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ABSTRACT: Nowadays, monoisotopic mass is used as an important
feature in top-down proteomics. Knowing the exact monoisotopic mass is
helpful for precise and quick protein identification in large protein
databases. However, only in spectra of small molecules the monoisotopic
peak is visible. For bigger molecules like proteins, it is hidden in noise or
undetected at all, and therefore its position has to be predicted. By
improving the prediction of the peak, we contribute to a more accurate
identification of molecules, which is crucial in fields such as chemistry and

intensity

medicine. In this work, we present the envemind algorithm, which is a y A !

two-step procedure to predict monoisotopic masses of proteins. The i‘ ¢ P ¢ 4 1 & 3 %
prediction is based on an isotopic envelope. Therefore, envemind is A L Ak SRR
dedicated to spectra where we are able to resolve the one dalton separated 5730.0 57325 5735.0 5737.5

. . . . mass
isotopic variants. Furthermore, only single-molecule spectra are allowed,

that is, spectra that do not require prior deconvolution. The algorithm

deals with the problem of off-by-one dalton errors, which are common in monoisotopic mass prediction. A novel aspect of this work
is a mathematical exploration of the space of molecules, where we equate chemical formulas and their theoretical spectrum. Since the
space of molecules consists of all possible chemical formulas, this approach is not limited to known substances only. This makes
optimization processes faster and enables to approximate theoretical spectrum for a given experimental one. The algorithm is
available as a Python package envemind on our GitHub page https://github.com/PiotrRadzinski/envemind.
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Bl INTRODUCTION down experiments is the average mass, which is also

According to a recent overview,' top-down proteomics has experimentally the most easily accessible value from both
)

been transitioning toward clinical research. This change in resolved as unresolved isotope distributions in case the

focus has been accomplished by sample preparation and resolving power is insufficient to separate the isotope peaks.
cleanup improvements. Furthermore, technologies for separat- However, as indicated by Claesen et al,” this average value is
ing intact proteins bring the characterization of global sensitive to natural and technical variations. The reason is that
proteoforms in a range of top-down proteomics, while uncertainty at the level of the elemental isotope definition or
advancements in mass spectrometry instrumentation have variation in the spectral accuracy will creep into the equation
enabled the characterization of large proteoforms in complex to compute the average mass values. The consequence is that
mixtures. Nonetheless, despite the aforementioned improve- the ambiguity in the protein identification will increase in a

ments, some open problems and hurdles still exist to be taken
in the bioinformatic analysis of top-down proteomics data. A
case in point is the effective and accurate determination of the
precursor mass of the unknown proteoforms, as this will reduce
the ambiguity of identification in a database search. However,

database search because of the larger search tolerance set on
the precursor mass. On a more positive note, the average mass
is a metric that can be easily computed for databases and is
interoperable among the various top-down bioinformatics

as already mentioned by Lermyte et al,” the concept of tools.

precursor mass needs some reconsideration, as the isotope

peaks related to the intact proteoforms lead to the occurrence Received:  June 25, 2022

of broad, complex isotope distributions that do not unveil the Revised:  September 25, 2022
accurate monoisotopic mass.” As such, the monoisotopic and Accepted:  September 26, 2022

average masses and the mass of the most abundant Published: October 12, 2022

(aggregated) isotope peak are possible candidates to determine
the precursor mass. To date, the default mass reported in top-
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In an ideal situation, one would opt for the monoisotopic
precursor mass, as this value does not depend on the elemental
isotopic abundances nor spectral accuracy. This metric is also
easy to compute for databases and is interoperable with other
bioinformatics tools, but unfortunately, the probability of
occurrence of the monoisotopic variant is extremely low for
intact proteins. Therefore, the monoisotopic variant of the
proteoform falls below the detection limit and is not observed
in a mass spectrum.

As argued by Claesen et al., a good alternative that strikes a
balance between the ease of detection and reduction of
ambiguity would be to use the mass of the most abundant
isotope peak. The uncertainty hardly influences this mass value
in the elemental isotopic abundances, and there is a robust
solution that can prevent interference from low spectral
accuracy. Unfortunately, the mass of the most abundant
aggregated isotope peak is more difficult to compute, as it
requires a computer algorithm like, for example, BRAIN® or
IsoSpec,” as opposed to the monoisotopic and average
mass, which can be obtained instantly from a chemical formula.
Further, the most abundant mass is not interoperable with
other proteomics software suites and, therefore, is never
considered a viable alternative.

