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Obtaining accurate depth information is key to robot grasping tasks. However,

for transparent objects, RGB-D cameras have di�culty perceiving them owing

to the objects’ refraction and reflection properties. This property makes it

di�cult for humanoid robots to perceive and grasp everyday transparent

objects. To remedy this, existing studies usually remove transparent object

areas using a model that learns patterns from the remaining opaque areas

so that depth estimations can be completed. Notably, this frequently leads

to deviations from the ground truth. In this study, we propose a new

depth completion method [i.e., ClueDepth Grasp (CDGrasp)] that works

more e�ectively with transparent objects in RGB-D images. Specifically,

we propose a ClueDepth module, which leverages the geometry method

to filter-out refractive and reflective points while preserving the correct

depths, consequently providing crucial positional clues for object location.

To acquire su�cient features to complete the depth map, we design a

DenseFormer network that integrates DenseNet to extract local features

and swin-transformer blocks to obtain the required global information.

Furthermore, to fully utilize the information obtained from multi-modal visual

maps, we devise a Multi-Modal U-Net Module to capture multiscale features.

Extensive experiments conducted on the ClearGrasp dataset show that our

method achieves state-of-the-art performance in terms of accuracy and

generalization of depth completion for transparent objects, and the successful

employment of a humanoid robot grasping capability verifies the e�cacy of

our proposed method.

KEYWORDS

depth completion, transparent objects, grasping, deep learning, robot

Introduction

Depth completion for transparent objects is a challenging problem in the field of

computer vision because such objects have unique visual properties (e.g., reflection

and refraction) that make them difficult to perceive by RGB-D cameras. To tackle this

problem, classical methods (Klank et al., 2011; Alt et al., 2013) utilize RGB images from
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multiple views to infer position depth, however, these methods

require long inference times and too many computational

resources. To speed up the process, prior studies manually

modified parameters (Ferstl et al., 2013; Ji et al., 2017; Guo-Hua

et al., 2019) or exploited interpolation algorithms (Harrison and

Newman, 2010; Silberman et al., 2012) to fill the holes in raw-

depth images. However, it is difficult to restore objects’ complex

shape using these processes. Recently, with the development

of deep learning, depth completion has received considerable

attention from researchers in related fields.

The challenges of transparent object depth completion

can be divided into two types, involves drifting point clouds

caused by refraction, and the other involves missing point

clouds caused by reflection. Hence, depth completion tasks also

require correcting drifting points and adding missing points.

Zhu et al. (2021) proposed a Local Implicit Depth Function

for this purposed built using ray-voxel pairs that completed the

missing depth using camera rays and their intersecting voxels.

However, their method does not perform well for novel objects.

To improve generalizability, Fang et al. (2022) devised Depth

Filler Net that adapted dense blocks and a U-Net architecture

to complete the missing depth. However, these methods suffer

from missing local details and unclear outlines in the predicted

depth images.

To acquire more 3D space features to complete the

transparent area, Sajjan et al. (2020) extracted occlusion

boundaries and surface normals from RGB images. Although

these additional visual feature maps solved the problems of

insufficient local details and blurred outlines, the global linear

optimization function still requires too much computation. To

this end, Tang et al. (2021) and Huang et al. (2019) proposed

an encoder-decoder structure with an attention mechanism to

improve training efficiency. Although these methods integrate

different visual maps for completion, two problems persist.

On the one hand, existing methods do not well-handle the

reflection and refraction areas. Although they rely on deep

learning methods to directly complete the depths or remove

all transparent objects areas and reconstruct objects, deviations

in the predicted depths commonly result. Notably, current

state-of-the-art methods use a unified convolution algorithm to

process different visual features, but they cannot obtain refined

feature information.

In this paper, we propose the ClueDepth Grasp

(CDGrasp)—deep learning approach for the depth completion

of transparent objects. Compared with existing depth

completion methods, ours analyzes the point clouds in

the areas of transparent objects to remove drifted points

while retaining correct points as clues for subsequent depth

completion. Specifically, we first propose the ClueDepth

module which uses the geometry method to remove drifted

points that refract into the background, and we calculate the

surface points of the missing features based on the object’s

contours. Then we filter the reflected points according to the

reflection angle between the surface normal and the camera. The

ClueDepth module thus directly provides the geometric details

and position information for completion. We also design a

DenseFormer network that integrates DenseNet (Iandola et al.,

2014) and swin-transformer (Liu et al., 2021) blocks that expand

the receptive fields and capture local fine-grained features

and global information from RGB images. Because different

modal visual maps contain distinct information, we propose a

multi-modal U-Net module to distinguish the different visual

features. The independent modal of module guarantees to

obtain the acquisition of multiscale features without mutual

interference from others, and the skip connection ensures that

the multiscale features are fully leveraged in the decoder process,

thus facilitating the generation of fine-grained depth maps.

