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Abstract

In this work we present the homogenization of a reaction-diffusion model that
includes an evolving microstructure. Such type of problems model, for example,
mineral dissolution and precipitation in a porous medium. Hence, we are dealing
with a multi-scale problem with free boundaries on the pore scale. In the initial state
the microscopic geometry is given by a periodically perforated domain, including
spherical solid grains. The radius of each grain is of order ǫ and depends on the
unknown (the solute concentration) at its surface. Therefore the radii of the grains
change in time, leading to a nonlinear, free boundary problem. In a first step,
we transform the evolving micro domain to a fixed, periodically domain. Using
the Rothe-method we prove the existence of a weak solution and obtain a priori

estimates that are uniform with respect to ǫ. Finally, letting ǫ → 0, we derive
a macroscopic model, the solution of which approximates the micro-scale solution.
For this, we use the method of two-scale convergence, and obtain strong compactness
results enabling to pass to the limit in the nonlinear terms.

1 Introduction

In this paper, we consider a reaction-diffusion model defined in a perforated domain hav-
ing a heterogeneous microstructure. Due to the reactions taking place at the boundaries
of the perforations, these perforations may evolve. This evolution is not known a priori,
but depends on the solution of the problem, and therefore the model involves free bound-
aries at the micro scale. The initial state of the domain is isomorphic to a periodically
perforated domain, where the periodicity is of order ǫ, with ǫ being a small, positive
scale separation parameter. The aim of this work is to establish existence of a weak
solution with ǫ-uniform a priori estimates, and to derive the corresponding macroscopic
model. This is obtained by homogenization methods, after passing to the limit ǫ → 0.
The macroscopic model is derived rigorously, its solution being an approximation of the
solution to the microscopic model.

Reactive transport in evolving porous media occur in a variety of real-life applications.
We mention here mineral precipitation and dissolution [7, 46, 40], biofilm growth [39],
colloid deposition [13], or water diffusion into absorbent particles [15, 41]. A typical
example is the precipitation and dissolution taking place in a porous medium, consisting
of alternating solid grains and voids (the pore space). We assume that the void space is
completely filled by a fluid, say, water, which is stationary. Soluble species can diffuse
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inside the fluid, and can precipitate at the fluid-solid interface to form a solid layer
(e.g. salt). The reverse process of dissolution is also possible, by which solute species is
released back to the fluid. Assuming that, in general, the precipitate layer has a thickness
that is comparable to the typical pore size, when defining the micro-domain one has to
exclude the grains and (if present) the precipitate layer. In other words, the boundary
of the micro-domain wherein the problem is defined has two parts: the outer part of the
boundary, where the entire medium is embedded into, and the inner boundary, defined
as the solid-fluid interface. One cannot assume that the micro-domain remains fixed in
time, as the thickness of the precipitate layer depends on the species concentration, which,
itself, is an unknown in the model. Hence, the precipitation and dissolution processes lead
to a variable pore space, and the fluid-solid interface is a free boundary.

In a simplifying setting, we assume here that the porous medium includes spherical
solid grains, having a radius of order ǫ, and being periodically-distributed. Furthermore,
we assume that the evolution of this grain is radially symmetric, therefore its evolution
is well described by the radius of the resulting solid. In this way, the free boundary is
reduced to a one-dimensional equation for the radius. Nevertheless, this still leads to a
strongly nonlinear problem, defined in time-dependent domains with a priori unknown
evolution.

In what follows let T > 0 stand for a maximal time and consider a heterogeneous
medium Ω ∈ R

d (d ∈ {2, 3}), consisting of regions occupied by a stationary fluid (the
pore space) and of small, solid regions of spherical shape (the grains with the attached
mineral layers). These centres of the solid regions are distributed periodically in a d-
dimensional (hyper)cube structure. The distance between two successive centres is of ǫ
order (the micro-scale length). In this way, the pore space depends on both ǫ and on
the time t, and for given a t ∈ [0, T ] we denote the pore space by Ωǫ(t). Within Ωǫ(t),
we consider a reaction-diffusion equation, with the solute concentration uǫ as unknown
quantity. For the ease of presentation, and since the aim here is to provide mathematically
rigorous derivation of the macroscopic model, only one solute species is considered. In
the case of two species, the model can be reduced to the situation here by considering a
decoupled component of the model, the total electric charge (see, e.g. [25, 43]).

