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Abstract. We investigate the power of message-passing neural networks
(MPNNs) in their capacity to transform the numerical features stored in
the nodes of their input graphs. Our focus is on global expressive power,
uniformly over all input graphs, or over graphs of bounded degree with
features from a bounded domain. Accordingly, we introduce the notion
of a global feature map transformer (GFMT). As a yardstick for expres-
siveness, we use a basic language for GFMTs, which we call MPLang.
Every MPNN can be expressed in MPLang, and our results clarify to
which extent the converse inclusion holds. We consider exact versus ap-
proximate expressiveness; the use of arbitrary activation functions; and
the case where only the ReLU activation function is allowed.

Keywords: Closure under concatenation· Semiring provenance semantics for
modal logic· Query languages for numerical data

1 Introduction

An important issue in machine learning is the choice of formalism to represent the
functions to be learned [24,25]. For example, feedforward neural networks with
hidden layers are a popular formalism for representing functions from Rn to Rp.
When considering functions over graphs, graph neural networks (GNNs) have
come to the fore [18]. GNNs come in many variants; in this paper, specifically, we
will work with the variant known as message-passing neural networks (MPNNs)
[12].

MPNNs compute numerical values on the nodes of an input graph, where,
initially, the nodes already store vectors of numerical values, known as features.
Such an assignment of features to nodes may be referred to as a feature map
on the graph [15]. We can thus view an MPNN as representing a function that
maps a graph, together with a feature map, to a new feature map on that graph.
We refer to such functions as global feature map transformers (GFMTs).

Of course, MPNNs are not intended to be directly specified by human design-
ers, but rather to be learned automatically from input–output examples. Still,



MPNNs do form a language for GFMTs. Thus the question naturally arises:
what is the expressive power of this language?

We believe GFMTs provide a suitable basis for investigating this question
rigorously. The G for ‘global’ here is borrowed from the terminology of global
function introduced by Gurevich [16,17]. Gurevich was interested in defining
functions in structures (over some fixed vocabulary) uniformly, over all input
structures. Likewise, here we are interested in expressing GFMTs uniformly over
all input graphs. We also consider infinite subclasses of all graphs, notably, the
class of all graphs with a fixed bound on the degree.

As a concrete handle on our question about the expressive power of MPNNs,
in this paper we define the language MPLang. This language serves as a yardstick
for expressing GFMTs, in analogy to the way Codd’s relational algebra serves as
a yardstick for relational database queries [2]. Expressions in MPLang can define
features built arbitrarily from the input features using three basic operations also
found in MPNNs:

1. Summing a feature over all neighbors in the graph, which provides the
message-passing aspect;

2. Applying an activation function, which can be an arbitrary continuous func-
tion;

3. Performing arbitrary affine transformations (built using constants, addition,
and scalar multiplication).

The difference between MPLang-expressions and MPNNs is that the latter must
apply the above three operations in a rigid order, whereas the operations can be
combined arbitrarily in MPLang. In particular, every MPNN is readily express-
ible in MPLang.

Our research question can now be made concrete: is, conversely, every GFMT
expressible in MPLang also expressible by an MPNN? We offer the following
answers.

1. We begin by considering the case of the popular activation function ReLU
[13,3]. In this case, we show that every MPLang expression can indeed be
converted into an MPNN (Theorem 1).

2. When arbitrary activation functions are allowed, we show that Theorem 1
still holds in restriction to any class of graphs of bounded degree, equipped
with features taken from a bounded domain (Theorem 2).

3. Finally, when the MPNN is required to use the ReLU activation function, we
show that every MPLang expression can still be approximated by an MPNN;
for this result we again restrict to graphs of bounded degree, and moreover
to features taken from a compact domain (Theorem 3).

This paper is organized as follows. Section 2 discusses related work. Section 3
defines GFMTs, MPNNs and MPLang formally. Sections 4, 5 and 6 develop our
Theorems 1, 2 and 3, respectively. We conclude in Section 7.

