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Abstract
In the COVID-19 pandemic, workplace transmission plays an important role. For
this type of transmission, the longitudinal 14-day incidence curve of SARS-CoV-
2 infections per economic sector is a proxy. In Belgium, a census of confirmed
14-day incidences per NACE-BEL sector level three is available from Septem-
ber 2020 until June 2021, encompassing two waves of infections. However, these
high-dimensional data, with a relatively small number of NACE-BEL sectors,
are challenging to analyze. We propose a nonlinear Gaussian–Gaussian model
that combines parametric and semi-parametric elements to describe the inci-
dence curves with a small set of meaningful parameters. These parameters are
further analyzed with conventional statistical methods, such as CCA and lin-
ear models, to provide insight into predictive characteristics of the first wave for
the second wave. Those nonlinear models classify economic sectors into three
groups: sectors with two regular waves of infections, sectors with only a first
wave and sectors with a more irregular profile, which may indicate a clear effect
of COVID-19 vaccination. The Gaussian–Gaussianmodel thus allows for analyz-
ing and comparing incidence curves and to bring out key characteristics of such
curves. Finally, we consider in which other settings the proposed approach could
be applied, together with possible pitfalls.
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1 INTRODUCTION

SARS-CoV-2, the virus causing COVID-19, was first
detected in December 2019 in Wuhan (Zhu et al., 2020).
The virus spread rapidly across the world, causing a pan-
demic. Initially, only non-pharmaceutical interventions
(NPIs) such as social distancing,maskmandates, andwork
sector specific preventive protocols were available as mit-
igation measures. Marinaccio et al. (2020) showed that
during the first wave in Italy, about 20% of the reported

COVID-19 cases were work-related, which underscores
the importance of workplace-related infections. The frac-
tion of workplace-related infections decreased to 3%–4% in
September–October 2020, possibly due in part to effective
mitigation measures at the workplace (Marinaccio et al.,
2021). Indeed, a recent meta-analysis showed that appro-
priate NPIs in the workplace effectively reduce workplace
transmission. NPIs in the workplace are thus an impor-
tant component of the interventions to mitigate the overall
spread of SARS-CoV-2 (Ingram et al., 2021).
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Although NPIs in the workplace have been extensively
studied, most studies were conducted in sectors related to
the health care. Only 5 of 61 studies, in a meta-analysis of
NPIs in the workplace, included non-health care related
workplaces (Ingram et al., 2021). This indicates an under-
exposure of non-health care sectors in research. Moreover,
occupational risk for COVID-19 has mostly been studied
in subsets of the working population or in workplaces
with a SARS-CoV-2 outbreak. Exceptions are the stud-
ies by Marinaccio et al., which examined the COVID-19
risk for the entire Italian working population indirectly by
means of analyzing compensation claim applications for
work-related COVID-19 (Marinaccio et al., 2020, 2021). To
the authors’ knowledge, the COVID-19 risk has not been
directly studied for a country’s entire working population
except by Verbeeck et al. (2021) who used a subset of the
data considered in this paper.
Studying the spread of SARS-CoV-2 across a country’s

economic sectors can provide valuable insights into the
role of workplace-related infections during the pandemic,
and the effect of different types of interventions on the
virus’s spread in the workplace. Although every work-
place and sector is unique in its own right, some sectors
may behave similarly. We wish to identify such groups
of sectors. In addition, we wish to study whether within
an economic sector, the past wave’s characteristics are
predictive for characteristics of the next wave. However,
forecasting future incidences per economic sector is out-
side the scope of the current investigation. To this extent,
a census of all reported SARS-CoV-2 infections from
September 2020 to June 2021 is analyzed longitudinally by
economic sector.
The analysis of these high-dimensional data with multi-

plewaves, including a relatively small number of economic
sectors, is challenging. Moreover, grouping sectors based
on their similarity in evolution of incidences require the
quantification of similarity between incidence profiles.
Finally, in order to study whether the past wave is pre-
dictive for the characteristics of a sector’s next wave, the
sequence of incidence values that makes up a wave should
be reduced to some key parameters that describe distinct
aspects of this wave. We propose a nonlinear Gaussian–
Gaussianmodel to resolve all these difficulties by reducing
each sector’s incidence profile, and corresponding waves,
to a small set of meaningful values. In these nonlinear
models, waves are described parametrically while periods
in between waves are described semi-parametrically.
The paper is organised as follows. The data and sta-

tistical methods are described in Section 2, and the
results are presented in Section 3. Finally, we end with
a discussion of the results and statistical methods in
Section 4.