Recalling the simplifying assumptions made above, the solid phase consists of spherical
regions, including the original solid part of the medium, and the radially symmetric
mineral layer. These solids are characterised by a radius Rǫ, which is grain-dependent
and also changes in time. More precisely, it is obtained as the solution of an ordinary
differential equation, depending in a nonlinear way on the (averaged) solute concentration
at the surface of the grain and the radius itself. In this way, the spatial variable x enters
in the equation as a parameter, and varies for every microscopic cell. Such a structure
can also be found in the models discussed in [13, 15, 40, 41], but for different types of
applications and not in the context of homogenization.

As already mentioned, the goal of this contribution is to provide a mathematically
rigorous derivation of the macroscopic model approximating the microscopic precipitation-
dissolution model defined in evolving microscopic geometries. In doing so, two aspects are
essential. First, we transform the problem defined in the evolving micro-domain Ωǫ(t) into
one problem defined in a fixed, periodically perforated domain Ωǫ. In doing so, we employ
the Hanzawa transformation [23] (we also refer to [37] for an overview of this topic). This
leads to a change in the coefficients of the equations, which now depend on the radius
of the grains and therefore on the unknown concentration. We prove the existence of a
solution pair (uǫ, Rǫ) by using the Rothe-method, and derive a priori estimates that are
uniform with respect to the parameter ǫ.
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Secondly, for the derivation of the macroscopic model, which is obtained in the limit
along a sequence ǫ → 0, we use the method of two-scale convergence. To pass to the limit
in the nonlinear terms, we need strong two-scale convergence results for the concentration
uǫ, as well as for the coefficients depending on the radius Rǫ and its time derivative ∂tRǫ.
For the latter, this is obtained as a consequence of the convergence of the radius function
Rǫ, for which a Kolmogorov-type compactness argument is used. As will follow from
below, due to the nonlinear character of the problem and because of the coefficients for
the time-derivative appearing in the transformed model, we cannot obtain ǫ-uniform a
priori estimates for ∂tuǫ, what would guarantee the strong two-scale convergence of uǫ, see
[19, 30]. We therefore apply an alternative strategy, namely to control the product Jǫuǫ,
where Jǫ denotes the Jacobi determinant of the Hanzawa transformation, and to solve
an auxiliary approximation problem to establish the strong convergence of uǫ. Finally,
for the strong convergence of ∂tRǫ and to identify the limit equation for the radius, we
prove a two-scale compactness result for averaged functions on the oscillating surface of
the micro cells. With these convergence results, we are able to pass to the limit in the
microscopic model.

The outcome is a macroscopic model consisting of a reaction-diffusion equation for the
macroscopic concentration, defined in the entire Ω, coupled with an ordinary differential
equation for the macroscopic radius depending on the macroscopic concentration. The
effective parameters like the diffusion or the porosity are obtained by solving cell problems
formulated in evolving reference cells, and accounting for the microscopic evolution of the
porous medium. The resulting is therefore a strongly coupled, two-scale mathematical
model, defined in the entire domain Ω that does not depend on time.

The analysis and homogenization of reaction-diffusion models defined in evolving mi-
croscopic geometries have been addressed in several publications. Various strategies have
been adopted, depending also on the particular geometry considered there. The simplest
situation appears in one spatial dimension, or if the pore space of a porous medium is a
long but thin strip or tube. Then the evolution of the solid-fluid interface can be described
by a free boundary function. In this sense we refer to [45] for the one-dimensional case,
where the existence and uniqueness of a solution for a precipitation-dissolution model
involving multi-valued dissolution rates is proved, using the fixed-domain transformation
proposed in [42]. In the multi-dimensional case, we mention [44, 26], where effective
models are derived formally by transversal averaging.

For more general situations, as considered here, level set methods have been employed
to describe the evolving microscopic geometry. We refer to [46, 7, 8, 22, 40], where dis-
solution and precipitation processes are modelled, and to [39] for a similar approach in
modelling biofilm growth in a porous medium. However, the rigorous homogenization is
missing. Without entering into details, we mention that one can consider as an alter-
native to the free boundaries the phase-field approach. Then, the fluid-solid interface is
approximated by a narrow diffuse-interface layer.

Whereas a rich literature exists on the rigorous homogenization of reactive transport
processes with nonlinear reaction terms in the bulk domain and the microscopic surface
for a complex, but fixed microstructure, see for example [12, 19, 20, 18, 31], the results
for an evolving microstructure are scarce. Moreover, in most of the papers dealing with
such cases, the microstructural evolution is assumed known a priori. In this sense, we
mention [35, 36], where homogenized models are derived rigorously for linear reaction-
diffusion-advection problems (also see [16]). Close to the present work is [21], where
the reaction and adsorption/desorption terms are nonlinear, without requiring a radially
symmetric microscopic evolution, and the diffusion is low, leading to a different scaling
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for the gradient of the concentration; however, the evolution is assumed known. Some
general two-scale results for transformations of locally periodic domains are treated in
[48].

