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Abstract

Polymeric dispersing agents were prepared from aliphatic polyesters consisting of ⊐-undecalactone (UDL) and ⊎,⊐-trimethyl-
ε-caprolactones (TMCL) as biobased monomers, which were polymerized in bulk via organocatalysts. Graft copolymers were
obtained by coupling of the polyesters to poly(ethylene imine) (PEI) in the bulk without using solvents. Various parameters that
influence the performance of the dispersing agents in pigment-based UV-curable matrices were investigated: chemistry of the
polyester (UDL or TMCL), polyester/PEI weight ratio, molecular weight of the polyesters and of PEI. The performance of the dis-
persing agents was modelled using machine learning in order to increase the efficiency of the dispersant design. The resulting
models were presented as analytical models for the individual polyesters and the synthesis conditions for optimally performing
dispersing agents were indicated as a preference for high-molecular-weight polyesters and a polyester-dependent maximum
polyester/PEI weight ratio.
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INTRODUCTION
Inks and coatings are typically formulations containing a colorant
(e.g. pigment), a medium, a (polymeric) dispersing agent and
some additives. Commercially available pigments are insoluble
in the medium and are supplied as agglomerates. Especially for
pigment-based inks, the application under consideration in this
article, small particle sizes (<100–150 nm) are required to ensure
good optical properties like gamut, gloss and covering power as
well as good processability (no obstruction of the nozzles). In
order to break the agglomerates into smaller (primary) particles,
dispersion processes (e.g. milling) are required. A dispersion refers
to a two-phase system consisting of small insoluble pigment par-
ticles homogeneously distributed in a liquid medium. In order to
avoid re-agglomeration of the small pigment particles and to
ensure long-term storage stability of the formulations (i.e. good
colloidal stability), polymeric dispersants are added. Such dispers-
ing agents typically contain amatrixophilic chain that should have
good solubility in and compatibility with the ink medium to
ensure steric stabilization, and a pigmentophilic chain that is
anchored to the pigment, which is the dispersed phase (Fig. 1,
left).1,2 This type of dispersing agent has been reported in non-

aqueous inks3 as well as in aqueous coatings and inkjet inks.4,5

In this work, radiation-curable monomers are the medium of the
ink and they cure rapidly upon exposure to a radiation source.
Compared to solventborne inks this avoids the release of environ-
mentally unfriendly volatile organic compounds. Moreover, less
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energy is consumed compared to waterborne technology, which
requires a lot of heat to evaporate the carrier after printing.
For non-aqueous pigmented inkjet inks, hyperbranched dis-

persing agents comprising poly(alkylene imine) chains as pig-
mentophilic chains and aliphatic polyesters as matrixophilic
chains have been developed (Fig. 1, right).3,6,7

The polyesters used in state-of-the art systems are generally
based on poly(ε-caprolactone). However, they suffer from a poor
solubility in the ink medium and they tend to crystallize under
use conditions. Copolymerization with other lactones like
⊐-valerolactone allows a reduction in the crystallinity and
improvement in the solubility.3,7,8 In the work reported here, we
designed branched homopolyesters of ⊐-undecalactone (UDL)
and ⊎,⊐-trimethyl-ε-caprolactones (TMCL), which avoids the need
for copolymerization and results in fully amorphous polymers that
are liquid at room temperature with Tg (polyTMCL) = −63 °C9 and
Tg (polyUDL) = −51 °C.8 Moreover, extra attention was paid to
sustainable synthesis of the polyesters and the hyperbranched
dispersants. UDL is a biobased monomer that is synthesized from
fatty acids, similarly to many ⊐-substituted valerolactones.10 In the
past, we developed a process for the enzymatic synthesis of TMCL
monomers (a regio-isomeric mixture) using Baeyer–Villiger oxida-
tion of 3,3,5-trimethylcyclohexanone.11–13 The substrate can be
prepared by the hydrogenation of isophorone which is obtained
from the self-condensation of acetone, potentially sourced from
renewables via the acetone–butanol–ethanol fermentation of lig-
nocellulosic feedstocks. The enzymatic oxidation was shown to be
more environmentally friendly compared to the chemical route in
the case of the reaction performed at a laboratory scale with recy-
cling of solvents and enzyme.14 For the ring-opening polymeriza-
tion (ROP) of lactones in bulk, organocatalysts9 were used instead
of metal-based catalysts. Lastly, dispersing agents of various graft-
ing densities were prepared using a solvent-free process for the
formation of an amide bond between carboxylic acid-
functionalized matrixophilic polyester chains and the amines in
the pigmentophilic poly(ethylene imine) (PEI) chains. The effect
of structural variations in the dispersing agents on the dispersion
quality of cyan pigments in radiation-curable matrices was stud-
ied and the quality of the dispersion was assessed based on the
pigment particle size: the lower the particle size, the better the
performance of the dispersion and thus of the final ink
formulation.
Instead of using a traditional approach where the effect of