2 METHODS

2.1 Data

Daily confirmed SARS-CoV-2 infections registered by the
Belgian health institute, Sciensano, are linked to their
employer’s main activity and aggregated by the National
Social Security Office to weekly incidences (number of
cases per 100,000) by NACE-BEL code, an economic sec-
tor classification system. The weekly incidences from 8
September 2020 to 5 July 2021 are mapped to 14-day inci-
dences, as is common in epidemiology, by joining two
consecutive weeks. During this period, two SARS-CoV-2
waves of infections occurred in Belgium, a large first wave
from the end of September 2020 to the end of Novem-
ber and a somewhat smaller wave from March to May
2021. Although, some sectors did not experience the sec-
ond wave. The NACE-BEL classification consists of five
levels (STATBEL, 2017). Only sectors at the third level
are analyzed, since this level contains the largest num-
ber of sectors with more than 10,000 employees, which is
deemed to be the minimum requirement for sufficiently
stable profiles.

2.2 Gaussian–gaussian models

Each sector’s longitudinal profile of 14-day incidences,
spanning 42 weeks, is modeled with a nonlinear model.
Because a sector’s longitudinal profile constitutes a cen-
sus of all reported infections, the model fitting can be
seen as a data transformation. The sector’s 42-dimensional
response vector is transformed to a set of meaningful val-
ues, that is, the nonlinear model’s parameter estimates.
Twomodels are considered depending onwhether the pro-
file contains one or two waves. Longitudinal profiles with
two regular waves are modeled with a Gaussian–Gaussian
curve for each wave (Verbeeck et al., 2021) and with natu-
ral cubic splines with five equidistant knots between the
waves, as shown in Equation (1). This model is further
referred to as the two-peak model and contains 1 variance
and 13 mean parameters. The modeled incidence for time
point 𝑡 in sector 𝑠 is denoted by 𝜇𝑠𝑡. The parameters of
the Gaussian–Gaussian curves have an appealing inter-
pretation in terms of the wave’s characteristics, as shown
in Table 1 and Figure 1. The natural cubic splines part
is denoted by 𝑓𝑠(𝑡). The number of knots is chosen such
that the spline part is sufficiently flexible to describe the
period between the waves accurately. However, this period
is as such not of interest. Restrictions are imposed on the
spline parameters to ensure a continuous and differen-
tiablemodeled profile (further details inWebAppendixA).
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TABLE 1 Interpretation of the parameters of the
Gaussian–Gaussian curve that models the first wave in the one- and
two-peak models. These parameters are illustrated in Figure 1

Parameter Interpretation
𝛿1 Asymptotic incidence before first wave
𝛿1 + 𝛼1 First wave peak height
𝜎1 Width of increasing phase of first wave
𝜎2 Width of decreasing phase of first wave
𝜈1 Timing of first peak

Note: The parameters of the second Gaussian–Gaussian curve in the two-peak
model have a similar interpretation.

Note that the second and third half Gaussian are assumed
to have the same asymptotic height, 𝛿𝑠2. The connection
between the spline and Gaussian part is assumed to be
at 10% of the peak height for the first connection, 𝜈𝑠1 +
𝜎𝑠2 ⋅

√
log(10), and at 10% of the peak height minus three

weeks, 𝜈𝑠2 − 𝜎𝑠3 ⋅
√
log(10) − 3, for the second connection.

These time points were based on a visual inspection of the
model fit for varying choices. A sensitivity analysis (Web
Appendix C) shows that different choices with respect to
this connection and the number of knots may result in a
slightly higher convergence rate, but those models provide
a lesser-quality fit to the observed profiles. A prototypical
longitudinal profile of the two-peak model is depicted in
Figure 1.

