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Abstract. One of the goals of process discovery is to construct, from a
given event log, a process model which correctly represents the under-
lying system. As with any abstraction, one does not necessarily want to
represent all possible behavior, but only the significant behavior. While
various discovery algorithms support this use case of discovering the sig-
nificant process behavior, proper evaluation measures for this use case
appear to be missing.
Therefore, this paper presents a new precision metric that quantifies
to what extent the discovered model contains significant system behav-
ior. Besides being a metric with a clear and intuitive interpretation, the
metric distinguishes itself in two other areas. Firstly, it introduces the
concept of α-significance, which only measures precision with respect to
significant behavior. Secondly, it is designed as a system measure and es-
timates the precision with respect to the underlying system rather than
the observed log. This work introduces a new precision measure and a
statistical estimation method. Additionally, an empirical demonstration
and evaluation of the metric are provided, which creates initial insights
and knowledge about the performance and characteristics of the new
measure. The results show that the α-precision measure provides a solid
foundation for future work on developing quality measures for this par-
ticular use case.

Keywords: Process Discovery · Precision · Stochastic Process Models.

1 Introduction

Various information systems increasingly support current business processes,
and create a digital trail of process execution information. These digital trails
can be transformed into an event log, which records at a minimum the executed
activities and their order for each case. Given such event logs, the goal of process
discovery is then to discover a model representing the underlying process (also
called system) as closely as possible from the event log.

Event logs are only a sample of the possible process or system behavior.
Therefore, most process discovery algorithms try to generalize the observed be-
havior to capture the whole system behavior rather than the log behavior only.
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At the same time, a system can contain a large amount of infrequent behavior
and trying to represent all this behavior in a single (visual) model quickly results
in non-interpretable spaghetti models.

Hence, we focus on the particular use case where one wants to rediscover
only the system’s significant — typical — behavior. Fortunately, various pro-
cess discovery algorithms exist that contain mechanisms and parameters that
support this use case. That is, discovery algorithms have introduced different
ways to classify and filter insignificant behavior: [18] classifies traces of the log
as insignificant if they traverse little-used parts of an intermediate behavior ab-
straction; [8, 7] classify little-used model edges as insignificant; [22, 15] classify
edges of a behavior abstraction as insignificant based on frequency; [2, 16] search
for a most likely model, thereby implicitly classifying behavior that does not
fit that intermediate result as insignificant; and [7] hides insignificant details in
hierarchy.

Following the model-log-system quality paradigm in process mining [3], two
criteria exist to evaluate the quality of a process model against the system,
model-system fitness, and model-system precision. This paper focuses on model-
system precision, which quantifies to what extent the process model only contains
system behavior. Unfortunately, the existing precision measures fall short of the
presented use case for three reasons.

Firstly, existing precision measures do not distinguish between significant
(typical) and insignificant (infrequent) process behavior. Consequently, a model
that contains a lot of insignificant behavior is still considered to be very precise
by these measures, as long as that insignificant behavior is part of the system
or log.

Secondly, most precision measures are developed as model-log measures. Con-
sequently, they do not measure to what extent the model only contains behavior
from the system, but rather quantify to what extent the model only contains
behavior observed in the log. Research has also shown that these model-log mea-
sures have limited value when used as proxies for model-system measures [9].

Thirdly, many quality measures in process mining became so advanced over
time that an unambiguous interpretation of the precision value is no longer
possible. For many measures, the precision value has become a number that is
the result of complex computation. While it still correlates to the precision of
the model, it lacks a meaningful and unambiguous interpretation.

This research aims to design and introduce a new precision measure that
tackles these limitations and (indirectly) supports the use case of discovering
significant system behavior. The paper makes three main contributions:

– A first-of-its-kind precision measure is introduced, quantifying the amount
of significant behavior in a process model and providing measurement values
that have a meaningful and unambiguous interpretation.

– A statistical method based on Bayesian Inference is provided to efficiently
estimate the system precision based on a given event log.