In summary, our main contributions are as follows:

• We design an end-to-end CDGrasp deep-learning module

that leverages the geometry method to filter-out the

refractive and reflective points while preserving the correct

points as positional clues for depth completion.

• We propose a DenseFormer network that combines

DenseNet and swin-transformer blocks to extract local

features and global information.

• We devise a multi-modal U-Net module that captures

multiscale features from different visual maps and fuses

them through skip connection to generate a fine-grained

depth map.

Extensive experiments on the ClearGrasp dataset

demonstrate that the proposed method outperforms state-of-

the-art methods in terms of accuracy and generalization of depth

completion for transparent objects. The successful grasping of

transparent objects by a humanoid robot verifies the efficacy of

our method, which will improve the robot’s ability to perceive

transparent objects in an actual production environment.

The remainder of this paper is organized as follows.

Related works are reviewed in section Related work. The

proposed method is described in detail in section Methodology.

The experiments are described in Section Experiments.

Finally, conclusions are presented in Section Conclusion and

future work.

Related work

Depth completion

Depth completion aims to fill-in missing depth information

by leveraging an existing depth map. Traditional works

(Harrison and Newman, 2010; Silberman et al., 2012) primarily

employ interpolation algorithms to do this, but they only

consider the regular patterns of objects and have difficulty

completing complex structures. Recently, deep-learning
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FIGURE 1

Overview of ClueDepth Grasp.

methods have demonstrated enormous potential for depth

completion. For example, Xian et al. (2020) introduced an

adaptive convolution method with three cascaded modules to

address low-resolution and missing regions from indoor scenes.

Hu et al. (2021) proposed a dual-branch convolutional neural

network (CNN) that fuses a color image and sparse depth map

to generate dense outdoor depths. Zhang and Funkhouser

(2018) extracted surface normals and occlusion boundaries

from RGB images as additional feature maps and utilized sparse

Cholesky factorization to optimize the objective function to

complete shiny, bright, and distant objects. Tang et al. (2021)

devised a spectral residual block to deal with feature maps

and took the lead in introducing a self-attentive adversarial

network for depth completion, which achieved state-of-the-art

performance with transparent objects. Although these methods

exploit cross-modal visual maps as additional information, they

simply concatenate the visual maps to extract features, leading

to significant loss.

Detecting transparent objects

Classical methods for detecting transparent objects mainly

involve physical detection techniques (McHenry and Ponce,

2006; Maeno et al., 2013) that require specific equipment

(Mathai et al., 2019) and lighting conditions (Fritz et al.,

2009; Chu et al., 2018), resulting in difficult deployments in

various environments. In contrast to classical methods, deep-

learning methods can learn from large volumes of data to

recognize transparent objects in different scenes. Zhang et al.

(2021) designed a dual-head transformer for a transparency

segmentation model that achieved joint learning from different

datasets, successfully deploying it as a wearable system. Xu et al.

(2021) proposed a real-time transparent object segmentation

model that optimizes the atrous spatial pyramid pooling module

by densely connecting atrous convolution blocks. Sajjan et al.

(2020) estimated the 3D geometry of transparent objects by

extracting multiple visual maps from a single RGB-D image

and by driving a one-arm robot to pick up objects. However,

they used transparent object masks to remove all transparent

areas, which ignored the correct point cloud within those areas,

resulting in the inaccuracy of predicted depths.

Feature extraction

In the context of depth completion, prior works (Cheng

et al., 2020; Park et al., 2020) used CNNs to extract coarse

depth features and refined the structural details with spatial

propagation networks. To overcome the limitations of the static

CNN kernel, the authors in Huang et al. (2019), Tang et al.

