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Abstract. Multi-objective optimization requires many evaluations to
identify a sufficiently dense approximation of the Pareto front. Especially
for a higher number of objectives, extracting the Pareto front might not
be easy nor cheap. On the other hand, the Decision-Maker is not al-
ways interested in the entire Pareto front, and might prefer a solution
where there is a desirable trade-off between different objectives. An ex-
ample of an attractive solution is the knee point of the Pareto front,
although the current literature differs on the definition of a knee. In this
work, we propose to detect knee solutions in a data-efficient manner (i.e.,
with a limited number of time-consuming evaluations), according to two
definitions of knees. In particular, we propose several novel acquisition
functions in the Bayesian Optimization framework for detecting these
knees, which allows for scaling to many objectives. The suggested ac-
quisition functions are evaluated on various benchmarks with promising
results.

Keywords: Multi-Objective Optimization · Knee Finding · Bayesian
Optimization · Surrogate Modeling.

1 Introduction

Optimization is an important topic in many domains, from engineering design
to economics and even biology. Real-world problems often involve multiple con-
flicting objectives. For example, in engineering, minimization of cost and max-
imization of efficiency are looked for simultaneously. As a result, there will be
a set of solutions, each better in one or more objectives and worse in at least
one objective. In the other words, they do not dominate each other. Hence,
these solutions are referred to as non-dominated or Pareto-optimal and form
the so-called Pareto set and Pareto front in the decision and objective spaces,
respectively. A multi-objective optimization, without the loss of generality, can
be defined as:

⋆ This work has been supported by the Flemish Government under the ‘Onderzoek-
sprogramma Artificiële Intelligentie (AI) Vlaanderen’ and the ‘Fonds Wetenschap-
pelijk Onderzoek (FWO)’ programmes.



2 A. Heidari et al.

minimize f1(x), f2(x), ..., fm(x) x ∈ Ω ⊆ Rn (1)

Finding a set of non-dominated solutions is challenging, or even infeasible, es-
pecially with an increasing number of objectives, as the number of solutions
to cover the entire Pareto front usually grows exponentially with the number
of objectives [5]. In practice, the Decision-Maker (DM) is not interested in the
whole front of the solutions and might prefer a solution where there is a desirable
trade-off between different objectives. One approach to tackle this problem is to
transform the multi-objective setting into a single-objective problem [9, 14], for
example, by using a (non)linear utility function, but identifying the appropriate
weights with no prior information is not an easy task.

One set of attractive solutions are the knees of the Pareto front (see Fig. 1),
first defined in [11]. However, definitions of what a knee is differ in the literature;
depending on the definition, a knee might hold different properties. For example,
the ratio of gain and loss in each objective might be the same at a knee point.

Fig. 1. Pareto front approximation of a bi-objective minimization problem. Intuitively,
the knee (red star) is an attractive solution as it strikes a good trade-off between
objectives.

Most of the current literature on knee-oriented optimization focuses on Evolu-
tionary Algorithms (EAs) to estimate the location of the knee. While EAs are
a good solution for high-dimensional and intractable problems, they are data-
hungry methods, as they evaluate the objective functions many times during
optimization. However, EAs are still preferred in some situations, e.g., when the
objective exhibits complex non-linear behavior.
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Evaluating objective functions are often computationally expensive, severely
limiting the number of function evaluations during optimization. In engineering
design, for instance, high-fidelity models can take hours to days for one simu-
lation. Thus, it is of interest to solve the problem in a data-efficient manner,
i.e., finding the most interesting Pareto-optimal solutions with minimal compu-
tational budget.

In this paper, we investigate two definitions of a knee in multi-objective
optimization, and propose three novel acquisition functions for the Bayesian
Optimization (BO) framework to detect them in a data-efficient way. BO is
an optimization technique that utilizes a surrogate model to reduce the number
of time-consuming evaluations.

This paper is structured as follows. In Section 2, we briefly review the related
work. Proposed algorithms are covered in detail in Section 3. Section 4 summa-
rizes the experimental setup, while the results are discussed in Section 5. Finally,
in the last section, we conclude with a discussion on further improvements.

