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Summary

LetG be a finite group and (ℤG) the unit group of the integral group ringℤG. We
prove a unit theorem, namely a characterization of when (ℤG) satisfies Kazhdan’s
property (T), both in terms of the finite group G and in terms of the simple compo-
nents of the semisimple algebra ℚG. Furthermore, it is shown that for  (ℤG) this
property is equivalent to the weaker property FAb (i.e. every subgroup of finite in-
dex has finite abelianization), and in particular also to a hereditary version of Serre’s
property FA, denoted HFA. More precisely, it is described when all subgroups of
finite index in (ℤG) have both finite abelianization and are not a non-trivial amal-
gamated product.
A crucial step for this is a reduction to arithmetic groups SLn(), where is an order
in a finite dimensional semisimple ℚ-algebra D, and finite groups G which have the
so-called cut property. For such groupsG we describe the simple epimorphic images
of ℚG. The proof of the unit theorem fundamentally relies on fixed point properties
and the abelianization of the elementary subgroups En(D) of SLn(D). These groups
are well understood except in the degenerate case of lower rank, i.e. for SL2() with
 an order in a division algebraD with a finite number of units. In this setting we de-
termine Serre’s property FA for E2() and its subgroups of finite index.We construct
a generic and computable exact sequence describing its abelianization, affording a
closed formula for its ℤ-rank.
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1 INTRODUCTION

One of the most natural and important questions in (integral) representation theory is whether a finite group G is determined by
its integral group ringℤG (the so called Isomorphism problem, in short (ISO)). Posed for the first time by Higman [36] in 1940,
popularized by Brauer [10] in 1963, it was only in the 1980’s that firm indications for a positive solution were obtained. Indeed,
these years saw a number of major breakthroughs, starting with Roggenkamp-Scott [58] who obtained an affirmative solution to
(ISO) for nilpotent groups. In fact, not only they did prove thatG ≅ H wheneverℤG = ℤH , but also thatG = H� for some unit
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� ∈  (ℚG); hence explainingwhy the isomorphism occurs. Here (ℚG) denotes the unit group ofℚG. In general, this stronger
statement is called the second Zassenhaus conjecture (ZC2). The third and strongest Zassenhaus conjecture (ZC3) asserts that
any finite subgroup of the group of units of augmentation one of ℤG should be rationally conjugated (that is, conjugated in
 (ℚG)) to a subgroup of the basis G. Shortly after Roggenkamp-Scott, Weiss obtained in his landmark papers [70, 71] that
nilpotent groups even satisfy (ZC3). Around the same time, Roggenkamp-Scott [60] provided a metabelian counterexample to
(ZC2). It took ten more years until Hertweck constructed, unexpectedly, in [35] a counterexample to (ISO). His construction is
still the only known type of counterexample and the general philosophy remains that the ring ℤG encodes a lot of information
on G.
A remarkable property of integral group rings is the following: if G and H are finite groups, then ℤG ≅ ℤH if and only

 (ℤG) ≅  (ℤH). Hence (ISO) is equivalent withG being determined by (ℤG). This is one of the reasons why the structure
of  (ℤG) already receives for more than five decades tremendous attention; for an overview on the main advances and open
problems we refer to [42, 43, 61, 62]. Several main research directions emerged:

1. the search for generic constructions of subgroups of finite index (preferably torsion-free) in  (ℤG),
2. the understanding of torsion units in ℤG (for which the Zassenhaus conjectures were a driving force for many years;

recently a counter example has been given by Eisele-Margolis [24] for the last of these that remained open, but still many
open problems remain on the arithmetic of the torsion structure), and

3. the search for unit theorems, i.e. structure theorems for the unit group  (ℤG).
A fairly complete account of the first direction can be found in the recent books [42, 43] and for the second we refer to the
surveys [48, 53] and the references therein.
This paper contributes mainly to the third direction listed above. A very concrete idea of a unit theorem was given by Kleinert

[49] in the context of orders:

a unit theorem for a finite dimensional semisimple rational algebra A consists of the definition, in purely group theoretical
terms, of a class of groups C(A) such that almost all generic unit groups of A are members of C(A).

Recall that a generic unit group of A is a subgroup of finite index in the group of reduced norm 1 elements of an order in A. So
far, the finite groups G for which a unit theorem, in the sense of Kleinert, is known for  (ℤG) are those for which the class of
groups considered are either finite groups (Higman), abelian groups (Higman), free groups [40] or direct products of free(-by-
free) groups [41, 45]. Remarkably, the latter can also be described in terms of the rational group algebra: every simple quotient
of ℚG is either a field, a totally definite quaternion algebra or a 2-by-2 matrix ring M2(K), where K is either ℚ, ℚ(√−1),
ℚ(

√

−2) orℚ(√−3). To our knowledge these results cover all the known unit theorems on (ℤG). Surprisingly, one obtains a
unit theorem when all the non-commutative simple components of ℚG are two-by-two matrices over a field with finitely many
units in any order. This is in contrast with the construction of generators of a subgroup of finite index in (ℤG), where one has
shown that a collection of explicitly constructed units generate a subgroupB of finite index providedℚG does not have so called
exceptional components, and G does not have non-abelian fixed point free (i.e. a group of fixed point free automorphisms of a
finite group) images. These exceptional components (cf. Definition 6.7) are the non-commutative division algebras other than
a totally definite quaternion algebra over a number field (of so called type (I)) orM2(D) with D a finite dimensional ℚ-division
algebra having an order  with  () finite (of so called type (II)).
Very little is known on the structure ofB. However several authors, includingMarciniak, Sehgal, Salwa, Gonçalves, Passman,

del Río have given explicit constructions of free groups inB (we refer the reader to [31]). More recently Gonçalves and Passman
in [32] and Janssens, Jespers and Temmerman in [39] gave explicit constructions (within the group B) that generate a free
product Cp ∗ Cp of two cyclic groups of order p in  (ℤG) in all cases where this is possible, i.e. provided G has a noncentral
element of order p.
In this paper we complement this line of research by determining when the unit group (ℤG) or the group B can be decom-

posed into a non-trivial amalgamated product or an HNN extension (see Definitions 2.3 and 2.4) . In fact we show when these
decompositions do not occur. In case of an HNN extension this is equivalent, by Bass-Serre theory, to  (ℤG)ab being finite.
Here  (ℤG)ab denotes the abelianization  (ℤG)∕ (ℤG)′ of  (ℤG), where  (ℤG)′ denotes the commutator subgroup. In
particular, by a classical theorem of Serre [63], the absence of an amalgam and HNN can be rephrased in terms of satisfying
the so-called FA property. A group is said to have
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• property FA if every action on a simplicial tree has a global fixed point,
• property Fℝ if every isometric action on a real tree has a global fixed point.

See Definition 2.2 for more details. Serre proved that a finitely generated group has property FA exactly when it is neither a
HNN extension nor a non-trivial amalgam.
Since unit theorems concern a property on almost all subgroups of finite index, we will consider the hereditary properties,

denoted HFA and HFℝ, and a hereditary finite abelianization property, denoted FAb. One says that a group has
• HFA if all its finite index subgroups have property FA,
• HFℝ if all its finite index subgroups have property Fℝ,
• property FAb if every subgroup of finite index has finite abelianization.

It is well-known that properties FA, HFA and FAb follow from Kazhdan’s property (T) [9, Theorem 2.12.6], .
The main result of this paper is a characterization of when  (ℤG) satisfies these hereditary properties. Surprisingly, all the

mentioned hereditary fixed point properties are equivalent and are controlled both in terms ofG and in terms of the Wedderburn
decomposition of ℚG. Recall that a finite group G is called a cut group if and only if  (ℤG) has only trivial central units, i.e.
the center of  (ℤG) is finite. For example, rational groups are cut. Recently, cut groups gained in interest (see for example
[4, 7, 68]), but especially the subclass of rational groups has already a long tradition in classical representation theory (for
example, see [37, 50]).
Theorem A. (Theorem 7.1, Corollary 7.5 and Corollary 7.7) Let G be a finite group. The following properties are equivalent:

1. the group  (ℤG) has property HFA,
2. the group  (ℤG) has property HFℝ,
3. the group  (ℤG) has property (T),
4. the group  (ℤG) has property FAb,
5. G is cut and ℚG has no exceptional components,
6. G is cut and G does not map onto one of 10 explicitly described groups.

Moreover, if ℚG does not have an exceptional component of type (II), then any of the above properties also is equivalent with
any of the following properties:

7.  (ℤG)ab is finite,
8. G is a cut group.
It is worth noticing that ℚG, for G a group of odd order, does not have exceptional components of type (II).
From this theorem it follows that in particular, if these conditions are satisfied and the group G has no non-abelian homo-

morphic image which is fixed point free, the group B is not a non-trivial amalgamated product nor an HNN extension (see
Corollary 7.3).
Crucial to prove Theorem A is to reduce the problem to ℤ-orders (also sometimes simply called orders, see Section 2.2) in

simple components of the semisimple rational algebraℚG. One writesℚG = Mn1(D1)⊕⋯⊕Mnk(Dk), with eachDi a division
algebra. Let i be an order in Di. Then both ℤG and Mn1(1) ⊕⋯ ⊕Mnk(k) are orders in ℚG. Due to classical results in
order theory their respective unit groups are commensurable and the hereditary fixed point properties of both orders are related
and, as we shall prove, strongly determined by the groups Eni(i) generated by elementary matrices (these are matrices with 1
on the diagonal and at most one non-zero entry elsewhere).
The first part of this paper is therefore dedicated to the (hereditary) fixed point properties of the groups Eni(i) and some

related groups.
Recall that SLn(D), for a division algebra D, consists of the matrices of degree n of reduced norm one (see Section 2.2

for more details). Due to the celebrated works of many ([6, 8, 67] amongst others) on the subgroup congruence problem and
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the seminal work of Margulis [54], SLn(D) enjoys a rich theory on subgroup and rigidity results whenever certain geometric-
arithmetic invariants, such as the (reductive) rank, are large enough. More precisely, in these cases (for example when n ≥ 3),
every arithmetic subgroup of SLn(D) (i.e. every subgroup which is commensurable to SLn() for some order  in D), and
consequently also En(), has property (T), where  is any order in D.
On the other hand, when SL2(D) is of so-called low rank, which amounts to say that D contains an order  with () finite

(see Section 6.2 for more details), the machinery breaks down and the corresponding landscape reshapes. To illustrate this, if
D is commutative it was proven [33] that E2() and all its finitely generated subgroups have the Haagerup property which is a
strong form of non-rigidity, hence opposed to property (T).
The objects E2() with  () finite are the protagonists of the first part of the paper. For a unital ring R we need for our

investigations on abelianization to consider the group GE2(R) generated by E2(R) and the group of invertible diagonal matrices
over R. We extend Cohn’s techniques [14, 15] to arbitrary finite dimensional division ℚ-algebras D containing an order 
with finite unit group. In particular, we deal with orders in totally-definite quaternion algebras with center ℚ. As a first step we
obtain in Section 3.1 finite presentations for the groups E2() and GE2(), which allow us to connect E2()ab to the arithmetic
structure of .
Theorem B (Theorem 3.10 and Theorem 3.8). Let  be an order in a finite dimensional division ℚ-algebra with finite unit
group. There exists an (explicit) additive subgroupM of (,+) such that

E2()ab ≅ (∕M,+),

and an (explicit) two-sided idealN of  such that there is a short exact sequence
1 ←→ (∕N,+) ←→ GE2()ab ←→  ()ab ←→ 1.

More concretely, N is the two-sided ideal generated by the elements u − 1 with u ∈  (). Therefore as a by-product, the
exact sequence above yields that GE2()ab is finite (Corollary 3.7) for any order  as in Theorem B. This is in sharp contrast
with the elementary group case, as is shown by the following theorem where for a finitely generated abelian group G,

rankℤG ∶= max{n ∣ ℤn is, up to isomorphism, a subgroup of G},
and

inv ∶= max{|B ∩ ()| ∣ B a ℤ-module basis of }.
Theorem C (Theorem 3.14). Let  be an order in a finite dimensional division ℚ-algebra with finite unit group. Then,

rankℤ E2()ab = rankℤ  − inv .

Moreover, the following properties are equivalent:
1. E2()ab is finite,
2.  has a ℤ-basis consisting of units of ,
3.  is isomorphic to a maximal order in ℚ, ℚ(√−1), ℚ(√−3) or in the quaternion algebras

(

−1,−1
ℚ

)

,
(

−1,−3
ℚ

)

or it is the
order of Lipschitz quaternions

(

−1,−1
ℤ

)

.
A detailed explanation on the notation of quaternion algebras is given in Section 2.2. When  () is infinite, the situation is

drastically different. Indeed, it is well-known (by Margulis) that then SL2() and E2() have property FAb.
As mentioned earlier if E2() has property FA then E2()ab is finite. Hence, in this case, the orders  that can appear are

restricted by Theorem C. Investigating further these orders and certain subgroups of finite index in E2()we determine precisely
when E2() has property FA and HFA.
TheoremD (Theorem 5.1 and Theorem 5.7). Let be an order in a finite dimensional divisionℚ-algebra with finite unit group.
The following properties are equivalent:

1. E2() has property FA,
2.  is isomorphic to a maximal order in ℚ(√−3),

(

−1,−1
ℚ

)

or in
(

−1,−3
ℚ

)

.
Furthermore, E2() does not have property HFA.
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In Section 5.2, properties FA and HFA are also investigated for the group GE2(). For both groups one first needs to under-
stand the respective Borel subgroups. This is done simultaneously in Section 5.1 by considering a more general type of group.
Interestingly, in case of the Borel subgroup B2() of GL2() we obtain in Proposition 5.10 that it has property FA if and only
if  () is not isomorphic to C2, the cyclic group of order 2.
As mentioned earlier, we do not only consider actions on simplicial trees, but more generally on real trees for property Fℝ.

In all the cases where we obtain property FA we actually have the stronger property Fℝ. In Section 4, we also briefly discuss
elementary groups of degree at least 3.
In comparison with HFA in Theorem A, studying property FA for the full unit group  (ℤG) is even more delicate. In

Section 6, we show that if  (ℤG) has property FA, then G is a cut group. We then further investigate cut groups in that
section and prove in Proposition 6.12 that if G is a cut group, then ℚG has no exceptional components of type (I). Finally
in Proposition 6.16, we give a complete description of the exceptional components that can appear in the Wedderburn-Artin
decomposition of a cut group and we state precisely when such components appear.
A full characterization of when  (ℤG) has property FA has not been obtained but in Section 8 necessary conditions will

be proven and open problems will be formulated. Earlier, in Section 7 we propose a trichotomy result (Question 7.8) about
 (ℤG) having property HFA, having property FA but not HFA or it having a non-trivial amalgamated decomposition and
finite abelianization. So finite abelianization and a decomposition as amalgamated product would hence be inextricable for unit
groups in ℤG. We also prove in Proposition 7.9 that this question is equivalent to two other problems of independent interest.
We point out that in the follow-up paper [5] we focus, among other things, on obtaining explicit non-trivial amalgamated

decompositions for subgroups of finite index in (ℤG) provided (ℤG) does not satisfyHFA.Notably, building on themethods
in this paper, a weaker version of the above mentioned trichotomy is proven, namely that  (ℤG) either has property HFA or
is, up to commensurability, a non-trivial amalgamated product.

2 PRELIMINARIES

In this first section we review facts that are needed in the sequel of the article. As a rule, in this paper, a ring R is always meant
to be unital and associative, but not necessarily commutative. Moreover, we use the notation (R) for its center. For any group
Γ, Γ′ denotes its commutator subgroup and Γab = Γ∕Γ′ its abelianization.

2.1 Trees
In this subsection we recall some background on the geometric concepts used in the paper, see [13]. We will be considering two
kinds of trees: simplicial trees and real trees.
Definition 2.1. A connected, undirected graph is called a simplicial tree (or simply a tree) if it contains no cycle graph as a
subgraph.
A metric space is called a real tree (or ℝ-tree) if it is a geodesic space with no subspace isomorphic to S1.
Recall that a metric space (X, d) is geodesic if between every two points x and y there exists a curve of length d(x, y). The

length L(�) of a curve � ∶ [0, 1] → (X, d) is defined as sup∑ d(�(ti), �(ti+1)), where 0 = t0 < ... < tk = 1 is a partition of
[0, 1] and the supremum is taken over all possible partitions.
This definition of a real tree is equivalent to saying that it is a connected 0-hyperbolic space, that is to say all triangles are

0-thin. For more on trees or the definition of a 0-hyperbolic space, we refer the reader to [13].
An isomorphism g of a simplicial tree is called an inversion if there exist two adjacent vertices which are mapped to one-

another. This is equivalent with the fact that g does not have a fixed vertex, but g2 does. An isomorphism with the former
property does not exist for ℝ-trees. Indeed let Tℝ be a real tree with an isomorphism g and let x ∈ Tℝ be a point fixed under g2.
Considering the geodesic between x and g(x), it is easy to see that the midpoint should be a fixed point for g.
In this paper we will be interested, for various types of linear groups Γ, in the existence of global fixed points when we let Γ

act on trees.
Definition 2.2. A group Γ is said to have property FA if whenever Γ acts on a tree such that no non-identity element acts as
inversion, this action has a globally fixed vertex.
A group Γ is said to have property Fℝ if every isometric action on a real tree has a globally fixed point.
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A group Γ is said to have the hereditary property FA (respectively Fℝ) if every finite index subgroup of Γ has property FA
(respectively Fℝ). We denote these properties by HFA and HFℝ.
Property FA was first introduced by Jean-Pierre Serre and the name FA comes from the French “points Fixes sur les Arbres”.
A simplicial tree can be considered as a real tree by its geometric realization [13, Chapter 2, Section 2]. In this way, an action

on a simplicial tree T induces an action on its geometric realization Tℝ. If the action was without inversion, then a point xℝ of
Tℝ which is fixed under this induced action, has to correspond to a fixed vertex x of T . Thus property Fℝ implies property FA.
There are however real trees which are not simplicial trees.
In general, FA is a weaker property than Fℝ and an example of a group satisfying FA but not Fℝ can be found in [55].

Our interest in property FA originates from the structural properties it implies. In order to be more precise we first recall the
definition of an amalgamated product and an HNN extension.
Definition 2.3. Let G1, G2 and H be groups and f1 ∶ H → G1 and f2 ∶ H → G2 be injective homomorphisms. Let N be
the normal subgroup of the free product G1 ∗ G2 generated by the elements f1(ℎ)f2(ℎ)−1 with ℎ ∈ H . Then the amalgamated
product G1 ∗H G2 is defined as the quotient

(G1 ∗ G2)∕N.

This amalgamated product is said to be trivial if either f1 or f2 is an epimorphism.
Definition 2.4. Let Γ be a group with presentation ⟨S ∣ R⟩, H1 and H2 be two isomorphic subgroups of Γ and � ∶ H1 → H2
an isomorphism. Let t ∉ Γ be a new element and ⟨t⟩ a cyclic group of infinite order. The HNN extension of Γ relative toH1,H2
and � is the group

⟨S, t ∣ R, tgt−1 = �(g), g ∈ H1⟩.

A group theoretical characterisation of property FA was obtained by Serre [63, I.6.1 Theorem 15].
Theorem 2.5 (Serre). A countable group Γ has property FA if and only if it satisfies the following properties

• Γ has finite abelianization,
• Γ has no non-trivial decomposition as amalgamated product,
• Γ is finitely generated.
By classical Bass-Serre theory, a finitely generated group is an HNN extension if and only if it has infinite abelianization (see

[63, I.5.1. example 3 and the proof of I.6.1 Theorem 15]). Thus we get the following immediate corollary.
Corollary 2.6. A finitely generated group has property FA if and only if it is neither an HNN extension nor a non-trivial
amalgamated product.
Unfortunately for property Fℝ such a group-theoretical description is still an open problem. The following properties are

well-known (in case of FA a proof can be found in [63, I.6.3 Examples 1-4], and the other cases can be handled in a similar
fashion) and will (mostly) be used without further notice.
Proposition 2.7. Let Γ be a group,N a subgroup of Γ and  a property among HFℝ, HFA, Fℝ and FA.

• If Γ is finitely generated and torsion, then Γ has property  . In particular, finite groups have property  .
• IfN is normal in Γ and bothN and Γ∕N have property  , then so does Γ.
• IfN is a subgroup of finite index in Γ with property  , then Γ has property  .
• IfN is normal in Γ and Γ has property  then so does Γ∕N .

In particular, a finite direct product
q
∏

i=1
Gi has property  if and only if every Gi has property  .

Two subgroups Γ1,Γ2 of a group Γ are called commensurable, if their intersection is of finite index in both Γ1 and Γ2. From
Proposition 2.7 it follows that properties HFA andHFℝ are actually properties of the commensurability class of a group, meaning
that either all or none of the groups in the class have this property.
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2.2 Orders and quaternion algebras
Let A be a finite-dimensional algebra over ℚ. Recall that a ℤ-order (or for brevity just order) is a subring of A that is finitely
generated as a ℤ-module and contains a ℚ-basis of A. The following property will be primordial and used very regularly in the
rest of the paper. For a proof see [42, Lemma 4.6.9]
Proposition 2.8. Let A be a finite dimensional semisimple ℚ-algebra and let  and ′ be both orders in A. Then their unit
groups  () and  (′) are commensurable.
Let K be a field of characteristic 0. Recall that for u, v ∈ K ⧵ {0} the quaternion algebra D =

(

u,v
K

)

is the central K-algebra
D, i.e. (D) = K ⋅ 1, that is a 4-dimensional K-vector space with basis {1, i, j, k} and multiplication determined by

i2 = u, j2 = v, ij = k = −ji.

