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1. Introduction 

In this work, our investigations will lead to the introduction of a new type 

of measures. These measures are called global impact measures and take 

concentration as well as production into account. They can be considered 

as elements in a theory on impact as outlined in other publications (Egghe, 

2021; Egghe & Rousseau, 2022a; Egghe & Rousseau, 2022b).  

Many distributions studied in informetrics, such as authors and their 

publications (Lotka, 1926), websites and inlinks (Rousseau, 1997; Faloutsos 

et al., 1999), or topics and journals dealing with them (Bradford, 1934) can 

be described by power law relations (Egghe, 2005) or similar long-tailed 

distributions (Laherrère & Sornette, 1998). Moreover, these power laws 

have many applications in other fields such as demography (cities and their 

inhabitants), linguistics (words and their uses), economics (incomes in a 

market economy), ecology (fragmentation of forests), astronomy (initial 

mass functions) and many more, see (Pareto, 1895; Auerbach, 1913; Zipf, 

1941, 1949; Salpeter, 1955; Newman, 2005; Saravia et al., 2018). One 

common characteristic of these distributions is the high concentration of 

items among a few sources. As such the study of concentration or inequality, 

with its social implications, is one of the main topics studied in our field 

(Rousseau et al., 2018, Section 9.5).   

In the next section we introduce a dominance order in the case of a non-

normalized Lorenz curve and prove an impact-concentration theorem. This 

then leads in the following section to the definition of global impact 

measures, followed by a number of practical examples. We conclude by 

pointing out new opportunities for further studies in the science of science. 

 

2. Continuous dominance and the impact-concentration theorem 

Let T > 0, let U be the set {𝑍: [0, 𝑇]  →  ℝ+, Z continuous and decreasing}, U0 

= {𝑍 ∈ 𝑼; 𝑍 > 0 on [0, 𝑇[ } and Z ={𝑍 ∈ 𝑼;  𝑍 strictly decreasing}. Then Z ⊂ U0 ⊂ U. 

Definition 1. The continuous Lorenz curve L(x).  

Given Z in U, we define the continuous Lorenz curve of Z as the graph of 

the function 

[0,1]  → [0,1]: 𝑥 →
∫ 𝑍(𝑠)𝑑𝑠

𝑥𝑇
0

∫ 𝑍(𝑠)𝑑𝑠
𝑇

0

                               (1) 

 

Definition 2. The classical Lorenz dominance order. 

The dominance order on U (Marshall-Olkin-Arnold, 2011), is defined as: 
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if Z, Y ∈ U, then  𝑍 −<𝐿  𝑌 iff ∀𝑥 ∈ [0, 𝑇]: 
∫ 𝑍(𝑠)𝑑𝑠

𝑥
0

∫ 𝑍(𝑠)𝑑𝑠
𝑇

0

≤  
∫ 𝑌(𝑠)𝑑𝑠

𝑥
0

∫ 𝑌(𝑠)𝑑𝑠
𝑇

0

               (2) 

or equivalently: 

 ∀𝑥 ∈ [0,1]: 
∫ 𝑍(𝑠)𝑑𝑠

𝑥𝑇
0

∫ 𝑍(𝑠)𝑑𝑠
𝑇

0

≤  
∫ 𝑌(𝑠)𝑑𝑠

𝑥𝑇
0

∫ 𝑌(𝑠)𝑑𝑠
𝑇

0

.                                 (3) 

The relation 𝑍 −<𝐿  𝑌  means that the continuous Lorenz curve of Y is 

situated above the continuous Lorenz curve of Z, providing an argument in 

favor of using the concave, and not the convex, form of the Lorenz curve. 

 

Definition 3. A continuous concentration measure 

A function m from U to the positive real numbers is a concentration measure 

if it is an order morphism from U, -<L to the positive real numbers. This 

means that X-<L Y implies that m(X) ≤ m(Y), with equality only if X and Y 

have the same Lorenz curve. In practice one often requires that m(0) = 0, 

with 0 the zero function on [0,T].  