systematic structural variations in the dispersant on the parti-
cle size was studied, we went a step further in the work
reported here. A machine learning model was developed that

predicts the structure–property relationships between the dis-
persant and the dispersion performance. The end goal is to
become more efficient in the design of tailor-made dispersants
with optimal application performance, while limiting laborious
laboratory work to a minimum (in other words, a more sustain-
able process). Machine learning is revolutionizing modern
materials design. In machine learning one typically starts from
an existing experimental dataset of input features
(e.g. structural variations of the dispersant) and response/
target factors (quality of the dispersion measured via particle
size). The dataset is split into training and testing datasets.
The training dataset is the largest and is used to train the
machine learning model, while the testing dataset is used to
evaluate the quality of the developed model. Typically, the
quality is expressed by comparison of the measured and pre-
dicted values, e.g. determined via the mean absolute error
(MAE). The smaller the MAE, the better is the model. Where
many of the successes of machine learning are rooted in very
large datasets as a starting point to train the model,15–17 the
most common applications in academic and industrial mate-
rials design deal with small datasets of even less than 100 data
points.18–28

Unfortunately, when using small datasets, the random split-
ting of the dataset introduces a significant chance factor,
which transforms into an unacceptable variability in the pre-
dictive power of the model. Whereas in large datasets an
extreme individual contribution of a single data point is tem-
pered by the large number of other data points, this tempering
effect is much reduced in small datasets. This makes the result-
ing model strongly dependent on the specific details of the
data points used.29

Adapting machine learning methods for analyzing and making
predictions based on sparse datasets is critical for advancing
experimental research in complex material systems. In this con-
text, we recently developed a machine learning framework aimed
at such small datasets.29,30 For small datasets, ensemble models
were shown to outperform the individual model instances signif-
icantly, while at the same time giving rise to models that are more
robust with regard to dataset sizes.
In a general ensemble model, the actual model is built as a

(large) set of models each individually trained on an experimental
dataset; this can be the same dataset or (non-)overlapping sub-
sets of that dataset. The prediction of an ensemble model then
becomes the (weighted) average of the predictions of the individ-
ual models. In our specific case, all models in the ensemble belong
to the same family (e.g. polynomial regression models of order

Figure 1. Schematic structure of hyperbranched dispersing agents.

Machine learning approach for design of hyperbranched polymers www.soci.org

Polym Int 2022; 71: 966–975 © 2022 The Authors.
Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.

wileyonlinelibrary.com/journal/pi

967

http://wileyonlinelibrary.com/journal/pi


2 such as x2 +bx+c). Each of these models is trained on a different
(random) splitting of our whole dataset, providing a different
training and testing set for each individual model (Fig. 2). Within
the context of ensemble models, training and testing sets are
called ‘in-bag’ and ‘out-of-bag’ sets, respectively. Using the out-
of-bag set, the quality of the associated individual model can be
determined by calculating the MAE. In the case of small datasets,
the different individual models show a strong variation, due to
their sensitivity to individual data points, making them ill-suited
for modeling purposes. The quality of the ensemble model, on
the other hand, is estimated as the average of the out-of-bag
MAE of the individual models, and was shown to be very robust
in contrast to the MAE of the individual models.
Because all the individual models belong to the same model

family, it is also possible to represent the ensemble model by a
single individual model with the same properties as the ensem-
ble, but with a significant reduction in computational cost for pre-
dictive purposes.
Using our previously developed ensemble approach for small

datasets, a set of regression models was constructed for two dis-
persant datasets, namely PEI-g-polyTMCL and PEI-g-polyUDL.
The quality of different models was compared. A total of
21 models were considered: linear regression; polynomial regres-
sion of orders 2 to 6; and polynomial regression models with
LASSO regularization† of orders 1 to 15.31, 32

