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Abstract. Cancer cell migration between different body parts is the
driving force behind cancer metastasis, which causes mortality of pa-
tients. Migration of cancer cells often proceeds by penetration through
narrow cavities in possibly stiff tissues. In our previous work [12], a model
for the evolution of cell geometry is developed, and in the current study
we use this model to investigate whether followers among (cancer) cells
benefit from leading (cancer) cells during transmigration through micro-
channels and cavities. Using Wilcoxon’s signed-rank text on the data
collected from Monte Carlo simulations, we conclude that the transmi-
gration time for the stalk cell is significantly smaller than for the leading
cell with a p-value less than 0.0001, for the modelling set-up that we
have used in this study.
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1 Introduction

Cells are complex viscoelastic objects, of which the shape is maintained by its
boundaries. Generally speaking, the cell shape is an outcome of a local balance
between reaction and protrusion [3]. Therefore, cells can deform as a result of
external stimuli, for instance, cell-substrate adhesion, biochemical signaling and
forces exerted on the cell surface [9, 10].

When cells migrate, in particular, when a cancer cell invades and migrates
through a narrow and stiff cavity, it has to deform to adapt to the obstacles.
More invasive cancer cells appear to be more pliable and dynamic both internally
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[4] and externally [5, 2, 15, 10], hence, they are able to adjust their cytoskeleton
and geometry significantly, which could lead to possible diagnosis for cancer.
Furthermore, it has been observed that cancer cells exert a significantly larger
traction forces on their direct environment than benign cells do [8].

In our previous work [12], we developed a phenomenological formalism to
model the evolution of the cell geometry, where we included the morphoelastic-
ity model to describe the possibly permanent impact of cellular forces on the
extracellular matrix. In this manuscript, we consider cells migrating through
a microtube and the objective is to reproduce the experiments by Mak et al.
[7]. In our computational setting and in the experiments [7], the width of the
micro-channel is smaller than the cell size. Therefore, Hertz’ contact model in
combination with friction is used in order to account for the mechanical contact
between channel wall and cell membrane (cell boundary).

In this study, the model by Peng et al. [12] is used and applied to a deformable
channel that is subject to plastic deformation. The idea is that the first cells make
the channel permanently wider, which is modelled by the use of morphoelasticity,
so that cells that arrive later can transmigrate through the channel more easily
and hence faster. The objective of this study is to quantify the decrease of
transmigration of later cells with respect to the transmigration time of the early
cells.

The manuscript is structured as follows: Section 2 summarizes the model
developed in [12] regarding the evolution of the cell geometry. In Section 3,
we present an application of the model where two cells consecutively penetrate
through a flexible channel as well as the results from Monte Carlo simulations
regarding the penetration time of the first and second cells through the channel.
Afterwards, some conclusions are drawn in Section 4.

2 Mathematical Models

We present a brief summary of the model that has been developed in our previous
work. For more details about the model, we refer to Peng et al. [12].

2.1 Cell Cytoskeleton

First we only consider the contribution from the cell stiffness to the movement
of nodal points on the cell membrane. We assume that the cell maintains its
geometry by a series of elastic springs that connect the cell centre and the nodal
points on the cell boundary; see Figure 1 for an illustration. Together with the
rotation matrix, the displacement of the nodal point j on the cell boundary is
given by

dxj = Ec(xc(t) +B(φ̃)x̂j − xj(t))dt. (1)

Here, Ec is the stiffness of the spring that connects the nodal point and cell
centre, x̂ = xc(t) − x̃j(t) is the vector connecting the equilibrium position of
nodal point i on the cell membrane to the cell centre, xc is the central position
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of the cell and x̃j represents the equilibrium position of the nodal point j corre-

sponding to the cell centre xc, and B(φ̃) describes the rotation of the cell, where
B(φ) is defined by

B(φ) =

(
cos(φ) − sin(φ)
sin(φ) cos(φ)

)
, (2)

such that φ can be computed from

φ̃ = arg min
φ∈[0,2π)

(
N∑
i=1

‖B(φ)x̃i(t)− xi(t)‖2
)
. (3)

Fig. 1: A schematic of the cell cytoskeleton, which is kept by a series of
springs.

