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Abstract

Healthcare organisations are becoming increasingly aware of the need to im-

prove their care processes and to manage their scarce resources efficiently to

secure high-quality care standards. As these processes are knowledge-intensive

and heavily depend on human resources, a comprehensive understanding of

the complex relationship between processes and resources is indispensable for

efficient resource management. Organisational mining, a subfield of Process

Mining, reveals insights into how (human) resources organise their work based

on analysing process execution data recorded in Health Information Systems

(HIS). This can be used to, e.g., discover resource profiles which are groups of

resources performing similar activity instances, providing an extensive overview

of resource behaviour within healthcare organisations. Healthcare managers can

employ these insights to allocate their resources efficiently, e.g., by improving

the scheduling and staffing of nurses. Existing resource profiling algorithms are

limited in their ability to apprehend the complex relationship between processes
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and resources because they do not take into account the context in which activ-

ities were executed, particularly in the context of multitasking. Therefore, this

paper introduces ResProMin–MT to discover context-aware resource profiles in

the presence of multitasking. In contrast to the state-of-the-art, ResProMin–MT

is capable of taking into account more complex contextual activity dimensions,

such as activity durations and the degree of multitasking by resources. We

demonstrate the feasibility of our method within a real-life healthcare context,

validated by medical domain experts.

Keywords: Process mining, Organizational mining, Resource profiles,

Context-aware process mining, Multitasking, Healthcare processes

1. Introduction

Healthcare organisations, e.g. hospitals, are facing critical challenges, most

notably increasing and ageing populations and, at the same time, tightening

budgets [1, 2]. To cope with these challenges – while securing high-quality

care standards – healthcare organisations are becoming increasingly aware of5

the need to improve their care processes and to manage their scarce resources

efficiently [3, 4]. In order to determine suitable levels of resources (e.g. staff,

equipment, and facilities [5]) and efficient resource allocation, healthcare man-

agers need a comprehensive understanding of the complex relationship between

processes and resources [6, 7].10

To uncover the real behaviour of resources that perform activities in pro-

cesses, the process execution data captured by Health Information Systems

(HIS) and Electronic Health Records (EHR) can be used [2, 3, 8]. The events

recorded by these systems can be compiled into an event log, which represents

the real-life behaviour of a process [2]. Process Mining is a research domain15

focusing on the (semi-)automatic extraction of insights from event logs [9]. As

most of these events are triggered by logging activities performed by human

resources (e.g. nurses) on cases (e.g. patients) [3], we can exploit this inform-

ation to gather extensive insights into the relationship between resources and
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the activities they perform. These insights provide a comprehensive and trans-20

parent overview on the behaviour of resources within a healthcare organisation

and aid healthcare managers in more efficiently allocating their resources, e.g.

improving the scheduling (i.e. rostering) and staffing (i.e. determining suitable

levels) of nurses [10–12].

In Process Mining, the subfield of organisational mining is concerned with25

discovering organisational structures and social networks from event logs [13].

Several resource profiling techniques – i.e. finding groups of resources that per-

form similar activity instances – have been proposed [13–23]. Nevertheless,

most existing algorithms only consider a brief description of the activities that

resources performed (e.g. “Create purchase requisition”, “Send invoice”, “Admin-30

ister medication”, etc.) as a starting point. Thereby, the context is ignored, i.e.

the circumstances in which the activity was executed [24]. In addition, compared

to common business processes, such as the order-to-cash process, healthcare pro-

cesses are generally more knowledge-intensive [3, 25, 26] and typically exhibit

a higher degree of variability [26, 27], due to the involvement of knowledge35

workers, such as physicians and nurses, and complex ad hoc decision-making

[3, 25]. For example, depending on the patient’s health condition, a more ex-

perienced or specialised senior nurse may be assigned take care of the patient.

However, the activities as such (e.g. the activity labels recorded in the HIS)

are the same regardless of the patient’s condition. Therefore, this limiting as-40

sumption can hide essential nuances on how resources conduct their tasks in a

real-life healthcare setting, which highlights the importance of considering the

context in which the activities were executed besides the activity labels. This

context can be regarded as a multi-dimensional concept describing “who did

what under which circumstances” [24]. Straightforward dimensions that can be45

considered include time-related attributes of the activity instance, e.g. the week-

day, the time of the day (e.g. morning, afternoon, or evening), or the duration

of the activity; case attributes, such as the case type or status; and a resource

identifier [24]. However, additional dimensions can be added to capture more

complex aspects which are not directly observable in the event log, such as the50

3



degree of multitasking by resources. It is not trivial to consider multitasking

using existing algorithms because these cannot handle attributes of mixed types

simultaneously, e.g. nominal (activity labels), discrete (number of concurrently

performed activities), and continuous (duration of activities).

This paper extends our previous work on discovering context-aware resource55

profiles from event logs using ResProMin [24]. While ResProMin considers con-

textual variables (expressing the conditions under which activity instances were

executed) when discovering resource profiles, the method cannot incorporate

the multitasking behaviour of resources, which is particularly common in the

healthcare sector [28]. Therefore, we introduce an extension to our previous60

work: ResProMin–MT (Resource Profile Miner–Multitasking). In addition to

capturing the multitasking behaviour of resources, we also demonstrate how

the context can be further defined by considering the activity duration. Both

dimensions have not been considered before in resource profile identification.

Moreover, whereas ResProMin was demonstrated using a public event log of a65

municipal service, we evaluated ResProMin–MT on a real-life case study in a

healthcare context, more specifically, nursing. This also enabled us to present

and discuss our findings with domain experts in nursing science at the hospital

in order to validate the benefits of ResProMin–MT for healthcare managers in

decision-making.70

The remainder of this paper is structured as follows. Section 2 provides an

overview of the related work. Section 3 introduces ResProMin–MT. Next, an

introduction to the case study is provided in Section 4, an overview of the results

in Section 5, and a discussion and evaluation of our method in Section 6. The

paper ends with a conclusion and directions for future work in Section 7.75

2. Related Work

This work is related to Process Mining applied in healthcare on the one

hand and the resource perspectives in Process Mining on the other hand. The

following sections provide an overview of related work in these domains.
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2.1. Process Mining in Healthcare80

The increasing implementation of HIS within healthcare organisations allows

keeping record of large amounts of process execution data of care processes

[26, 29]. This data can be used to construct an event log capturing the real-life

behaviour of the processes [2, 3]. An event log contains at least an ordered set

of events (e.g. starting a clinical examination or completing the registration of85

a patient) for each case (e.g. a patient). Additional information about these

events can also be logged, e.g. a timestamp indicating when the event occurred

or the involved resources (e.g. nurses and physicians) [3, 30]. Such an event log

constitutes the primary input for further analysis using various Process Mining

techniques [3, 9].90

Interest in research on Process Mining in healthcare has steadily grown in

recent years [26, 30, 31], and a wide variety of use cases have been demon-

strated. These applications can be categorised among process discovery, con-

formance analysis, process analysis, predictive process analysis and simulation,

social network analysis, and many more [32]. For example, process discovery95

has been used to analyse the radiology workflow for emergency patients [27] or

palliative patients [33], Emergency Departments (ED) [29, 34], or cardiology

[35–37]. Conformance analysis is used to check the compliance of real-life care

processes with clinical guidelines [33, 38–40]. Process analysis includes various

aspects besides the process discovery, e.g. identifying clinical pathway variants100

[41, 42], measuring clinical processes’ performance [43, 44], or comparing clin-

ical processes based on patient outcomes [41]. Predictive process analysis and

simulation aim to forecast how the process will evolve in the future and con-

duct what-if analyses to determine the impact of changes on the process. The

insights gathered by these analyses provide valuable feedback for supporting105

decision-making [32], e.g., by predicting the waiting times in an ED [45], the

patient’s postoperative Length of Stay (LoS) [46], or improving the performance

of an ED by determining the optimal physician scheduling [47]. Finally, social

network analysis relates to the organisational perspectives of processes, e.g. in-

teractions between healthcare professionals [29, 48], patterns of collaboration110
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within multidisciplinary teams [49, 50], and inter-departmental collaborations

[51–53].

For further reference on the application of Process Mining in healthcare, the

reader is referred to existing review papers [26, 30–32, 54, 55].

2.2. Resource Perspectives in Process Mining115

Various resource-related topics have been analysed in Process Mining liter-

ature concerning how resources organise and perform their work. These can

be categorised among four groups [23]: (i) organisational model mining, which

deals with the discovery of resource groups that have similar characteristics in

terms of conducting their duties [13, 15, 22, 23]; (ii) social network mining,120

which visualises the interaction between resources [16, 20, 29, 48–53, 56, 57];

(iii) rule mining, to determine resource assignment rules [58–61]; and (iv) be-

havioural profile mining, which discovers behaviour on how resources organise

their work [19, 62–66].

This paper is mainly positioned within the first category, i.e. organisa-125

tional model mining. A comprehensive review on this topic is provided by

Yang et al. [23]. When discovering groups of resources, a wide variety of di-

mensions could be used, such as the activities they perform, the cases on which

they focus, the shift in which they work, and the colleagues they interact with

[23]. However, most literature on organisational model mining solely considers130

the labels of individual activity instances as a determinant for defining resource

groups. For instance, Song & van der Aalst [13], Jin et al. [17], Ni et al. [18],

Ye et al. [21], and Yang et al. [22] group resources based on the number of

times they performed the same activities, which relies on the performer-by-

activity matrix. This concept was initially defined by van der Aalst et al. [20]135

and counts for each resource (i.e. the “performer”) how often they executed each

activity. This is the most frequently used technique within organisational model

mining. However, in a real-life setting – especially in complex processes such

as healthcare processes – only considering the resource and activity label (i.e.

