sensors are cheap, easy to acquire and available in
large quantities, they have become popular in different measurement scenarios such as
leakage detection in chemical factories or air quality measurements in central venting
systems [1,2]. The sensors can detect gas concentrations down to the ppb level, but suffer
from the disadvantage of not being selective enough. Hence, researchers continuously
create and test new material combinations with the goal of building sensors that are very
selective and sensitive to a specific target [3]. In addition to the actual composition of the
sensitive layer, the sintering parameters used for the process of applying the metal-oxide
onto the empty sensor carrier impacts the sensor’s performance immensely. Therefore,
custom-made sensors are manufactured in batches with the same metal oxide composition,
but individual sinter parameters. In order to test the achieved individual sensitivity and
selectivity of the sensors in a batch, all sensors are exposed simultaneously but sequentially
to different gases whilst being operated at different substrate temperatures. This procedure
is called a sensor screening [4,5].

Depending on the granularity, a screening can be a very time-consuming task (i.e.,
several days) and should ideally be highly automatized. In our previous work, we pre-
sented hardware solutions for automated batch sintering [6] and a sensor readout system
to carry out highly automated sensor screenings [7]. Since the acquired data has to be
analyzed and interpreted to achieve the final goal of finding the best fitting sensor and its
optimal operating temperature for a given target, an automated measurement hardware

Algorithms 2022, 15, 360. https://doi.org/10.3390/a15100360 https://www.mdpi.com/journal/algorithms



Algorithms 2022, 15, 360 2 of 16

for sensor screenings is only half way to the goal. Due to the large amount of raw data
captured during an automated screening with many parameter combinations, a manual
interpretation can also be very time-consuming and will therefore benefit greatly from a
high degree of automation itself.

There are two main challenges identified for the automatized processing and analysis of
the data acquired during an automated screening that have to be addressed algorithmically:

• Validation
Since manufacturing and operating parameters are still under research, some sensors
may show a malformed or no response at all. The occurrence of such invalid measure-
ments in a screening is therefore very likely. These measurements need to be sorted
out, to only include measurements from proper sensors for the final assessment.

• Ranking
To identify the best sensor for a given application, a performance metric is required. It
should be based on quantifiable and individually prioritizable features extracted from
the time series measurements. The ability to tune the metric through feature-wise
prioritization will help to model the scenario, for which the ranking is performed, in
greater detail.

In the following work, we will present method combinations and algorithms needed to
address the identified challenges. To find invalid or unusual measurements, we propose an
automatic validation method based on curve similarity that compares new measurements
against a well-known reference to determine how correlative they are. An algorithm
calculates a numeric similarity value between the given reference and the curves under
test. A threshold can then be used to automatically sort out measurements that are too
dissimilar from the reference. Furthermore, we propose a signature extraction algorithm
that significantly enhances the performance of the well-established curve metrics, directly
improving the numeric similarity results. The solution for the sensor ranking is split into
feature extraction and the ranking algorithm itself. Sensor-expert interviews led to the
identification of several MOX sensor-specific features. A relevant set of features, extractable
from the sensors’ time series, was mathematically formalized. Finally, we can use the
resulting feature vectors as input for our proposed ranking algorithm, which is based
on multiplicative arithmetic. The ranking can individually prioritize a freely selectable
combination of features from the vector, to best possibly adapt the ranking process to the
target application for the sensor.

We will conclude by showing the developed algorithms and software on an exem-
plary ranking performed on a data set obtained during an extensive sensor screening, to
automatically find the most sensitive sensor for a given analyte, while consuming as little
power for its heater element as possible.

2. Related Work and Data Origin

Since this works primary contributions are algorithms and methods for automatic data
validation and ranking of newly manufactured sensors for application of specific detection
tasks, we looked at similar work in this field.

Many research groups like Leo et al. [8] mention their data processing as using
several individual pieces of heterogeneous, commercial software tools like LabView or
Matlab, or scripts. Often, the used sensor-features and statistical methods are presented
informally as incomplete textual expressions or as black boxes entirely [9]. This makes
a reproduction of the algorithms difficult. The software Dave3 [10], is a toolbox with
a graphical user interface, which comes close to the idea, we want to convey. The tool
is, however, specialized for the evaluation of data obtained during temperature cyclic
operation of gas sensors and not applicable for the validation and performance ranking for
sensors according to their screening data. Another unnamed software for the evaluation of
data obtained from an electronic nose could be found. The software is limited to a specific
subset of sensors and also is not suitable for ranking or validating data [11]. Both tools have
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the major shortcoming of being based on commercial software like MatLab or LabView
which requires additional licences.