– Initial empirical insights into the performance of this new precision measure
are provided, which opens up avenues for follow-up research.
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The following section provides basic notation and formalization for the re-
mainder of the paper. Section 3 then introduces the rationale, design, and esti-
mation method of the new precision measure. Subsequently, Section 4 provides
the empirical evaluation and discussion. Finally, after a brief overview of the
related work, the overall conclusions are provided in Section 6

2 Preliminaries

Activities and Traces. A process consists of activities that are represented
by their activity labels. The set of all possible activity labels in the system form
the activity alphabet A . A trace σi ∈ A ∗ is a sequence of activity labels, where
A ∗ is the set of all finite sequences over A . The length of a trace is represented
as |σi|.
System. The system S = (S, πS) represents the underlying process and consists
of two components. The first component is the support of the system S ⊆ A ∗

which consists of all traces that can be produced by the system. The second
component is the system probability distribution πS : S → (0, 1], which is a
categorical distribution and assigns a probability of occurrence πS(σi) to each
trace σi in the system support S, such that

∑
σi∈S πS(σi) = 1. The size of the

system corresponds to the number of traces σi in the system support and is
represented as K = |S|. Note that we thus assume S to be finite.

Log. The log L ∈ B(A ∗) is a multi-set of traces. The frequency of trace σi in
the log is denoted by nσi

, and N =
∑

σi∈L nσi
denotes the size of the log. Note

that, as we interpret the system as a categorical distribution over the system
support S, the log L is a sample of N drawings from this distribution πS .

Model. Two type of process models are considered: non-probabilistic and stochas-
tic process models. A non-probabilistic model does not hold any information
about the model probability πM (σi) of a trace σi and is simply a set of traces
M ⊆ A ∗. A stochastic process model M = (M,πM ) is more informative as it
consists of a set of traces M ⊆ A ∗ that represents the models support and a
model probability distribution πM : M → (0, 1] where πM (σi) represents the
probability of trace σi according to the model, such that

∑
σi∈M πM (σi) = 1.

The number of traces in the model is denoted as |M |.

3 Alpha Precision

The overall goal is to design a model-system precision measure for the use case
of discovering a process model which only contains significant system behavior.
Furthermore, the measure should meet the following three design requirements:

Requirement 1 The precision measure should quantify to which extent the pro-
cess model (only) contains significant process behavior.

Requirement 2 The precision measure should quantify the precision of the
model with respect to the system.

Requirement 3 The precision measure should produce values that have an un-
ambiguous and human-interpretable meaning.
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3.1 Rationale and Design

In order to meet the first two design requirements, the following definition first
introduces the concept of α-significance, which identifies a trace as significant if
its system probability πs(σi) exceeds a user-defined threshold α.

Definition 1 (α-significance). A trace σi is α-significant iff πs(σi) > α

Based on this concept, we can define the α-indicator function Iα.

Definition 2 (α-indicator function).

Iα(σi) =

{
1, if πS(σi) ≥ α

0, otherwise
(1)

For a stochastic model, M, α-precision Pα is then defined as the probability
that the model produces a trace that is α-significant.

Definition 3 (α-precision (stochastic model)). Let M be a stochastic pro-
cess model, then

Pα(M,S) =
∑

σi∈M

πM (σi)Iα(σi) (2)

For non-probabilistic models, α-precision is defined as the portion of α-
significant traces in the model M .

Definition 4 (α-precision (non-probabilistic model)). Let M be a non-
probabilistic process model, then

Pα(M,S) = 1

|M |
∑

σi∈M

Iα(σi) (3)

The third design requirement involves a meaningful and clear interpretation
of the new precision measure. In order to illustrate the interpretability of the
proposed α-precision, consider the following application scenario:

A data scientist wants to discover a process model from an event log that
contains the significant (typical) behavior. The goal is to understand the
standard way of working within the department and not depict excep-
tional process executions in the process model. First, they set the α
threshold at 1 percent, which means that any trace that has a probabil-
ity less than 1 percent is considered non-significant. Next, the discovered
stochastic model appears to have an Pα = 0.8. This value tells her that
80 percent of the traces generated by this process model are expected
to be significant, i.e., 80 percent of the behavior produced by the model
has a system probability πS(σi) greater than 1 percent.
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Note how both the α-threshold and the α-precision have natural interpre-
tations that allow users to use context and domain-expertise to set a proper
threshold and interpret and evaluate precision levels found for their discovered
models. Also, note that in the case of a deterministic model, the interpretation
of the precision measure would only slightly change to the conclusion that 80
percent of the traces contained in the model are significant.