In this paper, proofs of some lemmas and theorems are only sketched. De-
tailed proofs will be given in the journal version of this paper. Certain concepts
and arguments assume some familiarity with real analysis [23].
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2 Related work

The expressive power of GNNs has received a great deal of attention in recent
years. A very nice introduction, highlighting the connections with finite model
theory and database theory, has been given by Grohe [15].

One important line of research is focused on characterizing the distinguishing
power (also called separating power) of GNNs, in their many variants. There,
one is interested in the question: given two graphs, when can they be distin-
guished by a GNN? This question is closely related to strong methods for graph
isomorphism checking, and more specifically, the Weisfeiler-Leman algorithm. A
recent overview has been given by Morris et al. [21].

Another line of research has as goal to extend classical results on the “uni-
versality” of neural networks [22] to graphs [1,4]. (There are close connections
between this line of research and the one just mentioned on distinguishing power
[11].) These results consider graphs with a fixed number n of nodes; functions on
graphs are shown to be approximable by appropriate variants of GNNs, which,
however, may depend on n.

A notable exception is the work by Barceló et al. [7,6], which inspired our
present work. Barceló et al. were the first to consider expressiveness of GNNs
uniformly over all graphs (note, however, the earlier work of Hella et al. [19] on
similar message-passing distributed computation models). Barceló et al. focus
on MPNNs, which they fit in a more general framework named AC-GNNs, and
they also consider extensions of MPNNs. They further focus on node classifiers,
which, in our terminology, are GFMTs where the input and output features are
boolean values. Using the truncated ReLU activation function, they show that
MPNNs can express every node classifiers expressible in graded modal logic (the
converse inclusion holds as well).

In a way, our work can be viewed as generalizing the boolean setting consid-
ered by Barceló et al. to the numerical setting. Indeed, the language MPLang
can be viewed as giving a numerical semantics to positive modal logic with-
out conjunction, following the established methodology of semiring provenance
semantics for query languages [14,9], and extending the logic with application
of arbitrary activation functions. By focusing on boolean inputs and outputs,
Barceló et al. are able to capture a stronger logic than our positive modal logic,
notably, by expressing negation and counting.

We note that MPLang is a sublanguage of the Tensor Language defined
recently by one of us and Reutter [11]. That language serves to unify several
GNN variants and clarify their separating power and universality (cf. the first
two lines of research on GNN expressiveness mentioned above).

Finally, one can also take a matrix computation perspective, and view a graph
on n nodes, together with a d-dimensional feature map, as an n × n adjacency
matrix, together with d column vectors of dimension n. To express GFMTs, one
may then simply use a general matrix query language such as MATLANG [8].
Indeed, results on the distinguishing power of MATLANG fragments [10] have
been applied to analyze the distinguishing power of GNN variants [5]. Of course,
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the specific message-passing nature of computation with MPNNs is largely lost
when performing general computations with the adjacency and feature matrices.

3 Models and languages

In this section, we recall preliminaries on graphs; introduce the notion of global
feature map transformer (GFMT); formally recall message-passing neural net-
works and define their semantics in terms of GFMTs; and define the language
MPLang.

3.1 Graphs and feature maps

We define a graph as a pair G = (V,E), where V is the set of nodes and E ⊆ V×V
is the edge relation. We denote V and E of a particular graph G as V (G) and
E(G) respectively. By default, we assume graphs to be finite, undirected, and
without loops, so E is symmetric and antireflexive. If (v, u) ∈ E(G) then we call
u a neighbor of v in G. We denote the set of neighbors of v in G by N(G)(v).
The number of neighbors of a node is called the degree of that node, and the
degree of a graph is the maximum degree of its nodes. We use G to denote the
set of all graphs, and Gp, for a natural number p, to denote the set of all graphs
with degree at most p.