(2020), and Zhao et al. (2021) adopted content-adaptive CNNs

for depth completion, which enhances network flexibility and

accelerates computation. Recently, transformers have achieved

outstanding performance on various computer vision tasks,

such as object detection (Carion et al., 2020; Liu et al., 2021)

and semantic segmentation (Strudel et al., 2021; Zheng et al.,

2021). Ranftl et al. (2021) leveraged dense vision transformers

to encode images from various vision transformer stages into

tokens and reassembled them into image-like representations

at various resolutions, thereby obtaining a global receptive field

at each stage. Because the adoption of the transformer easily

ignores local details, Yang et al. (2021) proposed TransDepth,

which combines attention mechanisms and transformers to

capture local details and long-range dependencies.
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FIGURE 2

The overview of ClueDepth module.

FIGURE 3

Structure of DenseFormer.

Methodology

The proposed CDGrasp method is shown in Figure 1. Given

an RGB-D image of transparent objects, we first extract the

surface normals and occlusion boundaries from the RGB images,

and our proposed ClueDepthmodule preserves the correct point

clouds from the raw depths. In particular, for RGB images, we

devised DenseFormer to extract both local and global features.

These multi-modal visual maps are then input into our multi-

modal U-Net module to extract multiscale features. Finally, the

decoder with a skip connection fuses multiscale features and

outputs the predicted depths.

Data preprocessing

Surface normals and occlusion boundaries were verified

by Sajjan et al. (2020) and Tang et al. (2021) as useful visual

features for providing geometric object information. Surface

normals can be used to reveal variations in lighting conditions,

and occlusion boundaries can better distinguish object edges,

thereby promoting the prediction of depth discontinuity

boundaries. Therefore, we follow the same experimental setting

as the work of Sajjan et al. (2020), which adopted Deeplabv3+

(Xu et al., 2021) with a DRN-D-54 backbone (Yu et al., 2017)

to extract surface normals and occlusion boundaries from

RGB images.

ClueDepth module

To preserve the correct point cloud from raw depths

ClueDepth module is employed, the overview of which is

shown in Figure 2, where we first recognize the transparent

objects and filter-out the background points. Subsequently, we

retain the contours of objects to preserve their surface points.

Finally, we preserve the correct points within a certain range
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FIGURE 4

Examples of transparent objects in ClearGrasp dataset. (A) Known and novel objects in Synthetic dataset. (B) Known and novel objects in the

real-world dataset.

TABLE 1 Comparison of depth completion performance.

Error metrics Accuracy metrics

Model RMSE↓ REL↓ MAE↓ δ1.05↑ δ1.10↑ δ1.25↑

JBF (Fritz et al., 2009) 0.389 0.53 0.358 27.61 37.28 51.32

AD (Ferstl et al., 2013) 0.315 0.489 0.297 41.26 61.29 71.24

DM (Yu et al., 2017) 0.049 0.075 0.038 59.67 75.85 95.96

CG (He et al., 2016) 0.038 0.048 0.027 72.94 87.88 97.17

DG (Hu et al., 2021) 0.031 0.039 0.021 74.69 89.73 97.35

Ours 0.022 0.026 0.019 80.16 94.82 98.64

of reflection angles. The details of the ClueDepth module are

further presented in the following sub-subsections.

Extracting transparent objects

To locate the transparent objects, we first adopt a mask

region-based (R)-CNN to recognize them from RGB images

and map their correspondences to the depth maps. To

obtain the depth values of transparent objects, we sample

a number of points around the transparent objects and

fit them into the planar equation, z = C0x + C1y +

C2, where z represents the plane of the background, and

C0, C1, and C2 represent the parameters of the plane

expression. According to the equation, we calculate the distance,

hm, from point M in the transparent object mask to the

background plane:
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FIGURE 5

Qualitative comparison of the approaches.

hm =

(

C0xm + C1ym + C2−zm
)

√

(

C20 + C21 + (−1)2
)

,
(

xm, ym, zm
)

∈ M (1)

where hm = 0 represents the points that are refracted into

the background; thus, we filter these refracted points and keep

points above the background, thus satisfying hm > 0.

Contour retention

In addition to the points refracted into the background, we

also must filter those refracted between the object surface and

the background. Thus, we calculate the distance from points T

to lens point O:

dt =

√

(

x2t + y2t + z2t
)

−
(

h0−ht
)2
,
(

xt , yt , zt
)

∈ T (2)

Because the light beams projected onto the surfaces of

objects are distributed in an arc shape, we retain points S, whose

distances fit the arc plane, and filter-out the refractive points

between the surface of the object and the background.