Our goal is to present the algorithms for validation and ranking as well as the needed
features in a mathematically formalized way so that can they can be implemented in a
variety of (open source) languages of choice, such as Python or R.

2.1. Sensor Screening Method

The data used in this work is the result of a detailed screening of 64 sensors exposed
to nine different analytes. The sensors under test differ in their substrate composition as
well as their sinter times and sinter temperatures used during their production. As the
operating temperature greatly impacts the sensor performance, a single physical sensor
operated at different temperatures can be regarded as multiple virtual sensors with very
different sensitivity and selectivity [12]. The operating temperatures were therefore varied
during the screening, to record the resulting impact on the sensor performance. Sensor
resistance, heater voltage and heater current were sampled with 1 Hz during the entire
screening. A single measurement for a sensor and an analyte at a given temperature is
repeated at least three times before the temperature is changed and the cycle starts over.
The resulting time series for each measurement in the described data set always consists of
the following three segments and durations as defined by the screening procedure:

Figure 1 is an exemplary depiction of the result from a single measurement. The dotted
vertical lines indicate the analyte exposure to the sensor, while the toned down color of
the curve, left and right of the dotted lines, is used to visualize the baseline and clearing
segments as described in Table 1.

Figure 1. Measurement of a Cr2O3 sensor, sintered with 800 ˝C for 720 min, operated at 450 ˝C,
exposed to 5 ppm Acetone. The section between the dotted lines is the analyte exposition. The slightly
toned down color before and after the analyte are the baseline and clearing parts of the measurement.

Table 1. Basic structure of an individual measurement.

Segment Duration Action

(B) Baseline 5 min Get sensor value in synthetic air before analyte
(A) Analyte 20 min Get sensor value during gas exposition
(C) Clearing 120 min Flush sensor and piping with synthetic air

2.2. Preprocessing

An out of range (OOR) detection algorithm checks that each sample lies within a
range defined by a fixed lower boundary of 0 Ω and a customizable upper boundary
τr, whereas τr ideally coincides with the maximal measurable resistance value of the
measurement equipment. If more than 10 consecutive samples are outside these boundaries,
the measurement is flagged as invalid.
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If optional information for heater voltage and current is available, it can be used to
detect and remove measurements that were performed with sensors that presumably have
broken or malfunctioning heater elements. These extended checks are:

• Regulation Deviation
The recorded heater voltage is compared to the targeted voltage. The algorithm counts
the occurrences of deviations of ˘5% to the target voltage. If this occurs more than 10
times, the measurement is flagged as erroneous.

• Continuous Current Flow
Checks that the current is actually flowing through the heater element throughout the
entirety of the measurement.

• Heater-Characteristic
Using the parameters from the technical information bulletin provided by UST
Umweltsensortechnik GmbH [13], the resistance characteristic of the integrated plat-
inum heater element of the sensors at different temperatures can be validated. Sensors
that were exposed to long sintering times at high temperatures are especially prone to
damage to their heater element. Such sensors can be flagged with a warning.

The system presented in our previous work [7] provides this additional data and was
used for all screenings. Therefore, the extended preprocessing is applied to all measure-
ments in the available data set. According to the upper limit of the used measurement
system, the upper boundary for the range checks is τr “ 4 GΩ. Finally, an outlier detection
was performed to correct for single-sample signal anomalies.

3. Algorithms for Validation and Ranking

Based on the challenges described in Section 1, the following solutions are proposed:

• Slope-based signature calculation as additional curve similarity metric to enhance a
distance-based, semi-automatic measurement validation process;

• Feature-based and prioritizable ranking metric to sort the sensors according to their
performance towards a given analyte.

