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Abstract
Background HIV treatment prescription is a complex process. Clinical decision support systems (CDSS) are a category of 
health information technologies that can assist clinicians to choose optimal treatments based on clinical trials and expert 
knowledge. The usability of some CDSSs for HIV treatment would be significantly improved by using the knowledge 
obtained by treating other patients. This knowledge, however, is mainly contained in patient records, whose usage is restricted 
due to privacy and confidentiality constraints.
Methods A treatment effectiveness measure, containing valuable information for HIV treatment prescription, was defined 
and a method to extract this measure from patient records was developed. This method uses an advanced cryptographic 
technology, known as secure Multiparty Computation (henceforth referred to as MPC), to preserve the privacy of the patient 
records and the confidentiality of the clinicians’ decisions.
Findings Our solution enables to compute an effectiveness measure of an HIV treatment, the average time-to-treatment-
failure, while preserving privacy. Experimental results show that our solution, although at proof-of-concept stage, has good 
efficiency and provides a result to a query within 24 min for a dataset of realistic size.
Interpretation This paper presents a novel and efficient approach HIV clinical decision support systems, that harnesses the 
potential and insights acquired from treatment data, while preserving the privacy of patient records and the confidentiality 
of clinician decisions.

Keywords Clinical decision support systems · Anti-HIV agents · Secure multiparty computation · Privacy · 
Confidentiality

Received: 19 August 2020 / Accepted: 16 August 2022
© The Author(s) 2022

New Approach to Privacy-Preserving Clinical Decision Support 
Systems for HIV Treatment

Gabriele Spini1  · Emiliano Mancini2,9,10 · Thomas Attema1,3,4 · Mark Abspoel3,5 · Jan de Gier1 · Serge Fehr3,4 · 
Thijs Veugen1,3 · Maran van Heesch1 · Daniël Worm1 · Andrea De Luca8 · Ronald Cramer3,4 · Peter M.A. Sloot2,6,7

1 3



Journal of Medical Systems

Background and Significance

The constantly rising cost of national healthcare [1] associ-
ated to an aging population has highlighted the need for a 
critical change in traditional healthcare [2, 3]. Most stake-
holders (clinicians, healthcare providers, policy makers and 
patients) agree that the solution lies in new approaches in 
which technology and health information technology (HIT) 
play a critical role [4, 5]. HIT services aim to automate 
and optimize healthcare processes with the overall goal of 
providing a more effective treatment process for patients. 
One of the main barriers to the adoption of HIT lies in the 
challenges associated with the need to preserve the privacy 
of the patients’ data; legislation on the privacy of sensitive 
data, such as the General Data Protection Regulation (EU) 
2016/679 (GDPR), is becoming increasingly more strin-
gent, affecting all parties who handle sensitive data.

In this paper, we focus on one specific category of HIT 
systems: Clinical Decision Support Systems (CDSSs). A 
CDSS is a system that provides clinicians, patients, and 
other individuals with intelligently processed disease-spe-
cific and patient-specific data. Several different categories 
of CDSSs can be found in literature, such as diagnostic 
tools, expert systems, and workflow support. Systematic 
reviews reported that CDSSs significantly improved clini-
cal practice: a review [6] on one hundred studies reported 
improvements for more than 62% of the trials on practitio-
ner performance, reminder systems, drug-dosing systems 
and disease management systems. A review on seventy 
studies [7] reported a significant improvement of clinical 
practice in 68% of trials. Recent systematic reviews [8, 9] 
report an improvement in health care processes in 148 ran-
domized, controlled trials and in 85% of twenty-two studies 
respectively.

As a use case to present our proposed solution to the 
problem of preserving the privacy of patients’ data, we focus 
on an expert system for HIV treatment. The prescription of 
antiretroviral drugs to HIV1 infected patients is a complex 
process in which clinicians have to take into account sev-
eral factors in a short amount of time. In particular, clini-
cians need to choose the most appropriate treatment based 
on the genotype of each patient’s most prevalent strain of 
the virus in order to minimize drug resistance. A suboptimal 
treatment will likely result in a more rapid emergence of 
drug-resistant strains, and, eventually, in increased morbid-
ity and mortality.