For a natural number d, a d-dimensional feature map on a graph G is a
function χ : V (G) → Rd, mapping the nodes to feature vectors. We use Feat(G, d)
to denote the set of all possible d-dimensional feature maps on G. Similarly, for
a subset X of Rd, we write Feat(G, d,X) for the set of all feature maps from
Feat(G, d) whose image is contained in X.

3.2 Global feature map transformers

Let d and r be natural numbers. We define a global feature map transformer
(GFMT) of type d → r, to be a function T : G → (Feat(G, d) → Feat(G, r)),
where G ∈ G is the input of T . Thus, if G is a graph and χ is a d-dimensional
feature map on G, then T (G)(χ) is an r-dimensional feature map on G. We call
d and r the input and output arity of T , respectively.

Example 1. We give a few simple examples, just to fix the notion, all with output
arity 1. (GFMTs with higher output arities, after all, are just tuples of GFMTs
with output arity 1.)

1. The GFMT T1 of type 2 → 1 that assigns to every node the average of its
two feature values. Formally, T1(G)(χ)(v) = (x+ y)/2, where χ(v) = (x, y).

2. The GFMT T2 defined like T1, but taking the maximum instead of the
average.

3. The GFMT T3 of type 1 → 1 that assigns to every node the maximum
of the features of its neighbors. Formally, T3(G)(χ)(v) = max{χ(u) | u ∈
N(G)(v)}.
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4. The GFMT T4 of type 1 → 1 that assigns to every node v the sum, over
all paths of length two from v, of the feature values of the end nodes of the
paths. Formally,

T4(G)(χ)(v) =
∑

(v,u)∈E(G)

∑
(u,w)∈E(G)

χ(w).

3.3 Operations on GFMTs

If T1, . . . , Tr are GFMTs of type d → 1, then the tuple (T1, . . . , Tr) defines a
GFMT T of type d → r in the obvious manner:

T (G)(χ)(v) := (T1(G)(χ)(v), . . . , Tr(G)(χ)(v)) (1)

Conversely, it is clear that any T of type d → r can be expressed as a tuple
(T1, . . . , Tr) as above, where Ti(G)(χ)(v) equals the i-th component in the tuple
T (G)(χ)(v).

Related to the above tupling operation is concatenation. Let T1 and T2 be
GFMTs of type d → r1 and d → r2, respectively. Their concatenation T1 | T2

is the GFMT T of type d → r1 + r2 defined by T (G)(χ)(v) = T1(G)(χ)(v) |
T2(G)(χ)(v)), where | denotes concatenation of vectors. Concatenation is associa-
tive. Thus, we could write the previously defined (T1, . . . , Tr) also as T1 | · · · | Tr.

We also define the parallel composition T1 ‖ T2 of two GFMTs T1 and T2, of
type d1 → r1 and d2 → r2, respectively. It is the GFMT T of type (d1 + d2) →
(r1 + r2) defined by T (G)(χ)(v) = T1(G)(χ1)(v) | T2(G)(χ2)(v), where χ1 (χ2)
is the feature map that assigns to any node w the projection of χ(w) to its first
(last) d1 (d2) components.

In contrast, the sequential composition T1;T2 of two GFMTs T1 and T2, of
type d1 → d2 and d2 → d3 respectively, is the GFMT T of type d1 → d3
that maps every graph G to T2(G) ◦ T1(G). In other words, (T1;T2)(G)(χ)(v) =
T2(G)(T1(G)(χ))(v).

Finally, for two GFMTS T1 and T2 of type d → r, we naturally define their
sum T1 + T2 by (T1 + T2)(G)(χ)(v) := T1(G)(χ)(v) + T2(G)(χ)(v) (addition of
r-dimensional vectors). The difference T1 − T2 is defined similarly.

Example 2. Recall T1 and T4 from Example 1, and consider the following simple
GFMTs:

– For j = 1, 2, the GFMT Pj of type 2 → 1 defined by Pj(G)(χ)(v) = xj ,
where χ(v) = (x1, x2).