MATERIALS AND METHODS
Chemicals
Diphenyl phosphate (DPP; >99%, TCI), 1,5,7-triazabicyclo[4.4.0]
dec-5-ene (TBD; 98%, Sigma-Aldrich), hexadecane (>99.5%, TCI),
Pd/C (Sigma-Aldrich) and Celite® S (Sigma-Aldrich) were used as
received. Benzyl alcohol (BnOH; 99%, Alfa Aesar) and UDL
(>97%, Sigma-Aldrich) were distilled over CaH2 prior to use. TMCL
was synthesized chemically8 or enzymatically33 and distilled over
CaH2 under reduced pressure (1 × 10−3 mbar, 95–105 °C) prior to
use. Solvents were supplied from Biosolve and used as received.
Pigment blue 15:4 is Hostaperm™ Blue P-BFS, a CI Pigment Blue

15:4 from Clariant. PEI Epomin SP200 was received from Nippon
Shokubai, PEI Lupasol® PR 8515 was obtained from BASF and PEI
Mw = 800 Da was obtained from Sigma-Aldrich. Dipropylene gly-
col diacrylate (DPGDA) was supplied by Miwon under the trade-
name Miramer M222.

1H NMR spectroscopy
NMR spectra were recorded with a Bruker Avance III HD Nanobay
at 300 MHz for1H at ambient probe temperature in CDCl3 with
16 scans.

Gel permeation chromatography
For the polyesters, gel permeation chromatography (GPC) was
performed at 30 °C using a Waters GPC system equipped with a
Waters 2414 refractive index detector. Tetrahydrofuran (THF)
was used as eluent at a flow rate of 1 mL min–1. Three linear col-
umns were used (Styragel HR1, Styragel HR4 and Styragel HR5).
Molecular masses were determined relative to polystyrene
standards.
For the graft copolymers, the polymers were dissolved in

1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with 0,019% NaTFA salt.
Samples for GPC measurement were prepared by dissolving
5.0 mg of polymer in 1.5 mL of solvent. The solutions were filtered
over a 0.2 μmPTFE syringe filter before injection. The GPC appara-
tus was calibrated with poly(methyl methacrylate) standards. Two
PFG combination medium microcolumns with 7 μm particle size
(4.6 × 250 mm, separation range 100–1 000 000 Da) and a precol-
umn PFG combination medium with 7 μm particle size
(4.6 × 30 mm) with refractive index detector were used in order
to determine molecular weight and dispersities.

Fourier transform infrared spectroscopy
Fourier transform infrared (FTIR) spectra were recorded using a
Bruker Alpha FTIR equipped with a Zn–Se crystal for recording.
All products were recorded as pure compounds.

Mass spectrometry
Matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-ToF-MS) was conducted using a Bruker
UltrafleXtreme spectrometer with a 355 nm Nd:YAG laser (2 kHz
repetition pulse/Smartbeam-II™) and a grounded steel plate.
trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]mal-
ononitrile (Sigma-Aldrich, >98%) was used as matrix (20 mg mL–1

in THF) and potassium trifluoroacetate (Sigma Aldrich, 98%) was
used a cationization agent (10 mg mL–1 in THF). The polymers
were dissolved in THF (10 mg mL–1). Solutions of matrix, salt
and polymer weremixed in volumetric ratios of 200:10:30, respec-
tively. All mass spectra were collected in the reflector mode.
Poly(ethylene glycol) standards with Mn equal to 5000, 10 000
and 15 000 g mol–1 were used for calibration. Data were pro-
cessed using the FlexAnalysis (Bruker Daltonics) software
package.

