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Abstract 

The current PRISMA-adherent review, therefore, aimed to examine the effect of tDCS on the 

three core components of physical fitness: muscle strength, -endurance and cardiopulmonary 

endurance. Randomized controlled- or cross-over trials evaluating the effect of a single tDCS 

session (vs. sham) in healthy individuals were included. Hereby, a wide array of tDCS-related 

factors was taken into account.  

Thirty-five studies (540 participants) were included. In general, a large heterogeneity (age, 

activity level, experimental tDCS protocol, testing procedure, outcome measures) was found 

between studies which was reflected in the results of the individual studies. However, muscle 

endurance seemed most susceptible to improvements after tDCS. Also, stimulation of the 

primary motor cortex and the dorsolateral prefrontal cortex yielded positive results on muscle 

and cardiopulmonary endurance. Furthermore, anodal tDCS (AtDCS) yielded the greatest 

results and online tDCS seemed most beneficial. Finally, no relationship between tDCS and 

dose-related parameters was present.  

These findings can contribute to optimizing rehabilitation in patients with a variety of (chronic) 

diseases such as cardiovascular disease. Therefore, future studies should focus on further 

unravelling the potential of AtDCS on physical fitness and, more specifically, muscle endurance 

in both healthy subjects and patients suffering from (chronic) diseases.  

 

Keywords: tDCS, transcranial direct current stimulation, physical fitness, muscle endurance, 

muscle strength, cardiopulmonary endurance 
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1. Introduction 
Physical fitness, entailing muscle strength, muscle endurance, and cardiorespiratory 

endurance, amongst others, is of indisputable importance for both health, prognosis and 

sports performance (Chen et al., 2018;McLeod et al., 2016;Roshanravan et al., 

2016;Ruegsegger and Booth 2018;Tomas-Carus et al., 2016;Wang et al., 2020). In particular, 

in an ageing and sedentary society, and with the steady increase in the prevalence of chronic 

diseases or disabilities, the preservation or improvement of these factors has become top 

priority. Moreover, numerous researchers have increasingly recognized the potential of 

medically safe ergogenic aids (Machado et al., 2019;Stecker et al., 2019;Vicente-Salar et al., 

2020). 

Physical fitness is traditionally often believed to be related to the collective function of the 

skeletal muscle, cardiovascular and pulmonary system. However, various studies suggest that 

the brain might also be a key contributor and that the brain is targeted indirectly by exercise-

based rehabilitation or sports training programs (Iodice et al., 2019;Noakes 2012;Pires et al., 

2016;Stevinson and Biddle 1998;Taylor et al., 2016). Therefore, the question arises whether 

direct stimulation of the brain via noninvasive brain stimulation, and specifically via 

transcranial direct current stimulation (tDCS), is be a promising ergogenic tool. 

Through the application of a weak electric current (typically 1 – 2mA) to the scalp, tDCS can 

modulate the underlying cortex and function as a neuromodulatory ergogenic resource to 

change physical performance (Machado et al., 2019;Nitsche et al., 2008). Specifically, tDCS 

modulates the excitability of neuronal membranes in the vicinity of stimulation electrodes 

(10.1177/1559325816685467, 10.1113/jphysiol.2003.055772). Although various tDCS 

montages, that incorporate different amounts of electrodes, are present, two surface 

electrodes are generally used (an anode and a cathode) and two forms of tDCS are 

distinguished. In anodal tDCS (AtDCS), the anode is positioned over the region of interest and 

the cathode is used as a reference electrode. Although AtDCS generally leads to increased 

brain excitability, large interindividual variability has been observed. For instance, Wiethoff et 

al. (2014) found that approximately 50% of participants did not respond to anodal tDCS 

(10.1016/j.brs.2014.02.003), with other work reporting similar findings and even noting that 

factors such as stimulation duration can reverse the effects of AtDCS 

(10.1016/j.brs.2014.02.004, 10.1016/j.brs.2020.02.027). Likely, this variability stems from 

interindividual differences in factors such as anatomy (10.1111/ner.13342). In cathodal tDCS 
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(CtDCS), the reversed procedure is performed which typically results in decreased brain 

excitability, although here as well, large interindividual variations are present (Nitsche and 

Paulus 2000) (10.1016/j.brs.2014.02.003). 

In the past, multiple reviews investigated the effectiveness of tDCS on various components of 

physical fitness and found (task-dependent) improvements in muscle strength, time to 

exhaustion and reaction time (Angius et al., 2017;Machado et al., 2019;Shyamali Kaushalya et 

al., 2021;Wang et al., 2021). However, there is currently a lack of a comprehensive overview 

of the effects of tDCS on all three core components of physical fitness. Moreover, the field 

continues to evolve rapidly. As such, various studies have recently been published that have 

not yet been discussed in the aforementioned reviews (Alix-Fages et al., 2019;Byrne and Flood 

2019;Kamali et al., 2019;Lattari et al., 2018c;Oki et al., 2019;Vargas et al., 2018;Wrightson et 

al., 2020). In addition, the influence of tDCS dose-related parameters [i.e., duration, current 

and charge density] on physical fitness remains unclear (Caulfield et al., 2020;Kasten et al., 

2019). A more thorough understanding is of utmost scientific importance, as previous reviews 

in other scientific domains underscore the significance of these parameters (Caulfield et al., 

2020;Chhatbar et al., 2016;Lefebvre and Liew 2017;Marquez et al., 2015;Van Hoornweder et 

al., 2021). In the current systematic review, the three core components of physical fitness (i.e., 

muscle strength, muscle endurance and cardiopulmonary endurance) will be examined to 

provide a comprehensive overview of the effectiveness of tDCS as an ergogenic tool. These 

results could be relevant for healthy subjects and could potentially provide a starting point for 

interventions in subjects with chronic diseases.  

 

2. Methods 

2.1. Literature search 

This systematic review was conducted according to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) statement (Moher et al., 2009). Two 

electronic databases (PubMed and Web of Science) were searched (up to July 2022) to address 

the impact of tDCS versus sham on the three core components of physical fitness: muscle 

strength, muscle endurance and/or cardiopulmonary endurance (cf. Table 1). Two researchers 

(MA and JV) independently conducted the literature search. First,  duplicate studies were 

removed. Subsequently, articles were screened based on title and abstract. Finally, the full-



5 
 

text of studies was read to screen them for eligibility. Disagreements were resolved via a 

consensus-based discussion. 

 

2.2 Selection criteria 
The main aim of this review was to evaluate the impact of tDCS on exercise performance. 

Therefore, only (1) prospective randomized controlled trials (RCT) or cross-over trials were 

included which (2) evaluated the effect of a single tDCS session in comparison to sham 

stimulation on (3) an objective measure of muscle strength, muscle endurance and/or 

cardiopulmonary endurance in (4) healthy individuals.  

Only English-written articles were included. Studies were not excluded based on sex or age. 

Studies were not included when a) information was missing (i.e., tDCS stimulation intensity, 

electrode positioning), which was essential for a complete and correct overview in this 

systematic review, and b) when it could not be retrieved after contacting the corresponding 

author (or another co-author of that specific paper).   

 

2.3 Quality assessment 

Two researchers (MA and JV) independently evaluated the internal and external validity of the 

included RCTs via the PEDro scale (Blobaum 2006). In case of disparities, a third reviewer (NM) 

was consulted. This scale consists of 11 questions that have to be answered with ‘yes’ (score 

1) or ‘no’ (score 0). In accordance to its intended use, item 1 was withheld during calculation 

of the final score, resulting in a maximal score of 10. A score of 9-10 was considered to indicate 

excellent quality, 6-8 as good quality, 4-5 as moderate quality and 0-3 as poor quality.  