2.2 Chemotaxis and Random Walk

There are various cues invoking cell migration, and one of them is chemotaxis,
which provides the cell with a tendency to migrate towards (positive chemotaxis)
or away from (negative chemotaxis) the gradient of a chemical. Just like in Peng
et al. [12], we use a point source that secretes a chemical at the end of the micro-
channel. The concentration of the chemical is modelled by a reaction-diffusion
equation with a point source in open domain Ω with boundary ∂Ω:

∂c(x, t)

∂t
+∇ · (vc(x, t))−∇ · (D∇c(x, t)) = kδ(x(t)− xs), in Ω, t > 0,

c(x, 0) = 0, in Ω, t = 0,

∂c

∂n
+ κsc = 0, on ∂Ω, t > 0,

(4)
where c(x, t) is the concentration of the signalling molecule; D is the diffusion
rate which has been taken constant in the current study; k is the secretion rate
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of the signal source; xs is the position of the source; δ(x(t)) is the Dirac Delta
distribution, which is defined by

δ(x) = 0, for x 6= 0,

and constrained to satisfy the identity that∫
Ω

δ(x)dΩ = 1, if 0 ∈ Ω,

for any dimensionality (note that Ω is open); v is the displacement velocity of
the substrate that results from the cellular forces exerted on their surroundings.
The velocity is computed by solving the balance of the momentum, which will
be discussed in the Section 2.3.

Together with the random displacement of the cell, which is described by a
vector-Wiener process and the contribution from the cell stiffness, the displace-
ment of a nodal point on the cell membrane is modelled by

dxj = Ec(xc(t) +B(φ̃)x̂j − xj(t))dt+ β
∇c(xj)

‖∇c(xj)‖+ γ
dt+ σrwdW (t), (5)

where β is the chemotaxis sensitivity parameter, γ is a small positive constant
to prevent division by zero, and σrw is the random walk parameter (in partic-
ular, the standard deviation of the random fluctuation, of which the square is
proportional to the cell diffusion constant).

2.3 Force Balance and Friction

It has been documented in many studies, see for instance [8], that cancer cells
exert forces on the immediate environment and that they are able to change bio-
chemical properties of their immediate environment. We incorporate the forces
that are exerted by the (migrating) cells on the walls of the micro-channel. We
accommodate for the plastic nature of the resulting deformations by the use
of a morphoelastic formalism. The morphoelastic model combines a mechanical
balance, where viscoelasticity has been included, with an evolutionary equation
for the effective Eulerian strain. This results into the following set of partial
differential equations:

ρ[
Dv

Dt
+ v(∇ · v)]−∇ · σ = fm, in Ω, t > 0,

Dε

Dt
+ ε skw(L)− skw(L)ε+ [tr(ε)− 1] sym(L) = −αε, in Ω, t > 0,

v(x, t) = 0, on ∂Ω, t > 0,

v(x, 0) = 0, in Ω, t = 0,

ε(x, 0) = 0, in Ω, t = 0,

(6)

where ρ is the density of the extracellular matrix, L = ∇v and α is a non-
negative constant, and ε is the effective Eulerian strain tensor that is to be
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solved. Note that if α = 0, then as soon as the force fm = 0, then the tissue will
gradually recover to its original shape and volume. Here, Dy

Dt = ∂y
∂t + v · ∇y is

material derivative where y is any scalar field and v is the migration velocity of
any point within the domain of computation. In order to have a fixed boundary,
we use a homogeneous Dirichlet boundary condition for the velocity. From a
mechanical point of view, we treat the computational domain as a continuous
linear isotropic domain. Further, as a result of the presence of liquid phases in
the tissue, the mechanical balance is also subject to viscous, that is friction,
effects. Therefore, we use Kelvin–Voigt’s viscoelastic dashpot model, of which
the stress tensor reads as

σ = σelas + σvisco

=
E

1 + νs
{ε+ tr(ε)[

νs
1− 2νs

]I}+ µ1 sym(L) + µ2 tr(sym(L))I,
(7)

where νs is the Possion’s ratio of the substrate, ε is the effective Eulerian
strain tensor, µ1 and µ2 are the shear and bulk viscosities respectively. The
morphoelasticity model solves two (nonlinear) partial differential equations and
both velocity v and strain tensor ε are unknowns. The displacement of the do-
main can be approximated by numerically integrating the velocity over time:
u(t) =

∫ t
0
v(s)ds.