Measurement of particle size
Particle sizes of dispersions were measured using a PSS Nicomp
380, calibrated with a standard dispersion of 94 nm. Dispersions
were diluted in EtOAc to parts per million concentrations and
measurements made using dynamic light scattering.

Typical synthesis of polyUDL
In a vacuum-dried flask, BnOH (1.38 mL, 13.3 mmol, 1 eq) was
added to UDL (81.0 mL, 425.9 mmol, 32 eq). The mixture was

Figure 2. Schematic of the machine learning ensemble model approach.

†Regularization is an approach in which a penalty function is added to the
regression objective and which generally leads to a reduction in model
complexity (i.e. a reduction of model terms).
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cooled at −10 °C using a cold bath of liquid nitrogen in ethylene
glycol. The polymerization was started by adding TBD (1.85 g,
13.3 mmol, 1 eq) to the reaction mixture under nitrogen atmo-
sphere. At the end of the reaction after 1 day, the reaction mixture
was dissolved in cold chloroform at −20 °C (300 mL). The solution
was washed with an acidified aqueous phase based on HCl until
pH 2–3 (2 × 400 mL) and with water (1 × 400 mL). The solution
was dried over magnesium sulfate and concentrated under vac-
uum. The polymer was dried under vacuum to obtain 84 g of
polymer.

Typical synthesis of polyTMCL
In a vacuum-dried flask, BnOH (1.8 mL, 17.4 mmol, 1 eq) was
added to a mixture of TMCL (55.0 mL, 323.2 mmol, 19 eq) and
hexadecane as internal standard (typically 5% relative to the
amount of TMCL). The mixture was heated to 60 °C in an oil bath.
The polymerization was started by adding DPP (4.35 g,
17.4 mmol, 1 eq) to the reaction mixture under nitrogen atmo-
sphere. The temperature was decreased to room temperature
after 1 day. At the end of the reaction after 2 days, the reaction
mixture was dissolved in cold chloroform at −20 °C (200 mL).
The polymer was precipitated from cold methanol at −20 °C
(1 L) and dried under vacuum to afford 33 g of polymer.

Typical hydrogenolysis procedure
An amount of 20 g of the polymer, in its benzyl-terminated form,
was dissolved in 100 mL of ethyl acetate in a 250 mL flask. When
dissolution was complete, Pd/C (1.0 g, 5 wt% with regard to the
polymer) was added and the resulting slurry placed under nitro-
gen atmosphere. The flask was then placed under a hydrogen
atmosphere by flushing the flask with hydrogen gas and the reac-
tion is left to proceed for 3 days under a hydrogen atmosphere.
After reaction, the slurry was filtered over a patch of Celite and
the filtrate was evaporated resulting in the free acid-terminated
polymer.

Typical coupling of polyester with PEI
Dispersant U4 in Table S1 was made by the addition of 0.5 g of PEI
with normalized Mw 1.0 and 4 g polyUDL-COOH with normalized
Mn,GPC,r = 0.33. After thorough mixing under a nitrogen atmo-
sphere at 120 °C, the temperature was raised to 150 °C while
maintaining a nitrogen flow over the viscous mixture. The reac-
tion was allowed to proceed for 5 h, after which the mixture was
cooled to room temperature.

Preparation of dispersions
Typically, PB15:4 and dispersing agent were added to the disper-
sion medium (DPGDA) in a ratio of 1:1:8 on weight basis. To this
slurry, milling beads were added and the mixture was milled for
7 days at room temperature. The final dispersions were recovered
by filtration to remove the milling beads.