 

2.4 Data extraction  
Participant-, tDCS-, and physical fitness data were extracted from the included studies (cf. 

Figure 1). To minimize the risk of bias, data extraction was performed by two independent 

researchers (MA and JV) and validated by two different researchers (NM and SVH). In case of 

disparities, a fifth reviewer (DH) was consulted.  

To increase between-study comparability, tDCS intensity, duration and electrode size were 

used to calculate current density (mA/cm²) and electric charge density (coulomb (A*s)/cm²). 

Current density was categorized as low (0.029-0.043 mA/cm2), mild (0.044-0.057 mA/cm2), 
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moderate (0.058-0.083 mA/cm2) or high (0.084-0.429 mA/cm2). Charge density was 

categorized as low (0.017-0.045 C/cm2), moderate (0.046-0.096 C/cm2) or high (0.097-0.514 

C/cm2). tDCS duration was divided into three subgroups: ≤15 minutes, 20 minutes and ≥30 

minutes of tDCS.  

Moreover, to be able to make conclusions regarding the impact of tDCS on the whole 

spectrum of physical fitness, the available physical fitness outcomes were grouped into three 

different categories: muscle strength, muscle endurance and physical endurance. After the 

data extraction process, two reviewers (NM and SVH) assigned the physical outcome 

measures to any of the categories based on their (clinical) experience. However, in case of 

disparities, a third reviewer (DH) was consulted.   

Data which were not related to the tDCS procedure or to physical fitness (muscle strength, 

muscle endurance and physical endurance) were not included in the systematic review.  

 

3. Results 

3.1 Study selection 

The complete study selection procedure is displayed in Figure 2. In total, 449 publications 

were retained. Removal of duplicates resulted in 406 studies. Based on the abstract, 57 full-

text articles were found to be eligible. Twenty-two studies were excluded (e.g., because of not 

fulfilling the inclusion criteria or because of lack of detailed information regarding tDCS 

stimulation intensity or electrode positioning). Finally, 35 studies were included.   

3.2 Quality assessment 

The internal and external validity of the included studies, evaluated with the PEDro scale, is 

shown in Table 2 (Blobaum 2006). PEDro scores ranged between 4/10 to 9/10. Notably, 29% 

of the studies did not specify eligibility criteria. Furthermore, in 66% of studies, allocation was 

not concealed. Also, although possible with tDCS, only 9% of the studies blinded the therapists 

(who administered the therapy) and solely 45% of the studies blinded the assessors (who 

measured key outcomes). Finally, three studies (9%) were of excellent quality, 21 (60%) were 

of good quality, and 11 (31%) were of moderate quality.  

3.3 Data extraction 

3.3.1 Participant and study characteristics  
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Thirty-five studies were included in this systematic review, resulting in 540 participants (344 

♂ and 181 ♀ (Lattari et al. 2018 did not describe the sex-distribution (Lattari et al., 2018b)) 

with a mean age of 27.3 ± 3.8 years (Table 3). The impact of tDCS on muscle strength was 

examined in sixteen studies, resulting in 256 participants (mean age 28.1 ± 3.8 years, 166 ♂ 

and 90 ♀) (cf. Table 3 and 4). Similarly, the impact of tDCS on muscle endurance was also 

examined in sixteen studies, resulting in 265 participants (mean age 27.3 ± 4.0 years, 158 ♂ 

and 92 ♀). Finally, the impact of tDCS on cardiopulmonary endurance was examined in 

thirteen studies, resulting in 169 participants (mean age 24.3 ± 3.8 years, 151 ♂ and 18 ♀) (cf. 

Table 3 and 4).  

 

3. 4. General impact of tDCS 

Table 5 provides a general overview of the effects of tDCS on the different core components 

of physical fitness. Overall, it seems that AtDCS yields greater effects than CtDCS, and AtDCS 

seems to be particularly effective as an ergogenic aid to improve muscle endurance. Also, 

online tDCS seems to be superior over offline tDCS. In general, a clear dose-response 

relationship is absent, although all protocols that used a high current density yielded positive 

effects on muscle endurance.  

 

3. 5. Impact of tDCS on muscle strength 

Sixteen studies reported an increase in muscle strength in at least one key outcome measure 

(increase in 1 Repetition Maximum (RM) or Maximum Voluntary Isometric Contraction 

(MVIC)) in the tDCS vs. sham group (Alix-Fages et al., 2020;Barwood et al., 2016;Ciccone et al., 

2019;Esteves et al., 2019;Frazer et al., 2017;Giboin and Gruber 2018;Hazime et al., 

2017;Holgado et al., 2019;Kamali et al., 2019;Lampropoulou and Nowicky 2013;Montenegro 

et al., 2015;Oki et al., 2019;Vargas et al., 2018;Washabaugh et al., 2016;Workman et al., 

2020a;Workman et al., 2020c) examined the impact of tDCS on muscle strength. Five studies 

(31%) (Frazer et al., 2017;Hazime et al., 2017;Kamali et al., 2019;Vargas et al., 

2018;Washabaugh et al., 2016).   
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Two studies (13%) reported a decrease in muscle strength in at least one key outcome 

measure (decrease in torque or in MVIC amplitude) in the tDCS vs. sham group. (Giboin and 

Gruber 2018;Workman et al., 2020a). Nine studies (56%) reported no differences in any of the 

key muscle strength outcome measures between the tDCS and sham group (1 RM, (non-

fatigued) MVIC, (mean) torque, mean power output, torque integral or total work (per set))  

(Alix-Fages et al., 2020;Barwood et al., 2016;Ciccone et al., 2019;Esteves et al., 2019;Holgado 

et al., 2019;Lampropoulou and Nowicky 2013;Montenegro et al., 2015;Oki et al., 

2019;Workman et al., 2020c). The protocols and results of each study are shown in Table 4. A 

summary of the influence of tDCS on muscle strength according to tDCS type, -timing, -

duration, -current density, - charge density, targeted brain region and RPE is displayed in Table 

5. Overall, the impact of tDCS on muscle strength is inconclusive, and the most optimal tDCS 

modalities remain to be established. 

 

3.6. Impact of tDCS on muscle endurance 

The impact of tDCS on muscle endurance was examined by 16 studies (Abdelmoula et al., 

2016;Alix-Fages et al., 2020;Angius et al., 2016;Byrne and Flood 2019;Ciccone et al., 

2019;Kamali et al., 2019;Lattari et al., 2018b;Montenegro et al., 2015;Muthalib et al., 2013;Oki 

et al., 2016;Vieira et al., 2020;Williams et al., 2013;Workman et al., 2020b;Workman et al., 

2020c, d;Wrightson et al., 2020). A positive impact of tDCS on at least one key outcome 

measure of muscle endurance (increase in number of repetitions, time to exhaustion (TTE), 

short-term endurance index (SEI) or fatigability, fatigue index (FI) or a smaller decrease in 

movement velocity or TTE) was reported by 11 studies (69%) (Abdelmoula et al., 2016;Alix-

Fages et al., 2020;Angius et al., 2016;Kamali et al., 2019;Lattari et al., 2018b;Oki et al., 