Due to following classical theorem of Hasse-Brauer-Noether-Albert, a quaternion algebra is uniquely determined by the places
at which it ramifies. Recall that a field extension E of a field K is said to be a splitting field of a central simple K-algebra A if
E ⊗K A ≅ Mn(E), and E ⊗K A is said to be the split extension of A.
Theorem 2.9. [57, Theorem 32.11] Let K be a number field and D a quaternion algebra over K . Define Ram(D) as the set of
places v of K such that D is ramified at v, i.e. such that the completion Kv of K , with respect to v, is not a splitting field of D.
Then Ram(D) is a finite set with an even number of elements. Moreover, for any finite set S of places ofK such that |S| is even,
there is a unique quaternion algebra D with center K such that Ram(D) = S.
For K = ℚ, it is well-known that every place corresponds to a prime integer (for a finite place) or∞ (for the unique infinite

place). Thus a quaternion algebra D over ℚ is uniquely determined by its discriminant d = ∏

p∈Ram(D)⧵{∞}
p which is the product

of all finite places at which D is ramified. For simplicity’s sake, we will sometimes denote a quaternion algebra
(

u,v
ℚ

)

with
discriminant d and center ℚ by ℍd , which is well defined by the above. Later we will frequently encounter the following three
quaternion algebras:

ℍ2 =
(

−1,−1
ℚ

)

, ℍ3 =
(

−1,−3
ℚ

)

and ℍ5 =
(

−2,−5
ℚ

)

.

IfK is a totally real number field and �(u), �(v) < 0 for every embedding � ∶ K → ℝ, then the quaternion algebraD =
(

u,v
K

)

is called totally definite. The conjugate x̄ of x = a1 ⋅ 1 + a2 ⋅ i + a3 ⋅ j + a4 ⋅ k ∈ D, a1, a2, a3, a4 ∈ K is
x̄ = a1 ⋅ 1 − a2 ⋅ i − a3 ⋅ j − a4 ⋅ k.

We now recall the concept of reduced norm. LetA be a finite dimensional central simple algebra over a fieldK of characteristic
0. Let E be a splitting field of A. The reduced norm of a ∈ A is defined as

RNrA∕K (a) = det(1E ⊗K a).

Note that RNrA∕K (⋅) is a multiplicative map, RNrA∕K (A) ⊆ K and RNrA∕K (a) does only depend on K and a ∈ A (and not on
the chosen splitting field E and isomorphism E ⊗K A ≅ Mn(E)), see [42, page 51]. For a subring R of A, put

SL1(R) = { a ∈  (R) | RNrA∕K (a) = 1 },

which is a (multiplicative) group. If A = Mn(A′) and R = Mn(R′) with A′ a finite dimensional central simple algebra over K
and R′ a subring of A′, then we also write SL1(A) = SLn(A′) and SL1(R) = SLn(R′).
If we write  for an order in a finite dimensional division ℚ-algebra D then, as will be explained in further detail and more

generally in Section 6.2, SLn(D) is an algebraic ℚ-group and SLn() an arithmetic subgroup therein. The properties of SLn()
strongly depend on whether  () is finite or not. If it is infinite, there is a vast literature showing that SLn() satisfies strong
properties as illustrated in the introduction. Therefore in this paper we will consider the case where () is finite. Interestingly
this is not a condition on  but rather a condition onD and one can classify the division algebras containing such an order. Due
to the importance of the following classical result we recall its proof.
Theorem 2.10 (Folklore). Let A be a finite dimensional simpleℚ-algebra and an order in A. Then, () is finite if and only
if one of the following holds:

1. A = ℚ(
√

−d) with d ≥ 0 a non-negative integer,
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2. A =
(

u,v
ℚ

)

with u, v < 0 negative integers.
Proof. We may assume that A = Mn(D) for D a division algebra containing ℚ in its center. Due to Proposition 2.8 we may
assume that the order is of the form  = Mn(′), for an order ′ in D. Since GLn(′) is infinite for n ≥ 2, we have n = 1, and
A = D a division algebra.
If D is commutative, D is a number field and the statement (in both directions) is a direct consequence of Dirichlet’s unit

theorem [42, Corollary 5.2.6].
If D is non-commutative and  () is finite, Kleinert’s theorem [42, Proposition 5.5.6] implies that D is a totally definite

quaternion algebra. However, ⟨SL1(), (())⟩ has finite index in  (), see [42, Proposition 5.5.1]. In particular, also the
unit group of (), which is an order in (D) by [42, Lemma 4.6.6], must be finite and consequently by the commutative case
(D) = ℚ(

√

−d), d ≥ 0. As D is a totally definite quaternion algebra, (D) is a totally real extension of ℚ. Hence (D) = ℚ.
Conversely, if D =

(

u,v
ℚ

)

with u, v < 0 negative integers, then by the previous  (()) is a finite group and by Kleinert’s
theorem SL1() is also finite. Hence, the group ⟨SL1(), (())⟩, which is of finite index in  (), is finite. This in turn
implies that  () is finite.

2.3 Linear groups
When studying the groupsGLn(R) and its subgroups, it sometimes helps to consider the groupsGEn(R) and En(R). Here, En(R)
is the subgroup of GLn(R) generated by the matrices having 1 on the diagonal and one non-zero entry off the diagonal and
GEn(R) is the subgroup ofGLn(R) generated by En(R) and the invertible diagonal matrices. These groups have been thoroughly
studied in the literature, see, for example [14, 15]. Note that if R is a subring of a division algebra, then En(R) ≤ SLn(R).
In the case of n = 2, we will be using a special (but equivalent) set of generators for E2(R). What follows in this subsection

is based on [14]. By I we denote the 2 × 2 identity matrix.
The group GE2(R) is the group generated by all matrices

[�, �] =
(

� 0
0 �

)

, (�, � ∈  (R)), E(x) =
(

x 1
−1 0

)

, (x ∈ R).

For � ∈  (R), put D(�) = [�, �−1]. Define the group D2(R) = ⟨[�, �] | �, � ∈  (R)⟩. Note that
E(0)−1E(x) =

(

1 0
x 1

)

, E(−x)E(0)−1 =
(

1 x
0 1

)

and
(

1 1
0 1

)(

1 0
−1 1

)(

1 1
0 1

)

= E(0).

Consequently,
E2(R) = ⟨E(x) ∣ x ∈ R⟩.

A priori, GE2(R) ≤ GL2(R), but it can happen that these groups are equal. In this case, we call the ring R a GE2-ring. The
following type of rings will form an important class of examples.
Definition 2.11. Let R be a ring. A left Euclidean map on R is a map � ∶ R ⧵ {0}→ ℕ satisfying

∀ a, b ∈ R with b ≠ 0,∃ q, r ∈ R ∶ a = qb + r with �(r) < �(b) or r = 0.
A right Euclidean map on R is a map � ∶ R ⧵ {0}→ ℕ satisfying

∀ a, b ∈ R with b ≠ 0,∃ q, r ∈ R ∶ a = bq + r with �(r) < �(b) or r = 0.
We call the ring R a left (right) Euclidean ring if it has a left (right) Euclidean map.
If R is a subring of ℂ or a quaternion algebra with totally real center, then R is endowed with an algebraic norm xx̄, x ∈ R.

If this map is a left (right) Euclidean map, then we call R left (right) norm Euclidean.
We will omit the proof of the following, since it is the same as in the well known commutative case (see for example [66,

Proposition 1.4.1]).
Proposition 2.12. Left or right Euclidean rings are GE2-rings.
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Let G be a group generated by a set of elements X. Then a subset  of the free group FX on the elements X is called a
defining set of relations of G with respect to X if the canonical epimorphism

FX → G,

has as kernel the normal closure of the group generated by, i.e. ⟨FX
⟩.

If S ⊆ X andH = ⟨S⟩ ≤ G, then any element of FS ≤ FX is said to be expressed in abstract letters ofH .
In the group GE2(R) the following relations hold, see [14, (2.2)-(2.4)].

E(x)E(0)E(y) = E(0)2E(x + y), x, y ∈ R (R1)
E(�)E(�−1)E(�) = E(0)2D(�), � ∈  (R) (R2)

E(x)[�, �] = [�, �]E(�−1x�), x ∈ R, �, � ∈  (R) (R3)
E(0)2 = D(−1). (R4)

The ring R is called universal for GE2 if these relations, together with the relations in the group D2(R), form a complete set of
defining relations of GE2(R) with respect to the elements E(x) and [�, �] for x ∈ R and �, � ∈  (R). When the group GE2(R)
is discussed, we will often omit mentioning these explicit generators. If we talk about a set of defining relations for E2(R), the
generators are always assumed to be E(x), x ∈ R. The relations (R1)-(R4) together with the relations in the group D2(R) are
called the universal relations. Clearly E(0)2 = D(−1) = −I .
Equation (R3) specializes to

E(x)D(�) = D(�−1)E(�x�), x ∈ R, � ∈  (R). (R3’)
The inverse of E(x) is given by the formula

E(x)−1 = E(0)E(−x)E(0), ∀x ∈ R, (R5)
which follows from (R1) and D(−1)2 = I . From the universal relations one can also derive the following useful formulas, see
[14, (2.8), (2.9) and (9.2)]

E(x)E(y)−1E(z) = E(x − y + z), x, y, z ∈ R, (R6)

E(x)E(�)E(y) = E(x − �−1)D(�)E(y − �−1), x, y ∈ R, � ∈  (R), (R7)

[u−1v−1uv, 1] = D(u−1)D(v−1)D(uv), u, v ∈  (R). (R8)
Rings that are not universal for GE2 have to have some additional defining relations. For several results the actual form of

these non-universal relations is not of importance, but rather the fact that they can be chosen to have a special form (for example
can be expressed in abstract letters of E2(R) = ⟨E(x) ∣ x ∈ R⟩). Hence we introduce the following class of rings.
Definition 2.13. Let R be a ring for which there exists a set Φ of words expressed in abstract letters of E2(R) such that Φ
together with the universal relations yield a full list of defining relations for GE2(R). Then we call R almost-universal for GE2.
In Proposition 3.1 we will prove that orders in totally definite quaternion algebras are almost-universal. The following is a

slight generalization of [15, Theorem 1] for GE2(R).
Theorem 2.14. Let R be a ring, almost-universal for GE2 with Φ a set of relations expressed in letters of E2(R) such that Φ
together with the universal relations is a complete set of defining relations of GE2(R). The group E2(R) is generated by the
symbols E(x), x ∈ R and if we define D(u) and [w, 1] for u ∈  (R), w ∈  (R)′ by the relations (R2) and repeated use of
(R8) then a complete set of defining relations for E2(R) is given by

E(x)E(0)E(y) = E(0)2E(x + y) (R1)
E(x)D(u) = D(u−1)E(uxu) (R3’)

E(0)2 = D(−1) (R4)
[w1, 1]… [wn, 1] = I where wj ∈  (R)′ and w1…wn = 1. (R9)

f = I for all f ∈ Φ (R10)
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Proof. From the given relations, it is clear we can still deduce (R7),D(u−1) = D(u)−1 and (R5). Thus, using these relations, we
can rewrite any relation w = I in E2(R) as

w′ = D(u1)…D(uk)E(a1)…E(ar) = I. (2.1)
We will show that we may reduce the latter relation to a relation with r = 0. Note that r = 1 cannot occur as E(a1) is not a
diagonal matrix, r = 2 is only possible if a1 = a2 = 0 and this case can be treated with (R4). So assume r ≥ 3. From the universal
relations and (R7), the relation (2.1) may always be written in such a form that ai ∉  (R) ∪ {0} if 1 < i < r and a1 ≠ 0.
Remark that the universal relations for GE2 are equivalent to the relations (R1), (R3’), (R4),

E(x)[u, 1] = [1, u]E(xu), (2.2)
and those in DE2(R). Since R is almost-universal for GE2, and w′ is also a word in GE2(R), it is a product of conjugates of
relators (R1), (R3’), (R4), (2.2) and (R10). By (R3), conjugates of relators (R1), (R3’), (R4), or (R10) are words in E2(R). In
particular they are 1 in E2(R). Hence we can writew′ as a product of conjugates of relators of the form [1, u]E(xu)[u−1, 1]E(x)−1
and D(u)’s.
Further, the relator [1, u]E(xu)[u−1, 1]E(x)−1 can also be expressed in the generators of E2(R) as follows:

[1, u]E(xu)[u−1, 1]E(x)−1 = [1, u]E(xu)[1, u−1][1, u][u−1, 1]E(x)−1

= [1, u][u−1, 1]E(uxu)D(u−1)E(x)−1

= D(u−1)E(uxu)D(u−1)E(x)−1

= D(u−1)D(u)E(x)E(x)−1.

This last word is trivial in E2(R), so the word w′ reduces to the form
D(v1)…D(vl) = I.

Note that in the latter form r = 0. Moreover, again as R is almost-universal for GE2, by the relations in the group D2(R), we
have that v1… vl = 1. By (R8), D(u)D(v) = [uvu−1v−1, 1]D(u−1v−1)−1. Now by repeated use of the latter, w can be further
rewritten as

[v1v2v−11 v
−1
2 , 1][v2v1v3v

−1
1 v

−1
2 v

−1
3 , 1]… [vl−1… v1vlv

−1
1 … v−1l , 1]D(vlvl−1… v1)−1 = I.

By the above, this is equivalent with [w1, 1]… [wt, 1] = I with wj ∈  (R)′ and w1…wt = 1, which is exactly (R9).

3 ABELIANIZATION OF E2() AND GE2()

In this section we will study the abelianization of linear groups of degree 2 over orders , with a finite unit group, in a rational
division algebra. To do so we will first prove in Subsection 3.1 that, similar to the case of rings of integers in number fields,
those orders allow an almost universal presentation. This will enable us, in Subsection 3.2, to show that the abelianization
of GE2() fits into a short exact sequence described in Theorem B of the introduction, which will be used to calculate this
abelianization. Also in Theorem B, we announced a short exact sequence that describes the abelianization of E2(). This result,
and an explicit formula for theℤ-rank of E2()ab (see also Theorem C), forms the main part of Subsection 3.3. It will also allow
us to characterize when this abelianization is finite.

3.1 An (almost) universal presentation
In [15, Lemma page 160] an explicit description of the non-universal relations for GE2(R), with R a subring of the complex
numbers satisfying certain conditions (including rings of algebraic integers in imaginary quadratic extensions of the rationals),
is obtained. For our purposes we need a quaternion variant thereof. To achieve this, we give a carefully adapted, more detailed
version of the arguments in [15].
Let H =

(

u,v
ℚ

)

be a totally definite quaternion algebra with center ℚ, i.e. u, v negative integers. Define |x| ∶=
√

xx, the
positive square root of xx, for x ∈ H and recall that xx̄ ∈ ℤ for x contained in an order in H . We record the following well
known properties of this norm map onH . For all x, y ∈ H , � ∈ ℚ:

(N1) |x| ≥ 0 and |x| = 0 ⇔ x = 0 (N2) |�x| = |�||x|
(N3) |x + y| ≤ |x| + |y| (N4) |xy| = |x||y|
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Proposition 3.1. Let K = ℚ(
√

−d), with d a non-negative integer, i.e. K is either ℚ or a quadratic imaginary extension of ℚ.
Let H =

(

u,v
ℚ

)

be a totally definite quaternion algebra with center ℚ. Let  be an order in K or H . Then a complete set of
defining relations for GE2() is given by the universal relations together with

(E(a)E(a))n = E(0)2, for each a ∈  such that 1 < |a| =
√

n < 2. (3.1)
We will only give an explicit proof in the case of a quaternion algebra. The case of a quadratic imaginary extension of ℚ is

an easy adaptation of this proof. We first need an auxiliary lemma. Its proof is straightforward which is why we omit it here.
Lemma 3.2. Let K andH be as in Proposition 3.1 and z, a ∈ K , or z, a ∈ H , z ≠ 0. Let 1 < |a| =

√

n. Then
|z − a| < 1 if and only if |

|

|

|

z−1 − 1
n − 1

a
|

|

|

|

< 1
n − 1

. (3.2)
It is well known that every relation in GE2() can be written in the form

E(t1)…E(tl) = D,

with D ∈ D2() (see for example [14, (2.11)]). We will call l the length of the relation. Using the universal relations and (R7)
(which follows from them), one may always rewrite this relation to a relation where t1 ≠ 0 and ti ∉  () ∪ {0} for 1 < i < l.
We call such a form a canonical form.
For the proof of Proposition 3.1, we will introduce the following notation. Starting from a list t = (t1, t2,… , tl) of elements

of , one may obtain a list b(t) = (b0, b1,… , bl) and two non-negative integers m(t) and ℎ(t) as follows:
b0 = 0, b1 = 1, bi = bi−1ti−1 − bi−2 when 2 ≤ i ≤ l,

m(t) = max{|b0|,… , |bl|}, ℎ(t) = max{i ∣ |bi| = m(t)}.
We will simply write m = m(t) and ℎ = ℎ(t) when t is clear from the context, and extend this notation to m′ = m(t′), ℎ′ =
ℎ(t′), b′ = b(t′) when we use a second list t′ = (t′1, t

′
2,… , t′l′). Remark that bi is the element in the upper-right corner of the

product
E(t1)…E(ti),

where b0 = 0 is to be interpreted as the upper right corner of the empty product, namely I . On the set ℝ2, denote the lexi-
cographical order by ⪯. In the proof of Proposition 3.1, we will show that one can reduce a relation E(t1)…E(tl) = D to a
different relation E(t′1)…E(t′l′) = D

′ ∈ D2() for which (m′, ℎ′) ≺ (m, ℎ). For this, we first need the following lemma.
From now on we are working with GE2() as an abstract group in terms of the generators E(x) and [�, �]. In particular −I

is no longer intrinsic, however we will continue to use it as a notation for D(−1).
Lemma 3.3. Let  be an order in a quaternion algebra. Every relation E(t1)…E(tl) = D in GE2() (with D ∈ D2() and
t1 ≠ 0) can be rewritten, using the universal relations of GE2(), into a relation E(t′1)…E(t′l′) = D′ in canonical form, such
that (m′, ℎ′) ⪯ (m, ℎ). Moreover, l′ ≤ l.
Proof. If the relation is not yet in canonical form, then for some 1 < i < l, ti ∈  () ∪ {0}.
If ti = 0, then one can use (R1) to replace E(ti−1)E(ti)E(ti+1) by E(ti−1 + ti+1) and D by −D. This reduces the length of the

relation by 2. Since b′i−1 and bi−1 only depend on the t’s coming before, we have b′j = bj for j ≤ i − 1. Moreover, since
E(t1)…E(ti−1 + ti+1)E(ti+2) = −E(t1)…E(ti−1)E(ti)E(ti+1)E(ti+2),

we get that b′j = −bj+2 for j ≥ i. So, from {|b′0|,… , |b′t−2|} ⊆ {|b0|,… , |bt|} then follows that m′ ≤ m and when m′ = m, then
ℎ′ ≤ ℎ. In other words, (m′, ℎ′) ⪯ (m, ℎ).
If ti ∈  () for some 1 < i < l, then one can use (R7) (which follows from the universal relations) to replace

E(ti−1)E(ti)E(ti+1) by E(ti−1 − t−1i )D(ti)E(ti+1 − t−1i ) and then use (R3’) to move D(t±1i ) to the right of the equation. This re-
duces the length of the relation by 1. Similar to the above, b′j = bj for j ≤ i−1. For the cases j ≥ i, let us first consider bi+1, the
upper right entry of

E(t1)…E(ti−1)E(ti)E(ti+1) = E(t1)…E(ti−1 − t−1i )D(ti)E(ti+1 − t
−1
i ),

= E(t1)…E(ti−1 − t−1i )E(t
′
i)D(t

−1
i ),

= E(t′1)…E(t′i−1)E(t
′
i)D(t

−1
i )
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Since multiplying byD(t−1i ) does not change the modulus of the element in the upper right corner, |bi+1| is equal to the modulus
of the element in the upper right corner of

E(t′1)…E(t′i−1)E(t
′
i),

which is |b′i|. A similar proof shows that for each j ≥ i holds |b′j| = |bj+1|. This shows that {|b′0|,… , |b′t−1|} ⊆ {|b0|,… , |bt|},
and so that m′ ≤ m and when m′ = m, then ℎ′ ≤ ℎ. In other words, (m′, ℎ′) ⪯ (m, ℎ).
Notice that in both cases, we have reduced the length of the relation. We repeat this process until the relation is in canonical

form.
We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1.. Remark that for z ∈ , |z| ∈ {0, 1,
√

2,
√

3}, if |z| < 2. Here we use that |z|2 ∈ ℤ, as z is an
algebraic integer.
In order to prove the proposition, we begin with a relation

E(t1)…E(tl) = D (3.3)
in GE2() (with D a diagonal matrix) and will reduce it to a relation implied by the universal relations and (3.1). A relation of
length 0 is the trivial relation and a simple calculation shows that a relation of length 2 is impossible, except when t1 = t2 = 0,
but this is the relation (R4), i.e. E(0)2 = −I . A relation of length 1 does not exist since b1 is always equal to 1.
Assume l ≥ 3, i.e. assume a relation of length at least 3. Without loss of generality, we may assume that t1 ≠ 0. Indeed if

t1 = 0 we can conjugate the relation with E(0)−1 such that t1 ≠ 0. By Lemma 3.3, we furthermore may assume that the relation
is written in a canonical form. Let now m = m(t) and ℎ = ℎ(t) where t = (t1,… , tl) is the list associated to the relation (3.3).
Strategy of the rest of the proof: the argument we use is adapted from [15] and will use induction on (m, ℎ). We will show

that such a canonical relation can be reduced to a relation (not necessarily canonical) for which (m′, ℎ′) ≺ (m, ℎ), by using (3.1).
Afterwards, we show that Lemma 3.3 is applicable, which does not increase (m′, ℎ′). For this new relation in canonical form,
either l′ < 3, which finishes the proof, or l′ ≥ 3 and we may continue by induction. Since (m′, ℎ′) takes only discrete values in
ℝ2

≥0, this shows that at some point the length of the new relation will be less than 3, which finishes the proof.
For notation’s sake, write

a = bℎ, b = bℎ−1 and t = tℎ.
Note that a ≠ 0 since |bℎ| ≥ |b1| = 1. As bl = 0 and b1 = 1, we get that ℎ ≠ l. Hence ℎ < l, which in turn implies that |t| > 1,
for else t ∈  ()∪{0}, which contradicts the assumption that the relation is in canonical form. Also ℎ ≠ 1. Indeed, for suppose
ℎ = 1, then b2 = b3 = … = bl = 0. Hence 0 = b2 = t1, but this is again a contradiction.
Since bℎ+1 = at − b and by definition of ℎ, we have

|at − b| < |bℎ| = |a|, (3.4)
and

|b| ≤ |bℎ| = |a|. (3.5)
Furthermore b ≠ 0, since otherwise |a||t| = |bℎ+1| < |a|, which would imply |t| < 1.
Inequality (3.4) is equivalent to

|a−1b − t| < 1. (3.6)
Note that |t| ≥ 2 implies |at − b| ≥ 2|a| − |b| ≥ |a|, a contradiction with (3.4). Hence |t| < 2 and thus |t| ∈ {√2,√3}. We
will handle both cases separately.
First suppose that |t| =√

2. Applying Lemma 3.2 to equation (3.6) one obtains |b−1a − t̄| < 1 or equivalently
|a − bt̄| < |b|. (3.7)

We rewrite (3.1) to
E(t) = E(0)2E(t̄)−1E(t)−1E(t̄)−1, (basic cancelation rule of groups applied to (3.1))

= E(0)2E(0)E(−t̄)E(0)2E(−t)E(0)2E(−t̄)E(0), (using (R5))
= E(0)2E(0)E(−t̄)E(−t)E(−t̄)E(0), (centrality of E(0)2 and E(0)4 = 1)

which we substitute in the relation (3.3) to obtain (after using (R1) two times to get rid of E(0))
E(t1)…E(tℎ−2)E(tℎ−1 − t̄)E(−t)E(tℎ+1 − t̄)E(tℎ+2)…E(tl) = D′,



13

for some diagonal matrix D′. This is the new relation for which we claim (m′, ℎ′) ≺ (m, ℎ) after setting

t′i =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ti, if i < ℎ − 1;
tℎ−1 − t, if i = ℎ − 1;
−t, if i = ℎ;
tℎ+1 − t, if i = ℎ + 1;
ti, if i > ℎ + 1.