CDSSs are used in order to minimize or, ideally, pre-
vent the prescription of suboptimal HIV1 treatments. Some 
examples of relevant CDSSs range from simple qual-
ity improvement consultation programs like HIVQUAL-
US [10] that monitors clinical performance, to more 
sophisticated data-driven systems like Euresist [11] and 

knowledge-based systems like the HIVdb Program [12]. 
The main advantage of the use of these CDSSs is that they 
save a considerable amount of the clinician’s time, since it 
would be impossible for the clinicians to analyze in detail 
the differences between the HIV genotype that is prevalent 
in a specific patient in search of critical mutations. However, 
in this paper we focus on the “comparative Drug Ranking 
System” (cDRS), a CDSS that helps to minimize the choice 
of sub-optimal HIV treatments by performing a meta-rank-
ing analysis of three expert systems for HIV-1 genotypic 
drug resistance interpretation (ANRS, HIVdb, Rega) to 
resolve possible discordances between them [13–16]. The 
discordances in drug resistance between the three expert 
systems are not negligible [17, 18], and are the result of the 
limited amount of clinical data available for each specific 
set of mutations and of different methodologies used by the 
systems. A CDSS able to help clinicians in resolving such 
discordances is essential to avoid the administration of sub-
optimal HIV treatments.

Research on the spread of the HIV epidemics has led to 
the development of tools (such as phylogenetic trees) able 
to correlate specific viral sequences in different patients 
and reconstruct with good accuracy the network of infec-
tions within a community [19]. In addition, transmission 
events between patients can be identified by analyzing the 
viral genotypes, given the uniqueness of specific sets of 
mutations [20, 21]. Hence, strict privacy regulations pre-
vent the sharing of patient data (e.g., viral genotype) that 
feed and improve these clinical decision support systems. 
Moreover, clinicians might not be able, or willing, to openly 
share their treatment decisions and the resulting outcomes, 
even though such information might be beneficial for the 
decision-making process of their colleagues. In conclusion, 
there is a tremendous amount of valuable information that is 
unavailable to clinicians because of privacy and confidenti-
ality constraints.

An ideal system should allow clinicians to compare their 
chosen treatment against the outcome of the treatments cho-
sen by other clinicians for similar genotypes, while solving 
the issue of utilizing patient and clinicians’ data in a secure, 
privacy-preserving way.

In this exploratory work, we present a solution that uses 
cryptographic techniques, namely a so-called secure Mul-
tiparty Computation (MPC) protocol, to achieve this func-
tionality without violating any of the privacy constraints. 
Informally stated, MPC is a collection of cryptographic 
techniques that allow several parties, each of which holds 
some private input, to evaluate a function on those inputs 
without disclosing any extra information on the input them-
selves, and without resorting to a trusted external party. Our 
MPC-based solution would allow clinicians to compare past 
treatments of ‘similar’ patients to find the optimal treatment 
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for new patients preventing any unauthorized party, includ-
ing the ones performing the computations, to access the 
input data.

Related Work

Privacy-preserving CDSSs have been presented in recent 
years [22–25]. However, this line of work focusses on 
CDSSs for disease-prediction and enables clinicians to 
securely query remote machine-learning based systems for 
a given patient’s health condition, in a privacy-preserving 
way. As such, it is not directly comparable with our solution, 
which has a different scope within the paradigm of privacy-
preserving CDSSs.

In more general terms, proposed applications of MPC to 
the healthcare sector have flourished in recent years. To the 
best of our knowledge, there exists no article summarizing 
the scientific literature on MPC applied to the healthcare 
sector1; we provide here a list of recent and relevant work 
on the topic, but we stress the fact that this list cannot be 
exhaustive, due to the high number of publications on the 
topic.

A large sub-domain of the application of MPC (and other 
related cryptographic techniques) to the medical domain 
aims to deploy machine-learning techniques on medical 
datasets held by distinct organizations; examples in this 
sense include privacy-preserving reinforcement learning 
[26], Kaplan-Meier survival analysis and genome-wide 
association studies [27], grid logistic regression for bio-
medical data [28], training of linear [29] and Lasso [30] 
regression models on medical data, and computing patient 
risk-stratification metrics [31].