2016;Vieira et al., 2020;Williams et al., 2013;Workman et al., 2020b;Workman et al., 2020c, 

d). However, five studies (31%) did not report any significant difference in at least one key 

muscle endurance parameter (fatigability, TTE, number of repetitions, FI) in the tDCS vs sham 

group (Byrne and Flood 2019;Ciccone et al., 2019;Montenegro et al., 2015;Muthalib et al., 

2013;Wrightson et al., 2020). The protocols and results of each study are shown in Table 4. A 

summary of the influence of tDCS on muscle strength according to tDCS type, -timing, -

duration, -current density, -charge density, targeted brain region and RPE is displayed in Table 

5.  To conclude, the impact of tDCS on muscle endurance seems to be promising, but the most 

optimal tDCS modalities remain to be established. 
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3.7. Impact of tDCS on cardiopulmonary endurance 

The impact of tDCS on cardiopulmonary endurance was examined by 13 studies (Angius et al., 

2015;Angius et al., 2018;Angius et al., 2016;Angius et al., 2019;Baldari et al., 2018;Barwood et 

al., 2016;Esteves et al., 2019;Holgado et al., 2019;Kamali et al., 2019;Lattari et al., 2018a;Park 

et al., 2019;Valenzuela et al., 2018;Vitor-Costa et al., 2015). Seven studies (54%) reported a 

positive impact of tDCS on at least one key outcome measure of whole-body endurance 

(decrease in HR, increase in TTE) (Angius et al., 2018;Angius et al., 2016;Angius et al., 

2019;Kamali et al., 2019;Lattari et al., 2018a;Park et al., 2019;Vitor-Costa et al., 2015). 

However, six studies (46%) reported no differences in cardiopulmonary endurance-related 

parameters (FI, heart rate (HR), respiratory exchange ratio (RER), TTE, expiratory volume (VE), 

maximal oxygen consumption (VO2peak), ventilatory threshold (VT) or peak velocity (Vpeak)) 

in the tDCS vs. sham group (Angius et al., 2015;Baldari et al., 2018;Barwood et al., 

2016;Esteves et al., 2019;Holgado et al., 2019;Valenzuela et al., 2018). The protocols and 

results of each study are shown in Table 4. A summary of the influence of tDCS on muscle 

strength according to tDCS type, -timing, -duration, -current density, - charge density, targeted 

brain region and RPE is displayed in Table 5. To summarize, the impact of tDCS on 

cardiopulmonary endurance is highly variable and the impact of specific tDCS modalities 

remains to be studied in more detail. 

 

4. Discussion 

The current systematic review aimed to evaluate the effect of tDCS on the three core 

components of physical fitness (muscle strength, muscle endurance and cardiopulmonary 

endurance), providing the most comprehensive overview of this topic, to this date. Data from 

35 sham-controlled studies (540 participants), with moderate to excellent methodological 

quality were pooled. Based on this systematic review, tDCS as an ergogenic tool in the context 

of physical fitness seems to be the most effective to improve muscle endurance in contrast to 

muscle strength and cardiopulmonary endurance. Moreover, AtDCS (in contrast to CtDCS) and 

online tDCS (in contrast to offline tDCS) seem to be the most effective. Surprisingly, there 

seemed to be no relationship between tDCS effectiveness and dose-related parameters (tDCS 
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duration and current/charge density). Regarding electrode positioning, stimulation of M1 and 

DLPFC yielded positive results in the context of muscle- and cardiopulmonary endurance. 

The most distinct effect of tDCS seemed to be on muscle endurance. Indeed, 11 studies (69%) 

reported a positive impact, while 5 studies (31%) indicated no significant effect. In contrast, 

tDCS did not seem to influence muscle strength. Only 5 studies (31%) reported a positive 

impact, while 9 studies (56%) did not find any significant effect and 2 studies (13%) reported 

a negative impact. The discrepancy between muscle strength vs. muscle endurance is 

somewhat unexpected, given the results of a previous review indicating that tDCS yielded 

positive results on muscle strength (Machado et al., 2019). A potential explanation for this 

peculiar finding might relate to the temporal characteristics of strength vs. endurance tasks. 

Muscle endurance tasks require prolonged periods of muscle activity (and neural activity), 

relative to muscle strength tasks. tDCS might be better-suited to influence the prolonged 

central (neural) mechanisms related to prolonged muscle performance (i.e., muscle 

endurance). 

Nevertheless, this hypothesis remains entirely speculative, as research concerning this topic 

is, to the best of our knowledge, non-existent. Therefore, future research should investigate 

the differences between muscle strength and endurance performance on a central, neural 

level and how this relates to tDCS. Concerning cardiopulmonary endurance, tDCS yielded 

variable results, as 7 studies (54%) reported a positive impact on at least one key outcome 

measure, and 6 studies (46%) reported non-significant results. The limited impact of tDCS on 

cardiopulmonary endurance may be potentially explained by the extensiveness of systems 

contributing to cardiopulmonary endurance (i.e., the muscular-, neural-, cardiovascular-, 

pulmonary- and metabolic system) (Hansen et al., 2019). Influencing only one system (i.e., the 

neural system) may yield small, difficult to perceive, effects when using the general 

performance as an outcome measure. Measuring brain activity after tDCS during 

cardiopulmonary task performance may prove to be a better-suited outcome measure. 

Reassuringly, tDCS did not seem to induce negative effects on the core components of physical 

fitness, as only three studies (9%) reported negative results.  

AtDCS yielded the most promising results in the context of muscle endurance. An explanation 

for this might be that AtDCS can counteract the reduced motor neuron excitability associated 

with physical (muscle endurance) performance (Machado et al., 2019;Taylor et al., 

2016;Taylor and Gandevia 2008). A second hypothesis that might explain the current findings 
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is that AtDCS can blunt the perception of muscle exertion (Oki et al., 2016). This latter 

hypothesis is substantiated by 3 included studies, who reported a decreased RPE during 

muscle endurance tasks (Alix-Fages et al., 2020;Kamali et al., 2019;Oki et al., 2016). One could 

state that the work of Williams et al. (2013) contradicts the latter hypothesis, as an increased 

RPE was noted. However, as AtDCS in this study also increased TTE, it seems plausible that 

RPE increased due to higher muscle exertion (as evidenced by increased TTE) (Williams et al., 

2013).  

Literature regarding the impact of tDCS on muscle endurance is scarce and conflicting 

(Cogiamanian et al., 2007;Kan et al., 2013). Potentially, these conflicting results can be 

partially explained through the (arbitrary) classification of the three core concepts of physical 

fitness. Numerous studies use outcome measurements that entail multiple components of 

physical fitness, as such, the choice of how to define muscle strength, muscle endurance and 

cardiopulmonary endurance can be arbitrary, and operationalization of these terms can form 

a source of conflict.  

Noteworthy, all of the included studies applied AtDCS. Eight studies (23%) used CtDCS in 

addition to AtDCS. This disbalance is most likely attributable to the hypothesis that AtDCS 

counteracts reduced motor neuron excitability associated with physical exercise performance 

(Machado et al., 2019;Taylor et al., 2016;Taylor and Gandevia 2008). In line with this 

hypothesis, CtDCS, which decreases neuronal excitability in most instances (Das et al., 2016), 

would yield negative results on physical exercise performance. The current results seem to 

corroborate this hypothesis, as all the CtDCS studies either yielded no significant results (Alix-

Fages et al., 2020;Angius et al., 2018;Baldari et al., 2018;Holgado et al., 2019;Lampropoulou 

and Nowicky 2013;Vitor-Costa et al., 2015) or negative results (Giboin and Gruber 2018;Lattari 

et al., 2018b) on the included (core) components of physical fitness.  