Modeling and simulation
Modeling of the experimental data was performed using the
machine learning framework previously developed by the
authors.29,30 In the current work, pasting-type ensembles of
1000 member instances with and 80/20 division between in-bag
and out-of-bag data points were generated.34 As base model
types, we considered linear and polynomial regression (Figs S5
and S6), with and without LASSO regularization.31,32 The
regularization-strength hyperparameter of the LASSO was tuned
for each individual model instance member of the ensemble

using leave-one-out cross-validation (LOOCV)35‡ performed on
the in-bag dataset of the model instance.36,37 The average of the
out-of-bag evaluations was used as an estimator for the ensemble
quality. The MAE was used as a quality measure to give equal
weight to individual data points. MAE is the arithmetic average
of the absolute errors, defined as

MAE=
∑
n

i=1
j yi−xi j
n

with yi the prediction and xi the experimental value.
The presented ensemble model surfaces were generated by

predicting the particle size at each point of a 51×51 grid of
Mn,GPC,r(polyester) and the polyester/PEI weight ratio. To obtain
a two-dimensional surface, Mw(PEI) was kept constant. For the
UDL dataset, surfaces of constant grafting density were plotted.
The resulting surface was rendered using Gnuplot 5.2.38

RESULTS AND DISCUSSION
Preparation of dispersing agents
The goal of this study was to develop dispersing agents based on
polyesters from alkyl-substituted lactones as matrixophilic chains
and PEI as pigmentophilic chains (Fig. 3(c)). ROP of UDL and
TMCL9 using an alcohol as initiator was followed by hydrogenoly-
sis in order to obtain acid-functionalized polyesters (Figs 3(a) and
(b)). 1H NMR spectroscopy confirms the disappearance of the ben-
zyl end-group (Fig. S1).
While 1H NMR did not allow the detection of the deprotected

COOH signal, deprotection and COOH end-group presence were
confirmed via MALDI-ToF-MS. This deprotection step was shown
to maintain the structure of the polyester as demonstrated by
the distribution of the polymer chains using MALDI-ToF-MS
(Fig. S2). Additionally, the hydrogenolysis step did not signifi-
cantly modify the molecular weight and dispersity of the poly-
mers (Fig. S3). Matrixophilic chains based on polyUDL and
polyTMCL of various molecular weights were prepared
(Tables S1 and S2).
The dispersing agents were prepared by coupling the acid

end-capped polyesters to PEI in bulk at 150 °C, resulting in
graft copolymers PEI-g-polyester connected via amide bonds
(Fig. 1(c)). Successful coupling of COOH-terminated polyesters
was observed as evidenced from the appearance of peaks j and
k next to amide bonds in 1H NMR spectrum (Fig. 4(c)) and by
the presence of amide bands in FTIR spectra at 1650 and
3325 cm−1 (broad) (Fig. 5(a)). Typical GPC curves show that a
new high-molecular-weight peak appears upon coupling of
PEI and the polyester, although still some unreacted PEI and/or
polyester stays behind, as visible from the bimodal peak in
Fig. 5(b).

‡LOOCV is a validation method appropriate for tuning hyperparameters
on a small dataset. A model instance is trained on the entire dataset with
one single sample removed. This is repeated for all possible configurations
with one single sample removed (i.e. N times for a dataset of N samples).
The performance of the model is then determined as the average of the
errors obtained on the removed sample for each trained model instance
(i.e. the average of N errors).
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(a)

(b)

(c)

Figure 3. Synthesis of matrixophilic chains by ROP of lactones and hydrogenolysis for (a) polyTMCL and (b) polyUDL. (c) Synthesis of the PEI-g-polyester
dispersant.
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Machine learning model for evaluation of performance of
dispersing agents
The performance of the dispersing agents for UV-curable inks was
evaluated in dispersions made of a UV-curable matrix comprising
DPGDA as UV-curable monomer and PB15:4 cyan as pigment.
Those dispersions are in fact simplified ink formulations. The
effect of different structural features in the dispersing agent was
evaluated on its effectiveness in stabilizing pigments after the
milling process was applied to make the dispersion: the chemistry
of the polyester matrixophilic chains (polyUDL versus polyTMCL),
the length of the polyester side chains (Mn,GPC,r), the length of
the PEI pigmentophilic backbone and the polyester/PEI weight
ratio as a measure for the amount of polyester side chains (Fig. 6).
The effect of systematic changes in the dispersant structure

(called features in the context of machine learning) was quantified
via particle size distribution (called target in the context of the
machine learning) measurements of the dispersion with dynamic
light scattering. Dispersing agents with good dispersing proper-
ties are expected to result in particle size distributions of low size,
i.e. below 150 nm. On the contrary, dispersing agents with poor
dispersing properties result in a higher particle size distribution,
which indicates particle aggregate formation. Typical distribu-
tions are shown in Fig. S4.
To obtain a better understanding of the observed experi-

mental results, we investigate the datasets using machine

learning regression. The data are selected as discussed in the
supporting information, resulting in a dataset of 25 and 16 data
points for the TMCL- and UDL-based dispersing agents,
respectively.