“who did what”) can hide essential nuances on how resources (e.g. nurses or phys-140
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icians) conduct their activities [24]. Therefore, including additional dimensions,

such as time-related attributes, case attributes, activity durations, the degree

of multitasking, and other relevant contextual factors, can uncover implicit task

division patterns during resource profile mining.

Apart from the predominant focus on activity labels, most organisational145

model mining algorithms do not allow the same activity to belong to multiple

resource groups simultaneously, i.e. a specific activity can only be executed by

one group [13, 15, 17, 19, 21]. This assumption often does not hold in reality

either, where the same activity might be executed by a different resource from

another group depending on contextual factors, such as difficulty or urgency150

[24].

To the best of our knowledge, only the work by Appice [14] and Yang et al. [22,

23] allows group memberships to overlap, of which only Yang et al. [23] consider

multiple dimensions during resource profile mining. Their algorithm, OrdinoR,

defines execution contexts as a combination of case types (e.g. regular versus155

VIP), activity types (e.g. activity labels), and time types (e.g. weekday and

morning versus afternoon). These execution contexts are clustered to discover

organisational models. Although OrdinoR is capable of including multiple di-

mensions as context, as well as finding overlapping resource groups, the context

can only be defined by nominal variables. Other aspects, such as the degree of160

multitasking or the duration of activities, could only be added by discretising the

variables. The decisions on discretisation are not straightforward and can pro-

foundly influence the discovered resource groups. Our method, ResProMin–MT,

provides a solution for this challenge by proposing a probabilistic model-based

clustering technique that allows variables of mixed types to be used within165

the same model. In addition, we extend our previous work [24] by considering

additional contextual factors, such as activity durations and the degree of multi-

tasking, which have not been considered before in resource profile identification.
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3. Method

In this section, we present ResProMin–MT1 as an extension of our previ-170

ous work [24], which enables discovering context-aware resource profiles from

event logs by taking into account additional contextual factors of activity ex-

ecutions, such as activity durations and multitasking. A general overview of

ResProMin–MT is visualised in Figure 1. Our method consists of three steps.

In the first step, we enrich the event log by adding relevant contextual variables.175

Subsequently, in the second step, we identify multitask session archetypes from

the enriched log. Finally, we discover groups of context-aware resource profiles.

In the following sections, we describe each step in detail using a toy example.

Figure 1: The three steps of ResProMin–MT: (1) context enrichment, (2) multitask session

archetype identification, and (3) resource profile identification (adapted from [24]).

3.1. Step 1 – Context Enrichment

As an input for the first step, ResProMin–MT requires an activity log. In180

contrast to an event log, in which each entry represents an event occurring at

a particular point in time, the entries of an activity log represent the execution

of activity instances by a particular resource for a particular case (e.g. the

registration of a patient by a receptionist). Therefore, each entry of an activity

log can contain multiple timestamps, typically the start and completion times185

of the activity instance [2, 67]. An event log can be conveniently transformed

into an activity log using, e.g., the R-package bupaR [68].

1The implementation of ResProMin–MT can be consulted here: https://doi.org/10.

5281/zenodo.7215943
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The input activity log should satisfy the following conditions, i.e. each entry

of the log should have a(n):

• Case identifier: an attribute that uniquely identifies a process execution190

instance, i.e. a case [9]. For example, a patient ID when considering the

process from a patient-centric viewpoint, or a staff ID when studying the

process from the standpoint of the staff members;

• Timestamp: the time at which the event took place. In order to be able to

take multitasking behaviour and activity durations into account, at least195

two events or timestamps (i.e. start and completion) should be recorded

for the activities in order to calculate duration and determine activity

overlap;

• Activity label: a brief label describing the activity that triggered the event;

• Resource identifier: an attribute that describes the resource that was in-200

volved during the event.

Table 1 shows a fragment of a log which satisfies these requirements. Each

row describes the execution of an activity performed by a nurse (the resource)

on a particular patient (the case). In addition, information on the patient type

and the experience (XP) of the nurses are recorded, which can be used to define205

the context.

Case ID Activity Start Complete Resource Patient Type Resource XP . . .

512 Communication w/ patient 2022/05/12 09:15 2022/05/12 09:23 Anna Ambulatory Student nurse . . .

512 Prepare medication 2022/05/12 09:18 2022/05/12 09:20 Anna Ambulatory Student nurse . . .

512 Administer medication 2022/05/12 09:20 2022/05/12 09:22 Anna Ambulatory Student nurse . . .

843 Read document 2022/05/12 10:34 2022/05/12 10:45 Thomas Ambulatory Jr. nurse . . .

843 Communication w/ patient 2022/05/12 10:48 2022/05/12 10:55 Thomas Ambulatory Jr. nurse . . .

843 Observations & monitoring 2022/05/12 10:50 2022/05/12 10:55 Thomas Ambulatory Jr. nurse . . .

843 Reporting 2022/05/12 10:56 2022/05/12 11:03 Thomas Ambulatory Jr. nurse . . .

635 Communication w/ patient 2022/05/13 15:58 2022/05/13 16:06 John Emergency Sr. nurse . . .

635 Take blood sample 2022/05/13 16:00 2022/05/13 16:04 John Emergency Sr. nurse . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Table 1: A fragment of an example log.

The log can be enriched by adding additional attributes that describe the
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what, when, and under which circumstances of the activity execution, e.g. the

case type, weekday, morning or evening shift, activity duration, and many

more2. In addition, the workload in terms of multitasking can be determined210

by aggregating activities with (partially) overlapping time intervals into a single

multitask session, representing a group of concurrently performed activities. In

fact, during the enrichment step, there is flexibility to shape attributes that are

relevant to a particular application context.

An example of enrichment of our sample log in Table 1 is presented in Table 2.215

Each row represents a multitask session. For example, the three activities Anna

executed concurrently are merged into a single multitask session that took in

total 8 minutes. The “degree of multitasking” or multitasking level is, therefore,

3. However, not every multitask session needs to consist of multiple activity

executions, as shown by the Read document and Reporting activities by Thomas.220

These activities were not executed concurrently with other activities. In addi-

tion, the contextual factors patient type and resource experience can be retained,

and additional context can be defined, such as the shift (Morning, Afternoon,

Night, etc.) during which the session was performed. The case ID is removed,

as this identifier is linked to one specific patient only.225

Activities Resource Patient Type Resource XP Shift Duration MT Level . . .

Communication w/ patient,

Prepare medication,

Administer medication

Anna Ambulatory Student nurse Morning 8 mins 3 . . .

Read document Thomas Ambulatory Jr. nurse Morning 11 mins 1 . . .

Communication w/ patient,

Observations & monitoring

Thomas Ambulatory Jr. nurse Morning 7 mins 2 . . .

Reporting Thomas Ambulatory Jr. nurse Morning 7 mins 1 . . .

Communication w/ patient,

Take blood sample

John Emergency Sr. nurse Afternoon 8 mins 2 . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Table 2: An example of an enriched log. Activity instances that overlap in time are aggregated

into a multitask session. The multitasking (MT) level is defined by the number of concurrently

executed activity instances.

2The attributes used in the real-life case study will be outlined in Section 4.2.1.
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3.2. Step 2 – Multitask Session Archetype Identification

In the second step, the enriched log is clustered to find multitask session

archetypes, which describe multitask sessions that were executed under similar

conditions. Each archetype represents a set of multitask sessions that exhibit

high homogeneity with sessions within that archetype and high heterogeneity230

with sessions from other archetypes [24]. In our example, we could observe

that medication administration is often executed during the morning shift by a

student nurse, whereas taking blood samples from emergency patients is more

likely to require a senior nurse. These two examples are then defined as two

distinct multitask session archetypes.235

The remainder of this section specifies how the multitask session archetypes

are identified. First, we introduce the clustering technique and explain its bene-

fits. Next, we describe how the clustering model can be specified. Subsequently,

we provide a method to determine the number of multitask session archetypes

statistically. Finally, the archetypes can be profiled based on the fitted cluster-240

ing model.

3.2.1. Clustering Technique

To cluster the enriched log, we propose to use the probabilistic model-based

clustering technique Finite Mixture Models (FMM) [69]. FMMs have been suc-

cessfully applied in a wide variety of domains, including agriculture, bioinformat-245

ics, biology, economics, engineering, marketing, medicine, physics, psychology,

and many other fields, due to their versatile applicability in major areas of

statistics [70, 71]. These applications include latent class and cluster analysis,

survival analysis, image analysis, data analysis and inference, and many more

[71].250

Even though other clustering techniques can be used for this step as well,

e.g. k-means or hierarchical clustering, the use of a probabilistic model-based

clustering technique such as FMM has several advantages. Firstly, it is a fuzzy

clustering technique which allows the archetypes to overlap, which is required for

the probabilistic assignment of multitask sessions to resources. Secondly, stat-255
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istical criteria can be used to determine the appropriate number of clusters, such

as the Akaike Information Criterion (AIC) or Bayesian Information Criterion

(BIC) [70–73]. Thirdly, variables of mixed types, such as discrete, continuous,

and nominal, can be used in the same model [70]. This allows considering, e.g.,

the multitasking level and duration as contextual factors in discovering resource260

profiles. Although other clustering techniques, such as k-means, can also deal

with variables of mixed types, an appropriate distance measure is required. The

definition of such a measure is not evident, and the resulting clusters are ex-

tensively dependent on the distance matrix. In addition, scaling problems cause

further challenges. FMM overcomes these challenges as no scaling nor distance265

measure is required [70, 74, 75]. Finally, as FMM uses a probabilistic model,

each cluster is described by a set of statistical distributions. This provides a

detailed description for every cluster, allowing a more comprehensive and trans-

parent interpretation. For example, resources and execution contexts can be

probabilistically assigned to multiple clusters (or archetypes). This is especially270

relevant in complex settings such as healthcare, where much flexibility is expec-

ted from healthcare professionals [3, 25–27].