3.2 Estimation Method

Calculating the α-precision is straightforward when the system S and the its
probability distribution πS are known. However, in real-life, one does not know
the system. The only available information is typically an event log — a limited
sample of the system’s behavior. Therefore, we introduce a method to estimate
the true α-precision from the available information in the log.

The general idea behind the method is to estimate the system probabilities
π̂S from the event log. Next, these estimates are used to estimate the indicator
function (cfr. Eq. 1), which subsequently is used to estimate the α-precision P̂α.
Thus, the estimation problem reduces to the estimation of the system probabil-
ities from the event log. The proposed method is based on Bayesian Inference
and inspired by the work of [10].

To infer knowledge about the system from the log, we need additional as-
sumptions about the system.

Assumption 1 The system contains a finite amount of behavior.

This assumption implies that the system has some mechanism that prevents
a process from being executed indefinitely. For business processes with humans
involved, this is a fair assumption.

Assumption 2 The system support is correctly defined.

This assumption restricts the modeling of uncertainty to the system prob-
ability density. The assumption that the system support is correctly defined
corresponds to the common assumption in statistics of correct model specifica-
tion. While it is hard to prove that the system support is defined correctly, it
is essential to realize that any theoretically possible trace is part of the system
support, no matter how small the probability of occurrence.

Assumption 3 The log is a representative sample from the system’s behavior

As the proposed method will rely on statistical inference, this assumption is
required to draw proper conclusions from the data for the underlying system.
Considering these assumptions, the α-precision can be estimated in four steps.

Step 1: Define the system support. First, the system support S of the
system S needs to be specified. Under the assumption that the system behavior
is finite, the system support can be defined as a set of traces σi for which the
system probability πS(σi) > 0.
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Step 2: Define a prior distribution over S. As indicated before, a system
S = (S, πS) consists of two components: its support and a probability function.
The latter can be defined as the vector πS = (πS(σ1), . . . , πS(σK)) of system
probabilities, where K is the size of the system.

However, because the actual system is unknown, we do not know the true cat-
egorical probability function. In order to model this uncertainty, we consider all
theoretically possible categorical probability functions for K possible outcomes
and assign a probability to each one of them. This is modeled as a Dirichlet
distribution.[12]

From the perspective of Bayesian Inference, the first step is to encode the
prior belief about the system as the prior distribution. In this paper’s context,
the prior belief refers to the knowledge about the system probability function
πS before observing the data. Assuming that there is no specific information
to favor one probability function over the other, a flat Dirichlet distribution is
chosen as the prior. This distribution is equivalent to a uniform distribution over
all possible system probability distributions πS and achieved by setting all the
Dirichlet parameters θi to 1.

Step 3: Determine Posterior Distributions. The flat Dirichlet distribution
from the previous step represents our prior belief that all possible probability
functions πS are equally likely. However, once we have observed an event log,
we notice that some traces are more common than others, indicating that some
probability functions πS must be more likely than others.

Bayesian inference uses Bayes’ theorem to update our prior beliefs with the
evidence in the log, which results in a posterior distribution [6]. In most situ-
ations, the posterior distribution is not obtainable analytically unless the prior
distribution is conjugate to the likelihood distribution of the data. If this is the
case, the posterior distribution can be analytically calculated from the prior
distribution and the data.

Because the Dirichlet distribution is a conjugate prior to the multinomial
distribution and the event log is a multinomial distribution, the posterior distri-
bution is also a Dirichlet distribution. More specifically, the posterior distribution
will be a Dirichlet distribution with parameters θ′i = θi+ni, where θi represents
the i-th parameter of the prior distribution and ni represents how often outcome
i was observed in the data.

Given a flat Dirichlet distribution as the prior distribution and our event log L
being a multi-set of traces σi, this results in the following posterior distribution:

πS |L ∼ Dir ((1 + nσ1 , . . . , 1 + nσK
)) (4)

Note that the posterior distribution assigns a probability to each possible
system probability distribution πS based on the evidence in the log.