Then it is easy to see that b′i = bi for i < ℎ and b′ℎ = a − bt̄. When i > ℎ, one sees that b′i = −bi. Indeed,
b′ℎ+1 = b

′
ℎt
′
ℎ − b

′
ℎ−1 = (bℎ − bℎ−1t)(−t) − bℎ−1 = −bℎt + bℎ−1 = −bℎ+1.

Furthermore,
b′ℎ+2 = b

′
ℎ+1t

′
ℎ+1 − b

′
ℎ = −bℎ+1(tℎ+1 − t) − (bℎ − bℎ−1t)

= −bℎ+1tℎ+1 − bℎ + (bℎ+1 + bℎ−1)t = −bℎ+2 − 2bℎ + (bℎ+1 + bℎ−1)t
= −bℎ+2 + (bℎ+1 + bℎ−1 − bℎt)t = −bℎ+2.

For i > ℎ+2, t′i = ti and by induction it is easily proven that b′i = −bi. By using (3.7) it follows that, when |t| =
√

2, the relation
(3.3) can be reduced to a relation for which (m′, ℎ′) ≺ (m, ℎ)
Suppose now that |t| = √

3. From (3.5) it follows that |a−1b| ≤ 1. We claim that |1 − a−1bt̄| < |a−1b|, or equivalently (see
Lemma 3.2) |a−1b− t

2
| < 1

2
. Indeed, for suppose |a−1b− t

2
| ≥ 1

2
and write a−1b = x+ yi+ zj +wk and t = x′ + y′i+ z′j +w′k

with x, y, z, w, x′, y′, z′, w′ ∈ ℚ. To keep notation simple, put � = −1+xx′+uyy′+vzz′+uvww′. The inequality |a−1b− t
2
| ≥ 1

2translates to
|a−1b|2 ≥ 1

4
−
|t|2

4
+ (� + 1) = � + 1

2
.

On the other hand, from (3.6) it follows that
|a−1b|2 < 1 − |t|2 + 2(� + 1) = 2�.

These last two inequalities together yield � + 1
2
< 2� so 1

2
< �. But then the first inequality yields |a−1b|2 ≥ � + 1

2
> 1, a

contradiction.
So, we have |1 − a−1bt̄| < |a−1b|, or equivalently by (3.4)

|a − bt̄| < |b| ≤ |a|, (3.8)
and, applying Lemma 3.2 to |b−1a − t̄| < 1, gives

|2b − at| < |a|. (3.9)
Applying Lemma 3.2 to (3.6) also shows that

|2a − bt̄| < |b| ≤ |a|. (3.10)
We rewrite (3.1) to

E(t) = E(0)2E(t̄)−1E(t)−1E(t̄)−1E(t)−1E(t̄)−1, (basic cancelation rule of groups applied to (3.1))
= E(0)2E(0)E(−t̄)E(0)2E(−t)E(0)2E(−t̄)E(0)2E(−t)E(0)2E(−t̄)E(0), (using (R5))
= E(0)2E(0)E(−t̄)E(−t)E(−t̄)E(−t)E(−t̄)E(0), (centrality of E(0)2 and E(0)4 = 1)

which we substitute in the relation (3.3) again to obtain (after using (R1) two times to get rid of E(0))
E(t1)…E(tℎ−2)E(tℎ−1 − t̄)E(−t)E(−t̄)E(−t)E(tℎ+1 − t̄)E(tℎ+2)…E(tl) = D′,



14

for some diagonal matrix D′. This is the new relation for which we claim (m′, ℎ′) ≺ (m, ℎ) after setting

t′i =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ti, if i < ℎ − 1;
tℎ−1 − t, if i = ℎ − 1;
−t, if i = ℎ or ℎ + 2;
−t, if i = ℎ + 1;
tℎ+1 − t, if i = ℎ + 3;
ti−2, if i > ℎ + 3.

Note that the new relation has length l + 2. We have that b′i = bi for i < ℎ and an easy calculation shows that b′ℎ = a − bt̄,
b′ℎ+1 = 2b − at, b′ℎ+2 = 2a − bt̄. Moreover, when i > ℎ + 2, then b′i = −bi−2. Indeed,

b′ℎ+3 = b
′
ℎ+2t

′
ℎ+2 − b

′
ℎ+1 = (2a − bt)(−t) − (2b − at)

= b − at = bℎ−1 − bℎtℎ = −bℎ+1,

and
b′ℎ+4 = b

′
ℎ+3t

′
ℎ+3 − b

′
ℎ+2 = (b − at)(tℎ+1 − t) − (2a − bt)

= (b − at)tℎ+1 + a = −bℎ+1tℎ+1 + bℎ = −bℎ+2.

For i > ℎ + 4, t′i = ti−2 and by induction it is easily proven that b′i = −bi−2. Because of (3.8)-(3.10) it follows that, also when
|t| =

√

3, the relation (3.3) may be reduced to a relation for which (m′, ℎ′) ≺ (m, ℎ).
Now, by Lemma 3.3, the relation obtained in the previous two cases can be reduced to a relation in canonical form for which

(m′, ℎ′) does not further increase. We only need to show that t′1 ≠ 0. In the steps above, the only way to get t′1 = 0 is if ℎ = 2,
t2 = t̄1, |t1| = |t2| < 2 and b2 = t1 has maximal modulus. Clearly |t1 t̄1−1| = ||t1|2−1| = 1 or 2 (remember that |t1|2 = |t2|2 = 2
or 3). Since |t1 t̄1 − 1| = |b3| < |b2| = |t1| ≤

√

3 it follows that ||t1|2 − 1| = 1 so |t1|2 = 2. In this case, b3 ≠ 0, so the length of
the relation is at least 4. One calculates that b4 = t3 − t1. From the assumptions |b4| < |b2| = |t1| =

√

2, so |b4| ∈ {0, 1}.
If |b4| = 0, then t3 = t1. If the length of the relation is exactly 4, then one can show that t4 = t̄1, but this is the relation (3.1)

and the induction step would stop here. The length cannot be exactly 5. Indeed |b4| = 0 implies that E(t1)...E(t4) is a lower-
triangular matrix and thus E(t1)...E(t4)E(t5) cannot be a diagonal matrix. So the length of the relation is at least 6. From easy
calculations it follows that b5 = −1 and b6 = −t5. From the maximality of ℎ we can deduce that |t5| = |b6| < |b2| =

√

2,
showing that t5 is either a unit or 0, a contradiction with the fact that the relation was in canonical form.
Thus suppose that |b4| = 1. Wewill first show that if bi−1 and bi are units, then bi+1 is also a unit. Indeed, |bi+1| = |biti−bi−1| ≥

|

|

|bi||ti| − |bi−1||| = |

|

|ti| − 1|| ≥
√

2−1 > 0. The fact that |ti| ≥
√

2 follows from the fact that the length of the relation is at least
i+1 and thus ti is not a unit or 0 from the canonical form. On the other hand, by the minimality of ℎwe need |bi+1| < |b2| =

√

2,
showing that |bi+1| = 1 and bi+1 is a unit.
Through |b3| = |b4| = 1 and the repeated use of the result above we obtain that the word should be infinitely long, a

contradiction.
In the end, we proved that t′1 ≠ 0 and that Lemma 3.3 can be applied. This finishes the proof.

3.2 On the abelianization of GE2() over orders  with  () finite
Let  be an order in a finite dimensional division ℚ-algebra D with  () finite. The main goal of this section is to describe
GE2()ab in a computable and uniform way. More concretely in Theorem 3.8 we obtain a short exact sequence

1 ←→ (∕N,+) ←→ GE2()ab ←→  ()ab ←→ 1

where N is the two-sided ideal generated by the elements u − 1 with u ∈  (). To start we describe GE2(R)∕ E2(R) in the
more general context of rings which are almost-universal for GE2. Thereafter we restrict to orders in finite-dimensional division
ℚ-algebras with finite unit group and prove that an exact sequence as stated above exists. This is inspired by the results in [14].
Proposition 3.4. Let R be a ring which is almost-universal for GE2, then

GE2(R)∕ E2(R) ≅  (R)ab.
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The isomorphism is induced by the map
' ∶ GE2(R)→  (R)ab by '(E(x)) = 1 and '([�, �]) = �̃�, (3.11)

which is a group homomorphism. The map ̃∶  (R)→  (R)ab denotes the canonical morphism.
Proof. Since E2(R) is in the kernel of ', it is enough to check that the relations not in E2(R) are preserved to prove that ' is a
well-defined group homomorphism. The only such relations are those of the formE(x)[�, �] = [�, �]E(�−1x�) and the relations
in D2(R). As  (R)ab is abelian, �̃� = �̃� and hence the first type of relation is preserved. It is easy to check that ' preserves
the relations in D2(R).
Now the map ' is onto and E2(R) ⊆ ker('). For the reverse inclusion, let A ∈ ker('). Using the universal relations we

may write A = [�, �]E(x1)…E(xr). Since A ∈ ker(') we have that �̃� = �̃� = 1̃, i.e. �� ∈  (R)′. Hence, by (R8),
[��, 1] ∈ E2(R). As D(�)[�, �] = [��, 1], we have that [�, �] ∈ E2(R) and hence A ∈ E2(R).
Corollary 3.5. The following properties hold for a ring R which is almost-universal for GE2:

1. GE2(R)′ ⊆ E2(R),
2. D2(R) ∩ E2(R) = ⟨D(�) ∣ � ∈  (R)⟩.

Proof. The first statement is a direct consequence of Proposition 3.4. For the second statement assume [�, �] ∈ D2(R) ∩ E2(R).
Then '([�, �]) = 1̃, in particular, [�, �] = D(�−1)[��, 1] with �� ∈  (R)′. Consequently, writing �� = ∏

i∈I �−1i �
−1
i �i�i, wesee that [�, �] = D(�−1)∏i∈I D(�−1i )D(�

−1
i )D(�i�i) ∈ ⟨D(�) ∣ � ∈  (R)⟩.

Proposition 3.4 also indicates that in order to understand (R)ab for some ringRwhich is almost-universal forGE2, one may
“increase its size” to GE2(R) and instead investigate its abelianization (which will be the content of the following subsection).
Recall that the Borel subgroup ofGE2(R), denoted B2(R), is the subgroup consisting of the upper-triangular matrices with units
on the diagonal, i.e. B2(R) = {

(

� x
0 �

)

∣ x ∈ R, �, � ∈  (R)}.
Proposition 3.6. Let R be a ring, finitely generated as ℤ-module, which is almost-universal for GE2, then the following
properties are equivalent:

1.  (R)ab is finite,
2. B2(R)ab is finite,
3. GE2(R)ab is finite.

Proof. It is easy to calculate that for any a ∈ R we get
(

−1 0
0 1

)−1(1 a
0 1

)−1(−1 0
0 1

)(

1 a
0 1

)

=
(

1 a
0 1

)2

∈ B2(R)′,

and clearly alsoD2(R)′ ≤ B2(R)′. This shows that B2(R)ab is an epimorphic image of the groupH ×D2(R)ab ≅ H × (R)ab ×
 (R)ab, where H is some finitely generated abelian group of exponent 2 (and so it is finite). Hence, if  (R)ab is finite then
also B2(R) has finite abelianization.
For the next implication notice that GE2(R) = ⟨E(0),B2(R)⟩. Since E(0) has finite order we now easily see that GE2(R)ab is

finite if B2(R)ab is finite.
Finally fromProposition 3.4 andCorollary 3.5 it follows that (R)ab is an epimorphic image ofGE2(R)ab and so the remaining

implication also follows.
Corollary 3.7. Let  be an order in a finite dimensional division ℚ-algebra with  () finite, then GE2()ab is finite.
Proof. Because () is finite, we know from Theorem 2.10 and Proposition 3.1 that  is almost-universal for GE2. Hence, we
may apply Proposition 3.6 and it suffices to show that ()ab is finite. However, this follows readily from the fact that () is
finite.
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If R is almost-universal for GE2, then by Proposition 3.4 we have that GE2(R)′ ⊆ E2(R) and
 (R)ab ≅ GE2(R)ab∕

(

E2(R)∕GE2(R)′
)

,

where the isomorphism is induced by the map
' ∶ GE2(R)→  (R)ab with '(E(x)) = 1 and '([�, �]) = �̃�, (3.12)

for �, � ∈  (R) and x ∈ R. So in order to understand GE2(R)ab it remains to describe E2(R)∕GE2(R)′. For orders  in a finite
dimensional division ℚ-algebra with a finite number of units this will be achieved through the following map

 ∶ E2()→ (∕N,+) ∶ E(x) → x − 1 +N, (3.13)
where N is the two-sided ideal of  generated by the elements u − 1 with u ∈  (). In the following theorem we will prove
that the kernel of  is exactly GE2()′.
Theorem 3.8. Let  be an order in a finite dimensional division ℚ-algebra with  () finite and let N be the two-sided ideal
of  generated by the elements u − 1 with u ∈  (). Then

E2()∕GE2()′ ≅ (∕N,+).

In particular, we have the following short exact sequence of groups:
1 ←→ (∕N,+)

�◦ ̄−1
←→ GE2()ab

'̄
←→  ()ab ←→ 1,

where �∶ E2()∕GE2()′ → GE2()∕GE2()′ is induced by the inclusion E2() → GE2(),  ̄ is the isomorphism induced
by  defined in (3.13) and '̄ is induced by ' in (3.12).
Proof. Because () is finite, we know from Theorem 2.10 and Proposition 3.1 that  is almost-universal for GE2. Hence, by
the discussion before Theorem 3.8, we know that

1 ←→ E2()∕GE2()′
�
←→ GE2()ab

'̄
←→  ()ab ←→ 1,

forms an exact sequence of groups. So, in order to prove Theorem 3.8, it suffices to show that  ̄ is well-defined and forms an
isomorphism between E2()∕GE2()′ and (∕N,+).
First we show that  ∶ E2() → (∕N,+) ∶ E(x) → x − 1 + N is well defined. For this it is enough to prove that the

relations from Theorem 2.14 are preserved. We will use � to denote an element of  ().
Remark that, by the definition of N , D(�) = E(0)2E(�)E(�−1)E(�) is mapped to −2. As −2 ∈ N , D(�) is mapped to zero

for every � ∈  (). In particular, relations (R4) and (R9) are preserved. Further relation (R3’) reduces to �x� ≡ x mod N , for
� ∈  () and x ∈ . Since �x� − x = (� − 1)x� + x(� − 1) ∈ N , it is indeed preserved under  . Relation (R1) is trivially
preserved under  . Finally the only relations left to check are (R10). By Proposition 3.1 and Theorem 2.10, these relations are
of the form (3.1). They are easily checked using that 2 ∈ N and a + a = 2Tr(a).
We want to show that GE2()′ ⊆ ker( ). To do this, remark that clearly E2()′ ⊆ ker( ) and thatD(�) ∈ ker( ), as proven

above. It only remains to prove that, for x ∈  and �, �, , � ∈  () we have that the commutator between [�, �] and [, �]
and the commutator between [�, �] and E(x) is in the kernel since these elements (together with E2()′) generate GE2()′ as a
normal subgroup and the image of  is an abelian group.
Clearly the commutator between [�, �] and [, �] is a diagonal matrix in E2() by Proposition 3.4, and thus by the above it is

in the kernel of  .
For the other commutator we can write

[�, �]−1E(x)[�, �]E(x)−1 = [�−1, �−1][�, �]E(�−1x�)E(x)−1,
= [�−1�, �−1�]E(�−1x�)E(0)E(−x)E(0).

Since [�−1�, �−1�] = D(�−1�) this commutator is mapped, under  , to �−1x� − x − 4. As −4 ∈ N and �−1x� − x =
�−1(x� − �x) = �−1(x(� − 1) − (� − 1)x) ∈ N , this commutator is also in ker( ).
Now  induces  ̄ ∶ E2()∕GE2()′ → (∕N,+). Since  is surjective, it remains to prove the injectivity of  ̄ .
Note that an arbitrary element in E2(R) can be written as

E(x1 + 3)⋯E(xl + 3), x1, ..., xl ∈ . (3.14)
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Further remark the following crucial identity
E(x)E(y) ≡ E(x)E(0)E(y)E(0)E(−1)E(0)E(−1)E(0)E(−1)

≡ E(x + y − 3) mod E2()′ (3.15)
where we used E(0)4 = E(−1)3 = 1 and (R1). By induction on l then

E(x1 + 3)…E(xl + 3) ≡ E

(( l
∑

i=1
xi

)

+ 3

)

mod E2()′. (3.16)

Suppose now that the expression (3.14) is in ker( ). Then

0 ≡ (x1 + 2) +… + (xl + 2) ≡
l

∑

i=1
xi mod N,

since 2 ∈ N . In particular by (3.16) is it enough to prove that E(n + 3) ≡ 1 mod GE2()′ for all n ∈ N . By the definition of
N , it is enough to do so for E((� − 1)x + 3) and E(x(� − 1) + 3), where x ∈  and � ∈  (). Using equation (R6) we obtain

E((� − 1)x + 3) = E(�(x − 3) − (x − 3) + 3�)
= E(�(x − 3))E(x − 3)−1E(3�).

Moreover
E(3�) ≡ D(�) mod E2()′, (3.17)

and
D(�) ≡ D(�−1) mod E2()′. (3.18)

Indeed, using (R3’), (R2) and (R5):
E(�x�)E(x)−1 ≡ D(�)2 = −D(�)D(−�)

= −E(�)E(�−1)E(�)E(−�)E(−�−1)E(−�)
= −E(�)E(�−1)E(�)E(0)E(�)−1E(0)2E(�−1)−1E(0)2E(�)−1E(0)
≡ 1 mod E2()′

and we get that both D(�) ≡ D(�−1) mod E2()′ and
E(�x�) ≡ E(x) mod E2()′, (3.19)

in particular E(�) ≡ E(�−1) mod E2()′. By the latter, (R1) and (R2),
E(3�) = E(�)E(0)E(�)E(0)E(�) ≡ E(0)2E(�)E(�−1)E(�) = D(�) mod E2()′,

as claimed. Taking in (R3) the diagonal matrix [�−1, �−1] we see that E(x) ≡ E(�x�−1) mod E2()′ and so also E(�x) ≡
E(x�) mod E2()′, (replace x by x�).
Now,

E(�(x − 3))E(x − 3)−1E(3�) ≡ E(x − 3)−1E(�(x − 3))D(�−1),
≡ E(x − 3)−1E(�(x − 3))[1, �][�−1, 1],
≡ E(x − 3)−1[�, 1]E(x − 3)[�−1, 1] ≡ 1 mod E2()′,

where in the second to last equality, (R3) is used. So altogether we proved that E((� − 1)x + 3) ≡ 1 mod E2()′. In analogue
way one proves that E(x(� − 1) + 3) ≡ 1 mod E2()′, finishing the proof.
Corollary 3.9. Let  be an order in a finite dimensional division ℚ-algebra with  () finite. If  () contains an element of
odd order, then GE2()ab ≅  ()ab.
Proof. Assume that an element of  () has odd order. Then there exists an element � ∈  () of odd prime order, say p. For
this element holds 1 + � +… + �p−1 = 0 and hence 1 =

p−1
∑

i=1
(−1)i(1 − (−�)i) ∈ N . Thus N =  and GE2()ab ≅  ()ab by

Theorem 3.8.
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At the end of the next section we will exploit Corollary 3.9 to give exact descriptions of GE2()ab for certain orders .