𝜇𝑠𝑡 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝛿𝑠1 + 𝛼𝑠1 ⋅ exp

{
−
(𝑡−𝜈𝑠1)

2

𝜎2
𝑠1

}
if 𝑡 < 𝜈𝑠1

𝛿𝑠2 + 𝛼𝑠2 ⋅ exp

{
−
(𝑡−𝜈𝑠1)

2

𝜎2
𝑠2

}
if 𝜈𝑠1 ≤ 𝑡 < 𝜈𝑠1 + 𝜎𝑠2 ⋅

√
log(10)

𝑓𝑠(𝑡) if 𝜈𝑠1 + 𝜎𝑠2 ⋅
√
log(10) ≤ 𝑡 < 𝜈𝑠2 − 𝜎𝑠3 ⋅

√
log(10) − 3.

𝛿𝑠2 + 𝛼𝑠3 ⋅ exp

{
−
(𝑡−𝜈𝑠2)

2

𝜎2
𝑠3

}
if 𝜈𝑠2 − 𝜎𝑠3 ⋅

√
log(10) − 3 ≤ 𝑡 < 𝜈𝑠2

𝛼𝑠4 ⋅ exp

{
−
(𝑡−𝜈𝑠2)

2

𝜎2
𝑠4

}
if 𝜈𝑠2 ≤ 𝑡

(1)

The one-peak model is fitted for profiles with only one
regular wave and contains 1 variance and 12 mean param-
eters. This model describes one wave with a Gaussian–
Gaussian curve followed by natural cubic splines with six
equidistant knots. The period modeled by splines in the
one-peak model is longer than in the two-peak model,
therefore more knots are used to model this longer period.
As in the two-peak model, restrictions are imposed on the
parameters to ensure a continuous and differentiablemod-
eled profile. A more detailed description of both models
can be found in the Web Appendix A.

F IGURE 1 Two-peak model. The peak incidences of the first
and second wave are given by 𝛿1 + 𝛼1 and 𝛿2 + 𝛼3, respectively. The
timing of the corresponding peak incidences are respectively given
by 𝜈1 and 𝜈2. The interpretation of the width parameters is
illustrated by 𝜎4; this parameter determines the width of the
half-Gaussian curve at 37% of its peak height. This figure appears in
color in the electronic version of this paper, and any mention of
color refers to that version

In both the one- and two-peak model, the first peak is
modeled identically. Parameters describing the first peak
can therefore be compared across thesemodels. The period
after the first peak is described differently, parameters
describing the period after the first peak can thus not be
compared across the two models.
Themodel parameters are estimated bymaximum likeli-

hood via the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
minimization algorithm (Nash, 1990) with the optim
R-function. The deviation from the working model is
assumed to be identically and independently normally
distributed. The resulting minus log-likelihood is thus
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minimized. The choice for the starting values was partly
data-driven. Note that the maximum likelihood frame-
work is used here for curve fitting, and not for statistical
inference. In essence, the likelihood is used as a mea-
sure of how well the working model fits the observed
profile without claiming that the likelihood is correctly
specified. Further details on the parameter estimation
and the choices for the starting values can be found in
Web Appendix B.
Each sector is classified into the two-peak model group

or the one-peakmodel group based on two criteria. First, if
the optimization for the two-peakmodel does not converge
properly, then the one-peakmodel is fitted. Lack of conver-
gence is interpreted as the observed profile deviating from
the “regular two-waves profile”. Second, the complement
of the coefficient of determination, 1 − 𝑅2, is computed for
each converged model. The 95% percentile of these mea-
sures for the converged two-peak models is considered as
the cut-off for a sufficient fit. For converged two-peakmod-
els with a larger value for 1 − 𝑅2 than this 95% percentile,
the one-peak model is fitted. Finally, profiles for which
both models do not converge and/or the 1 − 𝑅2 is larger
than the cut-off, are classified into a third group: other sec-
tors. These are profiles that do not adhere to the regular
one- or two-peak pattern. Note that this does not mean
that the profile does not contain two (or one) wave(s), it
merely indicates that the profile does not contain two (or
one) regular waves(s).
An alternative method for the classification of sectors