This conundrum was solved by Senko et al.” who proposed
to use an averagine-scaling method that searches for a scaled
averagine molecule for which its theoretical isotope distribu-
tion best fits the observed isotope distribution in the spectrum.
The scaled averagine molecule acts as a surrogate for the
observed molecule, and the monoisotopic mass can be
computed from the atomic composition of the obtained scaled
averagine. This method works very well and is still used in
many software packages. However, the procedure entails a
dynamic fitting procedure that can be demanding for
computers, given the high-throughput nature of current top-
down proteomics experiments.

In the search for an alternative and more static strategy,
Dittwald et al.® proposed a linear model to predict the
monoisotopic mass based on the observed most abundant
isotope peak. A concept was further explored and improved by
Chen et al.,” who serendipitously uncovered a linear
correlation between these two protein masses (sic.). Finally,
Lermyte et al.” developed the MIND algorithm that entails a
double linear model to predict the monoisotopic mass from
partially observed isotope patterns along with a robust
selection method to determine the theoretical most abundant
peak mass under a poor ion statistic. This strategy combines
the best of both worlds and allows for an interoperable metric
that can be robustly predicted from the partial isotope
distribution.

An open problem in the monoisotopic mass prediction is the
off-by-one dalton error also present in the MIND application.
According to the MIND manuscript, the off-by-one errors
appear on average in 31.9% of proteins over the specified mass
range, but for heavier proteins, this error can become more
abundant and leads to wrong predictions in 51% of the
predicted cases. This problem needs attention. Therefore, we
present an algorithm that relates observed isotope distribution
to the monoisotopic mass of a protein while it aims at reducing
this infamous off-by-one dalton error for high-resolution
spectra. The procedure is composed of three steps. A first
step is inspired by the averagine scaling of Senko et al. The
second step is a first predictor inspired by the MIND algorithm
but with an additional predictor variable that captures
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information about the width of the isotope distribution. The
third step is an optimization procedure that searches for the
monoisotopic mass with the highest likelihood over a fine-
grained grid. Linear models in our method are trained on
proteins with an 8-400 kDa mass range; however, the
envemind algorithm was also successfully tested on smaller
proteins. The method is compared against our MIND
algorithm and outperforms MIND on simulated data in terms
of reducing the off-by-one dalton error.

B METHODS

Envemind Algorithm. The procedure of monoisotopic
mass determination is divided into two parts. In the beginning,
we look for a theoretical spectrum that best fits a given
experimental one. By theoretical spectrum, we mean a simulated
spectrum without any noise, equivalent to the probability mass
function of multinomial distribution with atomic masses as
values and natural isotopic abundances as probabilities."’
Having the theoretical spectrum simplifies the prediction
problem. It allows us to build a mathematical model that
requires precisely measured features, usually unavailable in
experimental spectra (like variance), which, calibrated on
theoretical spectra, provide accurate predictions. To simplify
the presentation, we begin with a description of prediction on
theoretical spectra, and then we describe how to deal with
experimental ones. More technical details are moved to the
Supporting Information. A control flow graph through
envemind containing the main steps of the algorithm is
presented in Figure 1.

Theoretical Spectra. In this part, we describe the
prediction of the monoisotopic mass M., for a given
theoretical spectrum. Hence, all computations and calibrations
presented in this section are done on theoretical spectra only.
The spectra were simulated by IsoSpec based on chemical
formulas randomly chosen from Uniprot database'' with an
8—400 kDa mass range. In this section, the theoretical spectra
x-axis contains daltons. Therefore, all parameters described are
also in daltons. We first take simple initial predictions from the
linear model that uses the average mass of a protein M,,, and
the variance of its spectrum M,,. The following linear model
has been trained and tested on approximately 1.9 million
spectra:

Mmono = ﬂo + /j;vg'Mavg + ﬁvar'Mvar’ (1)
with fitted coefficients f§, = —0.145 §7, f3,,, = 0.999 78, and 3.,
—0.598 17. For some proteins, the outcome of this linear
predictor (1) is erroneously shifted. However, the 10-fold
cross-validation yields the absolute error of prediction below
0.5 Da for ca. 96.6% of proteins. The next step is intended to
reduce this bias by predicting a grid of possible locations of
monoisotopic mass. Recall that isotopologues in spectra are
aggregated into clusters separated by ca. 1 Da. Therefore, the
determination of such a grid enables us to round M, to the
closest point on the grid. Let us define the grid as follows:

G, A) ={ln+ A:nEN},

where  is a distance between nodes of the grid, and A is a shift
of the grid.