In all these works, the models are defined in perforated domains, which resembles
well the structure of a porous medium with variable microstructure, but the microscopic
evolution is known a priori. For the analysis of free boundary models with radially sym-
metric evolution of the interface we refer to [15]. There, the existence of a solution is
proved for a system involving a nonlinear parabolic problem with radially symmetric per-
forations, in which the rate of change of the radius of these perforations depends linearly
on the saturation. Also, the analysis does not include any homogenization results. Also,
the two-scale system considered in [13] is the homogenized counterpart of a microscopic
problem that is similar to the one considered here, but for linear adsorption/desorption
rates. The existence of a solution is obtained for sufficiently small times. We also mention
[17], where rigorous upscaling results are proved for the Laplace and the heat equations
posed in a domain with a rough/rapidly oscillating boundary. This rough boundary is
also a free boundary, as its normal velocity depends (linearly) on the solution, with a
time-dependent rate.

Our paper is organized as follows: In Section 2 we formulate the microscopic model on
the evolving domain Ωǫ(t) and transform it to the fixed domain Ωǫ. In Section 4 we prove
existence for the microscopic model and establish a priori estimates depending explicitly
on ǫ. In Section 5 we show the two-scale convergence results for the microscopic solution
and derive the macroscopic model. A conclusion is given in Section 6. Some elemental
calculations concerning the Hanzawa transformation can be found in die Appendix A.

2 The microscopic model

In what follows T > 0 is a finite time, ǫ > 0 denotes a small scale separation parameter
s.t. ǫ−1 ∈ N (n ∈ N0 being the spatial dimension), and ℓ = (ℓ1, . . . , ℓn) ∈ N

n is an
n-tuple of strictly positive natural numbers. Let Ω = (0, ℓ) = (0, ℓ1) × · · · × (0, ℓn) and
Y := (0, 1)n. The center of Y is denoted by m := 1

2 (1, . . . , 1) ∈ R
n. For the set of n-tuples

Kǫ := {k ∈ Z
n : ǫ(Y + k) ⊂ Ω} one has

Ω =
⋃

k∈Kǫ

ǫ
(
Y + k

)
. (1)

In other words, we decompose Ω into a set of microscopic (ǫ-sized) hypercubes, two dif-
ferent ones sharing at most one side. Each x ∈ Ω is contained in a microscopic hypercube
having the center

mǫ,x := ǫ
([x

ǫ

]
+m

)
. (2)

To introduce the evolving geometry we first define R,R representing the minimal, re-
spective maximal admissible radius of an n-dimensional sphere contained in a microscopic
hypercube, and satisfying

0 < R < R <
1

2
. (3)

Then, for any t ∈ [0, T ] and x ∈ Ω we associate a radius

rǫ,t,x := Rǫ (t,mǫ,x) , (4)
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where the function Rǫ will be a solution component of the problem stated below.
Further, for any x ∈ Ω a unique k ∈ Kǫ exists s.t. x ∈ ǫ(Y + k), namely k =

[
x
ǫ

]
.

Then, for any x ∈ Ω, with k as before and t ∈ [0, T ], we consider the n-dimensional ball,
respectively sphere

Bǫ,k(t) := BRǫ(t,x)(ǫ(m+ k)), Γk
ǫ (t) := Γǫ

(
t, ǫ
[x
ǫ

])
:= ∂Bǫ,k(t),

both having the radius rǫ,t,x ∈ (ǫR, ǫR) ⊂
(
0,

ǫ

2

)
. With this, at any time t, the evolving

microscopic domain and its inner part of the (freely-moving) boundary are defined as

Ωǫ(t) := Ω \
⋃

k∈Kǫ

Bǫ,k(t), respectively Γǫ(t) :=
⋃

k∈Kǫ

Γk
ǫ (t). (5)

Observe that the outer boundary ∂Ω is fixed. Finally, we define the sets

QT
ǫ :=

⋃

t∈(0,T )

{t} × Ωǫ(t), and HT
ǫ :=

⋃

t∈(0,T )

{t} × Γǫ(t). (6)

We consider the following microscopic problem that is motivated by microscopic models
for precipitation-dissolution processes in a porous medium (see e.g. [45, 44, 46]).