3.2.2. Clustering Model Specification

The FMM can be specified as follows. Suppose we have a set S = ⟨s1, . . . , sN ⟩

of N multitask session observations, where each observation sn corresponds to

a row in the enriched log, which is represented as a vector of J descriptive

attributes snj corresponding to the columns (e.g. the resource, the activity label,

the duration of the activity, etc.), with n ∈ {1, . . . , N} and j ∈ {1, . . . , J}. For

instance, in our running example, s1 corresponds to the first row in the enriched

log (Table 2):

s1 = ⟨(Communication w/ patient,Prepare medication,Administer medication),

Anna,Ambulatory,Student nurse,Morning, 8 mins, 3⟩,

and s1,2 = Anna, i.e. the second attribute of the first row in Table 2.
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The mixture model, from which S is a sample, is denoted as h and is as-

sumed to consist of a mixture of K component distributions. Each compon-

ent distribution fk can be interpreted as a separate multitask session arche-

type. This multivariate component distribution is typically modelled as the

product of univariate distributions fkj of the individual attributes snj , assum-

ing component-conditional independence among the attributes. The weight of

the component distribution fk in the mixture distribution h is denoted as πk,

with k ∈ {1, . . . ,K}. The mixture distribution h can then be written as given

by Equation 1 [70–73]:

h(sn;ϑ) =

K∑
k=1

πkfk(sn;θk)

=

K∑
k=1

πk

J∏
j=1

fkj(snj ;θkj),

(1)

where the kth component distribution of attribute j for multitask session275

observation sn is fkj(snj ;θkj) with component-specific parameter vector θkj and

j ∈ {1, . . . , J}. πk is the prior probability, or mixture proportion, of component

k which must satisfy
∑K

k=1 πk = 1, where ∀k : πk > 0. The vector of all

model parameters is denoted as ϑ and can be estimated by maximising the log-

likelihood using, e.g., the Expectation-Maximisation (EM) algorithm [76]. More280

details on the specification and estimation of FMMs using EM can be found in

Vermunt and Magidson [70], McLachlan et al. [71], Frühwirth-Schnatter [72],

and McLachlan and Peel [73].

Considering Equation 1, for each attribute j, an appropriate parametric

distribution fkj needs to be selected. A few examples of relevant distributions285

depending on the attribute type are provided in Table 3. This is only a limited

subset of possible distributions. Other parametric distributions may be more

appropriate to describe certain attributes. If required, the same distribution

could be used multiple times for different attributes of the same type.

In our running example, the resource, resource experience, patient type, and

shift could be modelled as multinomial distributions, whereas the multitasking

13



Distribution Attribute type

Binomial Binary or dummy variables

Exponential Inter-arrival times in a homogeneous Poisson process

Gaussian Biological phenomena (patient’s height, blood pressure, etc.), engineer-

ing tolerances, etc.

Multinomial Nominal/Categorical or ordinal variables, such as resources, weekdays,

activity labels, case status, etc.

Poisson Count variables, such as the number of activities performed simultan-

eously during multitasking, or the amount of currently active cases

Weibull Activity or session durations

Table 3: Examples of appropriate distributions for various attribute categories.

level of the multitask session can be described by a Poisson distribution and

the duration by a Weibull distribution. If the order in which the activities were

executed within a multitask session is not of interest, the activities could be en-

coded, e.g., using one-hot encoding, and described with binomial distributions.

This is particularly useful when a large number of distinct activity labels are

present because the number of unique combinations of concurrently executed

activities could become very large. If we apply one-hot encoding to the activity

attribute in our running example (i.e. the first column of Table 2), we get the

following vector s1 → s′1 for the first row in Table 2:

s′1 = ⟨1, 1, 0, 1, 0, 0, 0,Anna,Ambulatory,Student nurse,Morning, 8 mins, 3⟩,

where the first seven elements represent all activities present in the enriched290

log, i.e. Administer medication, Communication w/ patient, Observations & mon-

itoring, Prepare medication, Read document, Reporting, and Take blood sample,

in this order. A binary value indicates whether the activity was executed (1)

or not (0) during the multitask session. The remaining elements represent the

resource, patient type, resource experience, shift, duration, and multitasking295

level attributes for multitask session s′1.

Hence, in our example, the mixture distribution h (Equation 1) can be mod-
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elled as follows:

h(s′n;ϑ) =

K∑
k=1

πk

J∏
j=1

fkj(s
′
nj ;θkj)

=

K∑
k=1

πk

7∏
j=1

Bk(1, θkj)

11∏
j=8

Multk(1,θkj)Weibk(s
′
n12,θk12)Poisk(s

′
n13,θk13),

where, for each multitask session archetype, the component distribution fk

can be modelled as the product of thirteen (J = 13) univariate distributions:

• Bk(1, θkj) is a binomial distribution with one trial (i.e. a Bernoulli distri-

bution) describing the probability θkj of observing activity j in component300

k, e.g. j = 1 corresponds to the activity Administer medication;

• Multk(1,θkj) is a multinomial distribution with one trial (i.e. a categorical

distribution) with probability vector θkj describing the probabilities of

observing each distinct value of categorical attribute j in component k,

e.g. for j = 8, θkj contains the probabilities whether each resource was305

involved during multitask session archetype k;

• Weibk(s
′
n12,θk12) is a Weibull distribution with parameters θk12 for the

duration attribute s′n12 (j = 12) of multitask session s′n for component k;

• Poisk(s
′
n13,θk13) is a Poisson distribution with parameters θk13 for the

multitasking level attribute s′n13 (j = 13) of multitask session s′n for com-310

ponent k.

3.2.3. Determining the Number of Multitask Session Archetypes

Comparable to k-means, the number of components (or clusters) K needs to

be specified upfront. Several statistical criteria can be used to select the “best”

number of components, including the frequently used Bayesian Information

Criterion (BIC), which tries to find a balance between model complexity (i.e.

number of parameters) and goodness-of-fit (i.e. log-likelihood) [72, 73]:

BIC = −2 logL(ϑ̂) + d logN, (2)
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where d is the total number of parameters to be estimated in the model, N

is the number of multitask session observations, and ϑ̂ is the vector of estimated

parameter values of the model parameter vector ϑ that maximises the mixture

likelihood function L(ϑ̂) [71–73]:

L(ϑ̂) =
N∏

n=1

h(sn; ϑ̂)

=

N∏
n=1

 K∑
k=1

π̂k

J∏
j=1

fkj(snj ; θ̂kj)

 (3)

The general intent is to minimise Equation 2 when selecting an appropriate

number of components (K) [72, 73]. However, as a more parsimonious model is

generally preferred over a more complex model, the “best” model is not always315

the model having the lowest BIC , especially if the BIC barely decreases when

adding an additional component to the model. In this case, it may be better

to use the “elbow criterion” to select the appropriate number of components,

i.e. a decrease in marginal gain of L(ϑ̂) by adding an extra component can be

identified by the angle, or “elbow pattern”, in the BIC -plot [75, 77].320

The “quality” of the selected model can be assessed using the relative entropy

EK . This index can be used as an indication of the overall precision of the cluster

model [71, 77]:

EK = 1−

N∑
n=1

K∑
k=1

−τ̂nk log τ̂nk

N logK
, (4)

where τ̂nk is the estimated posterior probability for multitask session obser-

vation sn corresponding to the kth component, i.e. P (Component = k | sn; ϑ̂)

[71, 77]. For example, P (Component = 2 | s′1; ϑ̂) is the posterior probability

that multitask session observation s′1 (i.e. the first multitask session of Table 2)

corresponds to the second multitask session archetype (k = 2).325

The relative entropy EK quantifies the posterior classification uncertainty for

a FMM with K components and is bound to the unit interval: 0 ≤ EK ≤ 1. A

relative entropy of EK = 0 indicates that the posterior classification is no better

than randomly assigning observations to clusters, whereas EK = 1 indicates
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a perfect classification in which the mixture’s components are well separated.330

However, it should be noted that while EK can be used as an indication of

the overall precision of the model, it was not intended for model selection and,

therefore, should not be applied for that purpose (i.e. the BIC is preferred for

that objective) [71, 72, 77, 78].

The EM algorithm iteratively updates the estimated parameters ϑ̂ until335

either (i) the predefined maximum number of iterations has been reached, or

(ii) the convergence criterion for the mixture likelihood function L(ϑ̂) (Equa-

tion 3) has been met [77, 78]. However, this convergence could occur at a

local maximum. Therefore, it is imperative to repeat the EM algorithm several

times with different starting values of ϑ̂
(0)

to mitigate the risk of finding a local340

optimum [72, 77, 78].

3.2.4. Profiling the Multitask Session Archetypes

Once a satisfactory output model is chosen, each component k of the fitted

FMM corresponds to a multitask session archetype and can be described by the

fitted component-specific parameter vectors θ̂kj of the component distributions345

fkj . Therefore, the number of multitask session archetypes is determined by

the number of components of the selected FMM, i.e. K. Each archetype can be

profiled using a brief description to facilitate discussions with domain experts

by making the archetypes more recognisable. For instance, one of the multitask

session archetypes in our running example could describe that, generally speak-350

ing, the activity Administer medication has a high probability of being executed

during the Morning shift, primarily by a Student nurse, and is often performed

concurrently while communicating with the patient.

3.3. Step 3 – Resources Profile Identification

In the final step, we cluster the resources into context-aware resource pro-355

files, i.e. groups of resources that perform similar activities under similar cir-

cumstances. Each resource profile describes a group of resources that perform

similar multitask session archetypes. Therefore, these profiles describe resources
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beyond their hierarchical role within an organisation or resources groups solely

defined by taking activity labels into account. In our running example, we may360

find a multitask session archetype containing a group of senior nurses that often

takes blood samples from emergency patients. In this case, John would be a

member of that context-aware resource profile.