– The GFMT Thalf of type 1 → 1 defined by Thalf(G)(χ)(v) = χ(v)/2.
– The GFMT Tsum of type 1 → 1 defined by Tsum(G)(χ)(v) =

∑
u∈N(G)(v) χ(u).

Then T1 equals (P1 + P2);Thalf , and T4 equals Tsum;Tsum.
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3.4 Message-passing neural networks

A message-passing neural network (MPNN) consists of layers. Formally, let d
and r be natural numbers. An MPNN layer of type d → r is a 4-tuple L =
(W1,W2, b, σ), where σ : R → R is a continuous function, and W1, W2 and b are
real matrices of dimensions r × d, r × d and r × 1, respectively. We call σ the
activation function of the layer; we also refer to L as a σ-layer.

An MPNN layer L as above defines a GFMT of type d → r as follows:

L(G)(χ)(v) := σ
(
W1χ(v) +W2

∑
u∈N(G)(v)

χ(u) + b
)
. (2)

In the above formula, feature vectors are used as column vectors, i.e., d × 1
matrices. The matrix multiplications involving W1 and W2 then produce r × 1
matrices, i.e., r-dimensional feature vectors as desired. We see that matrix W1

transforms the feature vector of the current node from a d-dimensional vector
to an r-dimensional vector. Matrix W2 does a similar transformation but for
the sum of the feature vectors of the neighbors. Vector b serves as a bias. The
application of σ is performed component-wise on the resulting vector.

We now define an MPNN as a finite, nonempty sequence L1, . . . , Lp of MPNN
layers, such that the input arity of each layer, except the first, equals the output
arity of the previous layer. Such an MPNN naturally defines a GFMT that is
simply the sequential composition L1; . . . ;Lp of its layers. Thus, the input arity
of the first layer serves as the input arity, and the output arity of the last layer
serves as the output arity. Next we shall give examples of MPNNs that express
commonly known functions.

Example 3. Recall the “rectified linear unit” function ReLU : R → R : z 7→
max(0, z). Observe that max(x, y) = ReLU(y − x) + x, and also that x =
ReLU(x) − ReLU(−x). Hence, T2 from Example 1 can be expressed by a two-
layer MPNN, where the first layer L1 transforms input feature vectors (x, y) to
feature vectors (y − x, x,−x) and then applies ReLU, and the second layer L2

transforms the feature vector (a, b, c) produced by L1 to the final result a+b−c.
Formally, L1 = (A, 03×2, 03×1,ReLU), with

A =

−1 1
1 0

−1 0

 ,

and L2 = ((1, 1,−1), (0, 0, 0), 0, id), with id the identity function.
For another, simple, example, Tsum from Example 2 is expressed by the single

layer (0, 1, 0, id).

Same activation function If, for a particular MPNN, and an activation function
σ, all layers except the last one are σ-layers, and the last layer is either also a σ-
layer, or has the identity function as activation function, we refer to the MPNN
as a σ-MPNN. Thus, the two MPNNs in the above example are ReLU-MPNNs.
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3.5 MPLang

We introduce a basic language for expressing GFMTs. The syntax of expressions
e in MPLang is given by the following grammar:

e ::= 1 | Pi | ae | e+ e | f(e) | ♦ e

where i is a non-zero natural number, a ∈ R is a constant, and f : R → R is
continuous.

An expression e is called appropriate for input arity d if all subexpressions of
e of the form Pi satisfy 1 ≤ i ≤ d. In this case, e defines a GFMT of type d → 1,
as follows:

– if e = 1, then e(G)(χ)(v) := 1
– if e = Pi, then e(G)(χ)(v) := the i-th component of χ(v)
– if e = ae1, then e(G)(χ)(v) := ae1(G)(χ)(v)
– if e = e1 + e2, then e(G)(χ)(v) := e1(G)(χ)(v) + e2(G)(χ)(v)
– if e = f(e1), then e(G)(χ)(v) := f(e1(G)(χ)(v))
– if e = ♦ e1, then e(G)(χ)(v) :=

∑
u∈N(G)(v) e1(G)(χ)(u)

Notice how there is no concatenation operator since the output arity of an
expression is always 1. To express higher output arities, we agree that a GFMT
T of type d → r is expressible in MPLang if there exists a tuple (e1, . . . , er) of
expressions that defines T in the sense of Equation 1. We further agree:

– The constant a will be used as a shorthand for the expresion a1, i.e., the
scalar multiplication of expression 1 by a.