3.3 On the abelianization of E2() over orders  with  () finite
As in the previous subsection, we will obtain a short exact sequence that will allow us to study the abelianization of E2() over
orders with  () finite.
Theorem 3.10. Let  be an order in a finite-dimensional division ℚ-algebra with () finite. LetM be the additive subgroup
of  generated by the following set of elements:

1. �x� − x with x ∈  and � ∈  (),
2. ∑m

i=1 3(�i + 1)(�i + 1) with �i, �i ∈  () satisfying∏m
i=1 �

−1
i �

−1
i �i�i = 1,

3. the elements 2(x + x̄) + 6 for each element x ∈  satisfying |x|2 = 2,
4. the elements 3(x + x̄) for each element x ∈  satisfying |x|2 = 3.

Then,
� ∶ E2()→ (∕M,+) ∶ E(x) → x − 3 +M

is an epimorphism with ker(�) = E2()′. In particular
E2()∕ E2()′ ≅ (∕M,+).

Remark 3.11. As  () is finite,  is an order in ℚ, in an quadratic imaginary extension of ℚ or a totally definite quaternion
algebra overℚ, by Theorem 2.10 and the normmap appearing in the third and fourth item of the definition ofM in Theorem 3.10
is the same as in the beginning of Section 3.1: |x| =√

xx̄.
Proof. We first prove that the map � is well-defined and a group homomorphism. For this it is enough to check that � preserves
the defining relations of E2() stated in Theorem 2.14, with Φ the non-universal set of relations of the form (3.1).
Relation (R1) is trivially preserved. Note that 12 = 3(1+ 1)(1+ 1) ∈M . Hence (R4), or equivalently E(0)2 = E(0)2E(−1)3,

is preserved. Since �x� ≡ x mod M , for any � ∈  () and x ∈ , we have that
� ≡ �−1 mod M.

Now, the image of (R3’) under � yields the equation x − 3 + 2� + �−1 − 3 ≡ 2�−1 + � − 3 + �x� − 3 modM or thus
�x� − x ≡ � − �−1 ≡ 0 mod M.

We now consider the preservation of (R9). Since � ≡ �−1 mod M for any unit �, we immediately obtain also that
�(D(�−1)) ≡ �(D(�)) ≡ 3(� − 1) mod M . By definition there is for every 1 ≤ k ≤ n a decomposition [wk, 1] =
∏

i∈Ik
D(�−1i,k )D(�

−1
i,k )D(�i,k�i,k). Furthermore by (2),

�

(

∏

1≤k≤n

∏

i∈Ik
D(�−1i,k )D(�

−1
i,k )D(�i,k�i,k)

)

≡
∑

1≤k≤n

∑

i∈Ik
3(�i,k − 1) + 3(�i,k − 1) + 3(�i,k�i,k − 1)

≡
∑

1≤k≤n

∑

i∈Ik
3(�i,k + �i,k + �i,k�i,k + 1)

≡
∑

1≤k≤n

∑

i∈Ik
3(�i,k + 1)(�i,k + 1) ≡ 0 mod M,

yielding that (R9) is preserved.
Finally consider the relation (E(x)E(x))n = E(0)2 from (3.1). If |x| =√

2 then
�
(

E(x)E(x)E(x)E(x)E(0)2
)

≡ 2(x + x) + 6 ≡ 0 mod M.

Similarly, � ((E(x)E(x))3E(0)2) ≡ 3(x + x) ≡ 0 mod M , if |x| =√

3.
Altogether we proved that � is well-defined and hence defines an epimorphism. Since (∕M,+) is abelian, E2()′ ⊆ ker(�).

By (3.16) in the proof of Theorem 3.8 the reverse inclusion follows if E(m + 3) ∈ E2()′ for all additive generators m ofM .
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Due to (3.15) and (3.19) in the proof of Theorem 3.8 one also immediately obtains E(3) ∈ E2()′ and E(�x�)E(x)−1 ∈
E2()′. Consequently, by (R6),E(�x�−x+3) = E(�x�)E(x)−1E(3) ∈ E2()′. Next consider an element∑i∈I 3(�i+1)(�i+1)
such that∏m

i=1 �
−1
i �

−1
i �i�i = 1. By first using (3.16), then consecutively (R1), (3.17), (3.18), (R8) and finally (R9) we obtain
E
(
∑m
i=1 3(�i + 1)(�i + 1) + 3

)

≡
∏m

i=1 E(3(�i + 1)(�i + 1) + 3)
≡
∏m

i=1 E(3�i)E(0)E(3�i)E(0)E(3�i�i)(E(0)E(3))
2

≡
∏m

i=1D(�i)D(�i)D(�i�i)
≡
∏m

i=1D(�
−1
i )D(�

−1
i )D(�i�i)

≡
∏m

i=1[�
−1
i �

−1
i �i�i, 1] ≡ 1 mod E2()′.

Now consider an element 2(x+ x) + 6 with |x|2 = 2. Then, using (R1), the fact that modulo E2()′ all elements commute, that
E(0)4 = I , that E(3) ∈ E2()′ and finally (3.1),

E(2(x + x) + 9)
≡ E(0)2E(x + x)E(0)E(0)2E(x + x)E(0)E(0)2E(3)E(0)E(0)2E(3)E(0)E(3)
≡ E(x + x)2E(3)3 ≡ E(x + x)2 ≡ E(0)2E(x)E(0)E(x)E(0)2E(x)E(0)E(x)
≡ (E(x)E(x))2E(0)2 ≡ E(0)2E(0)2 ≡ 1 mod E2()′.

In case of the additive generators 3(x + x̄) the proof is analogue, hence finishing the proof.
Remark 3.12. Note the subtle, but crucial, point thatM is defined to be the additive subgroup generated by those elements listed
in Theorem 3.10, in contrast to N from Theorem 3.8 which is defined as the two-sided ideal generated by the elements in that
statement. In fact, since 12 ∈ M , one can deduce that M can only be an ideal when ∕M is fnite (which by Theorem 3.14
only is the case when  contains a ℤ-basis consisting of units). Also it is interesting to remember that the elements �x� − x
exactly encode the image of (R2) under �, the elements∏ 3(�i + 1)(�i + 1) the relations (R9) and the last two elements encode
the relations of the form (3.1).
Finally note that if () is abelian, then the condition∏m

i=1 �
−1
i �

−1
i �i�i = 1 is always satisfied, hence in this case one simply

adds all elements 3(� + 1)(� + 1).
Remark 3.13. We denote by d the ring of algebraic integers in the imaginary quadratic number field ℚ(

√

−d) of a positive
integer d, e.g. 1 = ℤ[

√

−1] and 3 = ℤ[�3], where �3 is a primitive complex third root of unity. It is well known that d is
Euclidean if and only if d ∈ {1, 2, 3, 7, 11}. In [28], Fitzgerald showed that the only totally definite quaternion algebras ℍd with
center ℚ containing a right norm Euclidean order are

ℍ2 =
(

−1,−1
ℚ

)

, ℍ3 =
(

−1,−3
ℚ

)

and ℍ5 =
(

−2,−5
ℚ

)

.

Note that orders that are (right norm) Euclidean are maximal [12, Proposition 2.8]. Furthermore a quaternion algebra having a
right norm Euclidean order has class number one [12, Proposition 2.9] and thus also type number one meaning that there is only
one conjugacy class of maximal orders. In [28] also a specific representative of that unique conjugacy class, denoted 2 ⊆ ℍ2,
3 ⊆ ℍ3 and 5 ⊆ ℍ5, is constructed. For later use we explicitly state in the table below specific ℤ-bases {b1, b2, b3, b4} of
these orders (which also can be found in [42, Proposition 12.3.2]). The quaternion algebraℍ2 also contains the order of Lipschitz
quaternions  consisting of all integral linear combinations of the basis elements 1, i, j, k.

b1 b2 b3 b4
 1 i j k
2 1 i j !2 =

1+i+j+k
2

3 1 i !3 =
1+j
2

i+k
2

5 1 1+i+j
2

!5 =
2+i−k
4

2+3i+k
4

(3.20)

When R is a ring which is also freely generated as a ℤ-module (e.g. R is an order) we define
invR = max{|B ∩ (R)| ∣ B a ℤ-module basis of R},

and for a finitely generated abelian group G one defines
rankℤG = max{n ∣ ℤn is, up to isomorphism, a subgroup of G}.
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Theorem 3.14. Let  be an order in a finite dimensional division ℚ-algebra D with  () finite. Then,
rankℤ E2()ab = rankℤ  − inv . (3.21)

Moreover, the following properties are equivalent:
(a) E2()ab is finite,
(b)  is isomorphic to ℤ,1,3,,2 or 3,
(c)  has a ℤ-basis consisting of units of ,
(d)  is generated as a ring by  (),
(e)  is generated as a ℤ-module by  ().

Proof. Throughout, we will rely on Theorem 2.10.We start off by proving formula (3.21).We will use the description of E2()ab
given in Theorem 3.10 and the additive subgroupM defined there. Since 3(1 + 1)(1 + 1) = 12 ∈ M , and for any unit � holds
that 3(� +1)(1 + 1) + 3(� +1)(1 + 1) = 12� +12 ∈M , we readily obtain that 12� ∈M . Consequently, any unit of  has finite
(additive) order in (∕M,+). As such, rankℤ E2()ab ≤ rankℤ  − inv.
If D = ℚ, then  = ℤ and the statement is correct since E2(ℤ)ab ≅ C12 is finite. If D is a quadratic imaginary extension

of ℚ,  is a free ℤ-module of rank 2. Assume there exists a basis consisting of units for . Hence rankℤ  − inv = 2 − 2 =
0 ≤ rankℤ E2()ab, showing that the inequality holds trivially. If not, then one may assume the existence of a base of 
of the form {1, a} with a ∉  (). It is well known that in this case  () = {±1}. The generators of type (1) of M (in
Theorem 3.10) are then all equal to 0, and the generators of type (2), (3) and (4) are in ℤ. As such, 12ℤ ⊆ M ⊆ ℤ and thus
rankℤ E2()ab = rankℤ(∕M,+) = 1 = rankℤ  − inv.
The last situation to consider is when D is a totally definite quaternion algebra over ℚ. If  contains a basis of units, similar

to before, the inequality is trivially satisfied. In particular, we may assume that  is not isomorphic to ,2 or 3. Hence, by
[69, Theorem 11.5.12], the unit group  () is cyclic. We will denote the generator by �.
Clearly, the elements of the forms (2), (3) and (4) in Theorem 3.10 are in ℤ[�]. For elements of the form (1) in Theorem 3.10

we do the following. Take any element  ∈  of norm 1. Then  is a root of a polynomial (X − )(X − ̄) = X2 − tX + 1 for
t =  + ̄ ∈ () = ℤ, so 2 = t − 1 and hence for every x ∈ 

(x − x) = x2 − x = x(t − 1) − x = tx − x − x
= (t − 1)x − x = 2x − x = (x − x).

Thus x − x ∈ C(), the centralizer of  in . A straightforward calculation shows that for k ≥ 2

kxk − x = tk−2(x − x)k−1 + k−2xk−2 − x,

and hence, by induction on k, kxk − x ∈ C(), for every k. If � has order 2, then � = −1 and ℤ[�] = ℤ. The generators in
(1) are 0 andM ⊆ ℤ[�] = ℤ. Hence ∕M is of rank at least 3 and a basis of  can only contain one unit. So the inequality

rankℤ  − inv = 4 − 1 = 3 ≤ rankℤ(∕M,+) = rankℤ E2()ab,

holds.
If � has order larger than 2, then � necessarily is not central. Asℤ ⊊ ℤ[�] ⊆ C(�)we obtain in this case that rankℤ C(�) = 2

(else by tensoring up with ℚ this would mean that � is central in D). Furthermore, by the above, �x� − x ∈ C(�) for every
� ∈  () and every x ∈ . So we get that all generators ofM are contained in C(�). Hence ∕M maps surjectively onto
∕C(�) and therefore is of rank at least 2. Altogether,

rankℤ  − inv = 4 − 2 = 2 ≤ rankℤ(∕M,+) = rankℤ E2()ab,

showing the inequality in the last case.
Now we prove that the statements (a) − (e) are equivalent. To start, remark that (a) and (c) are equivalent due to formula

(3.21). Hence it remains to prove that (b), (c), (d) and (e) are equivalent. First, for an order  in an imaginary quadratic number
field  () = ⟨−1⟩, unless  ∈ {1,3} (e.g. see [34, remark after Th. 240]). In those cases  (1) = ⟨i⟩ and  (3) = ⟨−�3⟩,
respectively. This implies that the last four conditions are equivalent in the case of orders in number fields with a finite unit
group. Second assume that  is an order in a totally definite quaternion algebra with center ℚ and suppose  is isomorphic to
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,2 or 3. In all three cases there exists a basis consisting of units of  given in (3.20). Hence (b) implies (c). Clearly (c)
implies (d) which implies (e). For (e) implies (b) note that if  is an order in a totally definite quaternion algebra with center ℚ
not isomorphic to ,2 or3, then, by [69, Theorem 11.5.12], () is cyclic, generated by �, say. But then () is contained
in the commutative subring ℤ[�] ⊆ , which has ℤ-rank at most 2, since D is a quaternion algebra.
Remark 3.15. One can filter from the proof of the previous theorem that when  is an order in a finite dimensional division
ℚ-algebra D with  () finite, then either  has a ℤ-basis consisting of units or |U ()| ∈ {2, 4, 6}.
We can also describe now the abelianization of GL2() with  the norm Euclidean maximal orders in quaternion algebras

introduced in table (3.20). Note that an element x in such an order  is a unit if and only if N(x) = xx̄ ∈ ℤ≥0 equals 1. Then it
is not hard to find the units from the description of the orders given in (3.20). If we set !2 = 1+i+j+k

2
∈ 2, !3 = 1+j

2
∈ 3 and

!5 =
2+i−k
4

∈ 5, then we have
 (2) = ⟨i, !2⟩ ≅ SL(2, 3) ≅ Q8 ⋊ C3,
 (3) = ⟨i, !3⟩ ≅ C3 ⋊ C4,
 (5) = ⟨!5⟩ ≅ C6.

(3.22)

Corollary 3.16. GL2(2)ab ≅ C3, GL2(3)ab ≅ C4 and GL2(5)ab ≅ C6.
Proof. Since 2,3 and 5 are Euclidean, they are GE2-rings by Proposition 2.12. Now !2 ∈  (2), !3 ∈  (3) and !5 ∈
 (5) are elements of order 6. Hence, by Corollary 3.9, for  one of the three orders, GL2()ab = GE2()ab ≅  ()ab.

4 PROPERTY HFAN−2 AND HFℝ FOR EN (R) IFN ≥ 3

In this section we discuss properties FA and Fℝ for the groups En(R), where R is a unital ring and n ≥ 3. We prove fixed point
properties on higher-dimensional CAT(0) cell complexes for the Steinberg groups Stn(R), where R is a finitely generated unital
ring. This will eventually imply the respective properties for En(R).
For i ≠ j, let eij(r) denote the matrix, called elementary matrix, in GLn(R) having 1 on the diagonal and r in the (i, j)-entry.

Recall that En(R) = ⟨eij(r) ∣ 1 ≤ i ≠ j ≤ n, r ∈ R⟩ denotes the elementary subgroup of GLn(R). In case n ≥ 3 it will turn
out that the elementary matrices En(R) over a finitely generated ring do not only have global fixed points on simplicial trees but
also on ‘higher dimensional trees’. More precisely they will have property FAn−2 (in the sense of [26]).
Definition 4.1. A group Γ is said to have property FAn if any isometric action, without inversion, on an n-dimensional CAT(0)
cell complex has a fixed point.
For definitions and a more in-depth discussion of CAT(0) spaces and cell complexes, we refer the reader to [11, Chapter II].

This definition is indeed a generalization of FA since a simplicial tree is exactly a 1-dimensional CAT(0) cell complex. As such,
FA and FA1 are the same property. Similar to the classical notation, we will say a group has property HFAn if every finite index
subgroup has FAn. Note that if a group has property FAn for an n ∈ ℕ, then it has FAm for every n > m ∈ ℤ≥1.
In [72, Theorem 1.2] Ye proved that, for a finitely generated ring R and n ≥ 3, En(R) has property FAn−2 and in [25,

Theorem 1.1] Ershov and Jaikin-Zapirain proved that it also has property (T), which we know to imply Fℝ (see [20, Chapter 6.,
Proposition 11]). The purpose of this section is to prove the following result.
Theorem 4.2. Let n ≥ 3. Let R be a unital ring which is finitely generated as ℤ-module, then the group En(R)(m) satisfies
property Fℝ and FAn−2 for each m ≥ 1.
The groups En(R)(m) are subgroups of En(R) that will suit our purposes to study hereditary fixed point properties. They

are defined below, just before Theorem 4.6. Actually we will consider the so-called Steinberg groups Stn(R) and prove in
Theorem 4.8 (and the remark thereafter) the above statement for these groups. The construction of Stn(R) is such that it maps
onto En(R) and hence, since property Fℝ and FAn−2 are preserved under quotients, En(R) will inherit these properties from
Stn(R). From now on, throughout this section we assume n ≥ 3.
Straightforward calculations show that over any ring the elementary matrices satisfy the following relations (where (a, b) =

a−1b−1ab is the multiplicative commutator).
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Lemma 4.3. Let R be a ring. Then in En(R) we have that

(

ekl(s), eij(r)
)

=

⎧

⎪

⎨

⎪

⎩

1 if j ≠ k and i ≠ l,
eil(−rs) if j = k and i ≠ l,
ekj(sr) if j ≠ k and i = l,

for s, r ∈ R and 1 ≤ i, j, k, l ≤ n with i ≠ j, k ≠ l and |{i, j, k, l}| > 2.
In general En(R)may satisfy more relations as those above and this deficiency can be quantified by introducing a kind of ’free

model of En(R)’.
Definition 4.4. Let n ≥ 3 and J an ideal in R. The Steinberg group Stn(J ) is the abstract group generated by the symbols
{xij(r) ∣ 1 ≤ i ≠ j ≤ n, r ∈ J} subject to the following relations:

xij(r)xij(s) = xij(r + s),
(

xij(r), xkl(s)
)

= 1 if j ≠ k and i ≠ l,
(

xij(r), xjk(s)
)

= xik(rs) for i, j, k pairwise different,
(

xij(r), xki(s)
)

= xkj(−sr) for i, j, k pairwise different.
The indices will always be taken modulo n.
Clearly there is a natural epimorphism �n ∶ Stn(J )→ En(J ) defined by �n(xij(r)) = eij(r) and ker(�n)measures ’how many’

relations essentially different from those in Theorem 4.3 En(J ) satisfies.
The proof of the version of Theorem 4.2 for the Steinberg groups consists in obtaining a ’nice’ generating set in the sense of

[26, Theorem 5.1]. Therefore we start now with providing a first smaller generating set. We will use the left-normed convention
for the iterated commutator, i.e. inductively we define (a1, a2,… , an) ∶= ((a1, a2,… , an−1), an).
Lemma 4.5. Let n ≥ 3. Let J be an ideal in R and let TJ and T be a set of ring generators of J and R, respectively. Then we
have the following.

1. Stn(J ) = ⟨xij(t) ∣ 1 ≤ i ≠ j ≤ n, t ∈ TJ ⟩.
2. If T contains 1 or generates R as a ℤ-module, then

Stn(R) = ⟨xi,i+1(r) ∣ r ∈ T , 1 ≤ i ≤ n⟩.

3. Stn(R) is a perfect group.
Proof. We first prove statement (1). Assume to begin with that J is generated as ℤ-module by TJ . Let r ∈ J be an arbitrary
element and write r =

k
∑

s=1
asts for as ∈ ℤ ⧵ {0} and ts ∈ TJ . Then clearly xij(r) = xij(t1)a1 … xij(tk)ak , proving the first part.

Since TJ generates J as ring, the set J consisting of finite products of elements of TJ generates J as ℤ-module. By using
the defining relations of Stn(J ) and the case considered in the previous paragraph, we get

Stn(J ) = ⟨xij(t) ∣ 1 ≤ i ≠ j ≤ n, t ∈ J ⟩ ≤ ⟨xij(t) ∣ 1 ≤ i ≠ j ≤ n, t ∈ TJ ⟩ ≤ Stn(J ).