Preserving the correct depth

Different camera angles have different reflection results,

which have different effects on the preserved points. Taking

the camera lens as the origin of the space coordinate axis, we

define the incident ray, lp, which represents the vector from the

object point cloud, P, to the lens point cloud, O, and denotes the

object surface normal vector as np. The surface normal vector

is calculated using the depth variation of the point cloud with

respect to its neighbors. The reflection angle, αp, between the

incident ray, lp, and the surface normal vector, np, is defined

as follows:

αp = arccos
lp·np

∣

∣lp
∣

∣ ·
∣

∣np
∣

∣

(3)

Typically, αp is zero when light beams are projected

perpendicular to the glass plane. As the reflection angle

increases, two situations arise. First, the camera may become

overexposed or underexposed when it does not receive the

reflected light from the surface of the object, leading to

missing depths. Second, the camera may receive light refracted

to the background, resulting in an inaccurate depth value.

Furthermore, at the thick edges of objects, light beams are

projected to locations between the object’s surface and the

background, leading to inaccurate depth values. Accordingly,

when the reflection angle, αp, is less than a certain angle, K, the

camera can capture the correct point clouds from the depthmap.

Thus, we must verify a set of K angles to determine the best

reflection conditions. Finally, we preserve the points that filter

out refractions and reflections as clues for depth completion.

DenseFormer

As a primary visual map, RGB images also contain

intuitive non-visual information, such as the overall structure

and local patterns of objects, which provide global and

local features for transparent object completion. To this

end, we propose the DenseFormer network to extract fine-

grained features from RGB images. The network integrates
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TABLE 2 E�ectiveness of DenseFormer of CDGrasp.

Error metrics Accuracy metrics

Model RMSE↓ REL↓ MAE↓ δ1.05↑ δ1.10↑ δ1.25↑

ResNet18 0.028 0.040 0.022 76.25 92.19 98.74

DenseNet 0.027 0.037 0.021 78.12 94.41 98.93

DenseFormer 0.022 0.026 0.019 80.16 94.82 98.65

TABLE 3 E�ectiveness of multi-head encoder of CDGrasp.

Error metrics Accuracy metrics

Model RMSE↓ REL↓ MAE↓ δ1.05↑ δ1.10↑ δ1.25↑

Concat 0.024 0.038 0.021 77.43 94.94 98.63

Multi-modal 0.022 0.026 0.019 80.16 94.82 98.64

DenseNet to extract local patterns underlying the image and

the swin-transformer to enlarge the receptive field and acquire

sufficient global information. Figure 3 illustrates the structure of

the DenseFormer.

Given a three-channel RGB image, I, we first use DenseNet-

121 pretrained on ImageNet (Krizhevsky et al., 2017) to extract

features x,

x = DN (I) , x ∈ R
H×W×3 (4)

where DN denotes DenseNet-121, and H and W are the

height and width of the images, respectively. The network

consists of five blocks, each consisting of two adaptive

convolutional layers and a leaky rectified linear unit layer.

Based on the dense connections between layers, we can obtain

fine-grained local features. However, limited by the receptive

field of CNNs, DenseNet-121 cannot acquire sufficient global

information to complete the depth map, especially for the

overall structure of transparent objects. The transformer was

verified to be effective in textual translation because of its

attention mechanism, which captures large receptive fields. This

motivated us to combine the transformer and DenseNet-121.

Specifically, tokenization is implemented by compressing

the feature map, x, into a series of flat 2D patches
{

xit ∈ R
T×T×C|i = 1, 2, . . . ,N

}

, where T × T represents

the size of the patch, and N = H×W
T2 is the number of image

patches. Subsequently, the 2D patches, xt , are mapped to

the underlying D-dimensional embedding space via linear

projection. To further encode the patch spatial information, we

add specific positional embedding to preserve the positional

information. The encoded image representation, r, is thus

expressed as follows:

r = [x1t E; x
2
t E; . . . ; x

N
t E]+ Epos (5)

where E ∈ R
(T×T×C)×D is the patch embedding projection,

and Epos ∈ R
N×D denotes the position embedding. Thus, the

swin-transformer blocks can be formulated as

r
′

ℓ = MSA
(

LN
(

rℓ−1
))

+ rℓ−1 (6)

rℓ = MLP
(

LN
(

r
′

ℓ

))

+ r
′

ℓ (7)

where MSA denotes the multi-head self-attention of windows,

MLP denotes the Multi-Layer Perceptron, LN (•) denotes the

layer normalization operator, and rℓ represents the encoded

image representation. Finally, the feature of the last transformer

layer, rL, is reshaped to x
′

∈ R
H×W×C for subsequent

CNN decoding.