Other relevant work include medical record searching 
[32, 33], the study of general methods such as privacy-
preserving data mining for joint data analysis between hos-
pitals [34] and branching programs for privacy-preserving 
classification of medical ElectroCardioGram signals [35], 
the presentation of specific use case scenarios such as secure 
disclosure of patient data for disease surveillance [36], 
R-based healthcare statistics [37], and privacy-preserving 
genome-wide association study [38], privacy-preserving 
genome analysis [39] and search of similar patients in 
genomic data [40].

Finally, iDASH [41] is an important public initiative to 
stimulate the development of techniques for privacy-pre-
serving sharing of medical data.

1  One literature overview on privacy-preserving medical data sharing 
has been produced, but with a focus on blockchain-based applications.

Outline

The rest of the article is organized as follows. In the “Mate-
rials and Methods” section we first discuss how to mea-
sure the effectiveness of a treatment from patient records 
and present the method that we propose (setting aside the 
privacy-preserving aspect); we then provide a brief over-
view of MPC and of the framework of our choice, SPDZ. In 
the “Results” section we then explain how the effectiveness 
measure is securely implemented within SPDZ and pres-
ent an evaluation of the efficiency of our solution. Finally, 
the “Discussion and Conclusions” section summarizes 
the results of the article and provides an appraisal of the 
achieved results and on possible future work.

Materials and Methods

Measuring Treatment Effectiveness from Patient 
Records

The viral genotype of a patient refers to the genetic 
sequence(s) of the HIV-1 virus strain that is most preva-
lent at the time of the blood test. The HIV-1 virus RNA 
genome contains 3 key regions that encode for enzymes 
critical to the life cycle of the virus: protease (P), integrase 
(I) and reverse transcriptase (RT). Each region encodes for 
enzymes with 99, 288 and 560 amino acids, respectively, all 
of which could in principle mutate. These mutations play 
an important role in the drug resistance of the virus strains.

Given an HIV-1 patient, our goal is to obtain treatment 
results of ‘similar’ patients, and therefore we need to define 
a metric or distance function that quantifies the similar-
ity between two patients, or two viral genotypes. Since all 
expert systems indicate resistance to drugs based on substi-
tutions in the amino acid sequence of the wild-type HIV-1, 
we need a way to compute the distance in the amino acid 
sequences of the viral proteins. Metrics of distances between 
amino acid sequences are fairly complex and often assessed 
via neural networks [42]. The assignment of a suitable simi-
larity metric is outside the scope of this paper, and for this 
reason, we have chosen to use a simplified viral genotype 
representation with a generic metric as a proof of concept. 
However, our solution is flexible, since it can support other 
representations and metrics.

From now on we shall represent viral genotypes as bit 
strings v of a fixed length N, i.e., v ∈ {0,1}N . We can think 
of each bit in this bit-string as an indicator for the presence 
or the absence of a specific mutation at a specific position.

Since there are only 97 relevant positions with com-
monly 1 or 2 resistance-associated substitutions [64] we 
can expect N  to be somewhere between 100 and 200. The 
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their inputs, without revealing any other information than 
f (x1, . . . , xn), and without resorting to an external trusted 
party.

Early research in the 1980s [43–46] established the theo-
retical feasibility bounds for MPC; informally stated, this 
line of research proved that any function f with finite domain 
and finite image can be evaluated securely in an MPC fash-
ion. The precise security properties that can be achieved 
depend on the behavior of players and on the underlying 
communication model.

Since the first market-ready deployment of MPC in 2008 
[47], MPC solutions have been used in various practical 
contexts, e.g., stock market order matching [48], job market 
inquiries [49], and frequency bands auctions [50]. More-
over, various software suites and implementation frame-
works for MPC have been made available [51–55].

Several considerations have to be made when applying 
MPC to a given problem. For instance, one may assume 
that parties P1, . . . , Pn  will behave semi-honestly (meaning 
that they may try to learn information on the other parties’ 
inputs, but do follow the protocol), or that it is instead nec-
essary to provide security against fully malicious players 
that deviate from the protocol instructions. Another impor-
tant parameter that varies among protocols is the number 
t of corrupted parties that can be tolerated out of the total 
number n of parties.

A remark of notable importance is that many desirable 
properties of MPC may negatively impact performance, or 
even be mutually exclusive, which means that the choice 
of an MPC protocol may be subject to important trade-offs. 
The reader can refer to [56] for a comprehensive discussion 
of MPC.