To prove (2), we first assume that 1 ∈ T . Let S = {xi,i+1(r) ∣ r ∈ T , 1 ≤ i ≤ n}. Recall that the indices are taken modulo n.
According to (1), it suffices to show that S generates the xij(t) for every t ∈ T . This is similar to what we did earlier:

xi,j(t) = (xi,i+1(t), xi+1,i+2(1),… , xj−1,j(1)),

an iterated commutator of elements ofS. Now assume that T is an arbitrary generating set forR asℤ-module. Similar arguments
as above can be used to express xi,i+1(1) as a product of the elements in S. Thus the previous argument can be applied.
Finally (3) follows immediately from the third defining relation of Stn(R).
Let T be a generating set for a ring R as a ℤ-module. We work with the following subgroups of Stn(R), for m ∈ ℤ≥1,

Stn(R)(m) ∶= ⟨xi,i+1(r)m ∣ r ∈ T , 1 ≤ i ≤ n⟩ = ⟨xi,i+1(r) ∣ r ∈ mT , 1 ≤ i ≤ n⟩.
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We will show (in Theorem 4.6) that this subgroup is well-defined, i.e. independent of the generating set T . Unfortunately if T
is a set of ring generators of R the definition would in general depend on T . Note that Stn(R) = Stn(R)(1). The groups En(R)(m)
are analogously defined.
Lemma 4.6. Let n ≥ 3 and m a non-zero positive integer. Then

1. the group Stn(R)(m) is well-defined, i.e. independent of the generating set of R as additive group,
2. Stn(mn−1R) ≤ Stn(R)(m)′ ≤ Stn(R)(m) ≤ Stn(mR).

Proof. Let T and T̃ be generating sets for R as ℤ-module. Similar to the proof of Theorem 4.5, it is clear that every element
xi,i+1(r)m = xi,i+1(mr) for r in T̃ can be made from the elements xi,i+1(t)m = xi,i+1(mt) where t ∈ T , and vice versa. This proves
(1).
For (2), note that the second inclusion is trivial. The rightmost inclusion follows from Theorem 4.5 applied to the ideal mR

and generating set mT . From the same lemma it also follows that Stn(mn−1R) = ⟨xij(mn−1r) ∣ 1 ≤ i ≠ j ≤ n, r ∈ T ⟩. Using the
defining relations as before, we obtain

xi,i+k(mn−1r) = (xi,i+1(mr), xi+1,i+2(m),… , xi+k−2,i+k−1(m), xi+k−1,i+k(mn−k)).

So, the elements that generate Stn(mn−1R) can be constructed from the generators xi,i+1(r)m = xi,i+1(mr) of Stn(R)(m) by taking
commutators, which proves the remaining inclusion.
Remark 4.7. The proof of Theorem 4.6 only uses the relations from Theorem 4.3 and hence the corresponding statements also
hold for En(R).
We now have the necessary ingredients to prove the following fixed point properties for Stn(R)(m). We were only recently

informed that property FAn−2 had already been proven for the group En(R) in [72, Theorem 2.1] in caseR is a finitely generated
ring. In hindsight both proofs follow the same line and use [26, Theorem 5.1]. Note that the group Stn(R)(m) is not the group
generated by all the mth powers of the generators of the Steinberg group, but rather is a suitably chosen subgroup of the latter
in order to be able to use [26, Theorem 5.1] and still derive the desired hereditary property.
Theorem 4.8. Let n ≥ 3. Suppose R is finitely generated as ℤ-module. Then the group Stn(R)(m) satisfies properties Fℝ and
FAn−2 for each m ≥ 1.
Proof. Let T be a finite generating set of R as a ℤ-module which we assume to contain 1.
By definition, Stn(R)(m) is finitely generated by S = {xi,i+1(r) ∣ r ∈ mT , 1 ≤ i ≤ n}. By a theorem of Farb [26, Theorem 5.1],

to prove FAn−2 it suffices to find a set of finitely generated nilpotent subgroups C ∶= {Γ1,… ,Γn} of Stn(R)(m) such that
1. the group generated by the subgroups in C is of finite index in Stn(R)(m),
2. any proper subset of C generates a nilpotent group,
3. there exists a positive integer z such that for all 1 ≤ i ≤ n and for all r ∈ Γi, there exists a nilpotent subgroupN ≤ Stn(R)(m)

with rz ∈ N ′.
We define these groups to be the finitely generated abelian groups

Γi = ⟨xi,i+1(mr) ∣ r ∈ T ⟩, for 1 ≤ i ≤ n.

Clearly ⟨Γ1,… ,Γn⟩ = Stn(R)(m), so the first requirement is satisfied.
Let now Γ̂i be the group generated by the subgroups of C ⧵{Γi}. To prove (2), it is sufficient to prove that each Γ̂i is nilpotent.

Clearly � ∶ Stn(R) → Stn(R), xij(r) → xi+1,j+1(r) is an isomorphism such that � (Γi
)

= Γi+1 and �
(

Γ̂i
)

= Γ̂i+1. Hence all Γ̂i
are isomorphic to Γ̂n. It is well known (see for example [59, Lemma 4.2.3]) that Γ̂n is nilpotent. Hence the second requirement
is satisfied.
Wewill show the last requirement for r a generator of Γi and z = m. This is sufficient, since the Γi are finitely generated abelian

groups. Consider xi,i+1(mt)m = xi,i+1(m2t) with t ∈ T . Applying �2−i to this element, it suffices to show the last requirement for
x2,3(mt)m = x2,3(m2t).
Using the defining relations we write

x2,3(mt)m = x2,3(m2t) = (x2,1(m), x1,3(mt)).
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Now applying the isomorphism of Stn(mR) which interchanges in Stn(mR) the indices 1 and 2, x2,1(m) and x1,3(mt) are mapped
to elements of Γ̂n, a nilpotent group, proving the statement. Here we used that we may assume 1 ∈ T and thus m and mr ∈ mT .
Hence conditions (1) to (3) are satisfied and we conclude that Stn(R)(m) has property FAn−2.
To prove that Stn(R)(m) has property Fℝ, we will check that for every pair of generators xi,i+1(s) and xj,j+1(r) in S, their

commutator (xi,i+1(s), xj,j+1(r)
) commutes with xj,j+1(r). This will indeed suffice, by a result of Culler and Vogtmann [18,

Corollary 2.5] since Stn(R)(m) already has finite abelianization (recall that it has property FAn−2 by the first part of the proof).
First, if j ≠ i + 1, (xi,i+1(s), xj,j+1(r)

)

= 1 which of course commutes with xj,j+1(r). So suppose now j = i + 1, then
(

xi,i+1(s), xi+1,i+2(r)
)

= xi,i+2(sr) (here we used that i ≠ i + 2, or the fact that n ≠ 2) which commutes with xi+1,i+2(r), proving
the theorem.
Remark 4.9. As a matter of fact, the reasoning in the previous proof also provides an alternative and elementary proof for the
fact that Stn(R) has FℝwhenR is finitely generated as a unital ring. Indeed, by takingm = 1 in the proof of Fℝ, we may provide
the same argument when T generates R as a ring. This proof circumvents the use of the much more general result [25, Theorem
6.2] which states that Stn(R) satisfies property (T).
As explained earlier, since property FAn and Fℝ are preserved under quotients, Theorem 4.2 now follows from the previous

theorem and remark.

5 PROPERTY Fℝ AND HFℝ FOR E2()

In this section we discuss properties FA, Fℝ and HFℝ for the groups E2(R), where R is a suitable ring (which will always at
least again be associative and unital). Since not every E2(R) has property FA, the situation is significantly different from the
case n ≥ 3 which was the setting of the previous section. For R an order in a simple ℚ-algebra having a finite unit group, we
classify exactly when E2(R) has property FA and Fℝ. With a view on the latter we consider first Borel type subgroups.
It is well known when SL2(), for  a ℤ-order in a field with finite unit group, has property FA. Indeed, by [63, Exercise

I.6.5, pg 66] and [29, Theorems 2.1 and 2.4] the only such  for which SL2() has Fℝ (or equivalently FA) is 3.
The main goal of this section is to generalize this result to all orders  (not necessarily commutative) in division ℚ-algebras

with  () finite. We will prove the following theorem, which is also Theorem D from the introduction.
Theorem 5.1. Let  be an order in a finite dimensional division ℚ-algebra with () finite. Then the following properties are
equivalent:

1. E2() has property Fℝ,
2. E2() has property FA,
3.  is isomorphic to 3,2 or 3.

Furthermore, GL2() has property Fℝ if  has a basis of units and  ≇ ℤ.
The proof of Theorem 5.1 will be given later in Subsection 5.1 (on page 27) and will strongly require the results obtained

in Subsection 3.3. Moreover we first need to understand the connections between E2(), the diagonal matrices therein and the
Borel subgroup. The latter will be the content of Proposition 5.4. Next, in Subsection 5.2, we conjecture when GE2() has
property FA and Fℝ and lay the first stone towards a proof by understanding completely the situation for the Borel subgroup
B2() of GL2().
Remark 5.2. While in Section 4, property Fℝ for En(), n ≥ 3, is a consequence of the same property for the Steinberg groups
Stn(), this is no longer true for the cases in Theorem 5.1. Indeed, if one defines St2() in a similar way, then the only non-
trivial defining relation is xij(r)xij(s) = xij(r+ s), hence St2() is the free product of two copies of the additive group of  and
hence cannot have property Fℝ.
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5.1 Property Fℝ for the groups GR,K with applications to Fℝ for E2()
We will now investigate E2(R) and GE2(R) simultaneously by defining a more general type of groups, denoted GR,K . Consider
a subgroup K of D2(R) (the group of invertible diagonal 2 × 2-matrices over the ring R; recall that we always assume our rings
to be unital).
Definition 5.3. The group generated by K and N =

(

1 R
0 1

) consisting of the unimodular upper triangular matrices will be
denoted by GR,K .
Note that for the choice K = D2(R) we have that GR,K is the Borel subgroup B2(R) of GL2(R), i.e. the group consisting of

invertible upper triangular 2 × 2-matrices over R.
Notation 1. If K consists of the matrices of the form ( � 0

0 �
) with �� ∈  (R)′ we will instead use the notation DE2(R) for K

and the notation BE2(R) for GR,K .
If R is almost-universal, using the determinant like map ' defined in (3.11), one can check that

BE2(R) = B2(R) ∩ E2(R).

Indeed, if one restricts ' to the subgroup B2(R), then its kernel coincides with BE2(R) = B2(R) ∩ E2(R). Also DE2(R) equals
⟨ D(�) | � ∈  (R) ⟩ by (R8) on page 9, recall that D(�) denoted the diagonal matrix [�, �−1]. Note that the group DE2(R)
already appeared in Corollary 3.5.
Now note thatN =

(

1 R
0 1

) is a normal subgroup of GR,K . Thus we have the following split short exact sequence
1 ←→ N ←→ GR,K ←→ GR,K∕N ≅ K ←→ 1. (5.1)

Hence GR,K is isomorphic to the semi-direct productN ⋊� K , where �∶ K → Aut(N) and
�([u1, u2]) ∶ N → N ∶ n → [u−11 , u

−1
2 ] n [u1, u2]

is conjugation by [u1, u2]. Furthermore,N is isomorphic to the additive group of R and hence abelian.
Remark that �(�) for � ∈ K , while in general an automorphism of the abstract group N , can here be considered as a matrix

over ℤ since (R,+) ≅ N is a finitely generated free ℤ-module by choosing an arbitrary basis of R. Via this identification one
may speak of the eigenvalues of �(�) . Note that its eigenvalues are independent of the chosen basis.
Property FA of extensions (5.1) has been considered by Serre [63, I.6.5., Exercise 4] and Cornulier-Kar [16, Proposition 3.2]

by means of sufficient group theoretical restrictions on GR,K . We will now provide a linear algebra criterion which will turn out
to be easy to check in our setting.
Proposition 5.4. Let R be a ring, which is finitely generated and free as ℤ-module. Then the following properties hold:

1. If K is countable and has property Fℝ (resp. FA) and there exists � ∈ K with finite order such that �(�) (where � was
defined above) has only non-rational eigenvalues, then GR,K has property Fℝ (resp. FA).

2. If GR,K has property Fℝ (resp. FA), then K has property Fℝ (resp. FA).
3. Suppose R has a ℤ-module basis consisting of units and DE2(R) ≤ K . If GR,K has property Fℝ (resp. FA), then also

⟨E2(R), K⟩ has property Fℝ (resp. FA).
We will first need the following lemma which is inspired by [63, I.6.5., Exercise 4]. The exercise is about simplicial trees. We

state the lemma for real trees and for the sake of completeness we provide a proof.
Lemma 5.5. Let B be a finitely generated group andN ⊴ B nilpotent and finitely generated. Suppose there is no subgroupM
ofN that is normal in B and such thatN∕M ≅ ℤ. Then B has property Fℝ if B∕N has property Fℝ.
Proof. We will in fact show that if B acts on a real tree X, then N has a fixed point on this tree. This implies of course that B
has property Fℝ.
Clearly, if B acts on a real tree X, then N does so as well. Now from [17, Proposition 3.8] it follows that exactly one of the

following happens:
• the action ofN on X has a fixed point,
• there exists a unique line T in X, stable under the action ofN , on whichN acts by translation.
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Suppose that the latter happens. Then we have a non-trivial morphism ' ∶ N → Aut(T ) ≅ Iso(ℝ). Then T is also stable
under the action of B. Indeed let t ∈ T , the invariant tree for N , and g ∈ B. Now gt ∈ gT and for every n ∈ N it holds that
n(gt) = (ng)t = (gn′)t = g(n′t) ∈ gT (for some n′ ∈ N), hence gT is invariant under N and thus by the uniqueness gT = T ,
as needed.
We may thus extend the morphism above to a morphism '∶ B → Aut(T ) ≅ Iso(ℝ). Since B is finitely generated and Iso(ℝ)

consists of reflections and translations, it is easy to see that '(B) is isomorphic to (ℤn)⋊C2 or ℤn, for some n ∈ ℤ≥1. Indeed, if
the finite number of generators for '(B) are all translations, clearly '(B) ≅ ℤn. If some of them are reflections, since a product
of two reflections is a translation, one may change the generating set to only contain translations and 1 reflection. This reflection
acts by inversion on the translations, so '(B) ≅ ℤn⋊C2 in this case. This also implies that every subgroup of ℤn, the subgroup
generated by translations, is normal in '(B). Moreover, sinceN is nilpotent and acts via translation on T , '(N) ≅ ℤk for some
n ≥ k ∈ ℤ≥1. All this implies that we may compose '|'(B), the corestriction of ' to '(B), with another morphism to obtain
 ∶ B → ℤ⋊C2 such that  (N) ≅ ℤ (for example, by modding out all the components of ℤn except for exactly one which has
non-zero intersection with '(N)). As such, there exists a normal subgroupH of B for whichN∕(H ∩N) ≅ ℤ, a contradiction
with the assumptions.
Proof of Proposition 5.4. The second statement immediately follows from the short exact sequence (5.1) and Proposition 2.7.
Assume now thatK has property Fℝ and that there exists � ∈ K such as in the first statement. To prove thatGR,K has property

Fℝ, we verify the conditions of Lemma 5.5. Assume that N =
(

1 R
0 1

)

≤ GR,K has a subgroup M , normal in GR,K such that
N∕M ≅ ℤ. TakeH = ⟨�⟩ ≤ K . Then we may restrict � toH and considerℚ[N] ∶= ℚ⊗ℤN as aℚH-module. The subgroup
M , being normal in GR,K , is invariant under the action of the restriction of �. Thus under this identificationℚ[M] ∶= ℚ⊗ℤM
is a ℚH-submodule of ℚ[N]. Since H is finite, by Maschke’s Theorem, ℚ[M] has to have a complement, i.e. there is a ℚH-
submodule V of ℚ[N] such that ℚ[N] = ℚ[M] ⊕ V and then necessarily dimℚ V = 1 (since N∕M ≅ ℤ). This means in
particular that each of the matrices corresponding to an �(�), � ∈ H , has to have a rational eigenvalue. However, this is in
contradiction with the assumptions.
Now, since GR,K∕N ≅ K has property Fℝ, the first statement follows from Lemma 5.5 if we show that GR,K is finitely

generated. For this we need to show that K and N are finitely generated. For the latter let {r1,… , rl} be a finite ℤ-basis of R,
which exists by the assumptions on R, then {

(

1 ri
0 1

)

∣ 1 ≤ i ≤ l} is a finite generating set of N . Also K is finitely generated
due to Theorem 2.5.
Finally, assume thatR has aℤ-module basis consisting of units and thatGR,K satisfies property Fℝ. Note that ⟨E2(R), K⟩ =

⟨w,GR,K⟩wherew =
(

0 −1
1 0

). Let T be a tree and assume ⟨E2(R), K⟩ acts on it. Now due to [63, I.6.5., Proposition 26]1, sincew
is of finite order (hence ⟨w⟩ has property Fℝ) and GR,K has property Fℝ, ⟨w,GR,K⟩ has property Fℝ if there exists a generating
set  of GR,K such that wx has a fixed point for all x ∈ . For this purpose define x� =

(

�−1 1
0 �

)

for � ∈  (R). Then,
⟨w,GR,K⟩ = ⟨w,K,N⟩ = ⟨K,E2(R)⟩ = ⟨w, x�, K ∣ � ∈ ⟩.

Indeed, [�, �−1]x� =
( 1 �
0 1

) and {( 1 �
0 1

)

∶ � ∈ 
} generates the subgroup N . It can easily be seen that the generating set

 = {x�, K ∣ � ∈ } satisfies the condition of [63, I.6.5., Proposition 26]. Indeed,

wx� =
(

0 −�
�−1 1

)

, (wx�)3 =
(

−1 0
0 −1

)

.

This implies that wx� is of order 6 and hence has a fixed point. Next take d = [�, �] ∈ K . Note that also [�, �] =
[�, �].[�−1�, �−1�] ∈ K , where we used thatDE2(R) ≤ K . Consequently (wd)4 =

(

(��)2 0
0 (��)2

)

is an element ofK . SinceGR,K
has Fℝ by assumption,K does so as well by the second statement. As now (wd)4 ∈ K has a fixed point on T ,wd needs to have
a fixed point as well since the group K does not act via inversions. More precisely, if (wd)4 has a fixed point, but (wd)2 does
not, then this implies there is an action by inversion (see the paragraph before Definition 2.2), so (wd)2 needs to have a fixed
point and similarly wd needs to have a fixed point. For property Fℝ the claim follows in a similar way2.
Thus altogether we have proven that ⟨w,GR,K⟩ = ⟨E2(R), K⟩ has property Fℝ. The result for FA can be obtained similarly

by taking T a simplicial tree and using [63, I.6.5., Exercise 4] instead of Lemma 5.5 to prove (1).

1Note that Serre states [63, I.6.5., Proposition 26] for simplicial trees, but the proof stays exactly the same for real trees
2If (wd)4 has a fixed point x, then the midpoint y between x and (wd)2(x) is a fixed point for (wd)2, and similarly the midpoint between y and (wd)(y) is a fixed point

for wd.
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Remark 5.6. Unfortunately, the converse of the third statement in Proposition 5.4 is not true. It fails already in the (trivial)
case where K = 1. For this, consider any ring R for which E2(R) has Fℝ (such as 3) and notice that GR,1 ≅ N is a finitely
generated torsion-free abelian group. Also the converse of the first statement in Proposition 5.4 is not true as we will explain
after Proposition 5.10.
We are finally ready to prove the main theorem of this section.

Proof of Theorem 5.1. Recall that property Fℝ implies property FA which on its turn implies finite abelianization by
Theorem 2.5. Thus thanks to Theorem 3.14 we need to understand for which isomorphism type {ℤ,1,3,,2,3} of  the
group E2() has property Fℝ or FA.
In the literature it was obtained that E2(ℤ) is isomorphic to the free product SL2(ℤ) ≅ C4 ∗C2 C6 (see [63, I, 4.2. (c)]) andalso that E2(1) and E2() have non-trivial amalgamated products (see respectively [27, Theorem 4.4.1] and [5, Theorem 7.8]).

Therefore using again Theorem 2.5 we already know the implications (1)⇒ (2)⇒ (3).
Therefore it remains to prove that all the groups mentioned in the statement have property Fℝ. This will be achieved by

verifying the conditions from Proposition 5.4. We will use the notations and results from Remark 3.13 throughout this proof
without always explicitly mentioning it. We first claim the following.
Claim: The groups BE2(2), BE2(3), BE2(3), B2() and B2(1) have property Fℝ as the eigenvalue condition from
Proposition 5.4 (1) is fulfilled.
Once the claim is established Proposition 5.4 (3) implies that also E2(2), E2(3), E2(3),GE2() andGE2(1) have property

Fℝ. In particular we would have proven (3) implies (1), as needed.
Proof of the claim: to check the condition of the existence of an element � ∈ K of finite order such that �(�) has no rational
eigenvalue (where K = D2() or K = DE2()) it suffices to calculate the impact of it to a basis of N =

(

1 
0 1

). By fixing a
basis of the ℤ-moduleN , we identify Aut(N) ≅ GL(2,ℤ) or Aut(N) ≅ GL(4,ℤ) respectively.
We will first carry out the proof for , the Lipschitz quaternions and 2, the Hurwitz quaternions. The Lipschitz quaternions

have a basis {1, i, j, k} consisting of units and () ≅ Q8. Take �1 = [i, 1] ∈ D2(). Then �(�1) is just left multiplication by −i
on  and this has (complex) eigenvalues i,−i both with multiplicity 2, in particular it does not have any rational eigenvalue. 2
has a basis {1, i, j, !} consisting of units and (2) = ⟨i, !⟩ ≅ Q8 ⋊ C3, so ()′ = ⟨i, j⟩ (see table (3.20) and (3.22)). If we
set �2 = [i, 1], then in this case even �2 ∈ DE2(2) and �(�2) has the same eigenvalues as �(�1), hence none of them is rational.
Also the rings of integers 1 inℚ(

√

−1) and 3 inℚ(
√

−3), considered as ℤ-module, have a basis consisting of units. Indeed
one can take {1, i} and {1, 1+

√

−3
2

} respectively. Also here the non-rational eigenvalue condition is satisfied, but the matrices we
use are [i, 1] and [ 1+

√

−3
2

,
(

1+
√

−3
2

)−1
]. They are both in D2 and in the last case even in DE2 of their respective orders.