Before getting started, the formal conventions are introduced. In this work a vector
is denoted with x P R|x| where |x| is defined as the amount of the vector’s elements. The
vector element at index i is referenced by xriswith 1 ď i ď |x|. A window with size w P N
around an index i can be interpreted as a vector itself containing only values from the
original vector x with the limits l ď i ď r.

xxi, wy with l “

#

i´w if i´w ą 1,
1 else

and r “

#

i`w if i`w ă |x|,
|x| else

(1)

Let v “ p1 2 3 4 5q be a vector with five elements. An exemplary window could
then be vx3, 1y “ p2 3 4q. Furthermore, the last n elements of the vector could also be
addressed via the window vx|v|, n´ 1y. For n “ 3, this gives vx5, 2y “ p3 4 5q.

A measurement is a vector m P M with M being the set of all resistance measurements
of one or multiple sensor screenings, as introduced in Section 2.1. The elements of this
vector with their corresponding indices represent the sampled values and the time base of
the measurement. Following this notation, the different segments of a measurement are
defined as ma for the analyte exposure, mb for the baseline and mc for the clearing phase.

The residual standard deviation used in the work is defined as [14]:

spx, rq “

g

f

f

e

ř|x|
i“1pxris ´ rrisq2

|x| ´ 2
, |x| ą |r| (2)

All notation conventions, including those introduced above, are summarized in Table 2
as a compact overview.
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Table 2. Summary of notation conventions for this work.

Notation Meaning

x Vector.
|x| Amount of elements in Vector x
xris Element with index i.
xxi, wy Vector defined by window of size w around index i
x1 Min-max normalized vector elements
9x First derivative
x̄ Arithmetic mean of all vector elements
x̃ Savitzky Golay [15] filtered vector elements
x̂ Linear regression model, based on index and elements of x
spx, rq Residual standard deviation

m Complete measurement with all segments
ma, mb, mc Analyte, baseline and clearing segment
M Set of all measurements of a sensor screening

3.1. Slope-Based Curve Signature

As mentioned in the motivation, one challenge to be solved algorithmically is to
provide support for validating the screening measurements. To be as efficient as possible,
without having detailed knowledge about the behavior of the sensor itself, the fastest way
is to search for similar curves to a given reference time series.

Since the proposed signature is based on the curve’s slope, the algorithm works on
the first derivative of the Savitzky–Golay [15] filtered measurement time series. It assigns
each measurement a sequence comprised of the symbols `̀̀ ,́´́ and ˚̊̊, representing its slope
characteristic.

In preparation for the signature, a threshold t for the measurement’s noise is needed.
It is calculated using the residual standard deviation s of the baseline’s last 200 s before
analyte exposure and multiplying it with a customizable tolerance factor τv according to:

t “ spx, x̂q ¨ τv, with x “ 9̃mbx| 9̃mb|, 199y (3)

Each sample from the first derivative is then assigned a symbol as follows:

sgnpm, iq “

$

’

&

’

%

`̀̀ if 9̃maris ą t,
´́́ if 9̃maris ă ´t,
˚̊̊ else

(4)

If the absolute value of 9̃maris is smaller than the noise threshold t, it is assigned the ˚̊̊ sign,
indicating that the slope is caused by noise. Else the sgn function values are coded as either
`̀̀ or ´́́. The values assigned with the ˚̊̊ symbol are not important to the signature itself,
but are needed for correct hysteresis filtering. The resulting symbols from the sgn function
are concatenated into a sequence, resulting in the measurement slope signature. The final
signature is created, hysteresis filtered and simplified as follows:

• Build sig by concatenating results of sgnpm, iq for each sample.
• Delete all leading ˚̊̊ from sig
• Replace each remaining ˚̊̊ with the immediately preceding `̀̀ or ´́́ symbol
• Delete all symbols that are not part of an at least ωs long sub-string of the same symbol
• Reduce all identical consecutive occurrences of the same symbol to one occurrence

Following is a non-exhaustive list of well-known curve similarity measures that can
be extended by the proposed signature.

• Area Method [16]
• Discrete Fréchet Distance [17]



Algorithms 2022, 15, 360 6 of 16

• Partial Curve Mapping (PCM) [17]

We decided to use a simple difference-based approach for our application example,
since it is fast and sufficient. This calculation is performed on the analyte segment of the
reference curve r P M and the curve under test m P M, where ma

1 represents a min-max
normalized analyte segment of a measurement.

dpm, rq “
ř|ma|

i“1 |m
1
aris ´ r1aris|
|ma|

(5)

Because all calculations are performed on the min-max normalized curves and the resulting
sum is divided by |ma|, identical curves have a distance of 0, whereas the maximum
distance is limited to 1.