 

Definition 4. The non-normalized Lorenz curve 

Given Z in U, we define the function 𝐼𝑍: [0, 𝑇] →  𝑅+: 𝑥 → ∫ 𝑍(𝑠)𝑑𝑠
𝑥

0
. This 

function is concavely increasing. Its graph will be said to be the non-

normalized Lorenz curve of Z. 

Clearly the graph of IZ is the graph of a cumulative function. Yet, because 

we use it here within a generalization of the classical Lorenz curve (Lorenz, 

1905) we refer to it as a non-normalized Lorenz curve. 

 

Definition 5. The non-normalized dominance order on U 

If Z, Y ∈ U, then  𝑍−<  𝑌 iff ∀𝑥 ∈ [0, 𝑇]: 𝐼𝑍(𝑥) =  ∫ 𝑍(𝑠)𝑑𝑠
𝑥

0
≤  𝐼𝑌(𝑥) = ∫ 𝑌(𝑠)𝑑𝑠

𝑥

0
  (4) 

Clearly, -< on U is reflexive, antisymmetric, and transitive. Hence it is a 

partial order (Roberts, 1979). 

 

From the definition of the Lorenz curve of a function Z in U it follows that it 

is the image of its non-normalized Lorenz curve, through a linear mapping 

with matrix (
1/𝑇 0

0 1/(𝐼𝑍(𝑇))
) which is a composition of a horizontal and a 

vertical contraction (T > 1). 

Related to this observation we formulate two remarks. 
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Remark 1. If Z, Y ∈ U, and IZ(T) = IY(T) then Z -< Y implies  𝑍 −<𝐿  𝑌. 

Remark 2. If Z, Y ∈ U  and Z ≤ Y then Z -< Y, but the relation  𝑍 −<𝐿  𝑌 may 

or may not hold.  

Notation 

We denote the average of Z ∈ U by 𝜇𝑍 =  
1

𝑇
∫ 𝑍(𝑠)𝑑𝑠

𝑇

0
=  

𝐼𝑍(𝑇)

𝑇
.  

 

Theorem 1. The impact-concentration theorem. 

∀ 𝑍, 𝑌 ∈ U0, with Z ≠ Y the following expressions are equivalent. 

(i) Z -< Y ;  

(ii) ∃ 𝑌∗ ≠ 𝑍 ∈ U0, such that 𝜇𝑍 =  𝜇𝑌∗, Z -< Y* ≤ Y  and  𝑍 −<𝐿  𝑌∗; 

(iii) ∃ 𝑌∗ ≠ 𝑍 ∈ U0, such that 𝜇𝑍 =  𝜇𝑌∗, Z -< Y* -< Y and  𝑍 −<𝐿  𝑌∗; 

Proof. The implications (ii) ⇒ (iii) ⇒ (i) trivially follow from the facts that -

< is transitive and that Y* ≤ Y implies Y* -< Y. 

We next prove that (i) implies (ii).  

If IZ(T) = IY(T) we may set Y* = Y, see Remark 1. We next assume that 

IZ(T) < IY(T), and hence  𝜇𝑍 <  𝜇𝑌.  

Define I*(x) on [0,T] as min(IY(x), IZ(T)). Then Z -< Y implies that ∀𝑥 ∈

 [0, 𝑇]: IZ(x) ≤ IY(x) and hence, ∀𝑥 ∈  [0, 𝑇]: IZ(x) ≤ I*(x) ≤ IY(x). The 

following construction is illustrated in Fig.1. 

 

Fig. 1. Illustration of the construction of the function IY∗ 

As Z -< Y (Z,Y different) there exists, by continuity, a point x0 ∈ ]0,T[ such 

that IZ(x0) < IY(x0). As Z is strictly decreasing on [0,T] it is not zero on an 
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interval of finite length. Hence, we see that IZ(x0) < IZ(T) and IZ(x0) < I*(x0). 