In order to determine the resource profiles, we first determine for every

resource the posterior probabilities that they belong to each multitask session365

archetypes defined in Step 2. Secondly, we cluster these probabilities to find

groups of resources working on the same multitask session archetypes. Finally,

these probabilities can also be used to discern “generalists” (i.e. resources who

work on several distinct multitask session archetypes) from “specialists” (i.e.

resources that mainly focus on one particular multitask session archetype) [6,370

24].

3.3.1. Posterior Probabilities of Resources

Each multitask session archetype (or cluster) k has a component distribution

fkj for the jth attribute, where j corresponds to the resource attribute snj of

multitask session observation sn, e.g. in our running example, j = 8 is the

resource attribute. The posterior probability of observing resource r in multitask

session archetype k is given by Equation 5:

fkj(snj ;θkj) = P (snj = r | Component = k;θkj) ∼ Multk(1,θkj), (5)

where the posterior probability P (snj = r | Component = k;θkj) follows a

multinomial distribution with probabilities θkj and k ∈ {1, . . . ,K}.

To calculate the posterior probability that resource r belongs to multitask

session archetype k, Bayes’ Theorem can be applied:

P (Component = k | snj = r;θkj) ∝

P (snj = r | Component = k;θkj)P (Component = k;ϑ), (6)

where P (Component = k;ϑ) is the prior probability (i.e. πk), and P (snj =375

r | Component = k;θkj) is the posterior probability of observing resource r in

multitask session archetype k defined by Equation 5.
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3.3.2. Discovering Context-Aware Resource Profiles & Specialisation Profiles

For each resource, the posterior probabilities calculated using Equation 6 are

encoded as a vector of the probabilities belonging to each archetype. Next, a380

distance matrix is calculated using the Euclidean distance among the resources

based on this encoding, resulting in a close distance among resources with similar

multitask session archetype probabilities. Finally, the distance matrix can be

clustered using, e.g. Agglomerative Hierarchical Clustering (AHC). The number

of clusters – i.e. distinct context-aware resource profiles – can be determined385

by applying the “elbow criterion” on the Total Within-Cluster Sums of Squares

(WCSS) plot [75, 79].

The matrix on the left in Figure 2 shows an example of a probability matrix

used to find context-aware resource profiles. The rows represent the involved re-

sources, and the columns contain the posterior probability each resource belongs390

to each of the K multitask session archetypes defined in Step 2. This matrix is

clustered to find context-aware resource profiles. For example, we observe that

Anna and Samantha frequently work on multitask session archetypes MSA2 and

MSA3. Therefore, they belong to the same resource profile. Similarly, George

and Sophia frequently perform archetypes MSA3 and MSA4, and form another395

resource profile together.

Additionally, the degree of “specialisation” – i.e. the number of distinct mul-

titask session archetypes a resource performs – can be inferred as well. Figure 2

visualises the required transformation on the probability matrix. First, the en-

coded vector of posterior probabilities from the resource profiles is ordered from400

largest to smallest, i.e. the first element contains the highest posterior probab-

ility of resource r belonging to any particular multitask session archetype, the

second column contains the second-highest probability, etc. Next, the same clus-

tering technique as with the resource profiles is used to find groups of resources

with a similar degree of specialisation. Because this encoded vector sums to one,405

resources with a large maximum probability (e.g. > 90%) are more likely to be

placed into the same group than resources with a lower maximum probability

19



(e.g. < 30%). The former group of resources focuses mainly on one multitask

session archetype and is, therefore, referred to as “specialists”, whereas the latter

group divide their time among multiple archetypes and, hence, is referred to as410

“generalists”. For example, in the matrix on the right in Figure 2, we observe

that Thomas and John are specialists, as they mainly focus on one multitask

session archetype, albeit not on the same archetype, i.e. MSA1 and MSA5, re-

spectively. On the other hand, Anna and George divide their time among three

archetypes and are, therefore, more generalists.415

Figure 2: On the left side, an example of the probability matrix with for each resource (rows)

the posterior probabilities they belong to each multitask session archetype (columns), calcu-

lated using Equation 6. This matrix is clustered using AHC to find context-aware resource

profiles. On the right side, the probabilities for each resource are ordered from largest to

smallest to discern specialists from generalists.

4. Case Study

In order to demonstrate ResProMin–MT, a real-life case study is conducted

at a large University Medical Centre in the Netherlands. This section provides

an overview of the dataset that has been used, together with the context in which

the data has been recorded and the preprocessing that has been applied. Next,420

we discuss how the method has been operationalised to derive context-aware

resource profiles.

4.1. Data Preprocessing

The data has been collected by students in nursing science shadowing every

activity that a nurse performed during their shift in the period February–April425
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2018. Table 4 shows an excerpt of the dataset. Each row represents the execu-

tion of an activity performed by a nurse. For example, the first row represents

an execution of Hand hygiene under the category of Indirect care performed in

shift 59 from 08:03:00 until 08:03:30 on February 14, 2018. A nurse might also

perform several activities concurrently. As shown in the second and third row430

of Table 4, the nurse of shift 59 started performing Daily life activities 30 seconds

before Materials (searching) has been completed, which indicates multitasking.

Note that only the shift identifier (instead of a nurse identifier) is provided due

to data privacy concerns.

Shift ID Activity Start Date Start Complete Category . . .

59 Hand hygiene 2018/02/14 08:03:00 08:03:30 Indirect care . . .

59 Materials (searching) 2018/02/14 08:04:00 08:05:30 Indirect care . . .

59 Daily life activities 2018/02/14 08:05:00 08:25:30 Direct patient care . . .

59 Materials (searching) 2018/02/14 08:24:59 08:26:29 Indirect care . . .

59 Planning meeting 2018/02/14 09:33:00 09:33:30 Professional communication . . .

59 (Answer) Telephone 2018/02/14 09:52:00 09:56:30 Professional communication . . .

86 Assessment 2018/02/27 13:57:00 14:03:30 Direct patient care . . .

86 Meeting 2018/02/27 15:32:00 15:46:30 Ward-related tasks . . .

. . . . . . . . . . . . . . . . . . . . .

Table 4: An excerpt of the dataset.

Shifts that contain a deficient number of activities (i.e. only three to five)435

have been excluded as they contain too few activities to reliably assign them

to a multitask session archetype. Moreover, as some activities were rarely per-

formed (which could result in clustering this activity in an illogical archetype)

or took a significant amount of time during a shift (which causes the algorithm

to consider the entire shift as a single multitask session), these activities may440

decrease the performance of the algorithm. Together with the domain experts,

we determined that the executions of the following activities should be removed

from the dataset: Request/medication order, Providing a clinical lesson, Recording

conversation, Present at clinical class, and Supervision/supervision of student.

After filtering, the dataset contains 7,022 executions of 37 activities under445

11 categories, performed during 68 shifts from February 11 to April 26, 2018.

Besides the attributes shown in Table 4, we included the educational level of the
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nurses executing the activity, as well as their nursing experience/organisational

role, the hospital shift and weekday on which the activities were performed, and

the ward in which the shift took place. Table 5 provides an overview of all450

attributes with their possible values.

4.2. Context-Aware Resource Profile Identification

This section describes how we identified the context-aware resource profiles

from the dataset. First, we enriched the dataset by defining contextual attrib-

utes. Next, we identified the multitask session archetypes by clustering the455

enriched log. Finally, we discuss how the resource profiles were established.

4.2.1. Step 1 – Context Enrichment

According to the domain experts, nurses can be differentiated by their tend-

ency to multitask during their shifts. As such, we aggregated the records of

concurrently executed activities to form multitask sessions. Figure 3 presents460

an example in which we observe two activities being performed concurrently,

i.e. the execution of two activities (at least partially) overlap in time. We group

the two concurrent activity executions together and create a new record starting

from 10:15 until 10:30. This new record replaces the records of the two con-

current activity executions. The other record, which represents the execution465

of ADL activities, is kept, as it is not performed concurrently with other activ-

ities in the example. In the remainder of the paper, we refer to the aggregated

activities as a multitask session. In the example of Figure 3, we extract two

multitask sessions. In total, we identified 2,226 multitask sessions in the entire

dataset.470

The level of multitasking is defined by the number of concurrently executed

activities performed in a multitask session. For example, as shown in Figure 3,

the level of multitasking of the multitask session starting from 10:15 until 10:30

equals 2. The minimal level of multitasking is 1 if an activity was executed

alone, e.g. ADL activities in the same example. In addition, the duration of the475

multitask session can be calculated by the difference in time between the start
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10:05 10:12 10:15 10:22 10:30

Time

ADL Activities
(Immediate patient care)

Visit/Communication about patient (Professional communication)

Communication between patient and/or family
(Immediate patient care)

Figure 3: An excerpt of session 65, which consists of the execution of activities ADL activ-

ities, Visit/communication about patient, and Communication between patient and/or family.

Multitasking can be observed in this excerpt as Visit/communication about patient, and Com-

munication between patient and/or family are performed concurrently.

timestamp of the first activity and the end timestamp of the last activity for

each session.

Meanwhile, the attention and effort required to perform an activity not only

depend on the background of a nurse, but also on the type of the activity.480

Therefore, we encoded the category of the activities performed simultaneously

in a multitask session. We applied one-hot encoding to represent the presence

of the category of activities performed in a multitask session. Applying this

coding to the detailed description of the activities would have given a more pre-

cise context definition. However, this would have made the model too complex,485

as there were 37 different activity labels in the dataset, each requiring a separ-

ate binomial distribution describing whether or not the activity was performed

during the multitask session. Therefore, we used the activity category instead,

which reduced the required number of binomial distributions to eleven. Because

multiple activities can belong to the same activity category, we defined a second490

multitasking level, in addition to the previously defined level, to count the num-

ber of different activity categories within a multitask session (i.e. Multitasking

level categories).