TMCL dataset
Preliminary regression modeling shows that an ensemble model
based on simple linear regression – using the polyester/PEI
weight ratio and the polyester and PEI molecular weights
(TMCL1) – is rather hard to beat (Figs S5 and S6).29 As polynomial
models are prone to overfitting§ small datasets (due to their large
number of features), regularization of such models is required.
Regularization is a method in which one adds a special penalty
term to the polynomial model. This penalty term leads to the sup-
pression (or even removal) of features (i.e. descriptors) which do
not contribute significantly to the model. Of the various penalty
functions available, we selected a penalty function with an L1
measure** known as LASSO regularization as it gives rise to a very
strong regularization of models.31,32 As our models are in essence
ensemble models, counting the number of ensemble instances
for which a feature is not removed provides a measure for the
importance of this feature.29 Analysis of the most important fea-
tures in the regularized polynomial regression models indicates
the presence of a strong functional relation with high polynomial
order for the product of the polyester molecular weight and the
polyester/PEI weight ratio. Further investigation of several feature
combinations eventually leads us to select 11 relevant features for
further study (see section 2.1 of the supporting information for a
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Figure 5. (a) FTIR spectra of a dispersing agent based on polyUDL-COOH coupled with PEI. The magenta line shows the formation of an amide salt after
30 min at 120 °C, and the blue line shows the result of coupling after 4 h at 150 °C. (b) GPC traces of PEI, polyUDL and PEI-g-polyUDL in HFIP + 0.019%
NaTFA.

Figure 6. Schematic of different structural features varied in the disper-
sant design to tune the dispersion quality.

§A model is overfitting when it has so much flexibility that it can perfectly
predict the dataset on which it is trained, but fails badly on new and
unknown data. For example, take four data points following a linear rela-
tion y = 3x + 5 + ⊐noise; a fourth-degree polynomial allows one to perfectly
fit any four data points. However, any new point will in general be very
poorly predicted. In contrast, any linear model will not perfectly model
the four data points due to the noise term, but it will predict new data
much more accurately than the fourth-degree polynomial.
**In an L1 measure, distances are defined as x

→
��� ���=∑

i
xij j. Euclidean dis-

tances are also known as L2 measures.
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detailed discussion of how these features are selected). A simple
linear (non-regularized) regression model with these 11 features
is indicated as TMCL2 and is shown in Fig. 7(b). As is evident from

Table 1, this model is outperformed by the original linear regres-
sion model (lower MAE for TMCL1), even though the graphical
representation in Fig. 7 shows it to closely follow the experimental

Figure 7. Various machine learning ensemble models, trained on the TMCL dataset: (a) TCML1 (animated gifs of these 3D graphs are provided as SI),
(b) TCML2, (c) TCML3 and (d) TCML6. Contours are added at 75, 100 and 125 nm, and the plane of particle size 100 nm is indicated by the yellow grid.

Table 1. Properties of selected machine learning models

TMCL

Model Model type No. features (selected >50% ensemble) MAEoob (nm) CIlow (95%) (nm)a CIhigh (95%) (nm)b