is multi-dimensional scaling (MDS) in which the profiles
are treated as high-dimensional response vectors. The sim-
ilarity between sector 𝑖 and 𝑗 is defined by the Pearson
correlation between the response vectors: 𝜌𝑖𝑗 . Because 𝜌𝑖𝑗
is invariant to linear transformations, a high correlation
does not necessarily imply similar absolute incidences. The
distance between sector 𝑖 and 𝑗 is defined as 𝑑𝑖𝑗 = 1 − 𝜌𝑖𝑗 .
The distances between all pairs of profiles constitute a dis-
tance matrix, from which a two-dimensional MDS-plot is
constructed. In this plot, the distance between two points
reflects how similar the corresponding profiles are. This
method does not rely on a parametric model, as in the clas-
sificationmethod based on theGaussian–Gaussianmodels
described above.

2.3 Comparison of two waves

Characteristics of the two waves are analyzed within the
two-peak sectors with a canonical correlation analysis
(CCA) and a linear model. The CCA studies the relation-
ship between the first and second waves within a sector.
It takes two separate linear combinations, one from each
set of variables corresponding to the Gaussian–Gaussian
curves of the first and secondwaves, respectively. The CCA

then explores the correlation between these two linear
combinations. Large values of the canonical correlation
indicate that there is an important correlation between the
first and second sets of variables. A likelihood ratio test,
with an 𝛼 level of 0.05, investigates the null hypothesis
of the canonical correlation between two sets of variables
being equal to zero. Two CCA analyses are performed.
The first CCA uses only parameters of the waves (widths,
height, and timing). The second CCA uses the mean
age and the mean income of employees in the sector, in
addition to the first wave parameters, in the first set of
variables. The relation between the first and second waves
is further explored by a linear model, where it is evaluated
whether the height of the second peak can be predicted
from the shape parameters of the first wave and the mean
age and income. The variables are selected by a forward
selection algorithm with the selection probability equal
to 0.05. Note that the prediction serves here as a means to
identify sectors at risk, but not to forecast future waves.

3 RESULTS

3.1 Sector grouping

Of the 272 level three economic sectors, 94 have more
than 10,000 employees, representing 4,110,028 of the total
of 4,585,970 (90%) registered employees. Of these 94 sec-
tors, 79 are classified as two-peak sectors, representing
around 3,570,000 employees. Five sectors are classified as
one-peak sectors. All five are healthcare (related) sectors,
representing around 386,000 employees. The remaining 10
sectors are classified as other sectors, representing around
154,000 employees. The sectors in each of the three groups
are listed in Web Tables 1–3 and the individual profiles
for the other and one-peak sectors are plotted in Web
Figures 1 and 2. Figures of the fitted model superimposed
on the observed profile per sector are available in the
Supplementary Information.
The mean incidence curves for the one- and two-peak

sectors are shown in Figure 2. Both groups differ on more
aspects than merely the presence of one or two peaks. The
height of the first peak is almost twice as large for the one-
peak sectors than for the two-peak sectors. About 5 weeks
after the first peak, the incidence reaches a plateau in
the two-peak sectors. There is no plateau in the one-peak
sectors. The incidence decreases more slowly after the first
peak in the one-peak sectors, but continues to decrease to
almost zero in June 2021. The incidence in the one-peak
sectors is also consistently higher than in the two-peak
sectors up to and including the week of March 9, 2021, and
consistently lower afterward. Using the Mann–Whitney
U-test, the difference in height of the first wave between
the one and two-peak sectors is 1776 cases per 100,000
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F IGURE 2 Comparison of the mean 14-day incidences in the
group of sectors with one and two peaks. The first and second
vertical dashed lines are positioned at October 19 and November 2,
respectively. At these two dates, stricter mitigation measures were
introduced by the Belgian Government. The third dashed vertical
line is positioned at January 1; in January, the early/prioritized
vaccinations started in Belgium. This figure appears in color in the
electronic version of this paper, and any mention of color refers to
that version

employees (95% CI: [1030, 2557]). The widths of the
increasing and decreasing phases do not differ between the
one and two-peak sectors,−0.042 (95%CI: [−0.192, 0.091])
and 0.198 (95% CI: [−0.097, 1.022]), respectively.
The classification of sectors in the three groups is

confirmed by the MDS-plot (Figure 3). The two MDS
dimensions, rather than the full data, explain 61.4% of the
similarity between the sectors. There is clear separation
between the one- and two-peak sectors. Two sectors from
the group of other sectors are distant from all other sectors:
101 (processing and preserving of meat and production of
meat products) and 011 (growing of non-perennial crops).
These sectors are further discussed in detail in Section 3.3.
The remaining other sectors are not well separated from
the two-peak sectors.