– For any fixed function f , we denote by f -MPLang the language fragment of
MPLang where all function applications apply f .

Example 4. Continuing Example 3, we can also express T2 and Tsum in MPLang,
namely, T2 as ReLU(P2 − P1) + P1, and Tsum as ♦P1.

3.6 Equivalence

Let T1 and T2 be MPNNs, or tuples of MPLang expressions, of the same type
d → r.

– We say that T1 and T2 are equivalent if they express the same GFMT.
– For a class G of graphs and a subset X of Rd, we say that T1 and T2 are

equivalent over G and X if the GFMTs expressed by T1 and T2 are equal on
every graph G in G and every χ ∈ Feat(G, d,X) (see Section 3.1).

Example 4 illustrates the following general observation:

Proposition 1. For every MPNN T there is an equivalent MPLang-expression
that applies, in function applications, only activation functions used in T .

7



Proof. (Sketch.) Since we can always substitute subexpressions of the form Pi

by more complex expressions, MPLang is certainly closed under sequential com-
position. It thus suffices to verify that single MPNN layers L are expressible in
MPLang. For each output component of L we devise a separate MPLang expres-
sion. Inspecting Equation 2, we must argue for linear transformation; summation
over neighbors; addition of a constant (component from the bias vector); and
application of an activation function. Linear transformation, and addition of a
constant, are expressible using the addition and scalar multiplication operators
of MPLang. Summation over neighbors is provided by the ♦ operator. Applica-
tion of an activation function is provided by function application in MPLang.

4 From MPLang to MPNN under ReLU

In Proposition 1 we observed that MPLang readily provides all the operators
that are implicitly present in MPNNs. MPLang, however, allows these operators
to be combined arbitrarily in expressions, whereas MPNNs have a more rigid
architecture. Nevertheless, at least under the ReLU activation function, we have
the following strong result:

Theorem 1. Every GFMT expressible in ReLU-MPLang is also expressible as
a ReLU-MPNN.

Crucial to proving results of this kind will be that the MPNN architecture
allows the construction of concatenations of MPNNs. We begin by noting:

Lemma 1. Let σ be an activation function. The class of GFMTs expressible
as a single σ-MPNN layer is closed under concatenation and under parallel
composition.

Proof. (Sketch.) For parallel composition, we construct block-diagonal matrices
from the matrices provided by the two layers. For concatenation, we can simply
stack the matrices vertically. ut

For σ = ReLU, we can extend the above Lemma to multi-layer MPNNs:

Lemma 2. ReLU-MPNNs are closed under concatenation.

Proof. Let L and K be two ReLU-MPNNs. Since ReLU is idempotent, every
n-layer ReLU-MPNN is equivalent to an n + 1-layer ReLU-MPNN. Hence we
may assume that L = L1; . . . , Ln and K = K1; . . . ;Kn have the same number
of layers. Now L | K = (L1 | K1); (L2 ‖ K2); . . . ; (Ln ‖ Kn) if n ≥ 2; if n = 1,
clearly L | K = L1 | K1. Hence, the claim follows from Lemma 1. ut

Note that a ReLU-MPNN layer can only output positive numeric values,
since the result of ReLU is always positive. This explains why we must allow
the identity function (id) in the last layer of a ReLU-MPNN (see the end of
Section 3.4). Moreover, we can simulate intermediate id-layers in a ReLU-MPNN,
thanks to the identity x = ReLU(x)− ReLU(−x). Specifically, we have:
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Lemma 3. Let L be an id-layer and let K be a σ-layer. Then there exists a
ReLU-layer L′ and a σ-layer K ′ such that L;K is equivalent to L′;K ′.