Estimation of the Grid Step {. The purpose of the ¢
parameter is to control the spacing between peak clusters. To
determine the distance between two consecutive grid nodes,
consider the circle rolled through the protein’s spectrum like a

https://doi.org/10.1021/jasms.2c00176
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Figure 1. Control flow graph illustrating methodology of the
envemind algorithm. It is divided into two parts. First, training,
with calibration of linear models on theoretical spectra, and second,
prediction, which deals with an experimental spectrum by a fitting
procedure and linear models from the previous part.

glue-coated roller that collects all peaks. The ideal length of the
grid step (circumference of a circle {) will make all the peaks
stick in a small section of the circle, cf. Figure 2. If all the
isotope peaks can be collected and encapsulated in a small
region on the sticky roller, then the circumference of the circle

circumference
equal to ¢

e

O

Figure 2. Circle that rolls across spectrum. For { that estimates well
the distance between groups of peaks, peaks transformed into the
circumference of a circle should overlap on a small fragment.

2065

is equal to the average distance between consecutive isotope
clusters.

More formally, the sticky roller procedure described above
transforms all peaks in the spectrum S, that is, pairs p = (p™,
p"™), to complex unit circle, rotates them to average zero (to
avoid problems with logarithm specification on complex
plane), and then transforms to the interval [—(/2, {/2]. The
final transformation looks as follows:

+ —ilm|log z PP x

4 2miz
R(z) = 208 P =
pES

EXp(Zﬂ'ipmass/C)

To quantify the concentration of peaks, we treat the
spectrum S as a random variable and make use of the notion
of variance. Therefore, the optimal { minimizes the variance of
the transformed spectrum:

&* = argminVarPy(S).
CeR

The variance minimization procedure requires a few minutes
of computation for the average-size proteins, and this time
grows exponentially for bigger molecules, which can hinder
practical applications. For this reason, we propose the universal
grid step { based on the observation that {* is slightly
correlated with a protein’s average mass (correlations: Pearson:
0.12, Kendall: 0.07, Spearman: 0.11). Therefore, we adjusted a
linear model {* ~ M,yg- The linear model for the universal grid
step is as follows:

¢= 0 + J/avg.Man’ (2)

with coefficients y, = 1.002 355 and Vavg = 6.9584 X 107'°. For
future use let us note that, since y,,, is very small, measurement
error of M, leads to negligible change of {. Therefore, we can
also compute ¢ based on the experimental spectrum’s average
mass. More details are given in the Supporting Information.
Estimation of the Grid Shift A. Once we have chosen £, we
can focus on the grid shift parameter A. In this setting, the A
matches the spectrum best if it minimizes the distance between
grid points and spectrum peaks, that is, can be formulated as:

A = argmin z 14
Ae0f] yes

prob | [p™3ss — o

min
§E€G(,4)

However, the computations can be accelerated by transforming
the spectrum to a complex unit circle and finding the mean
point in the complex space:

A =Re %log Z pPP-exp(27ip™* /)
pES

Both approaches return the same A. The whole procedure is
efficient enough to calculate grid shift for each protein
independently.

Final Prediction. Recall that, according to the described
procedure, the final step in prediction of monoisotopic mass
M is to round the initial prediction M, to the closest

mono

point on the grid G(¢, A). However, it turns out that the

https://doi.org/10.1021/jasms.2c00176
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distances between clusters of aggregated peaks in a given
spectrum are not perfectly equal. When one considers the
distribution of intercluster distances centered on the most
abundant peak, those in the left tail (for smaller masses) tend
to increase slightly. It makes the distribution of errors after
rounding a bit shift from zero. As a remedy, we added the term
A that centers the distribution of errors to have an expected
value equal to 0, which results in a slightly better prediction.
Technical details on how the shift was constructed can be
found in the Supporting Information. Summarizing, the final
prediction model reads as follows:

—_
=

M

mono

M|+ A-M

= argminlg — M.