To summarise, a multitask session is described by who performed it, on which

weekday, in which ward, during which hospital shift, how many activities were495

performed concurrently for how long, the categories of the activities performed

concurrently, and the background of the nurses, i.e., educational level and nurs-

ing experience/organisational role. An overview of all attributes with possible
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values of the enriched log is shown in Table 5.

Attribute Description

Shift ID Unique identifier for each nursing shift

Hospital shift Day (7 a.m.–3 p.m.), Evening (3 p.m.–10 p.m.), or Night (10 p.m.–

7 a.m.)

Ward The ward in which the shift took place: Gastroenterology, Geriat-

rics, HPB surgery, Intensive care, Internal med-system diseases, Neur-

ology, Oncology-Hematology, Pulmonary medicine, or Transplanta-

tions. Each shift is performed in only one ward

Education level The training according to the Dutch system that the nurse has

followed: HBO-V (higher professional education), In-service trained

(internal training), MBVO-V (secondary professional education), or

Student HBO-V (student nurse in HBO-V system)

Function The nursing experience or organisational role: nurse, senior nurse,

nurse student, ICU nurse, or high care nurse

Weekday The weekday of the shift (Mon–Sun)

Multitasking level The total number of activities that were performed during one mul-

titask session and the number of different activity categories

Activity category Eleven binary attributes, one for each activity category:

Department-related activities, Direct patient care, Documentation &

reporting, Immediate patient care, Indirect patient care, Medication

tasks, Other, Patient transportation, Professional communication, So-

cial/personal time, and Time between in transit (moving from one

location to another)

Duration The duration of the multitask session in minutes

Table 5: Overview of the final attributes with a description of the enriched log.

4.2.2. Step 2 – Multitask Session Archetype Identification500

To find the multitask session archetypes, we modelled a Finite Mixture

Model with twenty distributions (fkj) based on the attributes of the enriched log

(Table 5): six multinomial distributions (Shift ID, Hospital shift, Ward, Educa-

tion level, Function, and Weekday), two Poisson distributions (Multitasking level

and Multitasking level categories), eleven binomial distributions (one for each505

Task category), and one Weibull distribution for the Duration of the multitask
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session.

To determine the appropriate number of clusters (i.e. multitask session ar-

chetypes or K), we fitted four to ten components to the model, as more than

ten components would decrease the interpretability due to the large number of510

parameters. For each number of components, we repeated the fitting process

25 times to mitigate the risk that the EM algorithm would converge to a local

optimum, resulting in a total of 175 models. We fitted the FMMs using the

R-package flexmix (version 2.3_17) [80] (R version 4.1.2 [81]). A median of

38 iterations of the EM algorithm was required before converging to a solu-515

tion, which took on average 3.44 minutes on an Intel®Xeon®Gold 6240 CPU

@ 2.60GHz with 72GB of memory, running CentOS 7.9.2009. The summary

statistics of the runtime are provided in Table 6. Since each model can be fit-

ted independently, the fitting process was parallelised, which resulted in a total

runtime of 49.12 minutes.520

Min Max Mean Median SD IQR Total

0.9866 9.6422 3.4397 3.1278 1.6396 1.8856 49.1167

Table 6: Summary statistics on runtime (in mins) to fit the Finite Mixture Models.

As the number of components (K) increases, so does the number of para-

meters that need to be fitted. Figure 4 shows the required iterations and corres-

ponding runtime per number of fitted components (K) before the EM algorithm

converged to a solution. Even though the required number of iterations (Fig-

ure 4a) remains relatively constant with respect to K, the runtime (Figure 4b)525

increases as the number of parameters, and accordingly, the model’s complexity

increases.

To select the most appropriate model, we applied three rules [24]:

(i) For each group of models with the same number of components, we selec-

ted the repetition with the highest log-likelihood (Equation 3);530

(ii) To determine the appropriate number of components, we selected the
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Figure 4: Number of iterations (a) and runtime (b) required before converging to a solution.

model with the lowest BIC (Equation 2), or the model that corresponded

to the “elbow pattern” in the BIC -curve;

(iii) Each estimated component proportion (πk) should be at least 5%, i.e. each

component should contain at least 5% of the total observed multitask ses-535

sions. A component proportion near zero could be an indication of com-

ponent “collapsing” or “over-extraction”, in which the model is attempting

to cluster the observations among more components than the data sup-

ports, or two or more components are insufficiently separated from each

other. In this case, the relative entropy EK (Equation 4) will be near zero,540

which can be used as an indication of problematic over-extraction [77].

We determined that nine components would be appropriate by applying

these three rules to the model selection of the enriched log. As shown in Figure 5,

the BIC is minimised while respecting the third rule. The EK = 0.9783, which

indicates that the components are well separated.545

4.3. Step 3 – Resources Profile Identification

In the final step, we cluster the posterior probabilities that resource r be-

longs to multitask session archetype k. The full probability matrices after ap-

plying Equation 6 and reordering the probabilities from largest to smallest are
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Figure 5: Evolution of the BIC when adding more components (K) to the model.

included in Appendix A. Both tables are clustered using Agglomerative Hier-550

archical Clustering (AHC) to discover the context-aware resource profiles of

nurses with similar duties (Table A.11), as well as the specialisation profiles

(Table A.12). Figure 6 shows the evolution of the Total Within-Cluster Sums

of Squares (WCSS ) for both types of profiles. A clear “elbow pattern” can be

distinguished in Figure 6b at three specialisation clusters, whereas the resource555

profile clustering in Figure 6a lacks this apparent pattern. However, the de-

crease in WCSS diminishes after eight resource profile clusters, and therefore,

eight clusters seem appropriate.

5. Results

The results of the estimated vector of model parameters ϑ̂ of the FMM in560

Step 2 are shown in Tables 7–9. In Table 7a, the intra-cluster multinomial

distributions for Ward are displayed. For instance, 89.15% of the multitask ses-

sions that belong to cluster 1 were performed in the Geriatrics ward, whereas

in cluster 4, the sessions took place in Transplantations (42.40%), Neurology

(22.77%), Internal med-system diseases (17.90%), and Geriatrics (11.55%) in de-565

creasing probability. The remaining wards are very weakly linked to cluster 4.

Looking at the Shift in Table 7b, we notice that the sessions in clusters 1

and 9 are always performed during Day (99.60% and 100.00%, resp.), whereas
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Figure 6: Total Within-Cluster Sums of Squares (WCSS) plots to determine the number of

clusters for resource profiles (a) and specialisation profiles (b).

clusters 3, 5, and 7 are more evenly spread among Day and Evening. Night is

only weakly linked to clusters 8, 7, and 6 (4.16%, 2.74%, and 1.46%, resp.).570

This was expected, as only 1% of all multitask sessions occurred during the

Night shift, which usually involved activities of nurses who had to finish their

Evening shift after 10 p.m. (i.e. the starting time of the Night shift).

Regarding the Education of the nurses in Table 7c, some clusters are always

performed by nurses with a particular education level, e.g. cluster 1 and 7 is575

always performed by an MBVO-V nurse (100.00% and 95.18%, resp.), whereas

cluster 3 always involves a HBO-V nurse (100.00%). With respect to the Func-
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tion, in almost all clusters, except cluster 3, the Nurse is dominant (Table 7d),

which is not surprising as 82.4% of all nurses who participated had the function

Nurse. Nevertheless, in clusters 2, 6, and 8, different functions of nurses are also580

likely to be involved, besides Nurse.

Concerning the Weekday on which the multitask sessions were performed

(Table 7e), we notice that the first half of the workweek (Mon–Wed) is often

more probable than the second half (Thu–Fri) and the weekend (Sat–Sun). How-

ever, this may have been caused by the availability of the student nurse who585

recorded the shifts.

The categories of the Tasks executed during the multitask sessions are shown

in Table 8. The probabilities for the different categories are not mutually ex-

clusive, as multiple tasks for different categories can be performed concurrently

during a multitask session. Therefore, the columns do not sum up to 100%.590

Professional communication, Indirect patient care, and Immediate patient care are

frequently observed in all clusters, as well as Time between in transit and Med-

ication tasks, although to a lesser degree.

Lastly, the distributions for the Duration and Multitasking level for the mul-

titask session archetypes are shown in Table 9a and Table 9b, respectively. As595

illustrated in Figure 7, Clusters 1, 2, 3, 5, 7, and 9 have a relatively short dura-

tion, with a median of around 1.7 minutes, whereas cluster 6 has a significantly

longer duration with a median of 22.37 minutes. This seems logical since the

Multitasking level is also larger for the clusters with a longer duration, as shown

in Figure 8, i.e. multitask sessions tend to take longer when more activities are600

performed concurrently.