Proof. Let L = (W1,W2, b, id). We put

L′ = (W1,W2, b,ReLU) | (−W1,−W2,−b,ReLU)

which corresponds to a ReLU-layer by Lemma 1. Let K = (A,B, c, σ). Consider
the block matrices A′ = (A|−A) and B′ = (B|−B) (single-row block matri-
ces, with two matrices stacked horizontally, not vertically). Now for K ′ we use
(A′, B′, c, σ). ut

We are now ready to prove Theorem 1. By Lemma 2, it suffices to focus on
MPLang expressions, i.e., GFMTs of output arity one. So, our task is to con-
struct, for every expression e in ReLU-MPLang, an equivalent ReLU-MPNN E.
However, by Lemma 3, we are free to use intermediate id-layers in the construc-
tion of E. We proceed by induction on the structure of e. We skip the base cases
and consider the inductive cases where e is of one of the forms ae1, e1+e2, f(e1)
(with f = ReLU), or ♦ e1. By induction, we have MPNNs E1 and E2 for e1 and
e2.

– If e is of the form ae1, we set E = E1; (a, 0, 0, id).
– If e is of the form e1 + e2, we set E = (E1 | E2); ((1, 1), (0, 0), 0, id). Here,

E1 | E2 corresponds to a ReLU-MPNN by Lemma 2.
– If e is of the form f(e1), we set E = E1; (1, 0, 0, f).
– If e is of the form ♦ e1, we set E = E1; (0, 1, 0, id).

5 Arbitrary activation functions

Theorem 1 only supports the ReLU function in MPLang expressions. On the
other hand, the equivalent MPNN then only uses ReLU as well. If we allow
arbitrary activation functions in MPNNs, can they then simulate also MPLang
expressions that apply arbitrary functions? We can answer this question affir-
matively, under the assumption that graphs have bounded degree and feature
vectors come from a bounded domain. The proof of our Lemma 4 explains how
we rely on the bounded-domain assumption. Moreover, also the degree has to
be bounded, for otherwise we can still create unbounded values using ♦(Pi).

Theorem 2. Let p and d be natural numbers, let Gp be the class of graphs of
degree at most p, and let X ⊆ Rd be bounded. For every GFMT T expressible in
MPLang there exists an MPNN that is equivalent to T over Gp and X.

The above theorem can be proven exactly as Theorem 1, once we can deal
with the concatenation of two MPNN layers with possibly different activation
functions. The following result addresses this task:

Lemma 4. Let L and K be MPNN layers of type dL → rL and dK → rk,
respectively. Let XL ⊆ RdL and XK ⊆ RdK be bounded, and let p be a natural
number. There exist two MPNN layers L′ and K ′ such that
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Fig. 1: Illustration of the proof of Lemma 4.

1. L′ and K ′ use the same activation function;
2. L′ is equivalent to L over Gp and XL;
3. K ′ is equivalent to K over Gp and XK .

Proof. Let L = (W1L,W2L, bL, σL) and K = (W1K ,W2K , bK , σK). Let w1,i, w2,i

and bi be the i-th row of W1L, W2L and bL respectively. For each i ∈ {1, . . . , rL}
and for any k ∈ {1, . . . , p} consider the function

λk
i : R(k+1)dL → R : ( ~x0, ~x1, . . . , ~xk) 7→ w1,i · ~x0 + w2,i · ~x1 + · · ·+ w2,i · ~xk + bi.

Then for any G ∈ Gp, any χ ∈ Feat(G, d,XL), and v ∈ V (G), each component
of L(G)(χ)(v) will belong to the image of some function λk

i on Xk+1
L , with k

the degree of v. Since Xk+1
L is bounded and λk

i is continuous, these images are
also bounded and their finite union over i ∈ {1, . . . , r} and k ∈ {1, . . . , p} is also
bounded. Let Y1 be this union and let M = maxY1.