The MPC framework of our choice: SPDZ

We base our MPC solution on the SPDZ protocol [57, 58]. 
The protocol is distinguished for its fast performance, and 
is implemented in a freely accessible software suite called 
SPDZ-2 [52, 54] for UNIX-based systems2; SPDZ-2 allow 
developers to write programs in Python-like syntax, and it 
then compiles the code to executable format.

SPDZ follows the so-called share-compute-reveal para-
digm: each input xi of the function f to be computed is ‘dis-
persed’ (or, formally speaking, secret-shared3) into n pieces 
of data, called shares, each of which is assigned to a party; 

2  Notice that support for the SPDZ-2 software suite (implementing 
the eponymous MPC protocol) has been discontinued. Development 
moved to forks SCALE-MAMBA and MP-SPDZ, both implementa-
tions of the SPDZ protocol.
3  It is important to notice that ‘sharing’, here, is by no means a syn-
onym of ‘revealing’; on the contrary, it can be seen as a strong form of 
distributed encryption.

distance between two viral genotypes v1  and v2  is defined 
by the Hamming distance between the bit strings:

 H (v1, v2) = |{i : v1 (i) �= v2 (i)}| ,

Given this metric we can define two viral genotypes v1 and 
v2 to be similar if their Hamming distance is smaller than a 
certain threshold B, i.e., H (v1, v2) < B.  Even though this 
metric is a simplification of the metrics used in practice, it 
is quite similar to the rule-based metrics used in the CDSSs 
of [13, 16]. These CDSSs match viral genotypes based on 
the presence of resistance-associated substitutions in amino 
acid positions, which can be seen as a Boolean expression. 
In a clinical setting, these CDSSs compare the two com-
plete viral strings to identify specific insertion, deletions, 
and substitutions but do not rely on a single threshold value 
defined as a Hamming distance. In fact, it is well known 
from specific studies which additions, deletions or substi-
tutions trigger a clinically relevant mutation. In a practical 
implementation, we would have to look at the difference 
in specific positions of the sequences of two amino acid 
strings. The threshold that would be used in that case would 
be defined by clinicians who set of rules used by the spe-
cific CDSS instead of the Hamming distance described in 
the example. However, the rulesets that would trigger an 
alert are still Boolean in nature and would fit the proposed 
secure MPC solution.

Suboptimal treatments of HIV-1 patients result in faster 
emergence of resistant strains and this emergence renders 
the treatment ineffective. Hence, a way to measure the effec-
tiveness of a treatment tr for genotype v is by indicating 
the time-to-treatment-failure TTFtr (v). The TTFtr (v) is 
defined as the time (in days) between the start of a therapy tr 
and either a therapy switch, a discontinuation of therapy or 
death [65, 66], for a patient with genotype v. Hence, given 
an HIV-1 patient with genotype v we would, for example, 
like to compute the average TTF tr (v) over all patients with 
similar genotype vi, as an indication for the unknown true 
effectiveness measure TTFtr (v):

 
TTF tr (v) =

1

|{i : H (v, vi) < B}|
∑

i:H(v,vi)<B

TTFtr (vi) ,

Where H denotes, as discussed above, the Hamming dis-
tance and B denotes a fixed threshold value.

Secure Multiparty Computation

MPC has been introduced by Yao in the 1980s [43]. Given 
n mutually distrusting parties P1, . . . , Pn , each holding pri-
vate inputs x1,…, xn, the goal of MPC is to allow the par-
ties to compute the value f (x1, . . . , xn) of a function f  on 
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because they would induce a huge computational overhead 
in our setting.

The share-compute-reveal approach is particularly well-
suited for the client-server model we are interested in: the 
‘input’ parties, clinicians (clients) simply need to supply 
their secret-shared inputs to two or more ‘computing’ par-
ties (servers), who will execute the computation protocol on 
these inputs, and then communicate the shares of the output 
to the input parties, which can thus reconstruct the output.

It is important to remark that the SPDZ protocol does not, 
per se, distinguish between input and computing parties. A 
framework for MPC in a client-server model was presented 
in [61]; moreover, in [63] the SPDZ protocol was adjusted 
to the client-server setting.