¢€6(C,B)

mono’

where 4 = —1.1982 X 1077. Distributions of errors for initial
and final predictions are presented in Figure 3.
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Figure 3. Comparison between the linear model’s initial prediction
and the final prediction made by adjusting the grid and rounding the
initial prediction to the closest point on it. Orange lines designate an
interval inside which predictions will round to the most appropriate

point on the grid Q(f, A)

Experimental Spectra. We expand the described model
for theoretical spectra to work with experimental ones. First, in
this section, we fix the experimental spectrum denoted by &.
Notice that one of the essential predictors was the variance of
the spectra. Unfortunately, having an exact variance value for
experimental spectra is hardly possible. Therefore, we would
like to construct a theoretical spectrum similar to the true
theoretical spectrum of an experimental spectrum’s substance.
Also, in this section, spectra are assumed to contain daltons on
the x-axis. If a given experimental spectrum would be m/z,
then the preliminary step is recalculating it into daltons.

Our construction of the simulated spectrum is based on the
concept of averagine proposed by Senko et al.” but is far more
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complex. We define averagine as a hypothetical molecule with
chemical formula

C4.9245H 7.7724N1.355501.46()0 SO.O356’

with the average mass equal to 110.4728 Da. We followed the
methodology of Senko’s work to obtain the formula on
Uniprot database, which is much bigger than in the original
work. Therefore, the new averagine formula is slightly different
from the old one.

Senko proposed an algorithm to approximate proteins’
chemical formulas, from which monoisotopic mass can be
easily calculated. The algorithm follows: take multiplied
averagine to obtain an average mass equal to the experimental
spectrum’s average mass, round the formula to integers, and
add hydrogen to be close to the experimental sg)ectrum’s
average mass again. Nowadays, using IsoSpec,” we can
efficiently simulate the theoretical spectrum of any chemical
formula. Therefore, we consider the S-dimensional space of
protein chemical formulas, where every dimension corresponds
to the number of atoms of a molecule’s chemical element (C,
H, N, O, and S). In such a vast space, we would like to account
not only for the mass of the protein but also for the different
possible shapes of its isotopic envelope. Hence, we modify
Senko’s approach.

We suggest keeping an eye on Figure 4 when reading the
following description, as it should be helpful. Let us define

koo . , .
spectrum A » with two parameters. ﬂg is Senko’s averagine

shifted this way, that its first aggregated peak to the left of its
average mass is in the place of most abundant peak of & (red
frame in Figure 4).

The parameter k is responsible for a shift of the spectrum
and means that spectrum is shifted by k - { Da. To hold peaks
in proper places, we keep k as an integer. This way, we can
easily obtain copies of averagine shifted to different locations,
but we are sure that the peaks of the simulated spectra are in
locations similar as experimental ones. An example of such
shifted copies of averagine can be seen in the second row of
Figure 4.

The parameter p is responsible for variance change. We
developed a formula that, by adding it to a given molecule,
changes the variance of the molecule’s spectrum in the fastest
possible way but does not change its average mass (see
Supporting Information for details). The formula should be
added after checking how many averagine molecules can be
contained in a given mass, but before the rounding. Parameter
p is a multiplier of the formula and controls how much the
simulated spectrum’s variance should be modified.

We have to optimize those two parameters to obtain the
final simulated spectrum. We use Wasserstein distance W'>"?
to compare spectra, which is fast to compute and gives
relatively good comparison scores. Note that, for every fixed
shift k of initial averagine, a different parameter value p will
minimize the Wasserstein distance. Therefore, for a given k the
optimal quantity of p can be formulated as

p, = argmin W(E, ﬂ’;)
PER

Then, concerning optimal values of p;, we can optimize the
shift of the spectrum

~ . k
k = argmin W(E, ﬂpk).
kez

https://doi.org/10.1021/jasms.2c00176
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are presented. The row below shows copies of averagine with different shifts. For example, a shift by 0 Da means that the most abundant aggregated
peak of the simulated spectrum is in the place of the most abundant peak of the experimental spectrum (red frame). Then, we optimize variance for
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Figure S. Two examples of matched spectra. In each column, experimental and theoretical spectra of insulin and myoglobin are presented,
respectively (blue). In the second row, theoretical spectra that were matched (simulated) to the experimental one are imposed on (orange). Note
that, in the right column, we present a badly matched spectrum for which off-by-dalton error occurred.