Multi-modal U-net module

Effectively leveraging additional visual feature maps can

suitably complement the necessary details for depth completion

(e.g., transparent object geometry and lighting conditions).

However, existing approaches only concatenate visual maps

and adopt unified convolutions for encoding (Huang et al.,

2019; Tang et al., 2021; Fang et al., 2022), which cannot

make full use of visual information. Moreover, the missing

regions and proportions of transparent objects critically

affect the performance of convergence algorithms (e.g., batch

normalization), which require mean and variance operators

(Zhu et al., 2021).

To this end, we propose a multi-modal U-Net module

to capture multiscale features from different modal visual

maps. This module has four inputs (i.e., RGB image,

ClueDepth map, surface normals, and occlusion boundaries),

in which each input is encoded separately. For example,
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TABLE 4 CDGrasp generalizes to both real-world images and novel transparent objects on depth completion.

Methods Error metrics Accuracy metrics

Model RMSE↓ REL↓ MAE↓ δ1.05↑ δ1.10↑ δ1.25↑

ClearGrasp synthetic-known

CG (He et al., 2016) 0.044 0.047 0.033 71.23 92.6 98.24

RVP (Guo-Hua et al., 2019) 0.034 0.045 0.026 73.53 92.68 98.25

DG (Hu et al., 2021) 0.037 0.037 0.030 75.19 92.97 98.79

Ours 0.021 0.028 0.018 84.93 96.11 99.03

ClearGrasp synthetic-novel

CG (He et al., 2016) 0.04 0.071 0.035 42.95 80.04 98.10

RVP (Guo-Hua et al., 2019) 0.037 0.062 0.032 50.27 84.00 98.39

DG (Hu et al., 2021) 0.039 0.059 0.034 51.86 82.14 98.23

Ours 0.035 0.065 0.032 56.73 87.66 98.32

ClearGrasp real-known

CG (He et al., 2016) 0.039 0.053 0.029 70.23 86.98 97.25

RVP (Guo-Hua et al., 2019) 0.032 0.042 0.024 74.63 90.69 98.33

DG (Hu et al., 2021) 0.031 0.039 0.021 74.69 89.73 97.35

Ours 0.022 0.026 0.019 80.16 94.82 98.64

ClearGrasp real-novel

CG (Sajjan et al., 2020) 0.028 0.04 0.022 79.18 92.46 98.19

RVP (Zhu et al., 2021) 0.027 0.039 0.022 79.50 93.00 99.28

DG (Tang et al., 2021) 0.022 0.033 0.017 82.37 93.46 98.48

Ours 0.021 0.030 0.018 83.67 95.06 99.12

FIGURE 6

Evaluation of the reflection angle K.

for the RGB image, we deploy the DenseFormer network

to extract features, and for the rest of the visual maps, we

construct five downsampling blocks to extract them, where each

downsampling block consists of two convolutional layers and

one average pooling layer.

For the decoder, we concatenate the encoded features

and adopted a skip connection to complement the low-

level features for network fusion. Specifically, we denote

the encoded features of RGB images as φL
R, the ClueDepth

map as φL
C , the surface normal as φL

N , the occlusion

boundary as φL
B, and the fused features as φL, where

L denotes the layer. The decoder process is formulated

as follows:

ϕL =







g
(

f
(

φL−1
R ,φL−1

C ,φL−1
N ,φL−1

B

))

, L = 1

g
(

f
(

φL−1
R ,φL−1

C ,φL−1
N ,φL−1

B ,φL−2
))

, L > 1
(8)

where f denotes feature concatenation,

and g represents upsampling. Finally, the

network outputs a complete depth map of

transparent objects.