Step 4: Estimate α-Precision. Now that the posterior distribution over all
possible system probability functions is known, the true system probability func-
tion can be estimated by taking the expected value of the Dirichlet posterior,
which is defined as follows:
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Definition 5. Let X = (X1, . . . XK) ∼ Dir(θ’), then the expected value of Xi is

E[Xi] =
θ′i∑K

k=1 θk
(5)

Given that the parameters of the posterior distribution are θ′i = 1 + nσi
for

1 ≤ i ≤ K, we can estimate the system probabilities πS(σi) as follows:

∀σi ∈ S : π̂S(σi) =
1 + nσi∑K

k=1(1 + nσk
)
=

1 + nσi

K +N
(6)

Based on this estimator for system probability, we can subsequently estimate
the α-significance indicator function as follows:

Îα(σi) =

{
1, if π̂S(σi) ≥ α

0, otherwise
(7)

Using this indicator function in Equations 2 and 3, for stochastic and non-
probabilistic models respectively, we can then estimate the α-precision. We will
denote this estimated precision as P̂α.

3.3 Estimating the System Support Size

Analyzing the final equations of the proposed estimation method reveals that
it requires two parameters: the α-significance level and the theoretical system
support size K. While the former can be freely chosen and should reflect the
domain expert’s interpretation of significance, the latter should preferably match
its theoretical value. Various approaches to estimate K can be devised. This
paper proposes two approaches — the unrestricted and restricted approach —
and motivates them both based on underlying assumptions.

The unrestricted approach is so-called because it does not strongly limit
the behavior that is included in the system support, except for the alphabet of
activity labels observed in the event log A and a user-defined maximum trace
length γ. It then defines the system support S as the set of all possible sequences
σi over A with a length |σi| ≤ γ. This approach assumes that the entire activity
alphabet has been observed and a maximum trace length exists. The rationale
behind the maximum trace length assumption is that the system would not allow
a process instance to keep ongoing indefinitely. Given the alphabet A and the
maximum trace length γ, the size of the system can be calculated as follows:
K =

∑γ
i=1 A i.

The restricted approach can be seen as taking the system support S from
the first approach as its starting point but removing all traces that contain a
directly-follows relation not observed in the log. The assumption thus is that all
possible directly-follows relations have been observed in the log.

Suppose that the directly-follows relations are represented by a matrix D of
size |A | × |A | where Dij equals 1 if and only if it was observed in the log that
activity i of the alphabet was directly followed by the activity j, and 0 otherwise.
It follows naturally that the number of allowed sequences of length two is equal
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Table 1. Parameters.

Parameter values

System Alphabet length [4, 6, 8]
Max trace length [4, 6]

Log Log size [100, 500, 1000 , 5000, 10000]
Model Discovery threshold [0.3, 0.4, 0.5, 0.6, 0.7 ]

# iterations 25

to the sum over this matrix, i.e.,
∑

D Dij . Furthermore, assume a vector o of
size |A |, where oi is 1 if and only if activity i in the alphabet is a valid start
activity, and 0 otherwise. The number of sequences of length one with a valid
start activity is then equal to the sum over vector o, i.e.,

∑
o oi. The number

of sequences of length two with a valid start activity is equal to the sum over

oTD. This can be generalized to oTD
γ−1

for sequences of length γ. In order to
limit the number of sequences to specific final activities, a vector f of size |A |
can be defined where fi is 1 if and only if activity i is a valid end activity, and

0 otherwise. The scalar oTD
γ−1

f then equals the total number of sequences of
length γ with valid start and end points.3 As a result, for the restricted approach,

K =
∑γ

i=1 o
TD

i−1
f , which is computationally easy to calculate. Note that the

restriction of valid start and end activities can be omitted without difficulty
depending on the specific context.

4 Empirical Evaluation

This Section provides an empirical evaluation of the α-precision by means of a
controlled experiment and a application on real-life data. The goal is to provide
insights and knowledge claims about the behavior and performance of this newly
developed measure.

4.1 Unbiasedness Estimator

In this section, we describe a controlled experiment to analyze the unbiasedness
of the α-precision estimator. The experiment exists of the following six steps: (1)
Generate systems, (2) Generate logs, (3) Generate models, (4) Calculate actual
α-precision, (5) Calculate estimated α-precision, and (6) Analyze bias.

Generate systems. First, different systems were generated using the alphabet
length and maximum trace lengths in Table 1 as input parameters. Each of the
system-traces is assigned a probability πS(σi).

Because we want define the full system including probability distribution in
this supervised experiment, both the size of the alphabet and the maximum
possible trace length are kept relatively low. An alphabet of length 10 with a
maximum trace length of 8 leads to 1.23× 109 possible systems sequences.