2 Related Work

2.1 Bayesian Optimization

A powerful option for finding the optimum of a black-box and expensive-to-
evaluate function is Bayesian Optimization (BO) [22]. BO employs an acquisi-
tion function based on a surrogate model to quantify how interesting a solution
is. The point that maximizes the acquisition function will be chosen as the next
candidate for evaluation (Algorithm 1). Popular choices for the acquisition func-
tion are Expected Improvement (EI) [13, 18] and Probability of Improvement
(PoI) [12, 17]. BO can also be used to find the complete Pareto front of the solu-
tions, using e.g., the Expected Hyper-Volume Improvement (EHVI) acquisition
function [6, 8].

Algorithm 1 Bayesian Optimization

Input Evaluated design of experiment using, e.g., Halton sampling
Input An acquisition function
1: while Budget left do
2: Train a surrogate model
3: Prediction of the surrogate model in the decision space
4: K ← The point that maximizes the acquisition function
5: Evaluate K using time consuming function
6: Reduce Budget
7: end while
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2.2 Gaussian Process

The Gaussian Process (GP) surrogate model [20] is a common choice in Bayesian
Optimization. The GP provides the prediction for a new input as well as uncer-
tainty. The GP is fully specified by a mean function and kernel matrix k(xi,xj).
Assuming a zero mean function, the posterior of the GP is given as:

µ(x∗) = k∗K
−1
xx y (2)

σ2(x∗) = k∗∗ − k∗K
−1
xx k

T
∗ (3)

where x∗ is a new input, Kxx = k(xi,xj), k∗ = k(x∗,xi), and k∗∗ = k(x∗,x∗).
Different kernel functions, such as Matérn kernels [16] or an RBF kernel, can be
used. Which one to choose is problem-dependent. For example, the Matérn 5/2
kernel has less strong assumptions on the smoothness of the target function and
found to be more suitable for real-life problems [19].

2.3 Knee Finding using Evolutionary Algorithms

Multi-objective Evolutionary Algorithms (MOEAs) are popular to find the Pareto
front of a multi-objective problem. Yu et al. [25] classify the MOEAs into four
different categories, i.e., dominance relations based, decomposition based, indi-
cator based, and secondary-criterion based methods. Interested readers can refer
to [10, 15, 23, 25] for more details.

There is no unique definition of what a knee point is. A knee point is an
attractive solution of the Pareto front that will often be chosen by the DM in
the absence of prior knowledge of the problem [4]. In [21], the methods to quanti-
tatively measure a knee are classified into two different groups: (1) based on the
geometric characteristics of the Pareto front, and (2) based on the trade-off in-
formation. In [25], knee-oriented MOEAs are classified into five categories, i.e.,
utility-based, angle-based, dominance-based, niching-based, and visualization-
based approaches. Each of the algorithms has its own definition of the knee,
making it difficult to compare them. For example, Branke et al. [4] defines the
knee as a point in the Pareto front that has the largest angle to its neighbours,
while other works take a utility-based approach for specifying a knee point [26,
2]. In this work we focus on the definition of knee as described in [11] to develop
the proposed acquisition functions. We also propose another definition of the
knee and construct an acquisition function based on that. These are described
in detail in the next section.

3 Proposed Algorithms

We investigate two definitions of a knee point: (1) based on the Hyper-Volume
(i.e., the volume of objective space dominated by a given set of solutions [27])
with respect to a reference point, and (2) based on the distance to a reference
line.
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3.1 Hyper-Volume-based knee (HV-Knee)

The Hyper-Volume can be used to define knees in the Pareto front. A trade-off
between various objectives can be observed by calculating the Hyper-Volume
between different solutions and a reference point. Solutions with a high Hyper-
Volume are intuitively more interesting for the DM. Accordingly, the knee point
is the point on the Pareto front that has the maximum Hyper-Volume with
respect to a fixed reference point. The corresponding regret function is calculated
as follows:

RegretHV = HV (y∗
HV , N

∗)−HV (ybest, N
∗) (4)

where N∗ is the true Nadir point, y∗
HV is the point in the Pareto front that

has the maximum hyper-volume with respect to N∗ (ground truth), and ybest

is the point that the algorithm found and has the maximum hyper-volume with
respect to N∗.