By comparing the Multitasking level with the Multitasking level categories,

we can determine whether a multitask session focuses mainly on one category

of Tasks (i.e. a ratio closer to zero indicates a large difference between Multi-

tasking level and Multitasking level categories), or many categories of Tasks were605

performed (i.e. a smaller difference with a ratio closer to one). We notice in

Table 9b and Figure 8 that during multitask sessions with a higher Multitasking

level (e.g. clusters 4 and 6), the ratio is also higher, meaning that when more

29



Ward Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9

Gastroenterology < 0.01 < 0.01 3.57 < 0.01 < 0.01 1.47 < 0.01 < 0.01 < 0.01

Geriatrics 89.15 < 0.01 96.43 11.55 34.35 2.41 < 0.01 < 0.01 < 0.01

HPB Surgery < 0.01 < 0.01 < 0.01 3.90 4.56 28.13 4.04 < 0.01 40.51

Intensive Care < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 17.10 < 0.01 33.57 < 0.01

Internal med-system diseases < 0.01 < 0.01 < 0.01 17.90 10.21 15.92 36.09 < 0.01 45.80

Neurology 10.85 < 0.01 < 0.01 22.77 < 0.01 16.55 21.53 < 0.01 13.69

Oncology-Hematology < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 14.80 < 0.01 66.43 < 0.01

Pulmonary medicine < 0.01 < 0.01 < 0.01 1.46 15.26 0.01 < 0.01 < 0.01 < 0.01

Transplantations < 0.01 100.00 < 0.01 42.40 35.62 3.62 38.33 < 0.01 < 0.01

(a) Intra-cluster Ward distributions.

Shift Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9

Day 99.60 74.71 57.14 71.40 49.11 74.86 55.49 26.10 100.00

Evening 0.40 25.29 42.86 28.60 50.89 23.67 41.77 69.74 < 0.01

Night < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1.46 2.74 4.16 < 0.01

(b) Intra-cluster Shift distributions.

Education Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9

HBO-V < 0.01 53.22 100.00 38.88 42.52 44.44 4.82 38.14 14.41

In-service trained < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 30.78 < 0.01 19.68 85.58

MBVO-V 100.00 < 0.01 < 0.01 60.62 57.48 20.13 95.18 < 0.01 < 0.01

Student HBO-V < 0.01 46.78 < 0.01 0.50 < 0.01 4.66 < 0.01 42.18 < 0.01

(c) Intra-cluster Education distributions.

Function Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9

High care nurse < 0.01 37.19 < 0.01 4.66 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

ICU nurse < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 17.04 < 0.01 33.56 < 0.01

Nurse 100.00 51.97 < 0.01 95.34 100.00 80.75 100.00 66.44 100.00

Nurse student < 0.01 10.85 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Senior nurse < 0.01 < 0.01 100.00 < 0.01 < 0.01 2.21 < 0.01 < 0.01 < 0.01

(d) Intra-cluster Function distributions.

Weekday Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9

Mon < 0.01 < 0.01 < 0.01 15.67 < 0.01 27.30 27.10 13.19 65.22

Tue 15.52 70.68 < 0.01 28.54 2.33 22.08 19.55 26.86 < 0.01

Wed < 0.01 < 0.01 56.63 29.55 97.67 14.22 < 0.01 5.75 < 0.01

Thu < 0.01 < 0.01 39.80 12.91 < 0.01 14.35 40.65 54.21 < 0.01

Fri 84.48 < 0.01 < 0.01 6.24 < 0.01 2.45 < 0.01 < 0.01 < 0.01

Sat < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 14.82 < 0.01 < 0.01 28.36

Sun < 0.01 29.32 3.57 7.09 < 0.01 4.78 12.70 < 0.01 6.42

(e) Intra-cluster Weekday distributions.

Table 7: Intra-cluster multinomial distributions for Ward (a), Shift (b), Education (c), Function

(d), and Weekday (e) attributes (in %).
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Task Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9

Documentation & reporting 6.45 6.96 8.16 21.97 6.24 39.57 4.03 13.52 5.16

Professional communication 46.28 36.04 41.33 73.59 31.63 73.13 37.92 22.96 42.29

Social personal time 3.82 9.55 9.18 18.32 4.79 28.96 12.46 7.55 11.46

Indirect patient care 26.30 21.26 17.35 53.71 23.52 92.45 24.19 54.69 30.64

Immediate patient care 35.17 35.39 34.18 71.79 31.87 96.30 24.38 37.64 37.18

Direct patient care 2.80 4.72 1.53 10.82 1.77 34.64 1.36 8.62 5.03

Time between in transit 12.16 11.49 9.18 35.28 14.53 64.41 16.44 26.98 17.23

Medication tasks 8.69 14.40 22.96 32.94 19.54 54.01 15.76 15.20 13.71

Other 6.40 10.63 7.65 22.78 8.74 26.21 7.17 4.60 5.62

Department related activities 5.84 9.78 3.06 13.26 4.79 7.60 5.34 1.13 5.96

Patient transportation 2.72 < 0.01 4.59 10.86 4.20 6.58 2.92 6.82 4.06

Table 8: Intra-cluster binomial distributions for each Task (in %). Note that, in contrast to

the distributions in Table 7, the activity categories are one-hot encoded and are assumed to

be independent, i.e. a multitask session may contain multiple activity categories concurrently.

Therefore, the summation over the activity categories per cluster does not add up to 100%.

Tasks are performed concurrently, the categories of Tasks are also more diverse.

Duration Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9

Shape (k) 0.9565 0.9103 0.9042 1.2256 1.0102 1.6001 0.9716 0.9962 0.8643

Scale (λ) 3.0742 3.4208 3.4105 15.5272 2.9077 30.5687 3.0302 5.0480 3.7317

(a) Intra-cluster Weibull distributions for Duration.

Multitasking level Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9

Rate (λ) 0.8307 0.8404 0.8518 2.5913 0.6307 3.5677 0.7493 1.4841 1.2578

Rate (λcat ) 0.4313 0.4929 0.4755 1.9758 0.3388 2.4443 0.3456 0.9972 0.7558

Ratio (λcat/λ) 0.5192 0.5865 0.5582 0.7625 0.5371 0.6851 0.4612 0.6719 0.6009

(b) Intra-cluster Poisson distributions for Multitasking level (λ) and Multitasking level categories (λcat ).

Table 9: Intra-cluster distributions for Duration (a) and Multitasking level (b).

Table 10 describes the nine identified multitask session archetypes based on610

the intra-cluster distributions from Tables 7–9, together with the relative size of

the cluster to the entire enriched log. For instance, multitask session archetype 1

is mainly related to multitask sessions in the Geriatrics ward, in which most of

the work is performed during the Day shift and involves much communication

with, and immediate (direct) care of patients. Typically the multitasking level615

is relatively low – one or two tasks concurrently – and a short duration of 50

seconds to 3.5 minutes (25th and 75th percentile, respectively).
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Figure 8: Multitasking level (λ, stripes) and Multitasking level categories (λcat , dots) of multitask

sessions per multitask session archetype.

Clust. Description Size (%)

1 Mainly Geriatrics, sometimes Neurology; always during Day shift; by

an MBVO-V Nurse; mainly on Fri, or sometimes on Tue; typically

Professional communication and/or Immediate patient care; with a

low multitasking level and low duration

10.02

2 Always Transplantations; mainly during the Day shift, sometimes

in the Evening; evenly spread among HBO-V (Student) Nurse or

High care nurse; mainly on Tue, or sometimes on Sun; typically

Professional communication and/or Immediate patient care; with a

low multitasking level and low duration

10.38

Continued on next page
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Clust. Description Size (%)

3 Mainly Geriatrics, rarely Gastroenterology; evenly spread among the

Day and Evening shift; by an HBO-V Sr. Nurse; frequently on Wed or

Thu; typically Professional communication and/or Immediate patient

care; with a low multitasking level and low duration

8.81

4 Frequently Transplantations, sometimes Neurology, Internal med-

system diseases, or Geriatrics; mainly during the Day shift, some-

times in the Evening; mainly by an MBVO-V Nurse; spread among

the workweek (Mon–Thu); typically Professional communication,

Immediate patient care, Indirect patient care, Time between in transit,

and/or Medication tasks; with a medium to high multitasking and

a medium to high duration

10.38

5 Frequently Transplantations or Geriatrics, sometimes Pulmonary

medicine or Internal med-system diseases; evenly spread among the

Day and Evening shift; by an MBVO-V or HBO-V Nurse; always on

Wed; typically Immediate patient care and/or Professional commu-

nication; with a low multitasking level and low duration

14.15

6 HBP surgery, Intensive care, Neurology, Internal med-system diseases,

or Hematology-Oncology; mainly during the Day shift, sometimes

in the Evening; frequently by an HBO-V or In-service trained Nurse

of ICU nurse; spread among the workweek (Mon–Thu) or Sat; al-

ways involving Immediate patient care and typically Indirect patient

care, Professional communication, Time between in transit, Medica-

tion tasks, Documentation & reporting, and or Direct patient care;

with a high multitasking level and high duration

6.06

7 Frequently Transplantations or Internal med-system diseases, some-

times Neurology; evenly spread among the Day and Evening shift;

always by an MBVO-V Nurse; typically on Thu, sometimes on Mon,

Tue, or Sun; typically Professional communication; with a low mul-

titasking level and low duration

14.96

8 Frequently Oncology-Hematology and, less frequently, Intensive care;

mainly during the Evening shift, sometimes during the Day, and

seldomly during Night; by a (Student) HBO-V Nurse or ICU nurse;

frequently on Thu, sometimes on Mon–Tue; typically Indirect pa-

tient care and/or Immediate patient care; with a low to medium

multitasking level and a low to medium duration

11.95

Continued on next page
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Clust. Description Size (%)

9 Frequently Internal med-system diseases or HPB surgery, sometimes

Neurology; always during the Day shift; mainly by an In-service

trained Nurse; frequently on Mon, sometimes on Sat; typically Pro-

fessional communication, Immediate patient care and/or Indirect pa-

tient care; with a low to medium multitasking level and a low dur-

ation

13.30

Table 10: Multitask session archetypes with descriptions and their relative size.

After identifying the multitask session archetypes, we can calculate for each

resource the posterior probabilities that they belong to each multitask session

archetype using Equation 6. Next, we can cluster the probabilities using AHC620

to find context-aware resource profiles and specialisation profiles. The table

containing the posterior probabilities for each resource to belong to a particular

multitask session archetype can be consulted in Appendix A.