Now consider the maximal order3 in
(

−1,−3
ℚ

)

. Take!3 = 1+j
2
∈ 3 and note that!63 = 1. Then3 has a basis {1, i, !3, i!3}

consisting of units. Set � = !23, a unit of order 3, then (3) = ⟨�, i⟩ ≅ C3⋊C4 and (3)′ = ⟨�⟩. Then �3 = [�, 1] ∈ DE2(3)
and �(�3) has eigenvalues �3 and �23 , both with multiplicity 2, where �3 denotes a complex primitive third root of unity.
So from Proposition 5.4 (1) the claim follows.
Finally, since E2(2), E2(3) and E2(3) are of finite index in the GE2 of the respective rings (see Proposition 3.4), by

Proposition 2.7, also the GE2’s of these orders have property Fℝ. Since 2, 3, 1 and 3 are left Euclidean rings, GL2 = GE2
by Proposition 2.12. On the other hand,  is neither right nor left Euclidean, but one can still directly prove it to be a GE2-ring
(see [5, Proposition 7.10]). Thus the last line of the statement follows by Theorem 3.14.
Next, we join all the pieces in order to proof that E2() always contains a subgroup of finite index not enjoying property FA.

Theorem 5.7. Let  be an order in a finite dimensional division ℚ-algebra with  () finite. Suppose  ≇ 3. Then E2()
does not satisfy property HFA. In particular also GE2() does not satisfy HFA.
Proof. If E2() has property FA, then by Theorem 5.1,  is isomorphic to 3, 2 or 3. It remains to prove that E2(3) and
E2(2) do not satisfy property HFA. We will do this by exhibiting concrete subgroups of finite index not having property FA.
To start we claim that E2(ℤ[

√

−3]) is a subgroup of finite index in E2(3) with infinite abelianization. Indeed ℤ[
√

−3] is a
GE2-ring [21] and hence E2(ℤ[

√

−3]) = SL2(ℤ[
√

−3]) which is of finite index in SL2(3) = E2(3) because GL2(ℤ[
√

−3]) is
of finite index in GL2(3) using that 3 is an Euclidean ring. By Theorem 3.14, E2(ℤ[

√

−3]) has infinite abelianization.
Finally in [5, Theorem 7.8] it is proven that E2() is a subgroup of finite index in E2(2) with a non-trivial decomposition as

amalgamated product and thus does not have property FA.
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Remark 5.8. It is possible to prove the same statement as in Theorem 5.7 for the group SL2() for  an order in a finite
dimensional ℚ-algebra with  () finite, via geometric methods. Indeed SL2() has a discontinuous action on the hyperbolic
space ℍ3 or ℍ5 of dimension 3 or 5. One can construct a reflection acting on this hyperbolic space, and a congruence subgroup
Γ of SL2() which is normalized by the latter reflection. Then by [51, Corollary 3.6], Γ has a virtually free quotient. The latter
implies that Γ has a finite index subgroup with infinite abelianization. As Γ has finite index in SL2(), this proves the result.
Note that for this method, the order 3 does not have to be excluded. Moreover, as E2(3) has finite index in SL2(3), this also
shows that the condition  ≇ 3 is not necessary in Theorem 5.7. However, note that E2() is not of finite index in SL2() for
any order  such that  () is finite, [56]. Hence this remark does not yield an alternative proof of Theorem 5.7.

5.2 Property Fℝ for the Borel subgroup with a view on GE2()
Now it is logical to ask, in the same setting as Theorem 5.1, when GE2() has property FA. We expect a similar theorem to be
true.
Question 5.9. Let  be an order in a finite dimensional division ℚ-algebra D with  () finite. Are the following properties
equivalent?

1. GE2() has property Fℝ,
2. GE2() has no non-trivial decomposition as an amalgamated product,
3.  isomorphic to 1,3,,2 or 3.
In case that D is a field and  is not isomorphic to 1 and 3 it is proven in [5] that GE2() indeed has a non-trivial de-

composition as an amalgamated product. Hence combined with Theorem 5.1, using that 1 and 3 are GE2-rings, we see that
the above question is indeed true for D a field. For the general case, the missing fact is that GE2() for  an order in a totally
definite quaternion algebra of the form

(

a,b
ℚ

)

only has property FA for the orders ,2 and 3. To achieve this, in view of the
proof of Theorem 5.1, it is natural to first fully understand the situation for B2().
Proposition 5.10. Let be an order in a finite dimensional divisionℚ-algebraDwith () finite. Then the following properties
are equivalent:

1. B2() has property Fℝ,
2. B2() has property FA,
3. B2() has no non-trivial decomposition as an amalgamated product,
4.  () ≇ C2.

Proof. If B2() has property Fℝ, then it has also property FA and consequently, by Serre’s algebraic characterisation, it cannot
be an amalgamated product.
Next, by contraposition, suppose  () ≅ C2 and write  () = ⟨u ∶ u2 = 1⟩ and B2() =

(

⟨u⟩ 
0 ⟨u⟩

)

is isomorphic to
(,+)⋊

(

C2 × C2
), where the action of (u, 1) and (1, u) on (,+) is via taking the opposite (i.e. sends x ∈  on−x). Furthermore

(,+) is a free ℤ-module of rank 1, 2 or 4. Thus the group B2() clearly has an epimorphism to ℤ ⋊ C2 ≅ D∞ ≅ C2 ∗ C2.
Since this last group is a free product, also B2() has a non-trivial amalgamated decomposition.
There only remains one implication to be checked. So suppose that  () ≇ C2. We will prove that B2() has property Fℝ.

For this we will use Lemma 5.5, applied to the group B2() with N ≅ (,+) the free abelian subgroup of unimodular upper
triangular matrices. Since B2()∕N ≅  () ×  () has property Fℝ (indeed, it is finite), it will suffice to prove there is no
subgroupM ofN which is normal in B2() and such thatN∕M ≅ ℤ.
Suppose such anM does exist. LetM ′ be the subgroup of the additive group of  such thatM = {

( 1 y
0 1

)

∣ y ∈M ′}. Now by
assumption and Theorem 2.10,D is equal toℚ,ℚ(√−d)with d > 0 or a totally definite quaternion algebra

(

a,b
ℚ

)

. Therefore, by
Remark 3.15, either has aℤ-module basis consisting of units or () is isomorphic to C2, C4 or C6. In the former case B2()
has property Fℝ as proven in Theorem 5.1 (see the claim in its proof). So we may now suppose that  () is isomorphic to C4
or C6. First, for an order  in an imaginary quadratic number field () = ⟨−1⟩, unless  ∈ {1,3} and in these cases  has
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a basis of units. Therefore it remains to consider the case where  is an order in
(

a,b
ℚ

)

with a, b < 0. Assume � is a generator
of  (). Notice that ℤ[�] ≅ ℤ[i] or ℤ[�3] where �3 is a primitive third root of unity. In both cases, ℤ[�] is a principal ideal
domain and  is a finitely generated torsion-free ℤ[�]-module. Using the fundamental theorem of finitely generated modules
over PID’s, we obtain that  = ℤ[�]⊕ bℤ[�], for some b ∈ . Hence we obtain a ℤ-basis {1, �, b, b�} for .
We will now go through the proof in the case � is of order 6, but the order 4 case is similar.
SinceM is normal inB2(), taking the conjugate with

(

�−1 0
0 1

)

and
(

1 0
0 �

)

for � ∈  (), yields �M ′ ⊆ M ′ andM ′� ⊆ M ′

respectively. Additionally, since � is of order 6, �2 = � − 1. We will use these facts throughout.
Our first claim is that ℤ + ℤ� ⊆ M ′, or equivalently M ′ ∩ ⟨�⟩ ≠ {0}. Indeed, if we suppose the opposite, namely for all

non-zero � ∈ ⟨�⟩ that � ∉M ′, then also for all r ∈ ℤ ⧵ {0} and � ∈ ⟨�⟩ the element r� ∉M ′ (elseN∕M is no longer torsion
free). However, since N∕M ≅ ℤ, then we may find some integers n, m ∈ ℤ ⧵ {0} such that m� ≡ n1 mod M ′. This would
imply that m� − n ∈M ′, but then also (m� − n)� = m(� − 1) − n� = (m − n)� − m ∈M ′. This shows that

m(m� − n) − n((m − n)� − m) = (m2 − nm + n2)� ∈M ′.

Since m2 − nm + n2 ≠ 0, this yields a contradiction.
Suppose now that b ∈M ′. Then also b� ∈M ′ and thus a whole basis of  is inM ′. This contradictsN∕M ≅ ℤ. Similarly,

suppose b� ∈ M ′. Then b�2 = b� − b ∈ M ′, which implies b ∈ M ′. This gives again a contradiction. Hence we have that
b ∉M ′ and b� ∉M ′ and thus also rb ∉M ′ and rb� ∉M ′ for every r ∈ ℤ ⧵ {0}, for elseN∕M would not be torsion free. In
the same way as above, we again find two integers n, m ∈ ℤ ⧵ {0} such that mb ≡ nb� mod M ′. By a similar calculation, this
gives again a contradiction. This shows that the setM ′ does not exist and hence alsoM does not exist. So Lemma 5.5 finishes
the proof.
From Proposition 5.10 we see that also for B2() property Fℝ and FA are equivalent. Furthermore we see that B2(5)

has property Fℝ. However it can be directly checked that there exists no � ∈ D2(5) of finite order such that �(�) has only
non-rational eigenvalues. So 5 yields a counterexample to the converse of the first statement in Proposition 5.4.

6 FIXED POINT PROPERTIES, EXCEPTIONAL COMPONENTS AND CUT GROUPS

For the remainder of the paperG will denote a finite group. In the sequel we aim at describing property FA and HFA for (ℤG)
both in terms of G and the Wedderburn-Artin components of ℚG. In Proposition 6.1 we will see that if  (ℤG) has FA, then
G must be a so-called cut group. Therefore in Section 6.3 we investigate the possible simple algebras Mn(D) that arise as a
component of ℚG for G a cut group.
Earlier we recalled the concepts of reduced norm and SL1 for a subring of a central simple algebra in Section 2.2. In this

part we will frequently need the notion SL1(R) for R a subring in a semisimple ℚ-algebra A. Let A =
∏

Mni(Di) be the
Wedderburn-Artin decomposition of A and ℎi the projections onto the i-th component. Then

SL1(R) ∶= { a ∈ R ∣ ∀ i∶ RNrMni (Di)∕(Di)(ℎi(a)) = 1 }.

6.1 FA and cut groups
We start by proving that the size of (ℤG)ab restricts the size of the center. More generally the following is true. As before the
rank of a finitely generated abelian group A means the rank of its free part and will be denoted by rankℤ.
Proposition 6.1. Let  be an order in a finite dimensional semisimple ℚ-algebra A. Then

rankℤ
(

 ()ab
)

≥ rankℤ ( (())) .

Proof. For any n one can embed GLn() into GLn+1() by sending B ∈ GLn() to
(

B 0
0 1

). So (the direct limit) GL() =
⋃

GLn() is equipped with the obvious group structure whose identity element we denote I∞. Recall that K1() ∶= GL()ab
and let

i ∶  ()→ K1() ∶ u →
(

e11(u − 1) + I∞
)

GL()′

be the canonical map, where e11(u − 1) is the matrix with the value u − 1 in the entry (1, 1) and zero elsewhere. So i(u) is the
image inside K1() of the ℕ × ℕ-identity matrix but with value u instead of 1 at place (1, 1).
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By [42, Corollary 9.5.10], i( (())) is of finite index in K1(). In particular also i( ()) has finite index. Since K1()
is abelian,  ()′ ⊆ ker(i) and we have an induced map i ∶  ()ab → K1() whose image is still of finite index in
K1(). Therefore rankℤ

(

 ()ab
)

≥ rankℤ
(

K1()
). The statement now follows by [42, Corollary 9.5.10] which says that

rankℤ
(

K1()
)

= rankℤ ( (())).
Due to Proposition 6.1 and Theorem 2.5, if  (ℤG) has FA, then  ((ℤG)) is finite. The latter is the content of so-called

cut groups, a class of groups that was studied in its own right (the term “cut” was introduced in [7]).
Definition 6.2. A finite group G is called a cut group, if  ((ℤG)) is finite.
The word cut derives from “central units of the integral group ring trivial”. In fact by a classical theorem of Berman and

Higman [42, Proposition 7.1.4] each central unit in ℤG not in ±(G) has infinite order. Hence if ((ℤG)) is finite, all central
units must be trivial (i.e. in ±(G)).
Corollary 6.3. Let G be a finite group such that  (ℤG) has finite abelianization. Then G is a cut group.
This also implies that when (ℤG) has FA, thenG is a cut group. The converse is however not true as the following example

shows.
Example 6.4. Denote the subgroup of units with augmentation one ofℤG byV(ℤG). Then (ℤS3) = ±V(ℤS3) andV(ℤS3) =
⟨s, t, b ∣ s2, t3, ts = t−1, bs = b−1⟩ (see for example [52]). Clearly the latter group is an amalgamated product of the groups
⟨b, s⟩ ≅ C∞ ⋊ C2 = C2 ∗ C2 and ⟨s, t⟩ = S3 over the subgroup ⟨s⟩ ≅ C2. So, also  (ℤS3) has a non-trivial decomposition as
amalgamated product and thus does not have property FA. On the other hand, the amalgamated subgroup is finite, this shows
that S3 is a cut group.
For a finite group G the rational group algebra ℚG is semisimple and thus has a Wedderburn-Artin decomposition ℚG ≅

∏m
i=1Mni(Di), where all theDi are rational division algebras. If i is an order inDi, then ℤG and∏m

i=1Mni(i) are both orders
in ℚG and (ℤG) and ∏m

i=1(Mni(i)) ≅
∏m

i=1(i) are orders in (ℚG). Hence Proposition 2.8 implies the following fact
that we will use in the sequel without further reference: G is a cut group if and only if all the centres (i) have a finite unit
group, that is, (Di) is the field of rational numbers or an imaginary quadratic extension of ℚ (cf. Theorem 2.10).
It would be particularly interesting whether equality holds in Proposition 6.1. By [42, Lemma 9.5.6] for two orders 1,2

in a finite dimensional semisimple ℚ-algebra A, K1(1) and K1(2) are commensurable. Furthermore, as stated above,
rankℤ( ((1))) = rankℤ(K1(1)), and similarly for 2, and hence for orders “having a center with finitely many units” is a
property defined on commensurability classes. In particular if equality in Proposition 6.1 holds, one would also have a positive
answer to the following question.
Question 6.5. Let 1 and 2 be two orders in a finite dimensional semisimple ℚ-algebra. Is  (1)ab finite if and only if
 (2)ab is finite?
As in general, finite abelianization and property FA do not descend to subgroups of finite index, a positive answer to the

above question cannot be given right away. In contrast, property HFA does descend to subgroups of finite index and therefore
the following holds.
Proposition 6.6. Let G be a finite group, ℚG ≅

m
∏

i=1
Mni(Di) the Wedderburn-Artin decomposition of its rational group algebra

ℚG and i an order in Di. Then the following properties are equivalent:
1.  (ℤG) has property HFℝ (resp. HFA),
2. GLni(i) has property HFℝ (resp. HFA) for all 1 ≤ i ≤ m,
3. SLni(i) has property HFℝ (resp. HFA) for all 1 ≤ i ≤ m and G is a cut group.

Proof. We prove the equivalences for property HFℝ. The proofs for property HFA are the same.
First note that ℤG and ∏m

i=1Mni(i) are both orders in ℚG. Hence by Proposition 2.8,  (ℤG) and ∏m
i=1GLni(i) are

commensurable. This shows the equivalence between (1) and (2), see Proposition 2.7 and the remark thereafter.
For any order  in a finite dimensional semisimple ℚ-algebra, ⟨SL1(), (())⟩ has finite index in  () and SL1() ∩

 (()) is finite by [42, Proposition 5.5.1]. Hence  () has property HFℝ if and only if SL1() and  (()) both have
property HFℝ.



31

Suppose that (1) and hence also (2) hold. By Corollary 6.3, G is cut. Now consider  =
∏m

i=1Mni(i). By the previous
paragraph, and the definition of SL1 for semisimple algebras, all SLni(i) have property HFℝ. This gives (3).
Now assume (3). By the discussion following Corollary 6.3, all the  ((i)) are finite and thus have property HFℝ. By the

paragraph above, (2) follows.

6.2 Higher rank and exceptional components
Due to Proposition 6.6, propertyHFA for an order in a finite dimensional semisimpleℚ-algebra depends on itsWedderburn-Artin
components. It will turn out that the main obstruction for HFA lies in the following type of components.
Definition 6.7. LetD be a finite dimensional division algebra over ℚ. The algebraMn(D) is called exceptional if it is of one of
the following types:
(I) a non-commutative division algebra other than a totally definite quaternion algebra over a number field,
(II) a 2 × 2-matrix ringM2(D) such that D has an order  with  () finite.
Recall that by a theorem of Kleinert [42, Proposition 5.5.6] the non-commutative division algebras excluded in type (I) are

exactly those having an order  with SL1() finite. Also recall that, by Theorem 2.10, the condition in type (II) is a condition
which can be formulated in terms of D. The name “exceptional component” was coined in [46] because under the presence of
such a component the known generic constructions of units do not necessarily generate a subgroup of finite index in  (ℤG)
[44, 42]. The crux of that failure is that these components are exactly those where respectively SL1(D) and SL2(D) have ‘bad’
(arithmetic) properties as algebraic group (for the meaning of ‘bad’ see Remark 6.8 below). Therefore we will now review
the structure of SL2(D) as an algebraic group and subsequently interpret certain algebraic groups results into the language of
exceptional components. Alternatively, the reader might opt to accept the content of Theorem 6.10 and go further to the next
section.
LetD be a finite dimensional division algebra overℚ of degree d and denote (D) by K . Further, let E be a splitting field of

D, i.e.D⊗K E ≅ Md(E). Call the latter isomorphism '. Then ' restricts to an embedding ofD, viewed asD⊗ 1, intoMd(E)
and

SL2(D) =
{ (

a b
c d

)

∈ M2(D)
|

|

|

|

|

det
(

'(a) '(b)
'(c) '(d)

)

= 1
}

.

So, in the above, using ', we identifyM2(D) with a K-subspace ofM2d(E). Then we see that SL2(D) actually is the Zariski
closed subspace of the affine space K4d2 ≅ M2(D) defined by the polynomial equation RNrM2(D)∕K = 1. Due to this, SL2(D)
can be viewed as the K-rational points of an algebraic group Γ defined over K .
More generally let Γ be a linear algebraic K-group. Then, by rankK Γ(K) we denote the dimension of a maximal K-split

torus of Γ(K), called reductiveK-rank of Γ. Recall that aK-split torus is a commutative algebraic subgroup T of Γ(K) which is
diagonalizable overK , i.e. T is defined overK andK-isomorphic to∏1≤i≤q K∗, where q = dim T = rankK Γ(K). All maximal
split K-tori of Γ are conjugate over K [65, 15.2.6.] and hence rankK Γ(K) is independent of the choice of T .
In our case, Γ(K) = SL2(D) with K a global field of characteristic 0 (i.e. a finite extension of ℚ). Consequently, for every

valuation v of K the completion of K with respect to v, denoted Kv, is a local field. Note that Γ(Kv) = SL2(D ⊗K Kv) =
SL1(M2(D ⊗K Kv)). It is not hard to see that rankK SLn(D) = n − 1, where the diagonal matrices with entries in K and
determinant 1 form a maximal K-split torus. With this terminology at hand we can be more precise about the ‘bad’ behaviour
of SL1(D) and SL2(D).
Remark 6.8. For n ≥ 2, Mn(D) is exceptional exactly when SLn(D) has a negative answer to the Congruence Subgroup
Problem. The reason for the failure is that the type (II) components are exactly those where SLn(D) is an algebraic group with
S − rank(SLn(D)) ∶=

∑

v∈S rank(SLn(D⊗KKv)), called S-rank, equal to 1, where S is the set of Archimedean places of(D).
In the case of a type (I) exceptional component, still very little is known about the answer to the Congruence Subgroup Problem
for SL1(D). One reason for this is the lack of unipotent elements in SL1(D), which is also an obstruction for the construction
of generic units contributing to a subgroup of finite index in these components. Since those excluded in type (I) are such that
SL1() is finite, for any order , such orders do not pose a problem.
A precise rank computation yields the following well known result for which we unfortunately could not find a concrete

reference. Therefore, for the convenience of the reader, we sketch a proof.