Fig. 2. Illustration of a knee point. Based on the HV-Knee definition, the point on the
Pareto front that has the maximum Hyper-Volume with respect to the reference point
is the best knee (yellow point). The striped region represents the Hyper-Volume (HV)
between the Knee and the Nadir Point.

The identified knee depends on the reference point. Due to this sensitivity, se-
lecting the reference point is a critical part of the proposed algorithm. It can
be defined upfront by the DM (informed), which might be unrealistic for many
problems. Hence, we set the reference point the same as the nadir point as a
sensible default (see Fig. 2) which in turn depends on an accurate estimation
of the extrema. However, locating the extrema is not an easy task. We propose
an interleaved approach to find the extrema. Algorithm 2 shows how two steps
iterate.
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Algorithm 2 The HV-Knee Algorithm

Input Evaluated design of experiment using, e.g., Halton sampling
1: while Budget left do
2: Train a surrogate model for each objective
3: E ← ExtremaSampler()
4: Evaluate E.
5: Update surrogate models
6: K ← HVKneeSampler()
7: Evaluate K.
8: Reduce Budget
9: end while

Both ExtremaSampler andHVKneeSampler are acquisition functions. To find
the extrema, first, the ideal point, which is the minimum of each objective (see
Fig. 2) is extracted from the current dataset. A large reference point will be
chosen to focus more on the extrema. Finally, a derivation of the standard EHVI
[6] is used. EHVI tries to evaluate the point that contributes the most to the
expected Hyper-volume of the Pareto front given a fixed reference point and the
extracted Pareto front so far. We modify EHVI with the ideal point as the only
point in the Pareto front and a sufficiently large vector as the reference point.
Reference point should have large values in a way that is dominated by all of the
extremum points. For example, a vector such as (1e6, . . . , 1e6) can be used as the
reference point. Algorithm 3 shows the implementation of ExtremaSampler.

Algorithm 3 ExtremaSampler: Optimizing the Extrema acquisition function

Input R : A sufficiently large vector
1: I ← Ideal Point extracted from the current Pareto front
2: E ← Maximize EHV I with R and I as the reference point and the Pareto front,

respectively.
3: Return E as the next candidate point

HVKneeSampler modifies the standard EHVI to estimate the location of the
knee as well. EHVI is evaluated with the nadir point as both the reference point
and the only point in the Pareto front. Algorithm 4 shows the implementation
of HVKneeSampler.

Algorithm 4 HVKneeSampler: Optimizing the HVKnee acquisition function

1: N ← Nadir Point extracted from the current Pareto front
2: K ← Maximize EHV I with N as the reference point and the Pareto front.
3: Return K as the next candidate point
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3.2 Distance to Line-based Knee

Another intuitive definition of a knee is based on the distance to an imaginary
line connecting the extrema of the front in a bi-objective setting (see Fig. 3)
first proposed by [11]. It is in the interest of DM to maximize the gap between
a solution and the reference line. The regret function is calculated as follows:

RegretDL = Distance(y∗
DL, L

∗)−Distance(ybest, L
∗) (5)

where L∗ is the true reference line, y∗
DL is the point in the Pareto front that

has the maximum distance to the L∗ (ground truth), and ybest is the current
best solution.

Fig. 3. Illustration of a knee based on the distance to the reference line between the
two extrema. The point on the Pareto front that has the maximum distance to the line
constructed by connecting the two extrema is considered the knee (yellow point).

Similarly to the HV-Knee approach, the location of the extrema is unknown
beforehand, and estimating them is a vital part. The two-step approach from the
previous section is reused, replacing HVKneeSampler with D2LKneeSampler.

Algorithm 5 shows the implementation of D2LKneeSampler. First, the cur-
rent Pareto front and extrema are extracted, and the reference line will be con-
structed. The point in the current Pareto front that has the largest distance
to the reference line is designated as the current best knee. To calculate the
probability of improving over the current best knee, a naive approach is to solve
a double integration requiring Monte Carlo integration. Instead, we propose to
transform to a new coordinate system based on the reference line. In particular,
we consider a line parallel to the reference line that passes through the current
knee. The system is rotated so reference line is aligned with the horizontal axis.
As a result, it is much easier to analytically integrate the (transformed) multi-
variate Gaussian distribution of the GPs. Now, the equation can be simplified
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to a single variable probability of improvement (or expected improvement) ac-
quisition function (Fig. 4). Keep in mind that, the point should be below the
reference line (assuming minimization). If the point is above the line, we use the
negative of the distance.