Online tDCS yielded the greatest results in the context of muscle endurance and strength. The 

effect of online tDCS on cardiopulmonary endurance remain uninvestigated, most likely due 

to methodological considerations (i.e., excessive body movements present during whole body 

exercise hinder online tDCS). Two studies directly compared online tDCS to offline tDCS 

(Giboin and Gruber 2018;Washabaugh et al., 2016). Giboin et al. (2018) concluded that both 

AtDCS and CtDCS yielded detrimental effects on muscle strength, with this detrimental effect 

being more pronounced during online tDCS. In contrast, Washabaugh et al. (2016) concluded 

that online tDCS yielded greater knee extension strength improvements. Moreover, they 
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found that this improvement was not present in the knee flexors, which were not trained 

during tDCS. In contrast to the field of motor learning (Ziemann and Siebner 2008), the 

rationale underlying the effectiveness of online tDCS remains unaddressed by the field.  

No clear demarcated effect of tDCS duration seemed to be present (Table 4). Concerning 

muscle strength and -endurance, a duration of ≤15 and 20 minutes of tDCS yielded similar 

results (Table 4). In the context of cardiopulmonary endurance, 100% of the studies applying 

tDCS for 30 minutes yielded positive results. Nevertheless, this group only consisted of one 

study and therefore, this finding warrants careful interpretation. Both for current- and charge 

density, over all three core components of physical fitness, no clear relationship between tDCS 

effectiveness and tDCS dose seemed to be present. This was not in line with our initial 

hypothesis, and contrasts previous meta-analyses focusing on different clinical populations 

(i.e., stroke survivors) and motor function (Chhatbar et al., 2016;Van Hoornweder et al., 2021). 

A possible explanation for this unexpected result might be that the current study population 

was too variable. In addition, a meta-regression analysis or the use of electric field modelling 

might be better-suited to investigate the relationship between tDCS dose and tDCS effect 

(Chhatbar et al., 2016;Wischnewski et al., 2021). 

Studies aiming to increase muscle strength mainly targeted M1, with 4 studies finding positive 

results, 4 studies finding non-significant results, and 2 studies reporting negative effects. Due 

to these variable results, it remains impossible to conclude whether tDCS over M1 yields 

positive results on muscle strength. Concerning both muscle- and cardiopulmonary 

endurance, stimulation over M1 (n=7 and n=4 respectively) or DLPFC (n=4 and n=2 

respectively) seemed to be most effective (respectively 70% & 75%, and 57% & 60% of the 

studies reported a positive effect on respectively muscle endurance and cardiopulmonary 

endurance). As aforementioned, stimulation over M1 is hypothesized to predominantly 

counteract reduced motor neuron excitability associated with physical exercise performance 

(Machado et al., 2019;Taylor et al., 2016;Taylor and Gandevia 2008). Concerning tDCS over 

DLPFC, two hypotheses can be identified. First, research has demonstrated that activity in the 

prefrontal cortex increases due to fatigue-induced activity decrease in M1 (Berchicci et al., 

2013;Menotti et al., 2014). As such, AtDCS might potentially support increased prefrontal 

cortex activity. Second, AtDCS over DLPFC has previously demonstrated the ability to alleviate 

pain affect (Boggio et al., 2008;Byrne and Flood 2019;Maeoka et al., 2012). As such, AtDCS 
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during physical task performance might be capable of diminishing sensations of muscle 

exertion (Oki et al., 2016). 

 

4.1. Limitations and future directions 

The interpretability of the current systematic review suffers from several limitations.  

First, between-study heterogeneity was large. Various age groups were included, ranging from 

younger (mean age of 20 years) to older (mean age of 85 years) adults. As research indicates 

that the excitatory effect of AtDCS diminishes as a result of ageing (Ghasemian-Shirvan et al., 

2020), this might form a source of between-study variability. Nevertheless, only two studies 

included participants of 65 years and older and even these two studies reported contrasting 

results (Oki et al., 2019;Oki et al., 2016). As such, it seems likely that other factors contribute 

to the large between-study variability. Indeed, participants also differed in regard to activity 

level. Moreover, experimental protocols (i.e., electrode placement, investigated muscle 

group, wash-out period, outcome measure, tDCS dose-related parameters) also varied across 

studies. Another, non-mutually exclusive, explanation for the substantial between-study 

heterogeneity might be related to tDCS itself. As tDCS induces significantly different electric 

fields in participants as a result of differences in head anatomy and tissue conductivity, and 

electric field strength is a key physical agent of tDCS, using tDCS at a fixed, non-personalized, 

stimulation intensity likely also strongly contributes to the observed variability across studies 

(10.1038/s41598-018-37226-x, 10.1016/j.neuroimage.2018.12.053, 

10.1016/j.brs.2022.07.049). A potential solution for this might be dose-controlled tDCS, 

although factors such as requiring the magnetic resonance imaging scans of the entire 

population currently limit feasibility of this approach (10.1016/j.brs.2019.10.004, 

10.1016/j.brs.2020.04.007). Notably, variable tDCS induced electric fields become even more 

important in the context of stimulating the cortical representation of the leg muscles, which 

lie deeper in the cortex than the upper limb muscle representations. In participants where 

tDCS only induces a weak electric field, the electric field strength that reaches the leg muscle 

representations might be too low to elicit neuromodulatory effects.   

 

Second, conducting a meta-analysis was unwarranted, as the included studies encompassed 

a wide array of outcome measures. While these outcome measures could, in theory, be 

bundled via standardized effect measures, the lack of knowledge concerning the degree of 

Commented [SVH1]: Deze citaties staan precies verkeerd 
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correlation or similarity in responsiveness  across outcome measures, poses an 

insurmountable barrier that would likely lead to biased meta-analyses (Puhan et al., 2006). 

Furthermore, even studies using similar outcome measures often used different testing 

procedures (e.g., body weight exercise vs. open-chain weightlifting vs. closed-chain 

weightlifting), which hindered the creation of a single, unbiased outcome measure. Therefore, 

to advance the field, it is of critical importance that future work uses more comparable task 

designs and outcome measures, basing itself on previous literature. By doing so, meta-

(regression) analyses will become possible, and our understanding of tDCS and its impact on 

physical performance will incrementally advance.  

Third, it was not possible to take the interaction between the different outcome variables into 

account. As a consequence, interaction-effects may have been missed.  

Fourth and finally, the sample size of the included studies was rather small, ranging from 6 up 

to maximally 36 participants. As tDCS demonstrates intra-individual variability, with 

responders and non-responders (López-Alonso et al., 2015), future studies should strive for 

greater sample sizes, counteracting the inherent variability of tDCS. It might also be 

worthwhile to differentiate between responders and non-responders through the application 

of transcranial magnetic stimulation (Nejadgholi et al., 2015).  

Given the variable results reported in this systematic review, it is clear that more research is 

required, especially in larger sample sizes. Moreover, given the potential of tDCS, specifically 

on muscle endurance, further insight into the different tDCS parameters (i.e.., type, timing, 

duration, current/charge densities and brain region) is essential to fully unravel the potential 

of tDCS as an ergogenic aid. In this regard, future work should better address the neural effects 

of tDCS during performance of physical fitness related activities. Also, it may be worthwhile to 

further explore the potential of high-density tDCS, given that evidence indicates that scalp-

applied currents should exceed 4–6 mA to achieve 1 mV/mm voltage gradient in postmortem 

brain tissue and that even higher currents may be needed in vivo (Vöröslakos et al., 2018). 