3.2. Feature Extraction

Before detailed definitions of the actual features are given, the helper function u is
introduced. It yields the smallest index of a measurement m P M, at which the average of a
surrounding window reaches a relative amount τu of the reaction’s peak. The threshold
τu and the window size ωu can be chosen as needed. The arithmetic mean of all values in
a measurement is denoted with m̄. The definition of u is based on a case differentiation
regarding the main direction of the reaction’s slope:

upm, τuq “

#

minti | z ě τuu if m has a positive-slope reaction,
minti | z ď 1´ τuu else,

with z “ m1
axi, ωuy, i P N, 1 ď i ď |ma| and τu P R, 0 ă τu ă 1.

(6)

Moreover, some of the features depend on the slope mx̂ of a linear regression model, defined
in the following sample-wise definition of x̂.

x̂ris “ mx̂ ¨ i` bx̂ (7)

The overall performance indicator for each measurement is calculated based on quan-
tifiable features, which are each defined as a function f j : M Ñ R. All features are part of
the feature set F and can be referenced using an index j P N with 1 ď j ď |F|.

The following initial set of features was identified after interviewing a domain expert
in the field of MOX gas sensors. The features were then formalized in the following list. All
features marked with ´1 need to be inverted after normalization because a higher value
will always be considered better for the performance metric introduced later in this section.

1. Sensitivity
The sensitivity quantifies how strong a sensor reacts to the analyte it is exposed
to [18,19].
It is calculated by subtracting the mean-value of a window a “ max|ma|, 119y contain-
ing the samples of the last 120 s of analyte exposure from the mean value of a window
b that contains the samples of the last 120 s before gas exposure (baseline), divided by
the latter.

f1pmq “ b´a
b with b “ mbx|mb|, 119y and a “ max|ma|, 119y (8)

2. Reaction Speed I ´1

This measure is an indicator of how fast the sensor reacts to the analyte it is exposed
to. It covers the time from the start of the exposition to the analyte until the reaction
reaches 50 % of its overall strength.

f2pmq “ upm, 0.5q (9)
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3. Reaction Speed II ´1

The time between reaching 50% and 90% of the maximum reaction is used as a second
measure for the reactivity of the sensor.

f3pmq “ upm, 0.9q ´ upm, 0.5q (10)

4. Plateau Quality ´1

Ideally, after a transient response, the sensor signal will reach a plateau. Therefore
the slope of a linear regression curve between the point where 90% of the maximum
signal is reached and the end of the analyte segment can be used to quantify the
quality of this plateau.

f4pmq “ |m
{mapl,rq

| with l “ upm, 0.9q and r “ |ma| (11)

5. Drift ´1

The slope of a linear regression curve fitted through the baseline segment shows a
possible drift of the sensor resistance. While a small slope might be acceptable, higher
drift leads to possible unstable sensor behaviour in the field.

f5pmq “ |m
pmb
| (12)

6. Repeatability ´1

The similarity between all measurements of the same sensor/analyte combination
is an indicator of the repeatability. The average of the curve distances d, introduced
with Equation (5), is calculated for all possible combinations. The following equation
is an example, defining the feature for the three valid measurements m, n, o P M per
sensor/analyte pair.

f6pmq “ f6pnq “ f6poq “
dpm, nq ` dpm, oq ` dpn, oq

3
(13)

7. Dynamic Range ´1

It is beneficial for the later integration of the read-out electronics that the sensor
work in a low dynamic range. Therefore, the span of the analyte segment of the
measurement can be extracted as a feature.

f7pmq “ max ma ´min ma (14)

8. Power Consumption ´1

The MOX sensors contain a heating element that needs to be heated up to a specific
temperature. As mentioned before, the operating temperature has a big influence on
the response and the power consumption of the sensor. A goal could be to minimize
the power consumption by still maintaining a feasible response. The feature is the
average of the heater voltage during the entire measurement. Let vm be the heater
voltage values for measurement m, if available.

f8pmq “ svm (15)