Fig. 4. The probability of improvement (or expected improvement) is calculated by
transforming the problem to a new coordinate system, in such a way that the refer-
ence line becomes horizontal. A one-dimensional integration similar to the standard
probability of improvement and expected improvement can be applied to the rotated
Gaussian distribution.

If µ1, σ
2
1 , µ2, and σ2

2 are the predicted mean and variance of a candidate point
using the GPs for objective 1 and objective 2, respectively, then Equations 6
- 11 can be used to calculate lines 4 - 9 of Algorithm 5.

Cov =

[
σ2
1 0
0 σ2

2

]
(6)

Means =
[
µ1 µ2

]
(7)

meanrotated = µ2 × cos(θ) + µ1 × sin(θ) (8)

Covrotated =

[
cov11 cov12
cov21 cov22

]
=

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
× Cov ×

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

]
(9)

σ2
rotated = cov22 (10)

If the coordinates of the current knee before the rotation is best1 and best2, then:

bestrotated = (best2 − tan(θ)× best1)× cos(θ) (11)
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Algorithm 5 D2LKneeSampler: Optimizing the D2LKnee acquisition function

1: alpha ← Acquisition function (probability of improvement or expected improve-
ment).

2: E1, E2 ← Extract extrema from the current Pareto front.
3: L← Reference line constructed using E1 and E2.
4: θ ← The angle between the constructed reference line and the horizontal axis.
5: Cov ← The diagonal covariance matrix composed of the predicted variances of the

GPs.
6: Means← The predicted mean vector of the GPs.
7: µrotated ← Rotated mean vector by θ degrees
8: Covrotated ← Rotated Cov by θ degrees.
9: σ2

rotated ← cov22 element of Covrotated
10: bestrotated ← Vertical coordinate of the rotated best knee.
11: K ← Maximize alpha with bestrotated, µrotated and σ2

rotated.
12: Return K as the next candidate point.

It is possible to use either Probability of Improvement (PoI) or Expected Im-
provement (EI) in the 11th line of Algorithm 5, leading to the Probability of
Improving with respect to the Distance to Line (PID2L), and the Expected
Improvement with respect to the Distance to Line (EID2L).

4 Experimental Setup

Experiments have been conducted with three various benchmark functions, nam-
ely DO2DK, DEB2DK, and DEB3DK [4]. We configure the functions to have
input dimensions 9, 5, and 7, respectively. DO2DK has an additional parameter,
s, that skews the front, which is set to 1 in the experiments.

The Pareto fronts of various benchmark functions have been approximated
using the NSGA-II algorithm, and the knee(s) are calculated based on the Hyper-
Volume and Distance to Line knee definitions as shown in Table 1. The extracted
knee(s) using NSGA-II are designated as ground truth knee(s) and used for regret
calculation. The nadir point N∗, and the reference line, L∗, are constructed using
extracted extrema from NSGA-II results as well. For each benchmark function,
these two definitions might end up choosing the same point as the knee, but
generally this is not true, however, they are often remarkably close to each other.

For extracting the Pareto front, we configure NSGA-II with population size 200
and 200 generations (DO2DK, DEB2DK), and population size 500 and 1000
generations (DEB3DK).

We compare the proposed acquisition functions for knee detection against
the standard Expected Hyper-Volume Improvement (EHVI), which extracts the
whole Pareto front. We use the RBF kernel for the GPs, and the number of
initialization points is ten times the input dimension. To optimize the acquisition
function, a Monte Carlo approach with one thousand times input dimension
samples is used and L-BFGS-B optimizer is utilized to fine-tune the best point.
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Table 1. Summary of the benchmark functions to validate the proposed approaches
and their truth ground knee extracted using the NSGA-II algorithm.