However, an important side note regarding this is that higher current intensities are 

associated with a higher risk of skin burns, phosphenes, and other side effects (Bikson et al., 

2009;Vöröslakos et al., 2018). Finally, given our inconclusive results of tDCS in healthy 

populations, it seems interesting to further explore the potentially greater benefits of tDCS in 

several disabled populations. Based on our results, it may be worthwhile to further examine 

the potential of tDCS in patients with an affected muscle endurance performance such as post-
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surgery patients (for example in case of extended immobilization), COPD (Gea et al., 2013) or 

heart failure patients (Philippou et al., 2020). As this population suffers from decreased 

physical fitness, there might be more room for tDCS-induced improvements.  

In this context, to gain a more thorough understanding of the potential of tDCS, it is of utmost 

importance to focus more on the theoretical principles of tDCS, (a) hereby comparing and 

analyzing different tDCS protocols, and (b) monitoring brain activity to better understand the 

neurophysiological principles of tDCS in the context of physical fitness. 

 

5. Conclusion 

Overall, tDCS in the context of physical fitness seems to be most suited to improve muscle 

endurance. However, given the current heterogeneous results, future studies should focus on 

further unraveling the ergogenic effect of anodal tDCS on physical fitness in general and, more 

specifically, on muscle endurance. In the same vein, future research should, when 

constructing their study design, be attentive to previous studies to improve between-study 

comparability.  
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Figure captions 

Fig. 1 Overview of data extraction. Regarding Time To Exhaustion (TTE) and Rating of Perceived Exertion (RPE), 

the nature of the experimental protocol was used to determine whether the outcome variable related to muscle 

strength, muscle endurance or cardiopulmonary endurance. FI = fatigue index; HR = heart rate; MVC = maximum 

voluntary contraction; RER = respiratory exchange ratio; RM =  repetition maximum; SEI = strength endurance 

index; tDCS = transcranial direct current stimulation; TI = torque integral; VE = expiratory volume; VO2 = peak 

oxygen consumption; VT = ventilatory threshold. 

 

Fig. 2 Flow diagram of the study selection procedure  
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Tables 

Table 1 Search terms with Boolean operators 

PICO Search terms Hits 

Participants Healthy individuals OR Humans OR Individuals  

Intervention tDCS OR transcranial direct current stimulation OR direct current stimulation  

Comparison Sham-tDCS OR placebo-tDCs  

Outcomes Exercise capacity OR Peak oxygen uptake OR Endurance OR Fatigue OR Rate of 

perceived exertion OR Perception of effort OR exercise tolerance OR Muscle strength 

 

Participants AND Intervention AND Comparison AND Outcomes Pubmed: 45 

WoS: 404 

Last search: 27/08/2021 

 

Table 2 Quality assessment of the included studies based on the PEDro scale (n=35)  

  PEDro items 

S

t

u

d

y 

 1 2 3 4 5 6 7 8 9 10 11 /10 

Abdelmoula et al. (2016)  ✖ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 4 

Alix-Fages et al. (2020)  ✖ ✔ ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ 7 

Angius et al. (2015)  ✖ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ 8 

Angius et al. (2016)  ✖ ✔ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 5 

Angius et al. (2018)  ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9 

Angius et al. (2019)  ✖ ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✔ ✔ 7 

Baldari et al. (2018) ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ ✔ ✔ 7 

Barwood et al. (2016) ✖ ✔ ✔ ✔ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 6 

Byrne and Flood (2019)  ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 5 
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Ciccone et al. (2019) ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 4 

Esteves et al. (2019)  ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 5 

Frazer et al. (2017)  ✖ ✔ ✖ ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✔ 6 

Giboin and Gruber (2018)  ✔ ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✖ ✔ ✔ 5 

Hazime et al. (2017)  ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ 7 

Holgado et al. (2019)  ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 5 

Kamali et al. (2019) ✔ ✔ ✔ ✖ ✔ ✖ ✔ ✖ ✖ ✔ ✔ 6 

Lampropoulou and Nowicky 

(2013)  
✖ ✔ ✖ ✔ ✔ ✖ ✔ ✖ ✔ ✔ ✔ 7 

Lattari et al. (2018a)  ✔ ✔ ✖ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ 6 

Lattari et al. (2018b)  ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ 8 

Montenegro et al. (2015)  ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✖ ✖ ✔ ✔ 6 

Muthalib et al. (2013) ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ 4 

Oki et al. (2016) ✔ ✔ ✖ ✖ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 7 

Oki et al. (2019)  ✔ ✔ ✖ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ 6 

Park et al. (2019) ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✔ 4 

Valenzuela et al. (2018) ✔ ✖ ✖ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ 5 

Vargas et al. (2018)  ✔ ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 9 

Vieira et al. (2020) ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ 7 

Vitor-Costa et al. (2015)  ✔ ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✔ ✔ 7 

Washabaugh et al. (2016) ✔ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ 4 
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Williams et al. (2013)  ✔ ✔ ✖ ✔ ✔ ✖ ✔ ✖ ✖ ✔ ✔ 6 

Workman et al. (2020a)  ✔ ✔ ✖ ✖ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 7 

Workman et al. (2020b)  ✔ ✔ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ 8 

Workman et al. (2020d)  ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✔ 6 

Workman et al. (2020c)  ✔ ✔ ✖ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ 7 

Wrightson et al. (2020) ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 9 

When a criterion was not explicitly addressed, it was scored as ‘No’. ✔ = fulfilled, ✖ = not fulfilled, 1 = Eligibility 

criteria specified, 2 = Randomization, 3 = Concealed allocation, 4 = Baseline characteristics, 5 = Blinding subjects, 

6 = Blinding therapists, 7 = Blinding researchers, 8 = >85% Follow-up, 9 = Intention-to-treat analysis, 10 = between 

group comparisons, 11 = Point measures and variability measures. 

 

Table 3 Baseline characteristics of the included studies  

Study N (♂) Characteristics Age (years) Height (cm) Weight (kg) 

Abdelmoula et al. (2016)  11 (8) Healthy subjects  25.0 ± 1.8 / / 

Alix-Fages et al. (2020)  14 (14) 
Recreationally active resistance 

trained subjects  
22.8 ± 3.0 180.0 ± 5.7 81.7 ± 6.7 

Angius et al. (2015)  
9 (9) Recreationally active subjects 23.0 ± 4.0 179.7 ± 8.2 75.4 ± 9.9 

7 (7) Recreationally active subjects 23.0 ± 4.0 179.7 ± 6.8 75.1 ± 9.9 

Angius et al. (2016) 9 (9) Recreationally active subjects 23.0 ± 2.0 179.0 ± 7.0 76.0 ± 9.0 

Angius et al. (2019)  12 (9) Recreationally active subjects 23.0 ± 3.0 179.0 ± 10.0 74.9 ± 16.5 

Angius et al. (2018)  12 (8) Recreationally active subjects 24.0 ± 5.0 175.0 ± 12.0 74.0 ± 17.0 

Baldari et al. (2018)  13 (13) Recreational endurance runners 27.0 ± 5.0 176.0 ± 7.0 70.0 ± 7.0 

Barwood et al. (2016)  6 (6) Regularly exercised subjects  21.0 ± 2.0 185.0 ± 6.0 80.3 ± 10.4 