For K we can similarly define the functions κk
i and arrive at a bounded set

YK ⊆ R. We then define m = minY2.
We will now construct a new activation function σ′. First define the functions

σ′
L(x) := σL(x + Mi + 1) for x ∈] − ∞,−1] and σ′

K(x) := σK(x − mi − 1) for
x ∈ [1,∞[. Notice how σ′

L is simply σL shifted to the left so that its highest
possible input value, which is M , aligns with −1. Similarly, σ′

K is simply σK

shifted to the right so that its lowest possible input value, which is m, aligns
with 1. We then define σ′ to be any continuous function that extends both σ′

L

and σ′
K . An example of this construction can be seen in Figure 1 with σ1 = tanh,

M = 3, σ2 the identity, and m = −2.
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We also construct new bias vectors, obtained by shifting bL and bK left and
right respectively to provide appropriate inputs for σ′. Specifically, we define
b′L := bL − (M + 1)r×1 and b′K := bK + (m+ 1)r×1.

Finally, we can set L′ = (W1L,W2L, b
′
L, σ

′) and K ′ = (W1K ,W2K , b′K , σ′) as
desired. ut

Thanks to the above lemma, Lemma 1 remains available to concatenate lay-
ers. The part of Lemma 1 that deals with parallel composition (which is needed
to prove closure under concatenation for multi-layer MPNNs) must be slightly
adapted as follows. It follows immediately from Lemma 4 above and the original
Lemma 1.

Lemma 5. Let L and K be MPNN layers of type dL → rL and dK → rk,
respectively. Let XL ⊆ RdL and XK ⊆ RdK be bounded, and let p be a natural
number. Let X = {( ~xL, ~xK) | ~xL ∈ XL and ~xK ∈ XK} ⊆ RdL+dK . There exists
an MPNN layer that is equivalent to L ‖ K over Gp and X.

6 Approximation by ReLU-MPNNs

Theorem 2 allows the use of arbitrary activation functions in the MPNN simulat-
ing an MPLang expression; these activation functions may even be different from
the ones applied in the expression (see the proof of Lemma 4). What if we insist
on MPNNs using a fixed activation function? In this case we can still recover
our result, if we allow approximation. Moreover, we must slightly strengthen our
assumption of feature vectors coming from a bounded domain, to coming from
a compact domain.3

We will rely on a classical result in the approximation theory of neural net-
works [20,22], to the effect that continuous functions can be approximated arbi-
trarily well by piecewise linear functions, which can be modeled using ReLU.4
In order to recall this result, we recall that the uniform distance between two
continuous functions g and h from R to R on a compact domain Y equals
ρY (g, h) = supx∈Y |g(x)− h(x)|.

Density Property. Let Y be a compact subset of R, let f : R → R be continuous
on Y , and let ε > 0 be a real number. There exists a positive integer n and real
coefficients ai, bi, ci, for i = 1, . . . , n, such that ρY (f, f

′) ≤ ε, where f ′(x) =∑n
i=1 ciReLU(aix− bi).

We want to extend the notion of uniform distance to GFMTs expressed in
MPLang. For any MPLang expression e appropriate for input arity d, any class

3 A subset of R or Rd is called compact if it is bounded and closed in the ordinary
topology.

4 The stated Density Property actually holds not just for ReLU, but for any nonpoly-
nomial continuous function.
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G of graphs, and any subset X ⊆ Rd, the image of e over G and X is defined
as the set

{e(G)(χ)(v) : G ∈ G & χ ∈ Feat(G, d,X) & v ∈ V (G)}.

It is a subset of R. We observe: (proof omitted)

Lemma 6. For any natural number p and compact X, the image of e over Gp

and X is a compact set.