Figure 9a shows the resulting dendrogram for the resource profiles. For in-

stance, nurses 104, 110, 135, 180, 182, 183, and 188 (green box) all have a high625

focus on multitask session archetype 9 (> 80%) and are, therefore, grouped into

the same resource profile. The majority of these nurses are In-service trained

and work in Internal med-system diseases, HPB surgery, or Neurology during the

Day shift. They are typically occupied with Professional communication-, Im-

mediate patient care-, and Indirect patient care-related activities with a medium630

Multitasking level (typically two or three activities concurrently) and a short

duration (4.11 minutes on average). Another group of mainly MBVO-V nurses

(79, 98, 107, 136, 138, 142, 145, 151, 154, 160, 175, 185, and 195; magenta box)

work on multitask session archetypes 4 and 7, which are both linked to Trans-

plantations, Neurology, and Internal med-system diseases, with a high focus on635

Professional communication. However, whereas archetype 7 exhibits a relatively

low Multitasking level (typically one or two activities concurrently) and a short

duration (on average 3.12 minutes), archetype 4 manifests a more demanding

multitask session with a high Multitask level (typically four to seven activities
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concurrently) and a long duration (14.87 minutes on average). This would in-640

dicate that these nurses have a highly varied range of duties during their shift,

with periods in which it is quieter and with periods in which many tasks have

to be handled simultaneously.

Because resources are not necessarily bound to one multitask session arche-

type by the probabilistic nature of the model, a similar type of analysis can be645

applied to group resources among their degree of specialisation. For instance,

all nurses of the left group (red box) in Figure 9b have a very high focus on

one archetype (> 90%) and are, therefore, referred to as “specialists”. However,

this does not imply that all nurses within this group focus on the same arche-

type, e.g. nurse 144 has a posterior probability of 92.10% performing multitask650

session archetype 2, whereas nurse 192 has 97.68% on archetype 8. Meanwhile,

nurses of the right group (blue box) tend to spread their time among two or

three archetypes and are, therefore, referred to as “generalists”. Once again,

the multitask session archetypes they work on can be very diverse, e.g. whereas

nurse 98 works on archetypes 4, 6, and 7, nurse 101 works on 2 and 4.655

6. Discussion

As the work and role of nurses are rather dynamic, there are no formalised

nurse roles defined by the hospital. Nevertheless, healthcare organisations could

benefit from having a transparent overview of the different “roles”, or more spe-

cifically, resource profiles of nurses working on similar activity instances. These660

in-depth insights could be used, e.g., to improve nurses’ scheduling and determ-

ine the suitable levels of required nurses. In Sections 4 and 5 we demonstrated

how ResProMin–MT can be used to obtain such a comprehensive overview. We

discussed the results with domain experts currently working at the hospital to

validate the findings. In total, three domain experts were involved during the665

validation: one PhD student and two professors in nursing science. Two of them

were also involved during the collection of data that is used in this case study.

In this section, we first present the discussion with the domain experts on the
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Figure 9: Cluster dendrograms of the resource profiles (a) and specialisation profiles (b).

case study. Next, we provide some reflections on ResProMin–MT and highlight

its limitations.670

6.1. Case Study

A noteworthy observation of the results is the fact that every multitask ses-

sion archetype contains at least one of the following activity types: Professional

communication, Immediate patient care, or Indirect patient care. The domain

experts confirmed that, besides the tasks related to patient care (which is usu-675

ally seen as the most integral part of a nurse’s responsibilities), these results

highlight the importance of communication, which is recently gaining attention

in the field of nursing science [82–84]. Another frequently observed pattern is
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the combination of Medication tasks, Indirect patient care and Time between in

transit. An explanation provided by the domain experts was that the nurse first680

has to get and prepare the medication (Time between in transit & Indirect patient

care) before administering it (Medication tasks).

Even though the domain experts indicated that there is no formal distinction

made between the nurses in terms of the activities they perform based on their

education, some multitask session archetypes are more likely to be carried out685

by a specific education level. For example, multitask session archetype 4 is in

60.62% of the cases performed by an MBVO-V nurse, compared to 38.88% for

HBO-V. However, the domain experts agreed that there may be implicit task

division patterns in the workplace. The revelation of these patterns can be seen

as one of the advantages of ResProMin–MT.690

6.2. Reflections & Limitations

In comparison to the state-of-the-art in organisational model mining al-

gorithms, ResProMin–MT provides much richer information on the context in

which the resources executed their activities. Other algorithms mainly present

graphs with groups of resources working on the same activities [13, 14, 21], some-695

times augmented with contextual variables such as the weekday or case type [23].

By contrast, our method benefits from the probabilistic nature of FMMs and

provides more in-depth and transparent insights into what and under which

circumstances resources execute their work, such as the nurse’s experience, dur-

ation of the activities, workload in terms of multitasking, and many more. In700

addition, ResProMin–MT is capable of discerning specialists from generalists.

Despite ResProMin–MT’s capability of finding interesting and valuable in-

sights into the prevailing resource profiles, we have also identified five limitations

resulting from the practical aspects of the data collection and the applied clus-

tering technique.705

Firstly, the nurse identifier or the mapping between the shifts and the indi-

vidual nurses has not been recorded to safeguard privacy. If multiple shifts over

time were linked to the same nurse, we would have had a more reliable overview
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of the activity types each nurse performs. However, the domain experts indic-

ated that the activities performed by a nurse highly depend on the situation710

and activities that need to be done. After all, the experts pointed out that a

nurse’s role depends on the situation at hand and can differ from day to day.

For instance, a senior and highly specialised nurse might also perform simple

tasks if needed, which is often the case in periods of understaffing. As a con-

sequence, the domain experts considered the outcome sufficient, and the impact715

of not being able to connect shifts performed by the same nurse is estimated as

limited.

Secondly, we were unable to assess the systematic workload since not all

nurses have been shadowed, nor did we had access to information on the patient’s

health condition. As a result, we could not determine whether the degree of720

multitasking was related to the specific activities, due to a high workload, or by

the amount of care required depending on the patient acuity.

Thirdly, as nursing students performed the shadowing and recording, the

data collection was limited to the recorders’ availabilities, which may cause bias

regarding time-related factors. This could explain why most multitask session725

archetypes tend to occur during the Day shift (from 7 a.m. to 3 p.m.).

Fourthly, the domain experts indicated that nurses working on multiple mul-

titask session archetypes – which ResProMin–MT defines as “generalists” – could

still be very specialised in their field because “specialisation” within a medical

context refers to the type of work a nurse performs. However, it is not the aim730

of our method to identify specialisation within a medical context but rather to

measure how resources divide their work among archetypes.

A final limitation relates to the computational efficiency of clustering the

enriched log using Finite Mixture Models. While FMMs provide several ad-

vantages, fitting an appropriate model suffers from the curse of dimensionality735

when using large logs with many contextual variables. However, determining

the resource profiles is rather a post-analysis process and is typically not per-

formed in real-time [24]. Therefore, runtime optimisation was not a primary

criterion for this application.
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Notwithstanding the presence of these limitations, the domain experts indic-740

ated that our method provides valuable and conveniently interpretable insights

for determining how care managers should design their nursing processes. For

example, the internal employment agency of the hospital could use it to assign

nurses to wards based on the current needs within those wards. In addition, the

method could be used by nurse managers to form nursing teams which contain745

all the profiles required for their ward, e.g. 50% of nurses working on archetype

x, 25% on archetype y, and 25% on archetype z.

While the case study in this work was applied to a healthcare context,

ResProMin–MT can be used as well in other domains where multitasking is

relevant and give in-depth insights into resource’s roles and behaviour within750

organisations. In addition, the first steps of our method form a basis for applying

other analyses than resource profile identification. For instance, for preparing

the input for mining resource assignment rules [58–61], and determining fre-

quently observed work routines and implicit task division patterns using the

archetypes.755

7. Conclusion

In this paper, we introduced a method to discover context-aware resource

profiles from event logs in the presence of multitasking, i.e. ResProMin–MT . In

addition, we demonstrated that our method is capable of taking into account

more complex activity dimensions, such as durations. Despite the challenges760

that arose from the data, we demonstrated the feasibility of ResProMin–MT

in a healthcare context. The output of our method was validated by domain

experts in nursing science. The insights obtained from ResProMin–MT provide

an extensive overview of the complex relationship between resources and care

activities, which can be used, e.g., to support healthcare managers in efficiently765

allocating their resources during periods of understaffing. Nevertheless, the field

of application is not limited to healthcare. Whenever processes are strongly

dependent on human resources and multitasking is relevant, ResProMin–MT
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can provide a comprehensive and transparent overview on the behaviour of

resources within organisations.770

We identify several directions for future work. Firstly, as Patient-Centered

Care (PCC) is becoming increasingly implemented by healthcare organisations

to improve health outcomes [85, 86], patient data, such as the patient’s health

condition or illness, might provide interesting additional insights into the or-

ganisation of nursing activities. Secondly, the overall workload in a particular775

department and additional attributes of the nurses’ work experience can be

used to augment the profiling of resources further. Thirdly, the enrichment of

an event log with context-related information and interpretation of the arche-

types could be facilitated through the development of toolings. These tools

could provide guidance on which contextual attributes might be interesting to780

include in the enriched log and transform the data accordingly. Additionally, the

interpretation of the archetypes could be facilitated by automatically generating

descriptions based on the fitted Finite Mixture Model. Finally, the method’s

computational efficiency could be improved using heuristics. For example, the

convergence of the EM algorithm could be accelerated using a quasi-Newton785

approach [87] while still obtaining near-optimal solutions.
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Appendix A. Additional Tables with Resource Probabilities from Step 31155