We consider cells transmigrating through a deformable channel. The cell
boundaries exert forces on the channel wall and the channel wall exerts reaction
forces on the cell boundaries. As mentioned earlier, the cell boundary points are
connected to the cell centre by springs and further these points are connected to
their immediate neighboring points on the cell boundary. Similar to Peng et al.
[12], we assume thatNl = {i1, . . . , im} andNp = {j1, . . . , jm+1}, respectively, are
the line segments and nodal points of the cell membrane that are in mechanical
contact with the wall of the channel. Then the force fm in Eq (6) reads as

fm(x, t) =
∑
i∈Nl

Qn(xi(t))δ(x(t)− xi(t))∆Γ i, (8)

where Q is the magnitude of the traction force per unit length that is exerted
by the cell, n(x(t)) is the unit outward pointing vector at point x(t), xi(t) is
the midpoint of line segment i, δ(x(t)) is the Dirac delta distribution and ∆Γ i

is the length of line segment i.

Besides the pushing traction forces that the cell exerts on the channel, the
wall exerts a friction and compressive force on the boundary of the cell. This
friction force is assumed to be proportional to the forcing between the walls of
the cell and the channel and hence both the spring force contribution of the
cell and the force exerted on the channel wall are incorporated. Therefore, the
friction ff (x, t), which is only at the nodal point j ∈ Np = {j1, . . . , jm+1}, is
expressed as a sum of two aforementioned forces:

ff (xj , t) = fm(xj , t) + Ec(B(φ̃)x̂j − xj(t)). (9)
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Therefore, combining with the passive convection of the substrate and the
effect of the friction, Eq (1) is now given by

dxj = Ec(xc(t) +B(φ̃)x̂j − xj(t))dt+ β
∇c(xj)

‖∇c(xj)‖+ γ
dt+ v(xj(t))dt

− µf‖ff (xj(t))‖ · (dxj(t), τob(xj(t)))τob(xj(t)) + σrwdW (t),

(10)

where µf is the friction coefficient, and τob(x) is the unit tangential vector of
the obstacle boundary. We bear in mind that that the forces are only exerted on
the direct environment of the cell if both end points of the line segment are in
direct contact with the channel wall; similarly, friction is only incorporated on a
nodal point that is in direct contact with the channel wall.

3 Applications and Numerical Results

In our previous work [12], we presented several applications of the model, for
instance, cell migration, cell differentiation and cell penetrating through a mi-
crotube. In this manuscript, we consider a flexible channel, which deforms due
to the traction forces that a cell exerts on the channel wall. Figure 2(a) shows
the initial settings of the simulation, where the cell is initially located in one
side of the channel and migrates towards the gradient of the concentration of
the signalling molecules through the channel. Once the first cell exits the chan-
nel, it will be discarded in further computations, and the second cell will start
migrating from its initial position, i.e. the position where the red circle is, in
Figure 2(a). The parameter values are shown in Table 1. The horizontal channel
is determined by

y = ±(3.5 + sin(0.5x))µm, x ∈ (−60, 60)µm.

Several screenshots are shown in Figure 2, which shows the locations of the
cells and the shape of the cell and the channel. In Figure 2(b), the part of the
channel that the first cell has penetrated, has clearly expanded. Once the first
cell has entirely left the channel, it is disregarded in further calculations, and
simultaneously the second cell appears at the initial position (the red circle), see
Figure 2(d) and 2(e). The plastic deformation that has been caused by the first
cell makes the second cell transmigrate through the micro-channel more easily
because less force needs to be applied by the cell. From Figure 2, it is observed
that the channel is slightly deformed in the direction of the migration of the
cells.

Due to the significant deformation of the channel, we are interested in whether
the second cell can benefit from the first cell expanding the flexible channel, that
is, whether it takes less time for the second cell to penetrate through the channel
than for the first cell, see Figure 2(e) – (h). We carry out Monte Carlo simulations
without taking any other input parameters as random variables. Hence, the only
stochastic process in the model is the random walk contribution to migration of
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(a) t = 0 min (b) t = 5 min

(c) t = 20 min (d) t = 30 min

(e) t = 30.1 min (f) t = 35.8 min

(g) t = 40.8 min (h) t = 61.9 min

Fig. 2: Screenshots of the simulation at different moments when two cells
penetrate the flexible channel sequentially. The red dot at the very right posi-
tion with coordinates (90, 0) in the figure is the point source of the signalling
molecules; blue curves are the deformed channel, which is initially sinusoidal;
red circle represents the initial position and shape of the cells.
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Table 1: Parameter values used in the computational simulations

Parameter Description Value Units Source

P0
Maximal traction force exerted by

cells
10.4

kg ·
µm/h2 [6]

µf Cell friction coefficient 0.03 − [1]
νs Poisson’s ratio of the substrate 0.49 − [6]

k
Secretion rate of the cell-attractive

signal
2.5

kg/(µm3·
min)

[11]

κs
Parameter in Robin’s boundary

condition to solve Eq (4)
100 µm−1 [11]