With p and X as in the lemma, and any two MPLang expression e1 and e2
appropriate for input arity d, the set

{|e1(G)(χ)(v)− e2(G)(χ)(v)| : G ∈ Gp & χ ∈ Feat(G, d,X) & v ∈ V (G)}

has a supremum. We define ρGp,X(e1, e2), the uniform distance between e1 and
e2 over Gp and X, to be that supremum.

The main result of this section can now be stated as follows. Note that
we approximate MPLang expressions by ReLU-MPLang expressions. These can
then be further converted to ReLU-MPNNs by Theorem 1.

Theorem 3. Let p and d be natural numbers, and let X ⊆ Rd be compact. Let
e be an MPLang expression appropriate for d, and let ε > 0 be a real number.
There exists a ReLU-MPLang expression e′ such that ρGp,X(e, e′) ≤ ε.

Proof. By induction on the structure of e. We skip the base cases. In the induc-
tive cases where e is of the form ae1, e1 + e2, or f(e1), we consider any G ∈ Gp,
any χ ∈ Feat(G, d,X), and any v ∈ V (G), but abbreviate e(G)(χ)(v) simply as
e.

Let e be of the form ae1. If a = 0 we set e′ = 0. Otherwise, let e′1 be the
expression obtained by induction applied to e1 and ε/a. We then set e′ = ae′1.
The inequality |e− e′| ≤ ε is readily verified.

Let e be of the form e1 + e2. For j = 1, 2, let e′j be the expression obtained
by induction applied to ej and ε/2. We then set e′ = e′1 + e′2. The inequality
|e− e′| ≤ ε now follows from the triangle inequality.

Let e is of the form f(e1). By Lemma 6, the image of e1 is a compact set
Y1 ⊆ R. We define the closed interval Y = [min(Y1) − ε/2,max(Y1) + ε/2].
By the Density Property, there exists f ′ such that ρY (f, f

′) ≤ ε/2. Since Y is
compact, f ′ is uniformly continuous on Y . Thus there exists δ > 0 such that
|f ′(x)− f ′(x′)| < ε/2 whenever |x− x′| < δ.

We now take e′1 to be the expression obtained by induction applied to e1 and
min(δ, ε/2). We see that the image of e′1 is contained in Y . Setting e′ = f(e′1),
we verify that |e− e′| = |f(e1)− f ′(e′1)|+ |f ′(e1)− f ′(e′1)| ≤ ε as desired.

Our final inductive case is when e is of the form ♦ e1. We again consider any
G ∈ Gp, any χ ∈ Feat(G, d,X), and any v ∈ V (G), but this time abbreviate
e(G)(χ)(v) as e(v). Let e′1 be the expression obtained by induction applied to e1

12



and ε/p. Setting e′ = ♦ e′1, we verify, as desired:

|e(v)− e′(v)| = |
∑

u∈N(G)(v)

e1(u)−
∑

u∈N(G)(v)

e′1(u)|

≤
∑

u∈N(G)(v)

|e1(u)− e′1(u)|

≤ p(ε/p)

= ε.

The penultimate step clearly uses that G has degree bound p. (This degree bound
is also used in Lemma 6.)

7 Concluding remarks

We believe that our approach has the advantage of modularity. For example,
Theorem 1 is stated for ReLU, but holds for any activation function for which
Lemmas 1 and 3 can be shown. We already noted that the Density Property holds
not just for ReLU but for any nonpolynomial continuous activation function. It
follows that for any activation function σ for which Lemmas 1 and 3 can be
shown, every MPLang expression can be approximated by a σ-MPNN.

It would be interesting to see counterexamples that show that Theorems
2 and 3 do not hold without the restriction to bounded-degree graphs, or to
features from a bounded or compact domain. Such counterexamples can probably
be derived from known counterexamples in analysis or approximation theory.

Finally, in this work we have focused on the question whether MPLang can be
simulated by MPNNs. However, it is also interesting to investigate the expressive
power of MPLang by itself. For example, is the GFMT T3 from Example 1
expressible in MPLang?
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