32

Lemma 6.9 (Folklore). LetD be a finite dimensional divisionℚ-algebra and suppose n ≥ 2. Then there exists an Archimedean
place v of K ∶= (D) such that rankKv

SLn(D⊗K Kv) = 1 if and only if
• n = 2 and
• D is a (number) field or D =

(

a,b
K

)

with a, b < 0 and K is not totally imaginary.
Proof. Note that for n ≥ 2, SLn(D⊗K Kv) contains a Kv-split torus. Hence rankKv

(SLn(D⊗K Kv)) ≥ 1 for any valuation v of
K . Suppose first thatD = K is a number field. ThenD⊗KKv ≅ Kv for any place v and it is clear that rankKv

(SLn(Kv)) = n−1.
In particular the rank equals 1 if and only if n = 2.
Now suppose that D ≠ K . As D is a central simple algebra over K , and Kv is a simple K-algebra, one has, by [42,

Proposition 2.1.8], thatD⊗KKv is a central simple algebra overKv, sayMd(D′). Now, SLn(D⊗KKv) = SL1(Mn(D⊗KKv)) ≅
SL1(Mnd(D′)) = SLnd(D′). As before, a Kv-split torus of SLnd(D′) consists of the diagonal matrices with values in Kv and
determinant 1. Therefore rankKv

SLnd(D′) ≥ nd − 1 (actually the former torus is maximal and hence equality even holds). In
particular, rankKv

SLnd(D′) = 1 if and only if n = 2 and d = 1. The latter implies that Kv does not split D and thus Kv ≠ ℂ.
Consequently we may assume that K is not totally imaginary. Let v be a real place and D⊗K ℝ = D′ a non-commutative real
division algebra. Then by Frobenius theorem D′ ≅

(

−1,−1
ℝ

)

≅
(

a,b
ℝ

)

for any a, b < 0. This finishes the proof because D′ was
obtained by tensoring D with Kv over its center.
Let S be a finite set of places of K = (D) containing the Archimedean ones. In case SL2(D) is of so-called higher rank,

i.e. rankKv
SL2(D⊗K Kv) ≥ 2 for all v ∈ S, strong fixed point properties hold such as property (T). By Delorme-Guichardet’s

Theorem [9, Theorem 2.12.4] a countable discrete group Γ has property (T) if and only if every affine isometric action of Γ
on a real Hilbert space has a fixed point. For background on property (T) we refer the reader to the nicely written book [9].
In particular [9, Theorem 2.12.6] shows that property (T) implies property FA and, since property (T) descends to finite index
subgroups, also HFA.
In [54, Theorem (5.8), page 131], Margulis showed that S-arithmetic subgroups of connected semisimpleK-groups of higher

rank have property (T). In [26, Theorem 1.1.], Farb showed that S-arithmetic subgroups of almost simple simply-connected
connected K-groups of K-rank n ≥ 2 have property HFAn−1. In the following theorem we restrict these results to our context
and explain in the proof how to deduce it from the original theorems.
Theorem 6.10 (Margulis-Farb). Let D be a finite dimensional division ℚ-algebra with (D) = ℚ(

√

−d) where d ≥ 0 and let
 be an order in D. Suppose thatMn(D) is non-exceptional. Then SLn() has property (T). If moreover n ≥ 3 then it also has
property HFAn−2.
Proof. Set K ∶= (D) = ℚ(

√

−d). Recall that SLn(D) is a connected almost K-simple algebraic group (i.e. all proper
connected algebraic K-subgroups are finite) due to the assumption on K . Furthermore SLn(D) is also simply connected (i.e.
any central isogeny ' ∶ H → SLn(D), with H a connected algebraic group, is an algebraic group isomorphism). Due
to the form of K , it has a unique (up to equivalence) Archimedean valuation, say v. Note that Kv = ℝ if K = ℚ and
Kv = ℂ if K = ℚ(

√

−d) with d > 0. Taking S = {v}, the set of all Archimedean places, we see that an S-arithmetic
subgroup of SLn(D) is simply an arithmetic subgroup of SLn(D) of which SLn() is an example. To obtain property (T)
we invoke the celebrated theorem of Margulis [54, Theorem (5.8), page 131]. In order to apply the latter we need that
rankKv

SLn(D ⊗K Kv) ≥ 2 for the unique Archimedean place v, which by Lemma 6.9 and the form of the center amounts to
say that SLn(D) ∉

{

SL2(ℚ(
√

−d)),SL2
((

a,b
ℚ

))}

, where d ≥ 0 and a, b < 0. By Theorem 2.10 these are exactly the divi-
sion algebras having an order with finite unit group. In other words [54, Theorem (5.8), page 131] can be applied if Mn(D) is
non-exceptional.
Now if n ≥ 3, then rankK SLn(D) = n − 1 ≥ 2. Hence all the conditions of [26, Th. 1.1.] with S = {v} are also satisfied,

implying property HFAn−2.
IfMn(D) is non-exceptional, the groups En(J )(m), for any m ≥ 1 and J a non-zero ideal in an order  of D, have finite index

in SLn(). By [42, Theorem 11.2.3 and Theorem 12.4.3] and Theorem 4.8 one can obtain, in case n ≥ 3, an alternative proof
that SLn() and En(J )(m) satisfy property HFℝ and HFAn−2 without use of Theorem 6.10 (or more precisely independent of the
deep theorems [54, Th. (5.8), page 131] and [26, Th. 1.1.]).
Corollary 6.11. Let  be an order in a finite dimensional division ℚ-algebra and J a non-zero ideal in . Then En(J )(m), for
any m ≥ 1, has property HFℝ and HFAn−2 if n ≥ 3. In particular, SLn() has property HFℝ and HFAn−2 if n ≥ 3.
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Proof. By [42, Theorem 11.2.3 and Theorem 12.4.3] En(J )(m) has finite index in SLn(). In particular the former has property
HFℝ and HFAn−2 if and only if the latter does. Let H be a subgroup of SLn() of index [SLn() ∶ H] = m < ∞. Then
clearly En()(m) ≤ H and En()(m) is of finite index in H by the above. Now since  is a finitely generated ℤ-module, using
Theorem 4.2, En()(m) has property Fℝ and FAn−2. Consequently by Proposition 2.7 alsoH has property Fℝ and FAn−2.

6.3 Describing exceptional components of cut groups
In order to describe when  (ℤG) has property HFA, by Proposition 6.6, one has to investigate the components of ℚG. By
Theorem 6.10 we are left with the exceptional components. Moreover, by Corollary 6.3, whenever (ℤG) has property (HFA),
G must be a cut group. Therefore, we now investigate the possible exceptional Wedderburn-Artin components of ℚG in case G
is a cut group.
We first consider components of type (I), i.e. the exceptional 1×1 components, ofℚG forG a cut group. Surprisingly, it turns

out that there none. This result will be crucial in the representation theoretical applications later on.
Proposition 6.12. Let G be a finite cut group. Then ℚG has no exceptional components of type (I).
Suppose that D is a 1 × 1 component of ℚG. Then the proof of Proposition 6.12 consists of the following steps.
1. There exists a primitive central idempotent e such thatD = ℚGe. The groupH = Ge is a finite subgroup of (D), hence

a Frobenius complement [64, 2.1.2, page 45]. IfG is cut, also its epimorphic imageH is cut. Frobenius complements that
are cut were classified by Bächle [2, Proposition 4.2].

2. Some of the groups H obtained in (1) are indeed subgroups of a division algebra. This can be decided using Amitsur’s
classification [1], but we will give a direct argument.

3. For all remainingH , the smallest division algebra generated byH and hence also D is determined.
These steps will be realized in Proposition 6.13 and, as just explained, Proposition 6.12 follows immediately from this.
Proposition 6.13. A finite group G is both cut and isomorphic to a subgroup of units of a division ℚ-algebra D if and only if
G is one of the following groups

1. 1, C2, C3, C4, C6,
2. C3 ⋊ C4, where the action is by inversion,
3. Q8,
4. SL(2, 3).

Moreover, the ℚ-span of these groups in any division algebra is, respectively,
(I) ℚ, ℚ, ℚ(�3), ℚ(

√

−1), ℚ(�3),
(II)

(

−1,−3
ℚ

)

,

(III)
(

−1,−1
ℚ

)

,

(IV)
(

−1,−1
ℚ

)

.
Proof. Note that all the groups listed in (1) - (4) are cut groups3. Further, they are also subgroups of division algebras. Indeed
the cyclic groups are subgroups of  (ℚ(�12)), C3 ⋊ C4 ≅  (3) is a subgroup of  (

(

−1,−3
ℚ

)

) and Q8 ≅ ⟨i, j⟩ and SL(2, 3) ≅
⟨i, 1+i+j+k

2
⟩ are subgroups of  (

(

−1,−1
ℚ

)

).
To prove the last statement (which we will use in the converse implication), we will considerℚ[G] (the subring ofD generated

by the subgroupG) in any divisionℚ-algebraD containingG, for each group listed in (1) to (4). For the cyclic groups, it is clear

3This can be checked easily using the characterisations [2, Proposition 2.2 (iii) & (v)]. Alternatively one may use GAP. An example of a code for this is added in
APPENDIX I.
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these are the fields listed in (I). In case of the other groups, we will follow the following strategy: ℚ[G] is a simple, epimorphic
image of the rational group algebra ℚG, so it has to be a division algebra appearing in the Wedderburn-Artin decomposition
of ℚG. Moreover, since these groups are not abelian, the division algebra also has to be non-commutative. Using GAP [30], it
is easy to see that the only non-abelian division algebras appearing in the decomposition of the rational group algebra for the
groups (2), (3) and (4) are respectively (II), (III) and (IV).
Lastly, from [2, Proposition 4.2] it follows that the Frobenius complements that are cut groups are exactly the groups in (1) -

(4) together with the group C3 ×Q8. Since finite subgroups of division algebras are Frobenius complements it suffices to prove
that C3 × Q8 is not embeddable in a skew field. This can be done via Amitsur’s famous classification theorem, but we will
provide a more direct proof. Let D be a division ℚ-algebra such that G ∶= C3 × Q8 ≤  (D). Recall now that if B is a finite-
dimensional central simple F -algebra, contained in an F -algebra A, then A = B⊗CA(B) (for example see [38, Theorem 4.7]),
hence ℚ[G] = ℚ[Q8]⊗ℚ Cℚ[G](ℚ[Q8]). Since the centeralizer of Q8 in G is C3 × C2, it follows that ℚ[G] contains

ℚ[Q8]⊗ℚ ℚ[CG(Q8)] = ℚ[Q8]⊗ℚ ℚ[C3 × C2] ≅
(

−1,−1
ℚ

)

⊗ℚ ℚ(�3) ≅
(

−1,−1
ℚ(�3)

)

.

It is well known that this last algebra is split (for example using [69, Theorem 5.4.4]), which is in contradiction with the fact
that D is a division algebra.
Let us now consider components of type (II). Surprisingly if one assumesM2(D) to be an exceptional component ofℚG, then

the parameters d and (a, b) of D = ℚ(
√

−d) (resp.
(

a,b
ℚ

)

) are very limited. It was proven by Eisele, Kiefer and Van Gelder [23,
Corollary 3.6] that only a finite number of division algebras can occur and moreover the possible parameters were described.
Theorem 6.14 (Eisele, Kiefer, Van Gelder). Let G be a finite group and let e be a primitive central idempotent of ℚG such that
ℚGe is an exceptional component of type (II). Then ℚGe is isomorphic to one of the following algebras

(i) M2(ℚ),
(ii) M2(ℚ(

√

−d)) with d ∈ {1, 2, 3},
(iii) M2(ℍd) with d ∈ {2, 3, 5}.
Remark 6.15. All the fields and division algebras appearing in Theorem 6.14 have the peculiar property to contain a norm
Euclidean order  which therefore is maximal and unique up to conjugation [12, Section 2.3]. In view of [57, (21.6), page 189],
this yields that also all the 2 × 2-matrix algebras in Theorem 6.14 have, up to conjugation, a unique maximal order, namely
M2(). Recall that in case of ℚ(√−d), with d ∈ {0, 1, 2, 3}, the unique maximal order is their respective ring of integers d
and in case ofℍ2,ℍ3,ℍ5 the respective maximal orders where described in table (3.20). Note that being norm Euclidean implies
that these orders are also GE2-rings (see Proposition 2.12).
Furthermore in [23] the authors classified the possibilities for a finite group to admit a faithful embedding in an exceptional

component of type (II). More precisely, they found 55 possible groups4, see [23, Table 2]. In APPENDIX I we add the aforemen-
tioned table, along with the information on all the exceptional type (II) components of ℚH , for each H in the list, and certain
group theoretical properties of H . By Gm,l we denote the group with SMALLGROUPID (m,l) in the Small Groups Library of
GAP [30]. For a presentation of the groups appearing see APPENDIX J. Using the table from APPENDIX I it is easy to check the
following.
Proposition 6.16. Let G be a finite cut group. Then the following properties hold.

1. If there exists a primitive central idempotent e1 ofℚG such thatℚGe1 ≅ M2

((

−1,−3
ℚ

))

, then there exists another primitive
central idempotent e2 such that ℚGe2 ≅ M2(F ) with F = ℚ or ℚ(√−1).

2. If there exists a primitive central idempotent e1 ofℚG such thatℚGe1 ≅ M2(ℚ(
√

−2)), then there exists another primitive
central idempotent e2 such that ℚGe2 ≅ M2(ℚ).

3. There exists a primitive central idempotent e of ℚG such that ℚGe ≅ M2(ℚ) if and only if G maps onto D8 or S3.

4Note that the group with SMALLGROUPID [24, 1] and structure description C3 ⋊ C8 also has a faithful embedding inM2(ℚ(
√

−1)), but is missing in [23, Table
2]. However it is included in the table in APPENDIX I.
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4. There exists a primitive central idempotent e ofℚG such thatℚGe ≅ M2

((

−2,−5
ℚ

))

if and only if G maps onto G240,90 ≅
SL(2, 5)⋊ 2 ≅ 2 ⋅ S+5 , the Schur cover of S5 of plus type.

5. If G is solvable, there exists no primitive central idempotent e of ℚG such that ℚGe ≅ M2

((

−2,−5
ℚ

))

.

6. If G is nilpotent, there also exists no primitive central idempotent e of ℚG such that ℚGe ≅ M2

((

−1,−3
ℚ

))

.

7 UNIT THEOREMS FOR UNITS OF INTEGRAL GROUP RINGS

In this section we will prove our main result, Theorem A from the introduction: a characterization of property HFA for (ℤG)
both in terms ofG and theWedderburn-Artin components ofℚG. First we observe that the problem can be reduced to the groups
GLn(), for  some order in a finite dimensional rational division algebra.
Due to the results obtained so far, we are now able to give a short proof of the following characterization of when  (ℤG)

has property HFA, both in ring theoretical terms and in function of the quotients of G.
Theorem 7.1. Let G be a finite group. Then the following properties are equivalent:

1. The group  (ℤG) has property HFA,
2. G is cut and ℚG has no exceptional components,
3. G is cut and G does not map onto one of the following 10 groups

D8, G16,6, G16,13, G32,50, or Q8 × C3,
S3, SL(2, 3), G96,202, G240,90, or G384,618.

Proof. Let ℚG =
∏n

i=1Mni(Di) be the Wedderburn-Artin decomposition of ℚG. For each i, let i be a maximal order in Di.
By Proposition 6.6, (ℤG) has property HFA if and only if G is a cut group and all SLni(i) have property HFA. So in (1) we
may also assume that G is cut.
If ni ≥ 3, then SLni(i) has property HFA by Corollary 6.11. Next, if ni = 1, then Di is a number field or a totally definite

quaternion ℚ-algebra by Proposition 6.12. Furthermore, (Di) = ℚ(
√

−d) with d ≥ 0, since we may assume G is cut by the
above. Consequently, by Theorem 2.10, SL1(i) is finite and hence has property HFA. At this stage we have that  (ℤG) has
property HFA if and only if G is a cut group and for each 2 × 2-component M2(Di) of ℚG, the corresponding SL2(i) has
property HFA.
IfM2(Di) is non-exceptional, then SL2(i) has property HFA by Theorem 6.10. Suppose now there exists a primitive central

idempotent ei0 in ℚG such that ℚGei0 ≅ M2(Di0) is an exceptional component of type (II). By Proposition 6.16 there is a prim-
itive central idempotent ei such that ℚGei = M2(Di) is also an exceptional component of type (II), but ℚGei ≇ M2

((

−1,−3
ℚ

))

.
Then, by Theorem 5.7, E2(i) does not have property HFA. As i is a GE2-ring (cf. Remark 6.15), it follows that E2(i) has
finite index in SL2(i) and hence SL2(i) also does not have property HFA.
By the above, it remains to describe the condition “no exceptional 2× 2-components” in terms of forbidden quotients of G. If

ℚGe is an exceptional component thenH = Ge must appear in the table in APPENDIX I. In a first instance one has to filter out
the non-cut groups. In this list, certain groups have another smaller (in size) group in the remaining list as epimorphic image.
These groups may also be filtered out. Eventually, one is left with the groups listed in the statement.
Note that, by Proposition 6.12 we may substitute statement (2) in Theorem 7.1 by the statement
(2′) G is cut and ℚG has no exceptional components of type (II).

It would be interesting to have a characterisation in terms of the internal structure of G, instead of in terms of quotients.
Remark 7.2. One can obtain a similar result as above for ℚ(�n)G, where �n is a primitive complex nth root of unity. Due to
Proposition 6.1 and Dirichlet’s unit theorem, one obtains readily that if  (ℤ(�n)G) has FA, then n divides 4 or 6. For all of
these values n there will be again no exceptional 1 × 1 component. Furthermore if n = 4 onlyM2(ℚ(

√

−1)) can occur as 2 × 2
exceptional component and if n = 3, then only M2(ℚ(

√

−3)); recall that ℤ[�6] = ℤ[�3]. Using the table in [3] one can again
describe, in terms of quotients of G, when such components occur.
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As a consequence of Theorem 7.1, we get a result on the subgroup of (ℤG) generated by bicyclic units. Recall that a bicyclic
unit of an integral group ring ℤG, for a finite group G, is a unit of the type

b(g, ℎ̃) = 1 + (1 − ℎ)gℎ̃ or b(ℎ̃, g) = 1 + ℎ̃g(1 − ℎ),
where g, ℎ ∈ G and ℎ̃ =

∑

g∈⟨ℎ⟩ g ∈ ℤG. Also recall that a finite group G is called fixed point free if5 it has a complex
representation � such that 1 is not an eigenvalue of �(g) for all 1 ≠ g ∈ G.
Corollary 7.3. If the properties of Theorem 7.1 are satisfied andG has no non-abelian homomorphic image which is fixed point
free, then the subgroup of  (ℤG) generated by all the bicyclic units is neither a non-trivial amalgamated product nor an HNN
extension.
Proof. Let {ei ∣ 1 ≤ i ≤ q} be the primitive central idempotents of ℚG. Denote by B the group generated by the bicyclic units.
By the properties of Theorem 7.1,  (ℤG) has no exceptional components and G is cut.
In particular the center of (ℤG) is finite and, by [42, Corollary 5.5.3],∏Ui is a subgroup of finite index in (ℤG), where

Ui is a subgroup in  (ℤG) such that 1 − ei + Uiei is of finite index in SL1(ℤGei) for every 1 ≤ i ≤ q. If ei is such that
ℚGei ≅ Mni(Di) with ni ≥ 2, then by [42, Theorem 11.2.5] and the proof of [42, Theorem 11.1.3] such a group Ui exists within
the group B. If ℚGei ≅ Di, then (since no exceptional components exist)Di is a field or a totally definite quaternion algebra. If
Di is a field, then, since G is cut, it is ℚ or an imaginary quadratic extension of ℚ. Hence SL1(Di) is always finite and thus for
these ei the trivial subgroup Ui can be taken. Hence we have found a subgroup of B that is of finite index in  (ℤG).
Again by the conditions of Theorem 7.1 B has property FA. Hence, by Corollary 2.6, it is neither a non-trivial amalgamated

product nor an HNN extension.
Another property of interest, which is weaker than HFA, is the so-called FAb property.

Definition 7.4. A group Γ is said to have property FAb if every subgroup of finite index has finite abelianization.
Clearly property FAb is also defined on commensurability classes. We can now deduce the following.

Corollary 7.5. Let G be a finite group. Then the following properties are equivalent:
1.  (ℤG) has property (T),
2.  (ℤG) has property HFℝ,
3.  (ℤG) has property HFA,
4.  (ℤG) has property FAb.

Moreover, in these cases, if ℚG has no 2 × 2-components,  (ℤG) has property HFAm−2 with
m = min{ n ≠ 1 ∣ Mn(D) is an epimorphic image of ℚG, with D a finite-dimensional ℚ-division algebra }.

Proof. Suppose  (ℤG) has property FAb, then, by Corollary 6.3, G is a cut group. We will show  (ℤG) has property (T).
Since property (T) is defined on commensurability classes it is enough to prove that Γ =∏

i∈I GLni(i) has property (T), where
ℚG =

∏

i∈I Mni(Di) and i is an order in Di a finite dimensional division ℚ-algebra. The group Γ has property (T) if and only
if all factors do. Since G is a cut group, whenever ni = 1, we have, by Proposition 6.12 and Theorem 2.10 that  (i) is finite,
in particular it has property (T). Furthermore, (D) = ℚ(

√

−d) with d ≥ 0, for every Wedderburn-Artin componentMn(D) of
ℚG. Therefore Theorem 6.10, all the non-exceptional components have property (T).
Next we show that no non-exceptional components of type (II) appear as component of ℚG. Recall that those exceptional

components are described by Theorem 6.14. Since FAb is a property of commensurability classes, we know that all SLni(i)
have FAb. However, by Remark 5.8, no exceptional component of type (II) has property FAb. Hence no exceptional component
of type (II) exists as a component of ℚG, which finishes the proof of (4)⇒ (1).
Since property (T) implies property HFℝ, cf. [20, Chapter 6., Proposition 11], property HFℝ implies property HFA and HFA

implies property FAb, this finishes the proof of the four equivalences.
The last part of the result follows from Theorem 6.10, the assumption on ℚG and the well behaviour of the property under

direct products.
5This class of groups coincide with the Frobenius complements [42, Proposition 11.4.6] and hence this could serve as a group theoretical definition.
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Remark 7.6. Property (T), HFℝ, HFA and FAb are all properties defined on commensurability classes. In particular,
Corollary 7.5 and Theorem 7.1 are valid for arbitrary orders in ℚG.
Corollary 7.7. Let G be a group without exceptional components of type (II) (e.g. |G| odd). Then the following properties are
equivalent:

1.  (ℤG) has property HFA,
2.  (ℤG) has property FAb,
3.  (ℤG)ab is finite,
4. G is a cut group.