3.2 Comparing the two waves in the
two-peak sectors

3.2.1 Canonical correlation analysis

When contemplating only the widths, height, and timing
of the peak of the first and second waves within a sec-

F IGURE 3 Multi-dimensional scaling (MDS)-plot based on
the first two MDS dimensions. The two outlying sectors are labeled
by their NACE code. This figure appears in color in the electronic
version of this paper, and any mention of color refers to that version

tor, only the first two canonical correlations are important:
0.669 (𝑝 <0.001) and 0.549 (𝑝 <0.001). The correlations
between each set of variables and the first two corre-
sponding canonical variates are listed in Table 2. The first
canonical variate is strongly correlated with the height
of the second peak and therefore has an attractive inter-
pretation. Note that the width of the decreasing phase of
the second wave is also moderately correlated with the
corresponding first canonical variate, suggesting that the
proposed latent variable interpretation may be too much
a simplification. There is no obvious interpretation for the
second canonical correlation.
The CCA is repeated by adding mean income and mean

age to the first set of variables. Again, only the first two
canonical variates are important, 0.707 (𝑝 <0.001) and
0.645 (𝑝 <0.001), respectively. The correlations between
each set of variables and the first two corresponding canon-
ical variates are listed in Table 3. The height of the second
peak is the only variable that is correlated with the cor-
responding first canonical variate, suggesting a strong
relationship between the first set of parameters and the
second peak height. There is again no clear interpretation
for the second canonical correlation.

3.2.2 Predicting height of second peak

The forward selection procedure identified the width of
the decreasing phase, the height and timing of the first
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TABLE 2 Canonical correlation analysis of the sets of variables describing the first and second waves, respectively. The likelihood ratio
test (LRT) and the correlation between the wave parameters and the first two corresponding canonical variates are also shown

Wave Parameter Canonical variate 1 Canonical variate 2
Canonical correlation (LRT) 0.669 (< 0.001) 0.549 (< 0.001)

First wave Peak height −0.106 0.685
Timing of peak −0.587 −0.472
Width of increasing phase −0.119 0.267
Width of decreasing phase −0.540 0.289

Second wave Peak height −0.813 0.322
Timing of peak −0.257 −0.254
Width of increasing phase −0.070 0.059
Width of decreasing phase 0.577 0.424

TABLE 3 Canonical correlation of the sets of variables describing the first and second waves, with the sector’s mean income and mean
age added to the first set of variables. The LRT and the correlation between the wave parameters, mean income, and mean age on the one
hand and the first two corresponding canonical variates on the other hand are also shown

Wave Parameter Canonical Variate 1 Canonical Variate 2
Canonical correlation (LRT) 0.707 (< 0.001) 0.645 (< 0.001)

First wave Peak height −0.430 −0.328
Timing of peak −0.140 0.715
Width of increasing phase −0.227 −0.077
Width of decreasing phase −0.527 0.208
Mean income 0.707 0.273
Mean age 0.261 0.574

Second wave Peak height −0.860 0.29
Timing of peak 0.069 0.410
Width of increasing phase 0.017 0.083
Width of decreasing phase 0.048 −0.754

peak, and the mean income as predictors for the height
of the second peak. An increase of 1000 cases per 100,000
employees in the peak incidence during the first wave
results in an average increase of 57.0 (s.e. 23.4) cases per
100,000 employees in the height of the second peak. An
increase of 1 in the width parameter of the decreasing
phase of the first peak or an increase of 1 day in the time
to the first peak results in an average increase of 222.6 (s.e.
49.9) respectively 38.1 (s.e. 9.8) cases per 100,000 employ-
ees in the height of the second peak. Finally, an increase of
10 euros in themean day income results in a decrease of 9.4
(s.e. 3.2) cases per 100,000 employees in the height of the
second peak. Only 39.57% of the variability in the height of
the second peak can be explained by this linear model.