µ1 Shear viscosity of the ECM 33.783 − [11]
µ2 Bulk viscosity of the ECM 22.523 − [11]

Estimated parameter values

x0
Length of the computational domain

in x-axis
200 µm

y0
Length of the computational domain

in x-axis
100 µm

∆t Time step 0.1 min

Es Substrate elasticity 50
kg/(µm ·
min2)

Ec
Cell elasticity and the stiffness of the

springs in the cell cytoskeleton
10

kg/(µm ·
min2)

R Cell radius 5 µm

β
Maximal mobility of points on cell

membrane
5 min−1

D Diffusion rate of the signal 233.2 µm2/min

N
Number of nodal points on the cell

membrane
40 −

σrw Weight of random walk 1 −

α
Degree of permanent ECM

deformation in Eq (6)
2 −

the cell. We collected 1130 samples regarding the penetration time of each cell
through the channel. The box plot and density plot of the data are presented
in Figure 3, respectively. From these plots, it is hard to conclude whether the
second cell takes significantly less time than the first cell to migrate through
the channel. This seemingly small difference between the transmigration times
of the second and first cells is probably the result of the thickness of the channel
being comparable to the cell diameter. We expect that the differences in trans-
migration times increase if the channel width is much smaller than the cell size.
Of course, this trend will depend on the amount of plasticity in the deformation
of the channel. This will be a topic for further research. Furthermore, according
to Shapiro’s test [14], neither of the dataset is normally distributed with p-value
less than 0.05. Therefore, instead of the t-test, we use Wilcoxon’s signed-rank
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test for these two paired samples, since Wilcoxon’s signed-rank test [13] does not
require normality of the data.

(a) Box Plot (b) Density Plot

Fig. 3: Empirical plots of the data collected from the Monte Carlo simulations.
(a) Box plot shows the median (middle line), 25% (Q1) and 75% (Q3) percentile

(lower and upper bound of the box), the minimum (Q1 − 1.5
Q3 −Q1

2
) and

maximum (Q3 + 1.5
Q3 −Q1

2
) of the data excluding the outliers (verticle lines)

and outliers (dots). (b) Estimated probability density of the penetration time
for the first and the second cell, respectively.

Table 2 displays the statistical results from the Wilcoxon’s signed-rank test
of the two paired dataset regarding the penetration time in the channel. The
p-value is much smaller than the significance level 0.05, therefore, based on the
data collected from the Monte Carlo simulation, we conclude that the second
cell does benefit from the first cell expanding the channel.

Null Hypothesis
(H0 : T1 = T2)

There is no difference in penetration time for both
cells.

Alternative Hypothesis
(H1 : T1 > T2)

The second cell has shorter penetration time than
the first cell.

p− value = P(Data|H0) = 1.158× 10−5

Table 2: Statistical results of Wilcoxon’s signed-rank test on the paired dataset
of penetration time of each cell. T1 and T2 represent the penetration time of
the first and second cell, respectively.
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4 Discussion and Conclusions

Our previously developed model for the evolution of cell geometry has been
used to investigate whether followers among (cancer) cells benefit from leading
(cancer) cells during transmigration through micro-channels and cavities. Since
cell migration is subject to randomness, Monte Carlo simulations have been done
to estimate the probability density of penetration times for both the leading and
stalk cells. Using Wilcoxon’s signed-rank test, it has been concluded that the
transmigration time for the stalk cell is significantly smaller than for the leading
cell with a p-value of less than 0.0001. The physical explanation is that the first
(leading) cell deforms the micro-channel plastically so that the channel is wider
when the second (stalk) cell transmigrates through the channel. The second cell
has the advantage that it needs to exert fewer forces than the first cell. This effect
could possibly even be amplified if metabolism would be taken into account.

We realize that we have shown the (Monte Carlo) results for one modelling
set-up only. All input variables have been fixed and all differences in simulation
runs were exclusively caused by the random nature of cell migration through
the Wiener process (white noise – random walk). Nevertheless, we may conclude
via Wilcoxon’s signed-rank test that the current simple ’toy model’ predicts a
significant difference between the transmigration times of the second and first
cell, from which it is concluded that the second cell transmigrates more easily
than the first cell for the current modelling set-up. In our future Monte Carlo
simulations, we will add uncertainties in the channel width, channel length,
Young’s modulus of the ECM, distance between the initial cell positions and
the channel, distance between the consecutive cells, amount of plasticity in the
deformation and possibly more (biophysical) parameters by the use of prior
statistical distributions.
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