9. Signal to Noise Ratio (SNR)
To compare different sensors to each other, the ratio of signal strength to its baseline
noise is a good indicator. To obtain the signal strength, the reaction phase of the
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measurement is segmented into rolling mean-valued windows of size 41 samples.
Depending on the reaction type, the signal strength is then calculated with:

pspmq “

#

max a´ z if ma has a positive-slope reaction,
z´min a else,

with z “ mbx|mb|, 40y and aris “ maxi, 20y, i P N, 1 ď i ď |ma|

(16)

Finally, the SNR is calculated as:

f9pmq “
pspmq

s
´

mb, xmb

¯ (17)

Let mk P M be the measurement with the corresponding index k P N for which is
claimed 1 ď k ď |M|. With the features defined in this section, a feature vector gj for each
feature is calculated.

gjrks “ f jpmkq (18)

For further use, the features are min-max normalized and inverted, if needed. The
final feature vector fj for each feature is defined as:

fjrks “

#

g1jrks if feature j does not need to be inverted,

1´ g1jrks else.
(19)

3.3. Quantifiable and Individually Prioritizable Ranking Metric

To rank the sensors according to the selected features, an overall performance value
for each measurement is calculated with

prks “
|F|
ź

j“1

pj

´

fjrks
¯

(20)

and the linear feature-specific priority function pjpxq

pjpxq “ φj ¨ x´ φj ` 1 with φj P R, 0 ď φj ď 1 (21)

where the priority value φj can be chosen by the user for each feature to prioritize it
individually during the calculation. To simplify things, we specified a set of five priority
values, resembling the following priority levels:

Lowest : φj “ 0.1
Lower : φj “ 0.3
Normal : φj “ 0.5
Higher : φj “ 0.7
Highest : φj “ 0.9

Figure 2 shows the influence of φj for these predefined levels. It is important to
understand how the priority value steers the influence of a feature within the performance
indicator. With each feature value fjrks ă 1 involved in the product, the performance
indicator prks for measurement mk will decrease. This demotion capability is restricted
by pj to 1´ φj ď pjpfjrksq ď 1. Hence, a lower φj will give the feature a lower priority
compared to features with a higher φj and vice versa.
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Figure 2. Graphs of boosting function pj for different φj.

Consider, for example, the worst measurement mw for feature j with fjrws “ 0; then,
setting φj “ 1 demonstrates the feature’s full demotion influence on the performance
indicator by annihilating prws completely:

pjpfjrwsq “ 0 ñ prws “ 0 (22)

By selecting φj “ 0.5 instead, fjrws is now only capable of decreasing the performance
indicator for mw to 0.5.

The min-max normalized performance indicator p1 now holds the respective perfor-
mance value for each measurement, where p1rxs “ 1 applies to the best overall performing
measurement mx for the selected feature set. The final ranking of the measurements can be
achieved by sorting p1.

4. Application Example, Results and Discussion

An important design target for mobile applications is to minimize power consumption.
Because MOX gas sensors utilize a significant amount of power for heating their sensitive
layer to a suitable working temperature, researchers are continuously trying to optimize
substrate compositions that do not require high operating temperatures while still per-
forming adequately for a specific application. In the following, we will therefore illustrate
the suitability of the proposed algorithms for finding the most energy-efficient sensor
for Acetone detection based on the data of the sensor screening described in Section 2.1.
Initially, the software which was developed for this work will be briefly introduced as the
platform used for the application example.

4.1. Software

To support a user in all tasks related to data processing and evaluation, graphic user
interface (GUI) software, depicted in Figure 3, was developed. To display and navigate
through the data, the GUI implements a tree based navigation with filtering functional-
ity that is always visible on the left side of the software. To sort and structure the data,
the measurements are hierarchically arranged top-down starting with the analytes, fol-
lowed by the virtual sensors which group the associated measurements for the specific
combination together.

The software is divided into tabs, according to the introduced algorithms: View + Manual
Validation, Auto Validation and Sensor Ranking. Each tab encapsulates the controls and
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views needed for the respective use case. Depending on the active tab, the navigation is
either used to browse through all measurements, choose a reference curve for the similarity
algorithms or select the combinations of sensors and analytes for the ranking.

The filter enables the user to specify the following parameters:

• Analyte
• Sensor Substrate
• Sinter Temperature
• Sinter Time
• Sensor Operating Temperature
• Validation Status

Furthermore, the user can add measurements to a list of favorites or use the reference
checkbox to obtain a list of all measurements that have been used as references in the curve
similarity algorithm.