The function I* has at most one kink (recall that the integral of a continuous 

function is differentiable). Hence, we can work around this kink by replacing 

I* locally by a smooth, concavely increasing curve, still denoted as I* such 

that IZ(x) < I*(x) ≤ IY(x) on [0,T] and such that I* is in no point increasing 

faster than IY. Now we define Y* as (I*)’ leading to: IY∗ =  I∗. From this, we 

see that Z -< Y* -< Y, actually by its construction, we even have Y* ≤ Y.  

Now  IZ(T) = IY∗(𝑇) and hence  𝜇𝑍 =  𝜇𝑌∗  . By Remark 1 we then have that LZ 

< L𝑌∗ on ]0,1[ or Z -<L Y.□ 

 

Some comments on the proof of Theorem 1. In (Egghe & Rousseau, 2002) 

we used the standard Lorenz curve for defining the core of a scientific topic. 

More precisely, and in the continuous case, we can interpret I*(x) as the 

non-normalized Lorenz curve, corresponding to the x0-th partial curve 

(using a terminology analogous to the one used in (Egghe & Rousseau, 

2002)). Note that I* is just a help function as it is a cumulative function of 

a function that does not belong to U0 (this function is not even continuous). 

Given the function Z, the function I* on the left-hand side of Fig.1 is nothing 

but the TOP-curve of Y, with top line y= IZ(T). This remark provides a 

relation between the theory of TOP-curves as developed in (Egghe et al., 

2007) and the present article.  

 

3. Global impact measures 

Let Uµ = {Z ∈ U0: µZ(T) = µ} and let m be a function U0  →  ℝ+. Then we 

have the following theorem, leading to the definition of measures of a new 

type.  

Theorem 2 

The following three expressions are equivalent: 

(i) ∀ 𝑍, 𝑌 ∈ U0, Z≠Y: Z -< Y ⇒ m(Z) < m(Y) 

(ii) ∀ 𝑍, 𝑌 ∈ U0 : Z -< Y ⇒ m(Z) ≤ m(Y)  and, for all µ > 0,  if Z, Y ∈ Uµ: (Z 

-<L Y and Z≠Y, ⇒ m(Z) < m(Y)) 

(iii) ∀ 𝑍, 𝑌 ∈ U0 : Z ≤ Y ⇒ m(Z) ≤ m(Y)  and, for all µ > 0,  if Z, Y ∈ Uµ 

(Z≠Y), we have: (Z -<L Y ⇒ m(Z) < m(Y))  

Proof. 

(i) ⇒ (ii). Let Z -< Y, and Z ≠Y, then we know by (i) that m(Z) < m(Y). Of 

course, if Z = Y, then m(Y)=m(Z) so that always m(Z) ≤ m(Y). If now, for 
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µ > 0, Z, Y  ∈ Uµ: Z -<L Y, with Z≠Y, then IZ(T) = IY(T) and by Remark 1, 

Z -< Y, and thus m(Z) < m(Y). This proves this implication. 

(ii) ⇒ (iii) is trivial as Z≤ Y implies Z -< Y. 

(iii) ⇒ (i). Let Z ≠ Y and Z -< Y. By the “impact-concentration theorem”, we 

know that there exists Y* ≠ Z in U0 such that Z -< Y* -< Y and Z -<L Y* 

with  μZ = μY∗ simply denoted as µ. Hence Z and Y* belong to Uµ. It follows 

from (iii) that m(Z) < m(Y*) and m(Y*) ≤ m(Y), which proves (i). 

 

Definition 6 

We say that a measure m as defined above is increasing on U0,-< if ( Z -< 

Y ⇒ m(Z) ≤ m(Y)), and is strictly increasing if for Z≠Y: (Z -< Y ⇒ m(Z) < 

m(Y)). 

 

Definition 7. Global impact measures 

A function U0  →  ℝ+ such that ∀ 𝑍, 𝑌 ∈ U0, Z≠Y: (Z -< Y ⇒ m(Z) < m(Y)) is 

called a global impact measure.  