Byrne and Flood (2019)  23 (11) Healthy pain-free subjects 26.0 ± 5.0 174.8 ± 9.0 76.4 ± 15.0 

Ciccone et al. (2019)  20 (10) Recreationally active subjects 21.0 ± 1.5 173.6 ± 11.8 71.2 ± 14.2 

Esteves et al. (2019)  11 (11) Recreational cyclists 26.8 ± 4.6 / 78.9 ± 7.1 
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Frazer et al. (2017)  13 (8) Right-handed subjects  18-35 / 
/ 

 

Giboin and Gruber (2018)  14 (14) Healthy subjects  26.0 ± 3.0 182.0 ± 6.0 80.0 ± 6.0 

Hazime et al. (2017)  8 (0) Handball players 19.7 ± 2.3 166.0 ± 50.0 64.9 ± 7.9 

Holgado et al. (2019)  36 (36) Trained cyclists and triathletes 27.0 ± 6.8 / 70.1 ± 9.5 

Kamali et al. (2019)  12 (12) Experienced bodybuilders 25.6 ± 6.0 / 60 – 120 

Lampropoulou and 

Nowicky (2013)  
12 (4) Active, right-handed subjects  32.0 ± 6.0 / / 

Lattari et al. (2018a)  11 (0) Physically active subjects 24.0 ± 2.2 175.0 ± 5.9 75.4 ± 6.1 

Lattari et al. (2018b)  15 (?) 
Subjects with advanced 

expertise in strength training 
24.5 ± 3.3 163.7 ± 6.7 62.6 ± 7.7 

Montenegro et al. (2015)  14 (14) Healthy, right-handed subjects 26.0 ± 4.0 177.1 ± 6.0 77.8 ± 17.9 

Muthalib et al. (2013)  15 (15) Healthy subjects 27.7 ± 8.4 176.4 ± 7.4 72.7 ± 8.7 

Oki et al. (2016) 13 (5) 

Subjects who did not perform 

resistance training in min. three 

months 

68.3 ± 2.0 165.0 ± 3.0 74.5 ± 3.0 

Oki et al. (2019)  11 (4) 
Right-handed community-

dwelling subjects  
85.8 ± 4.3 161.1 ± 15.1 66.4 ± 17.6 

Park et al. (2019)  12 (12) Trained subjects 27.4 ± 2.4 174.1 ± 3.6 71.5 ± 7.5 

Valenzuela et al. (2018)  8 (8) Elite triathletes 20.0 ± 2.0 / / 

Vargas et al. (2018)  20 (0) Soccer players 16.2 ± 0.9 167.0 ± 8.0 59.8 ± 9.0 

Vieira et al. (2020)  11 (11) 
Intermediately resistance-

trained subjects 
25.5 ± 4.4 180.4 ± 5.2 81.8 ± 7.6 

Vitor-Costa et al. (2015)  11 (11) Physically active subjects 26.0 ± 4.0 177.0 ± 3.0 77.0 ± 15.0 

Washabaugh et al. (2016)  22 (15) Right-leg dominant subjects 22.8 ± 5.7 / / 

Williams et al. (2013)  18 (9) Right-handed subjects 25.0 ± 6.0 / / 

Workman et al. (2020a)  27 (11) 
Right-dominant, recreationally 

active subjects 
24.8 ± 3.3 169.2 ± 10.5 72.1 ± 13.4 
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Workman et al. (2020b)  20 (10) 
Right-dominant, recreationally 

active subjects 
24.6 ± 3.8 171.1 ± 11.1 71.7 ± 14.0 

Workman et al. (2020c)   16 (7) 
Right-dominant, recreationally 

active subjects 
24.5 ± 3.8 170.0 ± 11.7 71.1 ± 14.4 

Workman et al. (2020d)  34 (12) 
Right-dominant, recreationally 

active subjects 
24.0 ± 3.6 169.2 ± 9.9 71.2 ± 13.3 

Wrightson et al. (2020)  20 (11) Active subjects  23.8 + 4.7 168.2 ± 6.8 64.8 ± 9.8 
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Table 4 Data extraction 

Study 

Physical 

fitness 

modality 

Length (min) 

& timing 

& type 

tDCS placement 

Current  (mA) 

- density 

(mA/cm²) 

Charge (C)  

- density 

(C/cm²) 

Protocol Findings (tDCS vs. sham) 

Abdelmoula et 

al. (2016)  
ME 10 Offline AtDCS 

A: HS R biceps brachii 

C: R shoulder 
1.5 - 0.043 0.9 - 0.026 

Isometric TTE at 35% MVC torque 

with R elbow flexor before and 

after AtDCS/Sham 

• Less ↓ in TTE during contraction after AtDCS 

vs. sham 

• RPE: NSD 

Alix-Fages et al. 

(2020)  

MS &  

ME 

15 Online AtDCS 

& CtDCS 

AtDCS) A: L DLPFC 

C: R OFC 

CtDCS) vice versa 

2 - 0.035 1.8 - 0.031 

Performance of 1RM bench press 

and sets of 5 reps at 75% 1RM 

with 1-minute inter-set rest until 

failure 

• AtDCS: ↑ reps, less ↓ in movement velocity 

across sets, ↓ RPE 

• CtDCS: NSD (RPE, reps) 

• 1 RM: NSD 

Angius et al. 

(2015) 
CPE 10 Offline AtDCS 

A: L M1 

C: R DLPFC 
2 - 0.167 1.2 - 0.1 

Cycling TTE at 70% Wmax at min. 

60 rpm 
• TTE & RPE: NSD 

Angius et al. 

(2016) 

ME &  

CPE 
10 Offline AtDCS 

Cephalic tDCS) A: L M1, C: R 

DLPFC 

Extracephalic tDCS) A: L M1, 

C: R shoulder 

2 - 0.167 1.2 - 0.1 
Isometric TTE of R knee extensors 

at 20% MVIC 

• Cephalic tDCS: NSD (TTE, RPE, HR) 

• Extracephalic tDCS: ↑ TTE, ↓RPE 

• HR: NSD 

Angius et al. 

(2018) 
CPE 

10 Offline AtDCS 

& CtDCS 

AtDCS) A1 & A2: L & R M1 

C1 & C2: L & R shoulder 

CtDCS) vice versa 

2 - 0.057 1.2 - 0.034 
Cycling TTE at 70% Wpeak at min. 

60 rpm 

• AtDCS: ↑ TTE, ↓ RPE 

• CtDCS: NSD 

• HR: NSD 
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Angius et al. 

(2019)  
CPE 30 Offline AtDCS A: L DLPFC, C: R SOA 2 - 0.057 3.6 - 0.103 

Cycling TTE at 70% Wpeak at min. 

60 rpm 

• ↓ RPE & HR 

• ↑ TTE 

Baldari et al. 

(2018) 
CPE 

20 Offline AtDCS 

& CtDCS 

AtDCS) A: L & R M1 (leg area) 

C: occipital protuberance 

CtDCS) vice versa 

2 - 0.056 2.4 - 0.067 
TTE during incremental treadmill 

ramp exercise, 1% gradient 
• TTE, Vpeak, HR & VO2peak: NSD 

Barwood et al. 

(2016)  

CPE & 

MS 
20 Offline AtDCS 

A: L TC 

C: R SOA 
1.5 - 0.429 1.8 - 0.514 20km cycling time trial • MPO, HR & RPE: NSD 

Byrne et al. 