3 In the specific case that γ = 1, D0 equals the identity matrix I, and thus oTD
γ−1

f =
oTf , which is the number of activities that are both valid start and end activities.
This is indeed equal to the number of valid sequences of length one.
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Generate logs. For each of the systems, logs of different sizes (cfr. Table 1)
are generated, using the defined system probabilities for each trace.

Generate models. Subsequently, a model is generated based on each system.
A discovery threshold is set to steer the amount of the system that is captured
by the model. A discovery threshold of 0.7 means that each trace has a 70%
probability to be included in the model.

To each of the traces that is included in the model, a probability is assigned in
order to turn it into a stochastic model as defined in Section 2. These probabilities
are independent from the system probabilities created in step 1, thereby making
sure no algorithm bias is introduced.

For each of the combinations of parameters listed in Table 1, we repeat this
process 25 times.

Calculate actual α-precision. Given that we know the actual system proba-
bility distribution πS , the actual α-precision can be computed using Equation 2.
Because there is no domain expertise in this artificial setting to define the level
of α, a rule of thumb was used to set α equal to 1

K where K is the size of the
system support.

Calculate estimated α-precision. Given the model and log, we can then
estimate the α-precision by using Equation 2 in combination with the estimated
system probabilities as defined in Equation 6.

Next to the information provided in the model and the log, we need to define
the value of K and α. For K, the size of the system, we take the unrestricted ap-
proach described in Step 1 of Section 3.2, where we consider all possible sequence
of the alphabet. Subsequently, α is also set to 1

K for the estimation.

Measure bias. Given both the actual α-precision and the estimated α-precision,
we define the difference between the two as follows.

β = P̂α − Pα (8)

When the estimated α-precision is greater than the actual α-precision, the
bias as measured by β will be positive, and there is thus an overestimation. Oth-
erwise, β will be negative and the actual α-precision will thus be underestimated.

Results. In Figure 1, it can be seen that the estimator underestimates the real
precision when the size of the log is relatively small compared to the size of
the system. For the system with size 340 (i.e. alphabet length of 4 and maxi-
mum trace length of 4), the estimator becomes unbiased when approximately
1000 cases have been observed in the log. For larger systems, the biases only
approaches zero for logs of 10000 cases, while for the largest systems in the
experiment the estimators still shows a large bias at logs of size 10000.

Figure 2 shows the extent of bias specifically in relation to the ratio between
the log size and the system size. The vertical line indicates the where the ratio is
1, i.e. the number of different sequences in the system support equals the number
of observed traces in the log. It can be seen that the biases quickly decreases
when the ratio approaches 1, and then decreases more gradually toward zero for
ratios greater than 1.
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System support size: 5460

Alphabet length: 4

Maximum trace length: 6

System support size: 55986

Alphabet length: 6

Maximum trace length: 6

System support size: 299592

Alphabet length: 8

Maximum trace length: 6

System support size: 340

Alphabet length: 4

Maximum trace length: 4

System support size: 1554

Alphabet length: 6

Maximum trace length: 4

System support size: 4680

Alphabet length: 8

Maximum trace length: 4
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Fig. 1. Bias P̂α − Pα for different sizes of the log and the system.

Table 2. BPIC’12 log - descriptive statistics.

Metric value metric value

Number of activities 10 Number of traces 17
Number of events 60849 Max. trace length 8
Number of cases 13087 Avg. trace length 4.65

4.2 Demonstration on real-life event logs

In this and the next section, the proposed method will be applied on real-life
event data. For this, data from the Business Process Intelligence Challenge 2012
is used [5]. Descriptive statistics for this event log can be found in Table 2.

Based on the log, a stochastic model has been discovered using the frequency
estimator [4] on a model discovered by the Directly Follows Model Miner [18].
The discovered model contains 6 different activity sequences, of which the prob-
ability varies between 0.029 and 0.509. In the analyses, we will both approach
the estimation from the starting point of a stochastic model (Eq. 2), as from the
starting point of a deterministic model (Eg. 3). In the latter case, we will ignore
the obtained probabilities and replace them with 1

|M | .
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Fig. 2. Extent of bias in estimated alpha-precision in relation to the ratio between log
size N and system size K.