Name Input Dimension Output Dimension Ground Truth

DEB2DK [4] 9 2 (2.83 , 2.83)∗

DO2DK [4] 5 2 (1.07 , 1.02)∗

DEB3DK [4] 7 3 (2.85, 2.83, 3.52)∗

∗Rounded to two decimal places

Due to ambiguous definitions of a knee, as well as the data-hungry nature of
EAs, no other knee-oriented methods could be included in the comparison (eval-
uating the initial population would exceed the computation budget). RegretHV

and RegretDL are used to measure the performance during the optimization
process. Each experiment was repeated 15 times for DEB2DK and DO2DK, and
10 times for DEB3DK, and the 50th, 20th, and 80th percentiles were calculated.

The Pymoo python package [3], and Trieste framework [1] have been used
for NSGA-II and the BO methods, respectively.

5 Results

The results are shown in Fig. 5. For DO2DK, a small value, 1.7 × 10−4 and
2×10−4, is added to all Hyper-Volume and Distance Regrets, respectively, since
the regret was negative for HV-knee and PID2L. This means that both PID2L
and HV-Knee were successful in finding a point that performs better than the
ground truth knee found by NSGA-II.

For DEB2DK the EID2L acquisition function shows a quick improvement
in the early stages, but the HV-Knee and PID2L show a continuous improve-
ment leading to better results near the end of the optimization process. All the
acquisition functions exhibit the same behavior for DO2DK as well.

The last benchmark function, DEB3DK, has three objectives, and, hence,
can only be used with the HV-Knee method. Note that the best regret is also
negative for this case. The shaded area at the 170th iteration is between −21 and
−25, which means the HV-Knee acquisition function was able to find a point
that performs much better than the knee point found by NSGA-II.

Fig. 6 shows the extracted Pareto front for DTLZ2[7] benchmark function.
Pareto front of the DTLZ2 function is concave. In this case, the DM might
prefer one of the extrema, known as the edge knee [24]. As all of the proposed
acquisition functions are able to estimate the location of the extrema, and since
the shape of the extracted Pareto front using the proposed acquisition functions
is concave, the DM can choose one of the extrema as the final solution. PID2L
(and also EID2L) return one of the extrema as the best point, but HV-Knee
acquisition function prefers a point that is almost in the middle of the front.
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(a) Results for the DEB2DK function.

(b) Results for the DO2DK function

(c) Results for the DEB3DK function

Fig. 5. Results for the various benchmark function. Each experiment is repeated 15
times for the DO2DK and the DEB2DK functions, and 10 times for the DEB3DK
function. The medians are denoted by the solid lines, while the shaded area represents
the area between 20th and 80th percentile.
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(a) HV-Knee Acquisition Function (b) PID2L Acquisition Function

Fig. 6. Extracted Pareto front of the DTLZ2 benchmark function using HV-Knee and
PID2L acquisition function (in blue) and NSGA-II algorithm (in red). In both cases, it
is clear that the Pareto front is concave, and since both acquisition functions are able
to estimate the location of the extrema, one of the extrema can be chosen as the final
solution.

6 Conclusion and Next Steps

In this work we have proposed three acquisition functions for Bayesian Optimiza-
tion to find attractive solutions (knees) on the Pareto front. These acquisition
functions were able to identify the correct knee in a data-efficient manner, using
about 200 evaluations (or even less) for a satisfying solution. Identifying a single
solution is more efficient than the complete Pareto front, allowing Bayesian Op-
timization to scale up to more inputs and objectives. The proposed acquisition
functions outperformed the ground truth obtained using an expensive NSGA-II
approach. However, in some cases EAs are still preferred, for example, when at
least one of the objective functions is hard to model with a GP (intractable func-
tion, high-input dimension), or when the evaluation of the objective functions is
cheap and fast.

The developed acquisition functions alternated between two steps which is
more time-consuming than it needs to be. More rigorous approaches will be
developed to achieve an automatic balance between finding the extrema and
identifying the knee. This will reduce the number of required evaluations further.
Moreover, the proposed methods only focused on the global knee. If there is
more than one knee in the Pareto front, they often remain unexplored. Current
approaches will be extended, so other knees are also explored.
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