The SPDZ protocol is divided into an ‘offline’ phase and 
an ‘online’ phase. The offline phase can be executed before 
the function inputs x1,…,xn are known, and its goal is to 
produce some secret-shared auxiliary data that will be used 
in the evaluation of f ; producing this data can be a com-
putationally-intensive process, but since secret inputs are 
not required, this step can be executed during idle time and 
well before the actual secure computation will take place. 
Once the auxiliary data has been produced, the evaluation 
of f  can be performed very efficiently: this is of particular 
relevance for our use case, where input parties (clinicians) 
need to obtain the output of the function f  within a matter 
of minutes, while preprocessing material can be produced in 
the background by the computing parties.

this process has the property that no information on xi can 
be extracted from a set of shares, unless such a set contains 
all shares (in which case xi can be completely recovered). 
Subsequently, parties execute a ‘computation’ protocol; as a 
result of this step, each party will have a share of the output 
f (x1, . . . , xn) of the function. Once all shares have been 
gathered, the output can then be reconstructed.

A schematic representation of this paradigm for the addi-
tion of two values x and y among two parties is provided in 
Fig. 1. The top row represents the shares held by the first 
party, while the bottom row represents the shares of the sec-
ond party. The assumption here is that x1 and x2 are two ran-
dom values subject to the condition that x1 + x2 = x , and 
similarly for y; bearing this fact in mind, it is then seen how 
the process respects the privacy and reconstruction require-
ments discussed above.

In more general terms, the core idea behind MPC pro-
tocols based on the share-compute-reveal paradigm is 
that the function f  to be evaluated on the input values is 
“decomposed” into basic operations (such as sum and prod-
ucts); these basic operations are then translated into similar 
operations on the shares and executed in the same order. 
An important remark is that, in general, these operations 
on shares require some form of interaction among the par-
ties (for instance, multiplication of two values cannot sim-
ply be performed by multiplying the corresponding shares, 
and requires a more involved and interactive process). The 
reader can refer to the literature on MPC and on SPDZ that 
we have provided for a more formal and complete discus-
sion of this topic.

Other cryptographic techniques such as homomorphic 
encryption [59, 60] could potentially be of relevance for 
private data analysis, but we ruled out these alternatives, 

Fig. 1 Example of share-compute-reveal paradigm for addition of two values
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reconstruct the output. This way the result is only revealed to 
the clinician, and not to the computing parties (cf. Figure 3).

Our solution allows clinicians to compare their treatment 
of choice against the outcome of treatments previously cho-
sen by other clinicians for patients with similar genotype, 
without revealing any private information to the clinicians 
or the computing parties, who only learn the size and format 
of the database and the number of queries to the database. 
This system is secure as long as the two computing parties 
do not collude.

Performance – Online Phase

In comparison to implementing the functionality without 
privacy protection, using MPC inherently introduces com-
putational and communication overhead. The main reason 
for this unavoidable overhead is that, in an MPC protocol, 
the computation path has to be oblivious, i.e., independent, 
of the input values, since it would otherwise leak informa-
tion. Moreover, as explained in the previous section, some 
basic operations on the input data are translated by MPC 
into more complex, interactive processes, which lead to 
unavoidable overhead.

We have evaluated the performance of the online phase 
of our protocol by deploying the computing parties on two 
different machines, each using one core of a i7-7567U 
CPU running at 3.50 GHz and 32 GB of RAM, in a local 
network with 1 Gbit/s throughput. The system ran on a 
Fedora operating system and has been developed within the 

Results

The functionality we have achieved utilizes HIV patient 
records to gain new insights in the effectiveness of HIV 
treatments. The MPC protocol ensures privacy of the 
patients and the confidentiality of the clinicians’ treatment 
decisions.

The proposed solution distinguishes between ‘input’ 
parties, the clinicians supplying the database records, and 
‘computing’ parties running the SPDZ protocol, which can 
be different medical institutions or IT service providers. The 
input parties additively secret-share their data records and 
distribute the shares amongst the computing parties (see 
Fig. 2).