TMCL1 Linear 3 45.4 44.5 46.3
TMCL2 Linear 11 55.8 53.5 58.5
TMCL3 LASSO O1 11 (4) 35.0 34.1 36.3
TMCL5 LASSO O1 5 (5) 34.3 33.5 35.1
TMCL6 LASSO O1 5 (5) 33.4 32.7 34.2
UDL
UDL1 Linear 3 63.0 61.5 64.6
UDL2 LASSO O1 9 (8) 66.0 64.1 68.4
UDL3 LASSO O1 9 (7) 42.3 41.4 43.3
UDL4 LASSO O1 6 (5) 41.5 40.4 42.5

a CIlow, lower limit of the 95% confidence interval.
b CIhigh, upper limit of the 95% confidence interval.
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data. The TMCL2 model presents a very narrow canyon-like struc-
ture with some local valleys (Fig. 7(b)). The optimum dispersing
agent is found for Mn,GPC,r(polyTMCL) > 0.6 and a polyester/PEI
weight ratio of about 10. A second valley of interest is found
for polyTMCL with Mn,GPC,r around 0.7 and weight ratios in the
range 20–45. This second valley is located outside of the range
of the available experimental data making it hard to assess its
quality. In this regard, it is important to remember that 11 features
have been fitted to a dataset of only 25 data points, making the
presence of the second valley likely to be an artifact due to
overfitting.
When LASSO regularization is included, it becomes clear that

not all features have equal importance (Table S3). The number
of relevant features is significantly reduced, and the resulting
model (TMCL3) outperforms the original linear regression model
TMCL1 (Table 1). Removal of the least important features retains
the model quality (TMCL5) while reducing model complexity. This
final model is further stabilized by exponentiation of one specific
feature (supporting information, section 2.2). The TMCL3 and
TMCL6 models are shown in Figs 7(c) and (d). They present a
much smoother surface, with a wide valley following the same
general trend as the TMCL2 model. In this case however, the sec-
ond valley has disappeared, and only the optimum region for

Mn,GPC,r(polyTMCL) > 0.6 and lower polyester/PEI weight ratios
(<15) remains. For higher weight ratios the smallest particle sizes
are obtained with polyesters with lower molecular weight. Note,
however, that with increasing weight ratios the valley minimum
becomes narrower, and particle sizes rapidly increase for both
too high and too low polyester molecular weights. Of the models
presented, the TMCL6 model performs best in terms of numerical
quality (the out-of-bag estimate of the MAE is the lowest), but also
in terms of simplicity (only five features). Therefore, we propose
the following analytical model for the TMCL-based dispersing
agent:

Particle size = 15:54 exp
AC−11:042

6:441

� �
+161648:77

×exp
9×10−5

A

� �
−23log10B−218:28

B
C

+130:21
1
AC

−161555:28

where A and B represent the normalized Mn,GPC,r(polyTMLC) and
Mw,r(PEI) and C represents the dimensionless polyTMCL/PEI
weight ratio.

Figure 8. Various machine learning ensemble models, trained on the UDL dataset: (a) UDL1, (b) UDL2, (c) UDL3 and (d) UDL4. Contours are added at
75, 100 and 125 nm, and the plane of particle size 100 nm is indicated by the yellow grid. The model surfaces correspond to grafting densities of 2% (pur-
ple), 5% (black, with red contours) and 10% (green) (animated gifs of these 3D graphs are provided as SI).

Machine learning approach for design of hyperbranched polymers www.soci.org

Polym Int 2022; 71: 966–975 © 2022 The Authors.
Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.

wileyonlinelibrary.com/journal/pi

973

http://wileyonlinelibrary.com/journal/pi


UDL dataset
An important difference from the TMCL dataset is the fact that
only two distinct features are available, as the molecular weight
of PEI was identical in all experiments. With only two features,
the quality of the linear regression ensemble model appears
worse thanwhat is found for the TMCL dataset. However, for both,
the observed quality is in the range of the expected for datasets of
10–30 data points.23,29