Corollary 

The following expressions are equivalent 

(i) m is a global impact measure on U0 

(ii) m is an increasing function on U0,-< and for every µ > 0 (fixed) m is a 

concentration measure on U0,µ 

(iii) m is an increasing function on U0,≤ and for every µ > 0 (fixed) m is a 

concentration measure on U0,µ 

 

Note that if m is a global impact measure on U0 and m(Z) < m(Y) then it 

does not necessarily follow that Z -< Y. 

 

4. Examples of global impact measures 

In this section we provide some examples of global impact measures, 

derived for well-known concentration measures. 

4.1. The generalized Gini-index 

Obviously, the area under the non-normalized Lorenz curve, defined as 

∫ 𝐼𝑍(𝑥)𝑑𝑥
𝑇

0
                                               (5) 
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is a global impact measure.  

As we work on U0 there is no function with Gini-value equal to zero, but 

zero is the infimum (largest lower bound). 

4.2. The length of the non-normalized Lorenz curve of Z in U0 minus T. This 

measure is denoted as L(Z). 

Now L(Z) = ∫ √1 +  (
𝑑

𝑑𝑠
(𝐼𝑍(𝑠)))

2
𝑇

0
𝑑𝑠 − 𝑇 = ∫ √1 +  (𝑍(𝑠))2𝑇

0
𝑑𝑠 − 𝑇             (6) 

The length of the non-normalized Lorenz curve (or this length minus T) is 

an increasing function on U0, ≤ and for every µ > 0 (fixed) m is a 

concentration measure on U0,µ as the length of the standard Lorenz curve 

(or this length minus √2 ) is a bona fide concentration curve (Dagum, 1980).  

Alternatively, we know that if f is a strictly convex, continuous, and 

increasing function, then Z-< Y, Z ≠ Y, implies that ∫ 𝑓(𝑍(𝑠))𝑑𝑠 
𝑇

0
<

 ∫ 𝑓(𝑌(𝑠))𝑑𝑠 
𝑇

0
. Taking now f(s) = √1 + 𝑠2 , shows that L is a global impact 

measure. We subtract T because we require that when Z tends to zero 

(pointwise), L(Z) also tends to zero. 

4.3. m(Z) = ∫ (𝑍(𝑠))𝑝𝑑𝑠
𝑇

0
, p > 1                                                          (7) 

This measure m is a global impact measure because f(s) = sp (p > 1) is a 

strictly convex, continuous, and increasing function. 

Considering now the case p = 2, we define (𝜎𝑍)2 as 
1

𝑇
∫ (𝑍(𝑠) −  𝜇𝑍)2𝑑𝑠

𝑇

0
, and 

see that ∫ (𝑍(𝑠))2𝑑𝑠
𝑇

0
 = (𝜎𝑍)2 + (𝜇𝑍)2. Taking 𝜇𝑍 fixed, we find that the squared 

variance (
𝜎𝑍

𝜇𝑍
)

2

= 1 + ∫ (
𝑍(𝑠)

𝜇𝑍
)

2

𝑑𝑠
𝑇

0
 is a well-known, concentration measure on 

U0,µ. 

 

4.4. The Theil measure. 

We define the (generalized) Theil measure for Z in U0 as  

𝑇ℎ𝑔(𝑍) = ∫ 𝑍(𝑠)
𝑇

0
𝑙𝑛(𝑍(𝑠))𝑑𝑠                               (8) 

Clearly, Thg is increasing in Z. Next, we observe that Th(Z), the analytical 

Theil concentration measure, defined as  

𝑇ℎ(𝑍) =
1

𝑇
∫

𝑍(𝑠)

𝜇𝑍

𝑇

0
𝑙𝑛 (

𝑍(𝑠)

𝜇𝑍
) 𝑑𝑠                                 (9) 

is equal to 
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1

𝑇 𝜇𝑍
∫ 𝑍(𝑠)𝑙𝑛 (

𝑍(𝑠)

𝜇𝑍
)

𝑇

0
𝑑𝑠= 

1

𝑇 𝜇𝑍
 (∫ 𝑍(𝑠)𝑙𝑛(𝑍(𝑠))