Experiments

In this section, we introduce the details of the dataset and

experimental settings and evaluate the performance of CDGrasp

in both synthetic and real-world environments. Finally, we verify

our system using a real robot grasping task.
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Dataset

The ClearGrasp dataset is a publicly available transparent

object dataset that contains more than 50k transparent object

images, including 9 classes of synthetic objects and 10 classes

of real-world objects. As shown in Figure 4, the objects are

further classified into known and novel types. The data divisions

follow the settings in Sajjan et al. (2020), from which five known

synthetic objects are used for training, and five overlapping real-

world objects are used for testing. To verify the generalizability,

four novel synthetic objects and five novel real-world objects

were also used for testing.

Evaluation metrics

Following Huang et al. (2019), Sajjan et al. (2020), and

Tang et al. (2021), a number of metrics are adopted to evaluate

the performance of depth completion, including the root mean

square error (RMSE), mean absolute error (MAE), absolute

relative difference (REL), and threshold accuracy. Threshold

accuracy is denoted as δt , and threshold t is set to 1.05, 1.10,

and 1.25. Among them, δ1.05 has the strictest requirements

on completion accuracy, which can better reflect the overall

accuracy of completion.

Baseline approaches

We compare our method to other baseline approaches,

which consist of the following traditional algorithms and deep-

learning methods:

• Joint bilateral filter (JBF). A principled approach

(Silberman et al., 2012) is applied to infer physical

relationships and repair holes using an interpolation

algorithm based on the JBF.

• Anisotropic diffusion (AD). A second-order smoothness

term (Harrison and Newman, 2010) is used to extrapolate

both planar and curved surfaces.

• Decoder modulation (DM). An additional decoder branch

(Senushkin et al., 2021) that considers missing depth values

is used as input, and the mask distribution is adjusted to

improve accuracy.

• ClearGrasp (CG). Surface normals, mask transparent

surfaces, and occlusion boundaries are exploited

(Sajjan et al., 2020) to infer the accurate depths of

transparent objects.

• DepthGrasp (DG). A self-attentive adversarial network

(Tang et al., 2021) is used to capture the structural

information of a transparent object and achieve the

best results.

FIGURE 7

Real novel objects for grasping.

Depth completion performance

Table 1 lists the performance results of different depth

completion methods, from which we can see that, compared

with traditional methods including JBF and AD, the deep

learning methods obtain significant improvements in

performance, because traditional methods only interpolate

missing depths based on object edges, which ignores global

information. The DM approach completes the basic shape of

the object, which is very important for robot grasping and

positioning. However, it cannot handle complex structures

owing to the lack of local geometric details. Although CG

and DG achieve competitive results with additional geometric

information and global optimization functions, they lack the

original correct raw depth information to provide positional

clues, leading to deviations in predicted depth. Our proposed

method achieves state-of-the-art results owing to the ClueDepth

module, which preserves the correct location information, and

the DenseFormer with the multi-modal U-Net module, which

captures the geometric structure of transparent objects.

We intuitively visualize some examples of the completed

depth maps in Figure 5. Where “Raw point cloud” is the

rawdepth obtained by switching the 3D view, and “ours”

represents the fine-grained depth maps generated by CDGrasp.

The orange circles indicate that CDGrasp filters-out the

reflective and refractive areas and retains the correct raw depth

information for locating objects. The contrast between the red

circles indicates that our method can precisely complete the

missing depth with a clear shape.

Evaluation of reflection angle K

The reflection angle determines the reflectivity of the object’s

surface, which critically affects the retention of clue points. Thus,

we conducted quantitative experiments that included five sets

of different angles at gradients of 5◦. The results are shown in
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FIGURE 8

Examples of grasping novel transparent objects by Baxter using our proposed system.

Figure 6, which shows the effect of different K-value settings

on the completion performance. It can be seen that as the

reflection angle increases, the accuracy has a certain degree of

improvement as it benefits from the enlargement of local areas,

which provide more in-depth information. However, when the

reflection angle reaches 30◦, the accuracy decreases slightly

because the light beams are reflected by the surfaces of the object,

leading to a loss of depth values.

Ablation studies

To illustrate the effectiveness of each component, we

conducted a series of ablation experiments, as described in the

following sub-subsections.

E�ect of DenseFormer

For comparison, we used ResNet18 (He et al., 2016) as

the network backbone to demonstrate the module’s effects. The

results are listed in Table 2, fromwhich we can see that DenseNet

performs slightly better than ResNet18 owing to the dense

connection between each layer and the reuse of features. By

combining the transformer, the method achieves a significant

improvement because the transformer expands the receptive

field and obtains global information for completing depth maps.