As a result, the two computing parties each hold a share 
of all the database records. SPDZ allows the evaluation of 
queries to this secret-shared database in such a way that 
only the output of the query (the average time-to-treatment-
failure ( TTF ) per treatment) is revealed to the clinician, 
and no additional information is leaked to either the que-
rying clinician, or the computing parties (cf. previous sec-
tion). In order to protect the private information in the query 
(the viral genotype), we secret-share the query amongst the 
computing parties in a similar manner. The computing par-
ties thus take as private inputs their shares of the database 
records and their share of the query. They do not reconstruct 
the result of the computation (the average TTF) themselves; 
instead, each of them sends their share of the result to the 
querying clinician who, in turn, recombines the shares to 

Fig. 2 Secret sharing database records
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the additional input value v is the genotype of a given 
patient. The formal definition of TTF tr (v) is presented in 
the “Materials and Methods” section; as a reminder, it is 
given by the average over the times-to-treatment-failure of 
patients with a similar genotype, for the same treatment tr.

The results in Fig. 4 show the computation times that are 
needed for answering one query, for artificially-generated 
databases with sizes ranging from 100 to 20 000 records. The 
maximum 20 000 approximates the number of HIV-positive 

SPDZ-2 software suite discussed in the previous section; 
the overall orchestration of the scalability experiments has 
been performed via scripts for the Bash shell. Finally, we 
have instantiated the SPDZ protocol with 40-bit statistical 
security, 128-bit computational security and a 128-bit prime 
field.

The experiments that we have run measure the time it 
takes for the solution to return the average time-to-treat-
ment-failure TTF tr (v) of a given input treatment tr, where 

Fig. 4 CDSS computation time 

Fig. 3 Query architecture of the privacy-preserving CDSS
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would expect an answer before the patient leaves their office. 
As shown in Fig. 3, our solution answers a query within 
24 min, for a database size roughly matching the number of 
HIV-positive registered individuals in the Netherlands [62]; 
while we consider this result to be sufficient for the proof-
of-concept presented in this paper, some further work would 
be needed for a full-scale deployment. The running time of 
the implementation could be improved by several means, 
e.g., by using a low-level but very fast programming lan-
guage such as C, by further parallelizing the computation, 
or by making use of high-performance computing machines 
instead of consumer-level hardware.
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registered individuals in the Netherlands [62]. The experi-
ment is repeated multiple times, resulting in several data 
points per database size. Recall that per query we compute 
the average TTF conditioned on ‘similar’ patients for 100 
different treatments. The computational complexity scales 
linearly in the number of database records. Notice that the 
threshold value B and the number of patient genotypes that 
have Hamming distance at most B from the given input do 
not affect the running time of the computation: this is inher-
ent to MPC solutions, which have a computation time which 
does not depend on the input values.

Also notice that these figures refer to the time needed to 
answer a single query; with the current state of our imple-
mentation, the running time would scale linearly in the num-
ber of queries. This is an aspect to be kept in mind should, 
for instance, a practitioner want to query the system for dif-
ferent values of the threshold B.

Performance – Offline Phase

In the SPDZ protocol certain computational tasks are exe-
cuted in the offline phase, that is independent of the MPC 
use case and that can be implemented with existing proto-
cols. For this reason, we have merely estimated the compu-
tational costs of it. The offline phase can be run at any time 
to generate a large database of preprocessed data which, in 
turn, is consumed during the online phase.

The performance of the offline phase can be quantified 
in the number of the so-called multiplication triples that are 
generated per second. In [63] various approaches for gener-
ating multiplication triples in a setting similar to ours were 
evaluated, generating 30 000 triples/s. To evaluate a single 
query on a database with 20 000 records approximately 
40 million multiplication triples are required. In this setting 
these triples can thus be generated in approximately 22 min.

Discussion and Conclusions

We presented a novel approach for HIV1 clinical decision 
support systems, making use of advanced cryptographic 
techniques to process private information without revealing 
it. By making use of MPC, we can ensure both the privacy of 
the clinicians’ treatment choices and the privacy of patients.

Towards a fully operational deployment some points are 
yet to be addressed. Notably, the SPDZ software framework 
is designed for research purposes only, which means that 
our implementation should be audited and checked for vul-
nerabilities. For what concerns efficiency and scalability, we 
stress the fact that any CDSS for HIV treatment should pro-
duce a suggestion within minutes, since practitioners would 
typically query the system right after visiting a patient and 
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