During the preliminary regression modeling of the UDL dataset
(supporting information, section 2.2.2) we found that a third sim-
ple feature could be included: the grafting density, which in terms
of physical interpretation is related to the polyester/PEI weight
ratio. The grafting density is based on the molar ratio between
polyester and ethylene imine (see footnote to Table S1). This ratio
is derived fromMn,NMR(polyester), which could not be determined
with the highest accuracy possible because side reactions that
have influence on the end-group functionality, e.g. water initia-
tion, could not be excluded. It has been mentioned by Zhang
and Ling23 that in some cases low-quality data can even be used
to improve the model. Although the terms polyester/PEI weight
ratio and graft density are quite similar, they appear to be benefi-
cial for different data points in the construction of polynomial
models, hence both features are included in this work. At the level
of a simple linear regression (ensemble) model (UDL1), the quality
remains roughly unchanged: MAEoob ∼ 65 nm (Table 1). Investi-
gation of the possible benefits by feature transformation via tak-
ing a logarithm or exponentiation (UDL2) provides additional
hints for the construction of more complex features (supporting
information, section 2.2.2). Based on these series of regularized
polynomial regression models, nine complex features are con-
structed for the UDL3 model (Table 1). The resulting UDL3 model
clearly outperforms the linear regression model. The resulting
model, shown in Fig. 8(c), presents similarities to the TMCL model,
but indicates it to be much harder for the UDL polyester to pro-
vide a satisfactory result. The shape of the model surface shows
only little sensitivity to the grafting density. Within the UDL3
model, the optimumMn,GPC,r(polyUDL) is above 0.5, with a polyes-
ter/PEI weight ratio of 5 or less.
The UDL3 model is further optimized through the removal of

superfluous features (UDL4). This final model contains six features
but presents the same model quality as UDL3 (Table 1). Although
the general qualitative picture has not changed, the contribution
of the grafting density is reduced, as is indicated by the shift of the
contour lines delineating an optimum region. The qualitative pic-
ture is however retained. Mn,GPC,r(polyUDL) should be above 0.5
and the weight ratio below a factor 5.
The UDL4 model performs best in terms of numerical quality

(the out-of-bag estimate of the MAE is the lowest), but also in
terms of simplicity (only six features). We therefore propose the
following analytical model for the UDL-based dispersing agent:

Particle size = 4:62D+
46:76
A

+2:43C exp
A−0:59
0:20

� �

+2:67
C2

D
−0:67

×exp 2
C−10:15
6:69

+
D−8:19
5:63

� �� �
+
51:86
D

−6:51

where A represents Mn,GPC,r(polyUDL), C the dimensionless poly-
UDL/PEI weight ratio and D the grafting density (%).

Machine learning models versus laboratory context
As described in the above subsections, two machine learning
models were developed based on the experimental datasets for
the TMCL and UDL dispersing agents. The fitted best models are
presented in Figs 7(d) and 8(d) for TMCL and UDL, respectively.
For most of the experimental data points the fit is of good quality,
with some exceptions which increase the overall MAE. This is to be
expected for machine learning models trained on such extremely
small datasets. The overall shape of the model surfaces is quite
similar for both dispersing agents, as one would expect. For both
dispersing agents we observe that the optimum behavior is
expected for Mn,GPC,r > 0.5–0.6, indicating similar molecular
weights for both TMCL and UDL. The maximum polyester/PEI
weight ratios, on the other hand, show a somewhat different pic-
ture. Favorable results, i.e. small particle sizes, are obtained with a
polyTMCL/PEI ratio < 15, while for polyUDL-based dispersants the
weight ratio should be kept lower (polyUDL/PEI < 5). This means
that there is less freedom in the chemical composition of PEI-g-
polyUDL compared to PEI-g-polyTMCL.

CONCLUSIONS
PolyTMCL and polyUDL are efficient polyesters to be used as
matrixophilic chains for the preparation of polymeric dispersing
agents with PEI. Good stability of pigment dispersions was
achieved for UV-curable matrices made of DPGDA with PB15:4
cyan as pigment, reaching low pigment particle sizes of about
100 nm. A machine learning regression model based on our pre-
viously developed ensemble approach for small datasets was
developed to predict structure–property relationships between
the dispersant and the dispersion quality. Normalized molecular
weights of the polyester greater than 0.55 for polyTMCL and
greater than 0.5 for polyUDL as well as a low polyester/PEI weight
ratio (<15 for polyTMCL- and <5 for polyUDL-based dispersants)
contributed to better pigment particle stabilization. The best
model for PEI-g-polyTMCL dispersants gives MAEoob of 33.4 nm,
while for PEI-g-polyUDL, MAEoob of 41.5 nm could be achieved.
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