(2019)  
ME 20 Offline AtDCS 

A: L DLPFC 

C: R SOA 
2 - 0.057 2.4 - 0.069 

Isometric TTE of D knee extensors 

at 25% MVIC 
• TTE: NSD 

Ciccone et al. 

(2019) 

ME & 

MS 
30 Online AtDCS 

AtDCS 1) A: L TC 

C: R SOA 

AtDCS 2) A: R TC 

C: L SOA 

2 - 0.08 3.6 - 0.144 
50 isokinetic reps of R knee 

extensors at 180°/sec 
• FI & mean TI: NSD 

Esteves et al. 

(2019) 

CPE & 

MS 
20 Offline AtDCS A: L TC, C: R SOA 2 - 0.057 2.4 - 0.069 

Four Wingate trials: 4 x 30s 

cycling trial at highest speed 
• MPO, FI & RPE: NSD 

Frazer et al. 

(2017) 
MS 20 Offline AtDCS 

A: HS L biceps brachi 

C: L SOA 
2 - 0.035 2.4 - 0.096 

1RM of L & R biceps brachii with 

dumbbell, training of R biceps 

brachii (4 sets of 6-8 reps) after 

tDCS/sham stimulation 

• ↑ 1RM in L biceps brachii 

Giboin and 

Gruber (2018) 
MS 

10 Online & 

Offline AtDCS & 

AtDCS) A: HS R vastus 

lateralis, C: contralateral orbit 
2 - 0.08 1.2 - 0.034 

35 x 5 sec. MVIC of knee 

extensors 

• Online AtDCS & CtDCS: ↓ MVIC amplitude 

throughout 35 reps 
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CtDCS CtDCS) vice versa • Offline AtDCS: ↓ MVIC amplitude throughout 

35 reps 

• Online & Offline: non-fatigued MVIC: NSD 

Hazime et al. 

(2017) 
MS 20 Online AtDCS 

A: M1 (ND side) 

C: SOA (D side) 
2 - 0.057 2.4 - 0.069 

MVIC of D shoulder endo- & 

exorotators 

• ↑ MVIC endorotators during AtDCS & 60 min. 

post AtDCS 

•  ↑ MVIC exorotators during AtDCS & 30- & 60-

min. post AtDCS 

• MVIC endorotators 30 min post AtDCS: NSD 

Holgado et al. 

(2019) 

CPE & 

MS 

20 Offline AtDCS 

& CtDCS 

AtDCS) A: L DLPFC 

C: R shoulder 

CtDCS) vice versa 

2 - 0.08 2.4 - 0.096 
Average W during 20 min self-

paced cycling time trial 
• MPO, HR & RPE: NSD 

Kamali et al. 

(2019) 

MS & 

ME & 

CPE 

13 Offline AtDCS 

A1: L & R M1 leg area 

C1: R shoulder 

A2: L TC 

C2: L shoulder 

C1: 2 - 0.057  

C2: 2 - 0.125 

C1: 1.56 - 

0.045 C2: 

1.56 - 0.096 

Isotonic 1RM during knee 

extension task, max. number of 

reps at 30% 1RM 

• AtDCS: ↑ 1RM & SEI 

• ↓ RPE & HR (during endurance task) 

Lampropoulou 

and Nowicky 

(2013) 

MS 
10 Offline AtDCS 

& CtDCS 

A/C: HS R elbow flexors 

C/A: L shoulder 
1.5 - 0.083 0.9 - 0.037 

MVIC of R elbow flexors, 15min 

blocks of 3 trials (3-5sec) of 30, 

50, 70 or 100% MVIC with 30sec 

rest periods (non-fatiguing bouts) 

• RPE: NSD at 5, 25 & 45min post tDCS 

• MVIC: NSD 

Lattari et al. 

(2018a)  
CPE 20 Offline AtDCS 

A: L DLPFC 

C: R SOA 
2 - 0.057 2.4 - 0.069 

Cycling TTE at 100% Wpeak at min. 

60 rpm 

• ↑ TTE 

• RPE: NSD 
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Lattari et al. 

(2018b) 
ME 

20 Offline AtDCS 

& CtDCS 

A/C: L DLPFC 

C/A: R OFC 
2 - 0.057 2.4 - 0.069 

Total amount of reps at 10RM 

load on leg press 

• AtDCS: ↑ reps 

• CtDCS: ↑ RPE 

Montenegro et 

al. (2015)  

MS & 

ME 
20 Offline AtDCS 

A: L M1 

C: R SOA 
2 - 0.057 2.4 - 0.069 

3 sets of 10 reps of isokinetic 

concentric force production of D 

knee flexors & extensors 

• FI, mean torque, total work per set: NSD 

Muthalib et al. 

(2013)  
ME 10 Offline AtDCS 

A: R M1 

C: R shoulder 
2 - 0.083 1.2 - 0.05 

Isometric TTE at 30% MVIC L 

elbow flexors 
• TTE, TI: NSD 

Oki et al. (2016) ME 20 Online AtDCS 
A: HS Biceps Brachii 

C: L SOA 
1.5 - 0.043 1.8 - 0.051 

Isometric TTE at 20% MVIC biceps 

brachii 

• ↑ TTE  

• ↓ RPE 

Oki et al. (2019)  MS 20 Offline AtDCS 
A: HS L biceps brachii 

C: L SOA 
1.5 - 0.043 1.8 - 0.051 MVIC of L elbow flexors • MVIC: NSD 

Park et al. 

(2019) 
CPE 20 Offline AtDCS 

A: vertex 

C: C5 & C6 
1.98 - 0.071 2.27 - 0.081 

Running TTE at speed equivalent 

to 80% of VO2max 

• ↑ TTE 

• RPE, HR, VE, RER, VT: NSD 

Valenzuela et al. 

(2018) 
CPE 20 Offline AtDCS A: L M1 C: R SOA 2 - 0.08 2.4 - 0.096 800m freestyle swimming test 

• ↑ vigor self-perception 

• Swimming time, FI: NSD 

Vargas et al. 

(2018) 
MS 20 Online AtDCS 

A= M1 (ND side) 

C= SOA (D side) 
2 - 0.057 2.4 - 0.069 

ND & D knee  

extensors 

5 MVIC of D & ND knee extensors 

(with 1 min rest) 

• ↑ MVIC (D side) during tDCS & 30- & 60-min 

post tDCS 

• MVIC ND side: NSD 

Vieira et al. ME 20 Offline AtDCS A: L DLPFC 2 - 0.057 2.4 - 0.069 Total amount of reps during 3 sets • ↑ total reps & ↑ reps in 1st block 
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(2020)  C: R OFC of back squats at 80% MVC load • Reps in 2th and 3th block: NSD 

Vitor-Costa et al. 

(2015)  
CPE 

13 Offline AtDCS 

& CtDCS 

AtDCS) A: L & R M1 (leg area) 

C: occipital protuberance 

CtDCS) vice versa 

2 - 0.056 1.56 - 0.043 
Cycling at 80% Wpeak at min. 60 

rpm 

• AtDCS: ↑ TTE 

• CtDCS: NSD 

• RPE, HR: NSD 

Washabaugh et 

al. (2016) 
MS 

12 Online & 

Offline AtDCS 

A: HS R knee extensor 

C: R SOA 
2 - 0.057 1.44 - 0.041 

MVIC of R & L knee flexors & 

extensors 

• Online AtDCS (during extension MVIC): ↑ MVIC 

of extensors 

• Offline AtDCS: NSD 

Williams et al. 