3.3 Outlying sectors

The two sectors that displayed outlying behavior in
Figure 3 are examined in more detail here. The longitudi-

nal profiles of these sectors are plotted in Figure 4 together
with the average of all employees. Sector 011, Growing of
non-perennial crops, contains about 13,500 employees and
hasmultiple distinct features. First, the absolute incidence
is very small during the entire period. Second, there are
three distinctminorwaves. The timing of the first and third
wave corresponds to the timing of the other sectors’ waves.
The second wave occurred after the end of the year’s hol-
iday season. Sector 101, Processing and preserving of meat
and production of meat products, contains about 18,000
employees. This sector has two waves, as most other sec-
tors, but the second wave is larger in comparison with the
first wave. Moreover, the second wave is also wider than
the first wave.
The additional eight sectors in the “other sectors” group

are generally conformable to the two waves, and are there-
fore mapped close to the two-peak sectors in the MDS-plot
(Figure 3). However, they have a distorted second wave;
those second waves are more sharply peaked or multi-
modal (seeWebFigure 1). This cannot be properlymodeled
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F IGURE 4 Longitudinal profiles of the sectors of special
interest. The gray dashed line is the mean longitudinal profile for all
employees. This figure appears in color in the electronic version of
this paper, and any mention of color refers to that version

by the proposed one and two-peak models. In fact, one
could alternatively refer to these eight sectors as “irregular
two-peak sectors”.

4 DISCUSSION AND CONCLUSIONS

The data of interest consist of high-dimensional longitu-
dinal responses (i.e., the longitudinal profiles). Analyzing
these data is challenging because the sample size is
relatively small (94 sectors). Even with a large sample
size, deriving meaningful results from a direct analysis
of the response vectors would be difficult. These issues
are tackled by the Gaussian–Gaussian models. Each sec-
tor’s longitudinal profile, which is completely observed, is
described by these models with a small set of meaningful
parameters. These parameters have a direct interpretation
in terms of the height and timing of the peak, and the
width of the increasing and decreasing phase of the wave.
Let 𝑔𝑖 and 𝜃𝑖 respectively be the longitudinal profile and
Gaussian–Gaussian model parameter estimates for sector
𝑖. Because 𝑔𝑖 is completely observed, there is no sampling
variability in the parameter estimates, 𝜃𝑖 . We can thus see
𝜃𝑖 as a transformation of the original data 𝑔𝑖 , and analyze
𝜃𝑖 as such with conventional methods that do not require
very large sample sizes. Given that the observed and fitted
longitudinal profiles match closely, there is not much loss
of information with this transformation.

The results revealed interesting patterns. Using the
Gaussian–Gaussian models, economic sectors were clas-
sified into three groups based on the sectors’ longitudi-
nal profiles: one-peak, two-peak, and other sectors. All
one-peak sectors encompass residential care centers and
healthcare staff in hospitals (NACE-BEL code: 861, 869,
871, 872, and 873), which were prioritized for vaccination
from January 2021 onward. The height of the first peak is
much larger in those sectors than in the two-peak sectors.
This is expected as the exposure to SARS-CoV-2 is large
and personnel is in close proximity with others. After the
large first wave, however, no second wave occurred. Since
February 2021, directly after the residential care and hospi-
tal staff, personnel from first line care and non-residential
collective care institutions were vaccinated (Belgian Gov-
ernment, 2021). The corresponding sectors are classified
as two-peak sectors (NACE-BEL code: 862, 881 and 879).
Although these sectors are two-peak sectors, the second
peaks are smaller than what would be expected from the
linear model (in terms of the residuals). These findings
could be attributed to the prioritized vaccinations of the
personnel in the mentioned sectors. It is not possible to
causally attribute these findings to the early vaccinations in
the respective sectors. However, there is no other explana-
tion that can reasonably explain (the size of) the observed
trend in the one-peak sectors. Moreover, there is a trend
related to how early each sector was vaccinated. The sec-
tors that were vaccinated first showed no second peak. The
sectors that were vaccinated next, showed a second wave,
but that wave is smaller than expected.
The CCA indicates that characteristics of the first and