Figure 3. The software showing the View + Manual Validation tab.

Visual inspection is realized with four interactive graph views divided into two
subgroups. The upper graphs are used to display all measurements for the selected
combination of virtual sensor and analyte, whereas the lower ones show the specific
measurement selected in the navigation tree. The user is able to inspect the data by
applying several filters and standardizations (e.g., first derivative, baseline normalized
resistance, etc.).

After an in-depth inspection, a validity status can be assigned to the measurement
manually by the user. A measurement can have three validation states:

• Valid
• Invalid
• Not Validated

All measurements are initially in the Not Validated state. Manual validation and anno-
tation is realized with four numbered radio buttons, a commentary field and two buttons.
Remarks and textual annotations can be added to the Comment text field. In addition
to the mentioned states, Reevaluate marks the measurement for later inspection, whereas
Skip/Reset either resets its validation state back to Not Validated or skips the measurement if
it is Not Validated. Care was taken to minimize the amount of clicks by adding keyboard
shortcuts and effective tabbing. Using the shortcuts, the validation and textual comments
are saved and the software automatically navigates to the next curve for inspection without
any needed mouse interaction.
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4.2. Automatic Measurement Validation

The first step before the measurements can be ranked is to remove those without
useful information. This is done automatically as mentioned before by using established
curve similarity metrics in conjunction with the presented slope-based signature calculation
algorithm. The software implements several similarity methods, all of which compare two
time series to each other. The complete functionality is encapsulated in a separate software
tab and depicted in Figure 4.

All metrics calculate and assign a score to each measurement and afterwards rank
them with descending similarity in the middle list (yellow rectangle in Figure 4). The user
can inspect candidate curves and reference together in an interactive graph view (purple)
and afterwards apply the final validation with the buttons and the following list selection:
The measurements moved to the upper list (red) are set to invalid, the status of those in the
middle list are not changed and finally the lower list (green) marks its contents as valid.
The option Remove low SNR (blue) automatically proposes measurements as invalid that do
not show enough signal amplitude by calculating the measurements signal to noise ratio
(SNR) and comparing it to the threshold given in the spin box.

Figure 4. Exemplary use of the auto validation function. Validation of all CO measurements per-
formed with In2O3-based sensors. The blue curve is the user-supplied reference, the green curves are
the candidates as selected in the middle (yellow rectangle) and lower list (green rectangle). The upper
list (red rectangle) holds all measurements that are greater than the selected reference threshold (light
blue rectangle) and are therefore sorted out.

For validation of the proposed signature algorithm, we created a test subset including
the runs 52, 261, 267, 343 and 374 and calculated the distance with respect to the reference
run 270 for all available curve distance methods. The proposed slope-based signature
algorithm yields the same signature `̀̀ for the reference and all runs of the subset except
for run 52, which was assigned the signature ´́́`̀̀. In Figure 5 run 52 shows a significant
drop and therefore a different slope characteristic compared to the other runs, which is
represented by the signature value. Referring to Table 3, the calculated curve similarities
based on the four curve distance methods listed in Section 3.1 reveal that run 52 has a
very similar distance to the reference compared to at least one of the other runs for the
respective method. If the signature would not be used to sort out run 52, it would be on
the same similarity level as the other curves, ignoring the significant difference in slope
characteristics.
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Table 3. Distance values for the four implemented distance metrics for the runs in the selected test
set, compared to the reference run 270.

Run Method Distance to 270 Distance of 52 to 270

261 PCM 68.82963 68.62570
267 Area 268.05069 264.02023
343 Fréchet 0.62149 0.62126
374 Point 0.23268 0.22901
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Figure 5. Curve similarity of a subset of test curves with respect to the reference run 270 (blue).
The curve of run 54 (red) yields a different signature (´`´`´`) to the other curves (green) (`̀̀) which is
therefore filtered out although it has very similar distances (see Table 3) to the remaining curves.

4.3. Features and Raking

After the measurements are validated, the scenarios question needs the following
features from the set introduced in Section 3.2 to find the most power-efficient sensor:
Power, Sensitivity, Reaction Speed I, Reaction Speed II and Repeatability. The priorities were set
as listed in Table 4.