Finally, ﬂl;i is the spectrum we look for. In simpler words, we

optimize the variance separately for different copies of
averagine shifted by k - ¢ Da and then pick the spectrum
with the smallest Wasserstein distance to the experimental
spectrum &. We use the spectrum to run the prediction
described in the previous Thoeretical spectra section to obtain
monoisotopic peak mass. Examples of constructed spectra with
their theoretical and experimental substitutes can be found in
Figure S.

Data. To train and test linear models on theoretical spectra,
we took proteins from the Uniprot database'" with 8—400 kDa
mass range; other proteins were omitted due to its minority.
From a chemical formula, we computed a protein’s theoretical
spectrum using IsoSpec isotopic structure calculator. The
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smallest peaks were not computed to keep computational time
low, and the algorithm stops when the summed intensity
(probability) exceeds 99%. Both linear models (1) and (2)
were cross-validated on 1.9 million and 80000 randomly
chosen proteins, respectively.

We used the same spectra as in MIND for the proof-of-
concept experiments. Spectra were acquired on a Thermo
LTQ OrbitrapVelos, operated at a resolving power of 10° at
400 m/z, and 10° charges were accumulated in the LTQ for
analysis in the Orbitrap. Immediately prior to infusion of the
protein, external calibration was performed via an automatic
routine, using a standard calibration mix containing n-
butylamine, caffeine, MRFA, and Ultramark 1621 (PierceLTQ
Velos ESI Positive Ion Calibration Solution, Thermo catalog
no. 88323). Bovine insulin (Sigma catalogue no. I5500; SO

https://doi.org/10.1021/jasms.2c00176
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Figure 6. Comparison to find how often off-by-one dalton errors occur for envemind and MIND algorithms. Tests were performed on theoretical
spectra of 1000 randomly chosen proteins in three mass range groups. If the prediction absolute error is ca. 2 Da or more, we include the error to

responding +1 Da bar.

scans with 3 well visible charges; monoisotopic mass 5729.60
Da, average mass 5733.58 Da), equine apo-myoglobin (Sigma
catalogue no. M0630; 200 scans with 2 well visible charges and
another 100 scans with 3 well visible charges; monoisotopic
mass 16 940.97 Da, average mass 16 951.50 Da), and equine
cytochrome c (Sigma catalog no. C2506; 400 scans with 3 well
visible charges; monoisotopic mass 12 352.23 Da, average mass
12360.21 Da) were acquired from Sigma and infused at a
concentration of 1 yM in 49:50:1 H,0/MeCN/HCOOH,
without further purification, using nano-ESI (ESI = electro-
spray ionization) with an Advion Triversa Nanomateinlet
system. In summary, we possess 550 (150 bovine insulin and
400 equine apo-myoglobin) high-resolution experimental
spectra segments (i.e., selected intervals with a single charge
in it) and 1500 (300 equine apo-myoglobin and 1200 equine
cytochrome c) lower-quality spectra segments.

B RESULTS AND DISCUSSION

Let us remind that the envemind algorithm is dedicated to
spectra with quality good enough to easily distinguish an
isotopic envelope “by eye”. Therefore, we divided testing into
three categories of spectra quality. First, simulated spectra that
were computed by IsoSpec based on chemical formulas of
actual proteins from the Uniprot database. The remaining two
categories are experimental spectra: with visible isotopic
envelope and somewhat noisy. Finally, we compared our
results to those of the MIND algorithm for which prediction is
based on the most abundant peak. For experimental spectra,
we preprocessed data to select the reliable most abundant peak
as described in their work and then with use of an online shiny
app (https://valkenborg-lab.shinyapps.io/mind/).