E�ect of the multi-modal U-net module

For clarity, “Concat” indicates that all maps are concatenated

and sent into encoder for unified encoding, while “Multi-Modal”

means that the visual maps are encoded through multi-modal

U-Net module. As shown in Table 3, the multi-modal U-Net

module significantly improves performance compared with the

concatenation method, mainly because the multi-modal U-

Net module guarantees the extraction of multiscale features

from each modal maps and fuses the features through the

skip connection.

CDGrasp generalization

Table 4 presents the generalizability of the proposed model

to real-world images and novel objects. These images are from

the cleargrasp dataset. From the table, we can see that the

proposed model generalizes remarkably well for both synthetic

and real-world objects. In particular, in terms of known synthetic

objects, our method achieves an improvement of better than 5%,

benefitting from the multi-modal U-Net module structure and

the DenseFormer, which captures 3D geometric structures. In

terms of synthetic novel objects, the performance drops slightly

because the synthetic novel objects (e.g., star- and tree-shaped)

are more irregular than the known objects. Our method also

has a critical performance improvement on real-world objects

because, in real-world environments, reflection and refraction
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TABLE 5 Novel object grasping in the real-world environment.

Transparent objects Rawdepth DepthGrasp CDGrasp

Storage tank 2/10 7/10 8/10

Octagonal cup 5/10 8/10 9/10

Plastic ball 2/10 5/10 7/10

Goblet 1/10 8/10 9/10

Corrugated cup 4/10 9/10 10/10

Plastic cup 3/10 9/10 9/10

Seasoning pot 4/10 8/10 9/10

Cylindrical cup 5/10 8/10 9/10

Success rate (%) 32.5 77.5 87.5

phenomena will be more obvious, and our ClueDepth module

prevents this from creating incorrect points while preserving the

correct ones as positional guidance features for completing the

depth map. From Figure 5, we can see that completion errors

mainly occur in overlapping and distant regions because the

surfaces of transparent objects are difficult to capture when they

are too distant from the camera or obscured, which causes the

network to inaccurately extract structural features.

Robot grasping

To verify the practical use of the proposed method, we

deployed CDGrasp on a humanoid robot, Baxter, so that it

would grasp real-world transparent objects. In particular, we

used the GR-CNN (Kumra et al., 2020), which was verified

by Tang et al. (2021) as a good grasp detection method. We

chose eight novel transparent objects that do not overlap with

ClearGrasp as our tested objects, including “Storage tank,”

“Octagonal cups,” ”Plastic ball,” “Goblet,” “Corrugated cup,”

“Plastic bottle,” “Seasoning pot,” and “Cylindrical cup.” These

objects are shown in Figure 7.

Figure 8 presents examples of robots grasping transparent

objects. The Baxter robot used in the experiments generates

grasping strategies based on the deployed modules. The actual

crawling environment uses only a white background table. For

each object, Baxter tries to grasp it 10 times, and the success rate

depends on whether it holds the object for more than 10 s. This

setting avoids falling after a short-term grab from being judged

as a successful grab. Table 5 summarizes the success rate, from

which we can see that it does so with high accuracy based on our

depth completion method. It outperforms the state-of-the-art

method DepthGrasp (Tang et al., 2021) method, demonstrating

the efficacy of our method.

Conclusion and future work

In this study, we proposed a novel depth-completion

model for transparent objects. Specifically, we proposed the

ClueDepth module, which preserves the correct depth values

and directly provides 3D geometric clues for positional

guidance. We then devised a DenseFormer network that

integrates DenseNet and swin-transformer blocks to extract

local features and expand the receptive fields for global

information acquisition. To fully exploit different visual

maps, we proposed a multi-modal U-Net module to extract

multiscale features from visual maps separately. Extensive

experiments demonstrated that our method achieved state-

of-the-art results in terms of accuracy and generalizability.

Among them, for the depth completion of transparent objects

in real scenes, our method improves the δ1.05 performance

by 5.47%.

Based on the correct point cloud on the transparent

object, the adaptive method of retaining the correct point

is a worthy future research direction, and the experiment

should be extended to more complex objects as much

as possible.
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