4.3 Impact of K and α.

As discussed before, there are different approaches to define the size of the system
support K. In the unrestricted approach, where we look only at the length of
the alphabet and the maximum trace length, we get K =

∑8
i=1 10

i = 1.11 ×
108. Given the fairly high structuredness of the data in question, this seems an
exuberant amount. If we therefore take the restricted approach instead, where
we only take into account sequences that adhere to the observed directly-follows
relations, start activities and end activities, the system support K ′ is only 32.
When we drop the start and end activity requirement, K ′′ equals 1539.

Fig. 3 shows the value of P̂α for different values of K and different values of
α for both the stochastic and deterministic approach. It can be seen that the
estimated α-precision is relatively stable with respect to the value of K. Only
when K is increased to 50000 can noticeable differences in P̂α be seen.

Note that as the model only contains 6 different activity sequences, we can
see apparent jumps in the measured precision when α changes such that a traces
moved from insignificant to significant. For the deterministic model all jumps
are equal in size, while this is naturally not the case for the stochastic model.
The biggest jump in the latter case happens when α drops below 0.05 (approx-
imately), and the trace with the highest probability according to the model
(0.509) becomes significant.

Impact of significance filtering. Figure 4 shows the values of P̂α for mod-
els discovery by the Inductive Miner infrequent [16] and Directly-follows miner
[18], with different setting for significance filtering. The higher the significance
parameter, the more significant behavior must be to make it into the model.

It can be seen that, for different values of alpha, when the significance param-
eters increases, so does the estimated precision. This provides implicit validation
that the proposed measure behaves as expected, as models with a stronger sig-
nificance filtering gets higher precision scores.

Figure 4 also shows the potential of the α-precision to analyze and compare
various algorithms. The visual analysis shows that for the DFM-algorithm, the
evolution of precision with respect to the significance parameter is smoother than
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Fig. 3. P̂α for different values of K and alpha.

for the Inductive Miner algorithm. This implies better control for significance
filtering in the former algorithm. This derives from the fact that Inductive miner
often results in the same model for various significance filtering levels. In the
extreme, the measured precision drops to zero for the DFM algorithm with the
filtering parameter set to 100, as this results in an empty model.

4.4 Discussion

Based on the design and empirical evaluation of the α-precision measure and
its estimation method, various knowledge insights can be constructed about the
precision measure.

The controlled experiment showed that the measure is unbiased when the
size of the log is sufficiently large in comparison with the system sizes. When
there are fewer cases in the log than there are different activity sequences in the
system, a substantial underestimation is present. In those circumstances, the
estimated α-precision acts as a lower bound of the actual measure.

At the same time, the demonstration of the measure on real-life data shows
that the proposed measures behave as expected for different values of K, α and
the significance filter parameters of process discovery algorithms and holds po-
tential to evaluate process discovery algorithms aimed at discovering significant
behavior. While defining the system support size K is an important step towards
estimating the α-precision, it has been shown that the estimator is relatively ro-
bust for changes in K.

An ongoing discussion in the field of process mining is that of (desirable)
properties (or axioms) of conformance measures [21]. However, the properties
studied in past research are not applicable to α-precision as most properties
are defined with respect to non-stochastic process models. The exception are
the eight properties for stochastic conformance checking defined in [17]. Unfor-
tunately, even these properties are not directly applicable because they relate
to log-model measures, while α-precision is a system-model measure. Neverthe-
less, we can derive four properties for the α-precision which are inspired by the
properties discussed in [17].
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Alpha: 0.02 Alpha: 0.03 Alpha: 0.04 Alpha: 0.05
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1.00

Significance filter parameter.

Pα

Discovery algorithm Directly−follows miner Inductive miner − infrequent

Fig. 4. P̂α for different values in the significance filtering parameter of [16] and [18],
and different values of α. Note that the values of the significance parameters for the
Directly-follows miner has been inverted for the sake of comparison. A small significance
parameter value means that only very insignificant behavior is removed by the discovery
algorithm, a large value means that only very significant behavior is retained by the
discovery algorithms.

Property 1. The α-precision measure is deterministic.

This property relates directly to property P1 in [17] and holds as α-precision is
a function of the assumed system support size K, the α-significance level, the
log size N and the trace frequencies nσi

, which are all fixed at the start.

Property 2. The α-precision measure depends only on the stochastic language
of the log and model and not on their representation.