second waves are related. More specifically, a strong cor-
relation is found between a linear combination of the
first wave’s characteristics and the height of the second
wave’s peak. Evaluating this correlation further in a lin-
ear model, the width of the decreasing phase, the height,
and the timing of the first peak are predictive for the sec-
ond peak’s height. A more severe first wave (larger peak,
slower decrease in cases, and later peak) is thus associ-
ated with a higher second peak’s height. Important for
policy makers, this result suggests that extra effort should
go to sectors with previously higher reported incidences
as those sectors are at increased risk during subsequent
waves. Also, the mean income of a sector is predictive for
the height of the second peak. A sector’s mean income
might be related to COVID-19 risk factors, such as the pos-
sibility of telework. As the linear model explains only a
moderate proportion (39.57%) of the variability, inclusion
of other variables may be relevant to explain the second
peak’s height, such as sector specific measures, the vacci-
nation grade, a mask mandate and increased ventilation.
However, some of those variables are hard to quantify
or not readily available. Furthermore, the effectiveness of
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(combinations of) measures might also depend on the
workplace context (Ingram et al., 2021).
Sector 011, Growing of non-perennial crops, and 101, Pro-

cessing and preserving of meat and production of meat
products, are outlying in the MDS-plot. The outlying
behavior of the former could be explained by the return of
foreign workers from abroad after the year’s holiday sea-
son. The latter sector is known to be distinct because this
sector’s environment facilitates viral spread which may
lead to large outbreaks (Middleton et al., 2020;Waltenburg
et al., 2020).
The nonlinear model was constructed pragmatically

such that it describes the data well and that the param-
eters have a meaningful interpretation. The specifics of
the nonlinear model can be adapted as long as the former
two conditions are satisfied. For example, loess can replace
the splines, and other (bell-shaped) curves can replace
the Gaussian–Gaussian curves if different parameters are
needed for interpretation. This is useful toward application
in other settings. The proposed Gaussian–Gaussian model
is generally applicable in settings where the goal is to com-
pare aspects of asymmetrical curves such as height and
timing of the peak, plateau phases, and speed of increase
and decrease. Besides incidence, hospital admission and
mortality due to COVID-19 (Molenberghs et al., 2021;
Nishimoto & Inoue, 2020), the Gaussian–Gaussianmodels
may be applicable in the seasonal comparison of asym-
metric growth-curves of components of plants (Werker
& Jaggard, 1997), quantification of tidal asymmetry (Guo
et al., 2019), price and volume volatility (Liu&Chen, 2020),
or studying hormonal homeostasis of circadian rhythms
(Gnocchi & Bruscalupi, 2017). The data in each of those
settings consist of (repeated) longitudinal asymmetric pro-
files with a similar general pattern. Our approach can be
applied to reduce these profiles to a small set of meaning-
ful parameters, which can be analyzed with conventional
multivariate methods. This would provide the researchers
with relatively easy to interpret results. The appropriate-
ness of this approach depends to a large extent on the
appropriateness of the nonlinear model. Our approach
is expected to perform poorly if the parameters have an
ambiguous interpretation and/or the nonlinearmodel fails
to describe the profiles accurately. The latter may happen
if there is no general pattern underlying all profiles.
For the purposes of this investigation, other model-

ing approaches are less appropriate. Mixed-effects models
could be formulated, but this would require, in our case,
13 random effects in its most general form, which is not
feasible in a (maximum) likelihood framework. In addi-
tion, amixedmodelwould “flatten out” possibly important
differences between sectors. Another possible modeling
approach is a differential equation-based model, as in
Wang et al. (2020). Although such a model could provide

an accurate description of our data, the parameters would
have an interpretation at a different level: the level of dis-
ease spread dynamics. Contrary to this, the parameters of
ourmodels aremerely descriptive and therefore do not rely
on assumptions regarding the underlying disease spread.
In conclusion, we have analyzed sector-specific COVID-

19 incidence profiles. Each sector’s longitudinal profile
was reduced to a small number of meaningful parameters
by means of fitting a carefully parameterized non-linear
model. These parameters were then analyzed using con-
ventional methods such as a CCA and a linear model.
These methods revealed interesting patterns.
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