Table 4. Priorities of the features used for the exemplary ranking.

Feature Priority Comment

Power ( f8) Highest (φ8 “ 0.9) Cooler sensors need less power.
Sensitivity ( f1) High (φ1 “ 0.7) Better for small amounts of the gas.
Reaction Speed I ( f2) Normal (φ2 “ 0.5) Hot sensors have higher speeds.
Reaction Speed II ( f3) Normal (φ3 “ 0.5) φ3, φ2 “ 0.5 are a good trade of.
Repeatability ( f5) Normal (φ5 “ 0.5) Consider sensor stability ov. time.

The resulting list in Table 5 shows the most power-efficient sensor for the task of
measuring Acetone and is depicted in Figure 6. The second and third best sensors are
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shown in Figure 7. Furthermore an exemplary midfield sensor and the worst sensor from
the ranking can be found in Figure 8.

Table 5. The top 3, midfield and worst sensors from the available validated dataset ranked according
to the most power-efficient (coldest sensor operation) detection of the analyte Acetone.

Rank p1 Substrate Sinter Temp.
(˝C)

Sinter Time
(minutes)

Op. Temp.
(˝C)

Sensitivity
(Arb. Units)

1 1 Cr2O3 1000 1140 350 0.77
2 0.95 Cr2O3 900 10 400 0.79
3 0.86 Cr2O3 1000 1440 400 0.66

. . . . . . . . . . . . . . . . . . . . .
240 0.4 Cr2O3 700 720 350 0.48
. . . . . . . . . . . . . . . . . . . . .
480 0 Cr2O3 1000 10 550 0.18

The first three sensors are very similar concerning their sensitivity (approximately
0.7) and reaction speed toward the analyte as shown in the baseline-normalized depiction
in Figures 6 and 7. Yet, the performance value of the sensor with the smallest power
consumption of these three was chosen to be first due to the selected feature prioritization.
To put the best sensor into perspective, a sensor from the midfield and the worst performing
sensor of the ranking are depicted in Figure 8. While the midfield sensor is operated
at the same temperature as the best sensor, it is demoted due to its lower sensitivity
towards Acetone of only 0.48. The last and therefore worst sensor in the ranking delivers a
much lower sensitivity of just 0.18 whilst consuming more power to operate at the higher
temperature of 550 ˝C. It is therefore the least favorable choice for this particular scenario.

Figure 6. The final ranking, showing the measurement belonging to the best sensor for the
given problem.
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Figure 7. Second and third place of the final ranking.

Figure 8. Midfield place of worst sensor in the ranking.

5. Conclusions

In this work algorithms for validating measurements and a feature-based sensor rank-
ing have been presented. To address the challenge of automatic validation of the extensive
screening data, a slope-based signature calculation has been proposed as an addition to
established curve similarity metrics. Using the newly presented signature-extraction al-
gorithm, curves that differ in slope (shape) are now much more clearly separated, which
directly leads to much faster post-processing time for the measurement validation. For the
other major challenge, a sensor performance ranking, a set of features and a ranking metric
have been introduced. The features, obtained by interviews with experts in the domain of
gas sensor screening, were first of all mathematically formalized and afterwards algorithms
were implemented to extract and optionally normalize quantifiable information from the
time series. The performance metric offers individual prioritization of features and allows
to rank the measurements according to their overall performance on all features used.

Finally, the proposed algorithms were used to validate and rank various sensors in a
large data set obtained during an extensive screening. It was shown that the additional use
of the proposed slope-based signature delivers better results compared to the established
curve distance methods that do not take slope characteristics into account. This new
algorithm combination can help validate many measurements more efficiently. The ranking
and feature extraction algorithms were tested by taking on the question of which sensor
has the highest sensitivity towards a specific analyte under low-power constraints. A
prioritization method for the quantifiable features was developed and implemented to be
able to adapt the ranking to multiple scenarios of interest.

The software suite implemented for this work can be used as a solid foundation for
future measurement campaigns, as it provides not only an extensible feature extraction,
but also offers a structured storage model and can be used as a general management
platform for screening data. Future goals are improving the outlier detection, extending
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and refining the current feature set and integrating the control and acquisition protocols
for the automatized sensor screening into the software suite.
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