𝑇

0
𝑑𝑠 − ∫ 𝑍(𝑠)𝑙𝑛(𝜇𝑍)

𝑇

0
𝑑𝑠 ) 

= 
1

𝑇 𝜇𝑍
 (∫ 𝑍(𝑠)𝑙𝑛(𝑍(𝑠))

𝑇

0
𝑑𝑠 − 𝑇 𝜇𝑍 𝑙𝑛(𝜇𝑍) ) 

=  
1

𝑇 𝜇𝑍
∫ 𝑍(𝑠)𝑙𝑛(𝑍(𝑠))

𝑇

0
𝑑𝑠 − 𝑙𝑛(𝜇𝑍)  =  

𝑇ℎ𝑔(𝑍(𝑠))

𝑇 𝜇𝑍
 - 𝑙𝑛(𝜇𝑍). 

Consequently: Thg(Z) = T.µZ. (Th(Z) + ln(µZ)). Hence for µ = µZ constant, 

Thg is a strictly increasing function of the concentration measure Th. Using 

the corollary above, we conclude that Thg is a global impact measure. 

Alternatively, Thg is a global impact measure because the function  𝑠 →

𝑠 ln(𝑠)  is, for s > 0, strictly convex, continuous, and increasing. 

 

5. An application 

It is clear that, for all Y ∈ U0 and for x ∈ [0,T], 

𝐼𝑌(𝑥) = 𝐴 𝐿𝑌 (
𝑥

𝑇
) =  𝜇 𝑇 𝐿𝑌 (

𝑥

𝑇
)                                (10) 

where A is the total production of all sources and µ is the average of Y over 

[0,T]. We will now derive an explicit formula for IY and LY in the case that Y 

is the Zipf curve Z.  

The Zipf curve Z on ]0,T] is defined as 

𝑍(𝑥) =  (
𝑇

𝑥
)

𝛽

                                                (11) 

with 0 < β < 1 (Egghe, 2005) and 1/µ = 1-β (Egghe, 2005, p. 201).  

The non-normalized Lorenz curve of the Z curve on [0,T], denoted as IZ(x), 

is: 

𝐼𝑍(𝑥) =  𝑇𝛽  ∫ 𝑠−𝛽𝑑𝑠
𝑥

0
= (𝛽 ≠ 1) 𝑇𝛽  [

𝑠−𝛽+1

−𝛽+1
]

0

𝑥

= (0 < 𝛽 < 1)
𝑇𝛽

1−𝛽
 𝑥1−𝛽      (12) 

Hence, 𝐼𝑍(𝑥) =  𝜇 𝑇𝛽𝑥
1

𝜇                                                                        (13) 

and by (10) we have: 𝜇 𝑇 𝐿𝑍 (
𝑥

𝑇
) = 𝜇 𝑇𝛽𝑥  1/𝜇 ,  

or 𝐿𝑍 (
𝑥

𝑇
) =  (

𝑥

𝑇
)

1/𝜇

                                     (14) 

We note that formula (14) has been shown in (Egghe, 2005, p. 201) be it 

approximately.  

 

6. Conclusion  
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We investigated a continuous theory of domination, leading to so-called 

global impact measures. In this context, we consider the notion of impact, 

as e.g., shown by a citation curve (articles ranked according to the number 

of received citations) as a combination of the notions of inequality 

(concentration) and productivity. In this way, our article extends earlier 

approaches, in which we mainly focused on the high producers (Egghe, 

2021; Egghe & Rousseau, 2022a). This article belongs to a series of 

investigations studying the notion of impact, the main ideas of which were 

summarized in (Egghe & Rousseau, 2022b). 

Equality or evenness, the opposite of inequality or concentration, plays a 

key role in studies of interdisciplinarity or, more generally, diversity studies 

(Wagner et al., 2011; Rousseau et al., 2019). Of course, concentration and 

diversity are also essential notions in other fields such as economics and 

ecology, and have widespread implications. For this reason, we expect that 

global impact measures, will lead to new opportunities for studies in 

informetrics and, more generally, the science of science. 
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