Proof. Due to Proposition 6.1 it only remains to prove that if G is cut, then  (ℤG) has property HFA. By assumption, G has
no 2× 2 exceptional components and due to the cut property, cf. Proposition 6.12, also no exceptional 1× 1 components. Hence
Theorem 7.1 applies.
LetM2(D) be an exceptional component of type (II) actually appearing inℚG for a finite groupG (see Theorem 6.14) and let

 be an order in D. Then GL2() has finite abelianization by Corollary 3.7. So also in the presence of exceptional components
of type (II) one might anticipate that (3) and (4) in Corollary 7.7 are still equivalent. Interestingly, as proven in Proposition 7.9,
this is equivalent to the following trichotomy.
Question 7.8. Let G be a finite cut group. Does exactly one of the following properties hold?

1.  (ℤG) has property HFA.
2.  (ℤG) has property FA but not HFA.
3.  (ℤG) has a non-trivial amalgamated decomposition and finite abelianization.
In [5, Theorem 8.5 and Remark 8.6] we prove that a dichotomy holds for  (ℤG): for G a finite cut group that is solvable or

has an order not divisible by 5,  (ℤG) has property HFA or it is commensurable with a non-trivial amalgamated product.
Proposition 7.9. Let G be a finite group and  a maximal order of ℚG containing ℤG. Then the following properties are
equivalent:

1. If  ()ab is finite, then  (ℤG)ab is finite,
2. If G is cut, then  (ℤG)ab is finite,
3. Question 7.8 has a positive answer.
For the proof we will need the following proposition.

Proposition 7.10. LetD be a finite dimensional division algebra overℚ and an order inD. IfMn(D) is non-exceptional, then
the following are equivalent:

1. (D) = ℚ(
√

−d) with d ≥ 0,
2. GLn()ab is finite,
3.  (′)ab is finite for some order ′ inMn(D)

4.  (′)ab is finite for every order ′ inMn(D).
Proof. To start note that SLn()ab is finite when Mn(D) is non-exceptional. Indeed by Theorem 6.10 (or alternatively
Corollary 6.11 if n ≥ 3) and the fact that property (T) implies finite abelianization [9, Corollary 1.3.6].
Now suppose that (D) = ℚ(

√

−d), with d ≥ 0, then, by Theorem 2.10,  (()) is finite. Hence in this case, SLn() has
finite index in GLn() (using [42, Proposition 5.5.1]) and consequently GLn()ab is finite due to the finiteness of SLn()ab. In
short, (1) indeed implies (2).
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AsMn() is an example of an order inMn(D), (2) implies (3). We will now prove that (3) implies (1). So let ’ be an order
inMn(D) such that (′)ab is finite. Then from Proposition 6.1 it follows that ((′)) is also finite. Consider now the order
Mn(). Then (′) and (Mn()) are both orders in the finite dimensional semisimple ℚ-algebra (Mn(D)) and hence by
Proposition 2.8 the unit group of the two orders are commensurable. In particular also  ((Mn())) =  (()) is finite and
thus by Theorem 2.10, (D) = ℚ(

√

−d) with d ≥ 0, as desired. Hence the first three items are equivalent.
We now prove (2) implies (4). Suppose GLn()ab is finite and let ′ be an arbitrary order in Mn(D). As we have already

shown that the first three conditions are equivalent, we already know that (D) = ℚ(
√

−d) for some d ≥ 0. Recall that
⟨SL1(′), ((′))⟩ is of finite index in  (′) (see [42, Proposition 5.5.1]). Also  (′ ∩ Mn()) equals  (′) ∩ GLn()
and it is of finite index in both  (′) and GLn(), since the unit groups of two orders are commensurable by Proposition 2.8.
So altogether we obtain that (′) ∩ SLn() is of finite index in (′) and SLn(), which has property (T) by Theorem 6.10.
In particular,  (′) ∩ SLn() also has property (T) and thus finite abelianization. This implies that also  (′)ab is finite, as
desired. The remaining implication (4) to (3) is trivial.
Note that Proposition 7.10 yields a positive answer to Question 6.5 for non-exceptional finite dimensional simpleℚ-algebras.

Proof of Proposition 7.9. First we prove that (1) implies (2). LetℚG =∏

i∈Mni(Di) be the Wedderburn-Artin decomposition
of ℚG, ei the primitive central idempotent corresponding to Mni(Di) and i an order in Mni(Di). Write  as the (disjoint)
union of three sets I1, I2 and I3 where I1 are those indices corresponding to 1 × 1 components, I2 those with exceptional 2 × 2
components and I3 consisting of the remaining components. Suppose G is cut, then there are no exceptional 1 × 1 component
by Proposition 6.12. Consequently, by Theorem 2.10,  (i)ab is finite for all i ∈ I1. Also  (i)ab is finite for any order i in
Mn(Di) with i ∈ I3 by Proposition 7.10 (recall that G cut implies that (Di) = ℚ(

√

−d) with d ≥ 0).
Let now i ∈ I2. Then, by Theorem 6.14 and Remark 6.15,Di has up to conjugation a unique maximal order, saymax,i, which

is right norm Euclidean and hence GE2(max,i) = GL2(max,i). By Corollary 3.7, GE2(max,i)ab and hence also GL2(max,i)ab

are finite. Altogether, if G is cut, then for any choice of orders i inMni(Di), when i ∈ I1 ∪ I3 we have that
|

|

|

|

|

|

∏

i∈I1∪I3

 (i)ab ×
∏

j∈I2

GL2(max,j)ab
|

|

|

|

|

|

<∞. (7.1)

As, by assumption,  is a maximal order of ℚG containing ℤG,  ≅
∏

i∈ i with i = ei a maximal order inMni(Di). As
mentioned above, for i ∈ I2, the maximal order i is conjugate toM2(max,i). Since the size of the abelianization is preserved
under conjugation we may assume that  =

∏

i∈I1∪I3
i ×

∏

j∈I2
M2(max,j) which has a unit group with finite abelianization

by (7.1). Consequently, by (1), also  (ℤG)ab is finite. This finishes the proof of (1) implies (2).
We now prove that (2) implies (1). Hence assume statement (2) is true. Let  be a maximal order of ℚG and suppose that

 ()ab is finite. Then by Proposition 6.1,  (()) is finite. Consequently, since (ℤG) and () are both orders in (ℚG),
also  ((ℤG)) is finite. Hence, G is cut and thus by (2),  (ℤG) is finite, as desired. So, we have proved that (1) and (2) are
equivalent.
We will now prove that (2) implies a positive answer to Question 7.8. Suppose that G is cut and hence that (ℤG)ab is finite

by (2). Then if  (ℤG) does not have property (FA), it must have a non-trivial amalgamated decomposition by Theorem 2.5
as desired. Conversely, in all the cases when Question 7.8 has a positive answer, the abelianization of  (ℤG) is finite, so (3)
clearly implies (2).

8 UNIT GROUPS OF GROUP RINGS AND PROPERTY FA

In this section we consider when  (ℤG) has FA and when it has FA but not HFA.
Theorem 8.1. Let G be a finite solvable group and assume that  (ℤG) has FA. Then the following properties hold:

1. G does not map epimorphically on D8 and S3.
2.  (ℤG) does not satisfy HFA if and only if G maps onto one of the following 7 groups

G16,6, G16,13, Q8 × C3, SL(2, 3), G32,50, G96,202, and G384,618.
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Proof. Let {ei ∣ i ∈ I} be a full set of primitive central idempotents of ℚG with ℚGei ≅ Mni(Di) for i ∈ I and decompose
I = I1 ∪ I2 in such a way that ℚGei is an exceptional component for all i ∈ I1 and non-exceptional for all i ∈ I2. Since, by
assumption,  (ℤG) has property FA, G must be cut by Corollary 6.3 and consequently, by Proposition 6.12, all exceptional
components are 2 × 2 matrix rings. The latter have, by Theorem 6.14 and Remark 6.15, up to conjugation in ℚG, a unique
maximal order. So, without loss of generality, we may assume that ℤG is a subring of the order ∏i∈I1

M2(i) ×
∏

j∈I2
ℤGej ,

where i is a maximal order of Di. Since orders have commensurable unit groups, (ℤG) has finite index in∏i∈I1
GL2(i) ×

∏

j∈I2
 (ℤGej). Therefore, the latter also enjoys property FA, and thus GL2(i) has FA for i ∈ I1 (also  (ℤGej) has FA

for all j ∈ I2, however as G is cut, it follows from Theorem 6.10 that they all even have HFA and hence they do not add any
restriction).
Now recall that GL2(ℤ) is a non-trivial amalgamated product, see [22, Proposition 25]. Thus for all i ∈ I1, i ≇ ℤ and so by

Proposition 6.16, G cannot map onto S3 or D8, proving (1). Now (2) follows from Theorem 7.1 and the fact that G240,90 is not
solvable.
In case of nilpotent groups a more precise statement can be given.

Corollary 8.2. Let G be a finite nilpotent group and assume that  (ℤG) has FA. Then the following properties hold:
1. G does not map epimorphically on D8.
2.  (ℤG) does not satisfy HFA if and only if G has G16,6, G16,13, G32,50 or Q8 × C3 as epimorphic image.

Proof. For the first statement simply apply Theorem 8.1 and note that S3 is not nilpotent and hence cannot be a quotient of
the nilpotent group G. A similar reasoning can be given for the second statement. Indeed SL(2, 3), G96,202 and G384,618 are not
nilpotent.
It is natural to ask whether in Theorem 8.1 and its corollary the converse of the first statement holds. This problem is connected

to the problem whether FA for  (ℤG) is fully determined by the Wedderburn-Artin components of ℚG (as in the hereditary
case). In order to formulate some concrete questions we fix the following notations: ℚG ≅

∏

Mni(Di), Mni(Di) = ℚGei with
ei a central primitive idempotent of ℚG and i a maximal order inMni(Di).
By the proof of Theorem 8.1 we know that if  (ℤG) has property FA, then  (i) has property FA for all i.

Question 8.3. With notations as above:
1. Does  (ℤG) have property FA if and only if  (i) has property FA for all i?
2. Does  (ℤG) have property FA if and only if  (ℤGei) has property FA for all i?
Note that the previous questions are connected to all the properties in Proposition 7.9. Unfortunately, in general property FA

is dependant on the chosen order (in contrast to having finite center or finite K1). Indeed M2(ℤ[
√

−3]) and M2(3) are both
orders inM2(ℚ(

√

−3)) but SL2(ℤ[
√

−3]) is an amalgamated product by [5, Theorem 4.2] whereas SL2(3) has property FA by
the remark just before Theorem 5.1.
Remark 8.4. We expect Question 8.3 (1) to not be true in general. For example suppose that the only exceptional components
are of typeM2(D)withD ∈ {ℚ(

√

−1),ℚ(
√

−3),ℍ2,ℍ3} and let be the unique maximal order inD. The projection (ℤGei)
of  (ℤG) into that exceptional component ℚGei = M2(D) will be a subgroup of finite index in GL2(), however usually not
of index 1. Now the group GL2() has a subgroup of very small index which has not property FA. So it seems very plausible
that even with exceptional components as above,  (ℤGei) sometimes will not have property FA and hence also not  (ℤG).
This last remark also ties into the following very natural question.

Question 8.5. Is there a finite cut group G, such that  (ℤG) has property FA, but does not have property HFA?
An explicit positive answer to this last question could also be used to study Question 8.3. A negative answer on the other hand

has consequences on Question 7.8, making the trichotomy into a dichotomy.
In order to show some properties of unit groups  (R), it is common in the literature (and in our Section 5) to blow up the

group to a significantly larger group. For example, GE2(R) and B2(R) often help in studying properties for  (R). In the case
of  (ℤG) however, this will not work.
Proposition 8.6. Let G be a finite group. Then B2(ℤG), E2(ℤG) and GE2(ℤG) do not have property FA.
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Proof. The augmentation map
! ∶ ℤG → ℤ ∶

∑

g∈G
agg →

∑

g∈G
ag ,

is an epimorphism of rings. We may extend this morphism to an epimorphism of groups Ω ∶ GE2(ℤG) → GE2(ℤ). Since
GE2(ℤ) = GL2(ℤ) does not have property FA,GE2(ℤG) also does not have property FA. The same reasoning works for E2(ℤG)
and E2(ℤ) = SL2(ℤ). The augmentation map ! also induces an epimorphism from B2(ℤG) to B2(ℤ) by letting ! act entry wise.
HoweverB2(ℤ) is non-trivially an amalgamated product by Proposition 5.10. Hence alsoB2(ℤG) does not have property FA
Remark that for E2(ℤG) and GE2(ℤG) we only used that ℤG has a ring epimorphism to ℤ, so in those cases the proof works

for any ring R with a ring epimorphism to ℤ. More generally the following holds.
Proposition 8.7. Let R be a unital ring that has a finite basis as ℤ-module consisting of units. Then B2(R) has property FA if
and only if  (R) has property FA and R has no ring epimorphism onto ℤ.
Proof. For the same reasons as in the proof of Proposition 8.6, the conditions thatR has no ring epimorphism ontoℤ is necessary.
Moreover,  (R) is an epimorphic image of B2(R), so also this condition is necessary. We will now prove that they are also
sufficient.
Note that in the implication (1)⇒ (2) of the proof of Proposition 3.6, the fact that the ring is almost-universal is not used. So,

since  (R) has FA, it has finite abelianization which in turn implies that B2(R) has finite abelianization.
Suppose (R,+) ≅ (ℤn,+), i.e.R hasℤ-module basis of cardinality n. Recall thatB2(R) ≅ N⋊D2(R) is a semi-direct product

where N is isomorphic to the additive group of R. As in the proof of Proposition 3.6 one proves that N2 ≤ B2(R)′. Since also
D2(R)′ ≤ B2(R)′, this shows that B2(R)ab is an epimorphic image of the group Cn

2 ×D2(R)ab ≅ Cn
2 × (R)ab× (R)ab. Hence,

the assumption provides that B2(R) has finite abelianization. In order to prove it has property FA, it suffices thus to show that it
is not an amalgam. Suppose, by contradiction, that B2(R) ≅ A ∗U B for some subgroups A,B,U ≤ B2(R). We will show this
is impossible by considering the abelian normal subgroupN .
This subgroup N , being abelian, is contained in the maximal normal subgroup of B2(R) not containing any free subgroup,

denoted by NF (B2(R)) (see [19]) and is well-defined. This implies that N ≤ U , by [19, Proposition 7] or that the amalgam
decomposition is so-called degenerate meaning that U has index 2 in both A and B and thus is normal in the whole group.
Assume the first. Now we can on the one hand consider B2(R)∕N ≅ A∕N ∗U∕N B∕N as a non-trivial amalgamated product,

but on the other hand B2(R)∕N ≅ D2(R) ≅  (R) × (R), which is a group having FA by assumption. This is a contradiction.
IfN ≰ U , thenU is of index 2 inA and B and thus also normal in the whole group. SinceN is not a non-trivial amalgamated

product (indeed, it is abelian), we know by the work of Karass and Solitar [47, Corollary of Theorem 6] that N is one of the
following three types of groups.

1. N is contained in a conjugate of A or B,
2. N =

∞
⋃

i=1
(U�i ∩N) is an infinite ascending union for some �i ∈ B2(R),

3. N = ⟨z⟩ ×M , with z an element of infinite order andM = N ∩ U ≅ Cn−1
∞ .

If N is contained in a conjugate of A or B, it should be in A or B since it is normal. Using the fact that it is normal would
even imply thatN ≤ U , which is a contradiction.
Suppose the second case is true, thenN =

∞
⋃

i=1
(U�i ∩N) =

∞
⋃

i=1
(U ∩N) = U ∩N sinceU is normal, but this again contradicts

the fact thatN ≰ U .
In the last case, the subgroupM is moreover normal in B2(R). DenoteM =

(

1 M̃
0 1

)

. Then M̃ ≅ ℤn−1 and (R,+) ≅ ℤ⊕M̃ .
Now since R has a ℤ-module basis consisting of units and M is normal in B2(R), we get that M̃ is a two-sided ideal of R.
Indeed, it suffices to remark that, for any units g and ℎ of R:

(

g 0
0 ℎ

)−1

M
(

g 0
0 ℎ

)

=
(

1 g−1M̃ℎ
0 1

)

.

Therefore we may form R∕M̃ which is easily seen to be also isomorphic to ℤ as rings. However this contradicts the fact that
there is no ring epimorphism from R to ℤ. So B2(R) is also not an amalgamated product and thus altogether has property FA,
as needed.
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Remark 8.8. LetR be a ring as in Proposition 8.7. ThenR is an epimorphic image of the group ringℤ (R). We can extend this
morphism to a group morphism from GE2(ℤ (R)) (or E2(ℤ (R))) to GE2(R) (or E2(R)). It might thus be tempting to deduce
property FA for GE2(R) and E2(R) from the same properties of the same groups over the universal object ℤ (R). However,
Proposition 8.6 shows that this argument is too simple and shouldGE2(R) and E2(R) have property FA, then it is for more subtle
reasons. This also shows why, in Section 5, we did not use this universal object.
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APPENDIX I GROUPS WITH FAITHFUL EXCEPTIONAL 2 × 2 COMPONENTS

In this appendix we reproduce [23, Table 2] listing those finite groups G that have a faithful exceptional component of type (II)
in the Wedderburn-Artin decomposition of the rational group algebra ℚG (see Definition 6.7)6. We also add certain attributes
relevant for us. For each group G such that ℚG has at least one exceptional 2 × 2 component in which G embedds (“faithful
component”) the columns of the table contain the following information:

SMALLGROUP ID: the identifier of the group G in the small group library
Structure: the structure description of the group. Colons indicate split extensions, a period an

extension that is (possibly) non-split
cut: indicates whether the group is a cut group (see Definition 6.2)
dl: derived length of the group;∞ for non-solvable groups
cl: the nilpotency class of the group;∞ indicates that the group is not nilpotent (omitted for

non-solvable groups)
exceptional components of type
(II):

exceptional components of type (II) (not necessarily faithful) of the group algebra ℚG
(with multiplicity)

quotients: small group IDs of non-trivial quotients of G that also appear in this table.

Recall that we use the following shorthands for some algebras appearing in the table:
ℚ(i) = ℚ(

√

−1), ℍ2 =
(

−1,−1
ℚ

)

, ℍ3 =
(

−1,−3
ℚ

)

and ℍ5 =
(

−2,−5
ℚ

)

.

One way to check whether a group has the cut-property is via the following GAP code:
IsCutGroup := function(G)

return

ForAll( List( ConjugacyClasses(G) , Representative ),

x ->

ForAll( Filtered( [2..Order(x)-1], j -> Gcd(j, Order(x)) = 1 ),

j -> IsConjugate (G, x^j, x) or IsConjugate(G, x^j, x^-1)

)

);

end;

6including the group with SMALLGROUPID [24, 1] that was accidentally omitted in the original table
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APPENDIX J SOME GROUP PRESENTATIONS

We give the presentations of certain groups apperaing in Theorem 7.1 (the indices indicate their SMALLGROUP IDs). We start
with the following nilpotent groups:

G16,6 = ⟨ a, b | a8 = b2 = 1, ab = a5 ⟩ ≅ C8 ⋊ C2,
G16,13 = ⟨ a, b, c | a4 = b2 = c2 = 1 = (a, b) = (a, c), bc = a2b ⟩ ≅ (C4 × C2)⋊ C2,

G32,50 = ⟨ i, j, a, b | i4 = 1, i2 = j2, ij = i−1, a2 = 1, (i, a) = (j, a) = 1,
b2 = 1, ib = i−1, jb = j−1, ab = i2a ⟩ ≅ (Q8 × C2)⋊ C2.

The groupG16,13 ≅ D8 �C4 is the central product ofD8 and C4 (central subgroups of order 2 identified) andG32,50 ≅ Q8 �D8
is the central product of Q8 with D8. The group G16,6 is sometimes called the modular group of order 16.
We also need the following non-nilpotent groups:

G96,202 = ⟨ i, j, b, t, a | i4 = 1, i2 = j2, ij = i−1, b3 = 1, ib = j, jb = ij,
t2 = 1, (i, t) = (j, t) = (b, t) = 1,
a2 = 1, (i, a) = (j, a) = (b, a) = 1, ta = i2t ⟩,

G240,90 = ⟨ x, y, z, a | x3 = y5 = z2 = 1, (x, z) = (y, z) = 1, (xy)2 = z,
a2 = 1, (z, a) = 1, xa = x2, ya = (xy3)2 ⟩,

G384,618 = ⟨ i1, j1, i2, j2, a | i
4
1 = 1, i

2
1 = j

2
1 , i

j1
1 = i

−1
1 , i

4
2 = 1, i

2
2 = j

2
2 , i

j2
2 = i

−1
2 ,

(i1, i2) = (i1, j2) = (j1, i2) = (j1, j2) = 1, a6 = 1,
ia1 = j

−1
2 , j

a
1 = (i2j2)

−1, ia2 = j
−1
1 , j

a
2 = (i1j1)

−1
⟩.

They have the following structures: G96,202 ≅ (SL(2, 3) × C2)⋊ C2, G240,90 ≅ SL(2, 5)⋊ 2 ≅ 2 ⋅ S+5 , the Schur cover of S5 ofplus type, and G384,618 ≅ (Q8 ×Q8)⋊ C6.
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