(2013)  
ME 20 Online AtDCS 

A: HS L Biceps Brachii 

C: L SOA 
1.5 - 0.043 1.8 - 0.051 

ND elbow flexors 

Isometric TTE of ND elbow flexors 

at 20% MVC, FI 

• ↑ TTE and ↑ RPE & FI when tDCS duration 

exceeded TTE 

• TTE extending tDCS: NSD 

Workman et al. 

(2020a) 
MS 20 Online AtDCS 

A: L M1 

C: R SOA 

2 - 0.057,  

4 - 0.114 

2.4 - 0.069, 

4.8 - 0.137 

Isokinetic fatigue task (40 reps, 

120◦/sec) of D knee flexors & 

extensors 

• 2mA tDCS: ↓ torque of D knee extensors 

• 4mA tDCS: NSD 

Workman et al. 

(2020b) 
ME 20 Online AtDCS 

A: L M1 

C: R SOA 

2 - 0.057,  

4 - 0.114 

2.4 - 0.069, 

4.8 - 0.137 

Isokinetic fatigue task (40 reps, 

120◦/sec) of D & ND knee flexors 

& extensors  

• 4mA: ↑ R knee extensor fatigability in ♀ vs. ♂ 

• R knee flexors: NSD (results L flexors & 

extensors were not analyzed) 

Workman et al. 

(2020c) 

ME & 

MS 
20 Online AtDCS 

A: L M1 

C: R SOA 

2 - 0.057,  

4 - 0.114 

2.4 - 0.069, 

4.8 - 0.137 

Isokinetic fatigue task (40 reps, 

120◦/sec) of D & ND knee flexors 

• 2mA & 4mA: ↑ FI-torque & FI-work in R knee 

extensors (↑ fatigability) 
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& extensors • L knee extensors & L & R Knee flexors: NSD 

• Wtotal: NSD 

Workman et al. 

(2020d) 
ME 20 Online AtDCS 

A: L M1 

C: R SOA 
4 - 0.114 4.8 - 0.137 

Isokinetic fatigue task (40 reps, 

120◦/sec) of D knee flexors & 

extensors 

• ↑ L knee flexor FI 

• R & L knee extensors, and R knee flexors: NSD 

Wrightson et al. 

(2020) 
ME 10 Offline AtDCS 

A: HS R vastus lateralis 

C: L deltoid region 

1 - 0.029,  

2 - 0.029 

0.6 - 0.017, 

1.2 - 0.034 

Isometric TTE of knee extensors 

at 20% MVIC 

• 1mAtDCS: TTE & RPE: NSD 

• 2mA tDCS: TTE & RPE: NSD 

Green, red and orange colors indicate a positive, negative, or  and non-significant change respectively. A = anode; aMVC = amplitude of maximal voluntary contraction; AtDCS 

= anodal transcranial direct current stimulation; C = cathode; C = coulombs; cm = centimetres; CPE = cardiopulmonary endurance; CtDCS = cathodal transcranial direct current 

stimulation; D = dominant side; DLPFC = dorsolateral prefrontal cortex; FI = fatigue index; HR = heart rate; HS = hotspot; L = left; M1 = primary motor cortex; mA = milli-

ampere; ME = muscle endurance; MPO = Mean power output; MS = muscle strength; MVC = maximal voluntary contraction; MVIC = maximal voluntary isometric contraction; 

ND = non-dominant side; NSD = not significant difference; OFC = orbitofrontal cortex; R = right; reps = repetitions; RER = respiratory exchange ratio; RM = repetition maximum; 

RPE = rating of perceived exertion; sec = seconds; SEI = short-term endurance index; SOA = supra-orbital area; TC = temporal cortex; tDCS = transcranial direct current 

stimulation;  TI = torque integral; TTE = time to exhaustion; TI = torque integral; VA = voluntary activation; VE = expiratory volume; VO2 = oxygen consumption; Vpeak = peak 

velocity; VT = Ventilatory threshold; Wpeak = maximal power output.
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Table 5 Overview of number of studies reporting a positive, negative or non-significant impact 

on muscle strength (n=16), muscle endurance (n=16) and cardiopulmonary endurance (n=13) 

according to different tDCS characteristics 

 Muscle strength Muscle endurance Cardiopulmonary endurance 

 + - NSD + - NSD + - NSD 

tDCS type           

AtDCS 5 (31%) 2 (13%) 9 (56%) 11 

(69%) 

0  5 (31%) 7 (54%) 0  6 (46%) 

CtDCS 0  1 (25%) 3 (75%) 0  0 1 

(100%) 

0  0  4 (100%) 

tDCS timing           

Online tDCS  3 (38%) 2 (25%) 3 (38%) 6 (86%) 0  1 (14%) 0  0  0  

Offline tDCS  4 (36%) 1 (9%) 6 (55%) 5 (56%) 0  4 (44%) 7 (54%) 0  6 (46%) 

tDCS duration           

≤15 minutes 2 (40%) 1 (20%) 2 (40%) 4 (67%) 0  2 (33%) 4 (80%) 0  1 (20%) 

20 minutes 3 (30%) 1 (10%) 6 (60%) 7 (78%) 0  2 (22%) 2 (29%) 0  5 (71%) 

30 minutes 0  0  1 (100%) 0  0  1 

(100%) 

1 

(100%) 

0  0  

Current density           

Low  1 (33%) 0  2 (67%) 4 (80%) 0  1 (20%) 0  0  0  

Mild  4 (50%) 1 (13%) 3 (38%) 5 (71%) 0  2 (29%) 5 (71%) 0  2 (29%) 

Moderate 0  1 (25%) 3 (75%) 0  0  2 

(100%) 

1 (33%) 0  2 (67%) 

High 1 (25%) 1 (25%) 2 (50%) 5 

(100%) 

0  0  2 (50%) 0  2 (50%) 

Charge density           

Low 2 (40%) 1 (20%) 2 (40%) 3 (75%) 0  1 (25%) 3 

(100%) 

0  0  

Moderate 4 (40%) 1 (10%) 5 (50%) 7 (70%) 0  3 (30%) 3 (43%) 0  4 (57%) 

High  0  1 (25%) 3 (75%) 4 (80%) 0  1 (20%) 2 (50%) 0  2 (50%) 

Brain region           

M1/HS 4 (40%) 2 (20%) 4 (40%) 7 (70%) 0  3 (30%) 3 (50%) 0  3 (50%) 

DLPFC 0  0  2 (100%) 3 (75%) 0  1 (25%) 2 (67%) 0  1 (33%) 

TC 1 (25%) 0  3 (75%) 1 (50%) 0  1 (50%) 1 (33%) 0  2 (67%) 

RPE 2 (33%) 0  4 (67%) 5 (63%) 1 (13%) 2 (25%) 2 (22%) 0  7 (78%) 

Some studies investigated both online and offline tDCS and/or both anodal tDCS (AtDCS) and cathodal tDCS 

(CtDCS) or used two different current/charge densities. Therefore, some studies are mentioned twice in this 

table, once per protocol. Color scale accentuates the size of the percentage, relative to percentages of the same 
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category (i.e., positive effect (+), negative effect (-) or non-significant difference (NSD)), with harsher colors being 

linked to higher percentages. DLPFC = dorsolateral prefrontal cortex; HS = hotspot; M1 = left motor cortex; NSD  

= non-significant difference; RPE = ratings of perceived exertion; TC = temporal cortex; tDCS = transcranial direct 

current stimulation.  

 