Table A.11 contains the posterior probabilities for each resource to belong

to a particular multitask session archetype and is used to find the context-aware

resource profiles. Table A.12 contains the same probabilities as Table A.11, but

ordered from largest to smallest, and is used to find the resource specialisation

profiles.1160

Resource Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9 Profile

118 92.60 < 0.01 < 0.01 7.40 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

133 96.57 < 0.01 < 0.01 2.31 < 0.01 1.12 < 0.01 < 0.01 < 0.01 1

156 96.95 < 0.01 < 0.01 3.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

177 63.15 < 0.01 < 0.01 30.23 < 0.01 6.63 < 0.01 < 0.01 < 0.01 1

121 < 0.01 < 0.01 < 0.01 49.93 < 0.01 50.07 < 0.01 < 0.01 < 0.01 2

159 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 42.83 < 0.01 < 0.01 57.17 2

164 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 54.70 < 0.01 < 0.01 45.30 2

77 < 0.01 < 0.01 < 0.01 68.29 < 0.01 17.29 14.42 < 0.01 < 0.01 2

78 23.35 < 0.01 < 0.01 64.15 < 0.01 12.50 < 0.01 < 0.01 < 0.01 2

87 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 100.00 < 0.01 < 0.01 < 0.01 2

88 < 0.01 < 0.01 < 0.01 59.77 < 0.01 40.23 < 0.01 < 0.01 < 0.01 2

93 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 69.97 < 0.01 < 0.01 30.03 2

96 < 0.01 < 0.01 < 0.01 16.08 < 0.01 34.13 < 0.01 < 0.01 49.79 2

131 < 0.01 < 0.01 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

147 < 0.01 < 0.01 98.80 < 0.01 < 0.01 1.20 < 0.01 < 0.01 < 0.01 3

170 < 0.01 < 0.01 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

49 < 0.01 < 0.01 77.81 < 0.01 < 0.01 22.19 < 0.01 < 0.01 < 0.01 3

104 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 5.11 < 0.01 < 0.01 94.88 4

110 < 0.01 < 0.01 < 0.01 9.57 < 0.01 < 0.01 < 0.01 < 0.01 90.43 4

135 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 4.99 < 0.01 < 0.01 95.01 4

180 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 18.22 < 0.01 < 0.01 81.78 4

182 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 13.15 < 0.01 < 0.01 86.85 4

183 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6.28 < 0.01 < 0.01 93.72 4

188 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 100.00 4

189 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 14.21 < 0.01 85.79 < 0.01 5

192 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2.32 < 0.01 97.68 < 0.01 5

200 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6.16 < 0.01 93.84 < 0.01 5

52 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 57.10 < 0.01 42.90 < 0.01 5

65 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 35.71 < 0.01 64.29 < 0.01 5

73 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3.27 < 0.01 96.73 < 0.01 5

80 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 12.30 < 0.01 87.70 < 0.01 5

81 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 27.51 < 0.01 72.49 < 0.01 5

82 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 53.01 < 0.01 46.99 < 0.01 5

92 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 37.42 < 0.01 62.58 < 0.01 5

101 < 0.01 59.40 < 0.01 40.60 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6

127 < 0.01 95.71 < 0.01 4.29 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6

128 < 0.01 50.15 < 0.01 43.66 < 0.01 6.19 < 0.01 < 0.01 < 0.01 6

144 < 0.01 92.10 < 0.01 7.90 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6

166 < 0.01 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6

187 < 0.01 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6

194 < 0.01 79.01 < 0.01 20.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6

199 < 0.01 81.13 < 0.01 18.87 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 6

Continued on next page

54



Resource Clust1 Clust2 Clust3 Clust4 Clust5 Clust6 Clust7 Clust8 Clust9 Profile

129 < 0.01 < 0.01 < 0.01 13.82 86.18 < 0.01 < 0.01 < 0.01 < 0.01 7

148 < 0.01 < 0.01 < 0.01 19.05 76.67 4.28 < 0.01 < 0.01 < 0.01 7

167 < 0.01 < 0.01 < 0.01 39.77 53.50 6.73 < 0.01 < 0.01 < 0.01 7

169 < 0.01 < 0.01 < 0.01 36.61 56.40 6.98 < 0.01 < 0.01 < 0.01 7

171 < 0.01 < 0.01 < 0.01 23.33 76.67 < 0.01 < 0.01 < 0.01 < 0.01 7

172 < 0.01 < 0.01 < 0.01 3.24 96.76 < 0.01 < 0.01 < 0.01 < 0.01 7

184 < 0.01 < 0.01 < 0.01 20.59 48.09 31.32 < 0.01 < 0.01 < 0.01 7

190 < 0.01 < 0.01 < 0.01 12.91 87.09 < 0.01 < 0.01 < 0.01 < 0.01 7

191 < 0.01 < 0.01 < 0.01 6.92 93.08 < 0.01 < 0.01 < 0.01 < 0.01 7

198 < 0.01 < 0.01 < 0.01 30.77 69.23 < 0.01 < 0.01 < 0.01 < 0.01 7

59 < 0.01 < 0.01 < 0.01 38.76 50.52 10.71 < 0.01 < 0.01 < 0.01 7

86 < 0.01 < 0.01 < 0.01 44.39 48.37 7.23 < 0.01 < 0.01 < 0.01 7

90 < 0.01 < 0.01 < 0.01 55.78 43.39 0.83 < 0.01 < 0.01 < 0.01 7

107 < 0.01 < 0.01 < 0.01 32.12 < 0.01 16.63 51.26 < 0.01 < 0.01 8

136 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 100.00 < 0.01 < 0.01 8

138 < 0.01 < 0.01 < 0.01 27.66 < 0.01 < 0.01 72.34 < 0.01 < 0.01 8

142 < 0.01 < 0.01 < 0.01 16.09 < 0.01 2.42 81.49 < 0.01 < 0.01 8

145 < 0.01 < 0.01 < 0.01 42.18 < 0.01 3.45 54.37 < 0.01 < 0.01 8

151 < 0.01 < 0.01 < 0.01 39.62 < 0.01 2.86 57.51 < 0.01 < 0.01 8

154 < 0.01 < 0.01 < 0.01 5.00 < 0.01 < 0.01 95.00 < 0.01 < 0.01 8

160 < 0.01 < 0.01 < 0.01 37.87 < 0.01 7.71 54.43 < 0.01 < 0.01 8

175 < 0.01 < 0.01 < 0.01 22.36 < 0.01 1.72 75.92 < 0.01 < 0.01 8

185 < 0.01 < 0.01 < 0.01 9.26 < 0.01 16.85 73.88 < 0.01 < 0.01 8

195 < 0.01 < 0.01 < 0.01 19.68 < 0.01 < 0.01 80.32 < 0.01 < 0.01 8

79 < 0.01 < 0.01 < 0.01 28.59 < 0.01 7.53 63.89 < 0.01 < 0.01 8

98 < 0.01 < 0.01 < 0.01 28.88 < 0.01 23.32 47.80 < 0.01 < 0.01 8

Table A.11: Probabilities for each resource to belong to a particular multitask session arche-

type (in %). The resource profile groups are the clustering results after applying AHC.
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Resource Prob1 Prob2 Prob3 Prob4 Prob5 Prob6 Prob7 Prob8 Prob9 Specialisation

131 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

170 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

166 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

188 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

136 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

187 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

87 100.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

147 98.80 1.20 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

192 97.68 2.32 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

156 96.95 3.05 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

172 96.76 3.24 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

73 96.73 3.27 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

133 96.57 2.31 1.12 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

127 95.71 4.29 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

135 95.01 4.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

154 95.00 5.00 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

104 94.88 5.11 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

200 93.84 6.16 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

183 93.72 6.28 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

191 93.08 6.92 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

118 92.60 7.40 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

144 92.10 7.90 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

110 90.43 9.57 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 1

80 87.70 12.30 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

190 87.09 12.91 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

182 86.85 13.15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

129 86.18 13.82 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

189 85.79 14.21 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

180 81.78 18.22 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

142 81.49 16.09 2.42 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

199 81.13 18.87 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

195 80.32 19.68 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

194 79.01 20.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

49 77.81 22.19 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

148 76.67 19.05 4.28 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

171 76.67 23.33 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

175 75.92 22.36 1.72 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

185 73.88 16.85 9.26 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

81 72.49 27.51 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

138 72.34 27.66 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

93 69.97 30.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

198 69.23 30.77 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

77 68.29 17.29 14.42 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

78 64.15 23.35 12.50 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

79 63.89 28.59 7.53 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

177 63.15 30.23 6.63 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 2

Continued on next page
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Resource Prob1 Prob2 Prob3 Prob4 Prob5 Prob6 Prob7 Prob8 Prob9 Specialisation

65 64.29 35.71 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

92 62.58 37.42 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

88 59.77 40.23 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

101 59.40 40.60 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

151 57.51 39.62 2.86 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

159 57.17 42.83 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

52 57.10 42.90 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

169 56.40 36.61 6.98 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

90 55.78 43.39 0.83 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

164 54.70 45.30 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

160 54.43 37.87 7.71 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

145 54.37 42.18 3.45 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

167 53.50 39.77 6.73 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

82 53.01 46.99 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

107 51.26 32.12 16.63 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

59 50.52 38.76 10.71 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

128 50.15 43.66 6.19 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

121 50.07 49.93 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

96 49.79 34.13 16.08 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

86 48.37 44.39 7.23 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

184 48.09 31.32 20.59 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

98 47.80 28.88 23.32 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 3

Table A.12: Ordered probabilities from largest to smallest for each resource to belong to a

particular multitask session archetype (in %). The resource specialisation profile groups are

the clustering results after applying AHC.
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