We begin with tests on simulated spectra. Since the MIND
algorithm was trained on proteins within the 8—60 kDa mass
range, first, we tested envemind on a wider range of 8—400
kDa. The mean absolute error (MAE) of monoisotopic mass
prediction was 0.51 ppm (0.0358 Da). For 96.6% of proteins,
off-by-one dalton errors did not occur. For them, MAE was
0.0526 ppm (0.0020 Da). To compare with MIND, we ran the
prediction in three mass range groups: 8—20, 20—40, and 40—
60 kDa. The distribution of off-by-one dalton errors is
presented in Figure 6. Exact results for cases when off-by-
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one dalton errors did not occur are presented in the table
below in ppm (Da):

kDa  envemind MIND

8—20 0.0693 (0.0009) 0.0670 (0.0009)

20—40 0.0474 (0.0014) 0.0549 (0.0016)

40—60 0.0393 (0.0019) 0.0478 (0.0023)

For tests on spectra with visible isotopic envelopes, we used
550 spectra segments. Note that the average mass of insulin is
a bit below the mass range of the training set, but it still
provides accurate results. MAE was equal to 0.0338 Da (2.57
ppm). In 547 cases (99.5%), the off-by-one dalton errors did
not occur. If we consider only these cases, MAE drops to
0.0286 Da (2.06 ppm). Only 400 used spectra segments fit in
the MIND mass range. They never got off-by-one dalton errors,
while envemind had 2 such errors out of 400. MAE when
off-by-one dalton errors did not occur were 0.0349 Da (2.06
ppm) for envemind and 0.0278 Da (1.64 ppm) for MIND.

Finally, we tested envemind on spectra with lower quality
than expected, 1500 spectra segments. Off-by-one dalton errors
occurred in 1258 cases. The MAE was 0.0367 Da (2.53 ppm)
for cases that did not occur. For MIND, the number of off-by-
one dalton errors was 799, with MAE of 0.0280 Da (2.13 ppm)
for the remaining cases.

Let us remind about two essential assumptions of the
envemind algorithm. The first is the quality of data. As can
be noticed, its performance grows as data quality grows.
Therefore, it should be used for the best quality spectra, where
the probability of off-by-one dalton error has to be minimized.
The algorithm also has a wide mass range, which is another
advantage over other algorithms. Since MIND for its prediction
requires only mass on the most abundant peak, it is a useful
tool for noised spectra, especially when only a very few peaks
are visible. The second assumption is that the envemind
algorithm only works on spectra of a single molecule. Hence,
the molecule under study has to be isolated in a mass
spectrometer, or deconvolution can be performed using
appropriate algorithms like masserstein.'

Let us discuss a bit more about simulating theoretical spectra
for experimental ones. In this work, we described a
construction method that provides good prediction in a
short computational time. Note that, for this purpose, we used

https://doi.org/10.1021/jasms.2c00176
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Wasserstein distance. However, there are more measures to
compare spectra, and new ones are under research.
Unfortunately, modern measures require too much computa-
tional time and sometimes lead to mistakes to be avoided. On
the other hand, the envemind algorithm is very flexible, and
applying new measures will be easy when they appear. That
may improve prediction and extend utility to low-resolution
spectra too.

Also, the whole procedure of obtaining a simulated spectrum
can be replaced as new measures appear. We developed an
alternative method, which we expect to be more accurate.
However, due to long computational time of modern
measures, the method is awkward. The method compares
many theoretical spectra of substances with similar average
mass to an experimental spectrum instead of constructing
simulated spectrum from scratch. A detailed description of this
approach is attached in the Supporting Information with the
use of masserstein measure.

We argue that the monoisotopic peak mass prediction can
be based on such artificial but, at the same time, well-fitted
spectrum. Notice that the algorithm fits the inherently noisy
experimental spectra, and only certain peaks are well-visible.
Therefore, the obtained spectrum can differ from the true one.
However, it should have the same average mass and variance,
which is essential. On the other hand, one may ask if we can
determine monoisotopic mass directly from the matched
spectrum. Tests show that, on our data, both approaches gave
almost identical results. However, the linear model provides a
safe solution since the model was trained on actual proteins.

In the end, we would like to highlight innovative aspects of
this work. Under the envemind algorithm stands the idea of
mathematical exploring of molecule space, where every 5-
dimensional integer point is considered as chemical formula
and theoretical spectrum simultaneously. Such a point of view
lets us elaborate vectors that added to a chemical formula
change (or do not) individual features of the spectrum, like
average mass or variance. We know where the optimal solution

should be looked for in the space with this knowledge.
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