This property refers directly to property P2 in [17] and holds naturally, as the
α-precision is calculated directly from the stochastic language of the log and
model.

Property 3. The α-precision measure returns values between 0 and 1.

This property relates directly to property P3 in [17]. Since the α-indicator func-

tion Îα(x) is either 0 or 1 (cf. Eq. 7), it follows that the minimum and maximum
value of the α-precision (cf. Def. 3 and 4) is also 0 and 1 and can only be achieved
when all α-indicator functions evaluate to 0 or 1 respectively.

Property 4. The α-precision measure asymptotically goes to 1 if (i) the model
only contains the α-significant system behavior, (ii) the log has the same stochas-
tic language as the system and (iii) the log size increases towards infinity.

This property is an adaptation of property P4 in [17] to the context of our
measure. If the log size N goes towards infinity, then the system probability
estimates (cf. Eq. 6) will go towards

nσi

N . The latter equates to the true system
probabilities since the log and the system express the same stochastic language.
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Consequently, if the model only contains α-significant system behavior, the in-
dicator function will evaluate to 1 for all traces in the model and the α-precision
measure will equate to 1.

The other properties P5, P7 and P8 in [17] are not directly applicable to
our measure. Properties P5, P6 and P8 are related to recall measures rather
than precision measures.While property P6 does relate to precision measures, it
focuses on a log-model relation which doesn’t have a clear analog counterpart in
the system-model context we are operating.

5 Related Work

In typical process mining projects, the system is unknown; thus, quality measures
(conformance checking techniques) have focused on the relationship between
model and log, rather than system and model. The quality of (non-stochastic)
models with respect to logs is typically measured using fitness, precision, gen-
eralization, and simplicity, where fitness is the fraction of behavior of the log
that is in the system, precision is the fraction of behavior in the model that was
observed in the log, generalization is the predicted fraction of future behavior
of the system that is in the model, and simplicity expresses the size or complex-
ity of the model to express its behavior [3]. Recently, the concept of precision
(and to a lesser extent generalization) has seen discussion in terms of desirable
properties such measures should possess [21]; however, this discussion has not
yet included unbiasedness with respect to unknown systems. Of these quality
dimensions, generalization aims to describe the system and could be seen as a
system-fitness measure [20]. Such log-based measures are not unbiased estima-
tors of system properties empirically [9]. Compared to these approaches, our
proposed measure explicitly and understandably takes the significant behavior
of an unknown system into account.

For stochastic process models, quality measures include stochastic distance [13],
stochastic precision and recall [17], and entropic relevance [19], however these
do not aim to compare a model with an unknown system. While not intended
for the system-model context, it would be interesting to study the bias of these
techniques when applied in a system-model context, like [9, 11].

The system has been the subject of study in process mining, as the ultimate
goal of process mining is to obtain insights into the system to improve it. Some
process discovery techniques guarantee to return a model that is the language
equivalent to the system, under some assumptions, such as the log being noise-
free or complete with respect to a particular abstraction of the system [14, 23, 1].
However, such techniques do not offer any guarantees when these assumptions
are not met; thus, it is a valuable exercise to have an unbiased estimator of the
relation between system and model.

6 Conclusions

In process mining, organizations aim to gain insights into their business pro-
cesses, which we refer to as systems, by discovering process models from event
logs. Typically, the quality of a process model is assessed with respect to an
event log, however we argue that it might be useful to compare a model to the
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unknown system, based on its significant behavior. In this paper, we presented
a new precision metric that expresses the extent to which the model contains
significant system behavior, based on an α-significance level. We empirically
evaluated the new measure by showing that it can be unbiased under certain
assumptions and demonstrated its applicability and value on real-life event logs.

While the initial results indicate that this precision measure supports the
analysis of discovery algorithms aimed at discovering significant behavior, the
empirical analysis also shows that the construction of unbiased system estima-
tors is particularly challenging and requires future research to better understand
and remove this apparent bias. Important aspects to consider are a more realis-
tic definition of ground-truth systems in controlled experiments, as well as the
proper estimation of the system size when using the estimator. The impact of
prior configurations, which are currently uninformative, is another aspects that
requires further analyses.

Overall, we hope this work provides an initial yet solid foundation for further
research into system measures supporting the use case of discovering significant
behavior.
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