Problem Pǫ. Find uǫ, Rǫ : Q̄
T
ǫ → R solving

∂tuǫ −∇ ·
(
D∇uǫ

)
= f in QT

ǫ , (7a)

−D∇uǫ · νǫ = ∂tRǫ(uǫ − ρ) on HT
ǫ , (7b)

−D∇uǫ · νǫ = 0 on (0, T )× ∂Ω, (7c)

∂tRǫ = Gǫ(t, x, uǫ, Rǫ) in QT
ǫ , (7d)

uǫ(0) = uin
ǫ in Ωǫ(0), (7e)

Rǫ(0) = Rin
ǫ in Ωǫ(0). (7f)

Here, D is a diffusion tensor (its properties being mentioned in Assumption (A6) below)
and ρ > 0 is a constant representing the molar density of the precipitate. The unknowns
uǫ and Rǫ represent the concentration of the solute species, respectively the thickness of
the precipitate layer around a grain centered at ǫ

[
x
ǫ

]
. The vector νǫ is the unit normal

to Γǫ(t) outwards Ωǫ(t), while uin
ǫ and Rin

ǫ are given initial conditions (see Assumptions
(A1) and (A2)). The function Gǫ appearing in (7d) is defined as

Gǫ(t, x, uǫ, Rǫ) =
ǫ∣∣Γǫ

(
t, ǫ
[
x
ǫ

])∣∣
∫

Γǫ(t,ǫ[xǫ ])
g

(
uǫ(t, z),

Rǫ(t, z)

ǫ

)
dz. (7g)

Observe that the domain Ωǫ(t) depends on the unknown function Rǫ, and therefore this
problem involves a (microscopic) free boundary. Further, for any t ∈ (0, T ), Gǫ(t, ·, uǫ, Rǫ)
is constant inside microscopic cells, i.e. inside any ǫ(Y +k) with k ∈ Kǫ. The perforation
of the microscopic cell evolves in a radially symmetric way with radius Rǫ. From the
application point of view, this is a simplified setup, in the sense that we assume that the
precipitate layer around a grain has a uniform, but unknown thickness. This is guaranteed
by (7d). Based on Assumption (A4), we will prove that Rǫ remains between two values
ǫR and ǫR, so Γǫ

(
t, ǫ
[
x
ǫ

])
can never touch the boundary of the cell, or degenerate into a

point.
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Remark 1. Observe that (7d) is stated for all t ∈ (0, T ) and x ∈ Ωǫ(t), which implies
that Rǫ is defined in the entire Ωǫ(t). In fact, Rǫ is constant inside each microscopic cell
Yǫ,k(t) := Ωǫ(t)∩ ǫ(Y + k), with k ∈ Kǫ. This follows from (7d) and the definition of Gǫ

in (7g). Hence, in the following we extend the function Rǫ constantly from the perforated
micro cell Yǫ,k(t) to the whole micro cell ǫ(Y +k). Further, as we will see later, the micro
cells Yǫ,k(t) are included in Ω. Especially, we have ∂Ωǫ(t) \ Γǫ(t) = ∂Ω, i.e., the outer
boundary is fixed and Rǫ is defined on the whole fixed domain Ω.

For the functional spaces used below the notations are standard. We only mention
that L∞(Ω, C0,1

(
[0, T ],

[
ǫR, ǫR

])
) is the set of functions that are C0,1 w.r.t. time f.a.e.

x ∈ Ω, s.t. Rǫ is bounded by R and R.

Definition 1. The pair of functions (uǫ, Rǫ) with uǫ ∈ L2((0, T ), H1(Ωǫ(t))) and Rǫ ∈
L∞(Ω, C0,1

(
[0, T ],

[
ǫR, ǫR

])
) is a weak solution of Problem Pǫ if, for all φǫ ∈ C1

(
QT

ǫ

)

with φǫ(T, ·) = 0, it holds that

−
∫ T

0

∫

Ωǫ(t)

uǫ∂tφǫdxdt+

∫ T

0

∫

Ωǫ(t)

D∇uǫ · ∇φǫdxdt

=

∫ T

0

∫

Ωǫ(t)

fφǫdxdt−
∫ T

0

∫

Γǫ(t)

Gǫ(uǫ, Rǫ)(uǫ − ρ)φǫdσdt

+

∫

Ωǫ(0)

uin
ǫ φǫ(0)dx+

∫ T

0

∫

Γǫ(t)

∂tSǫ(t, S
−1
ǫ ) · νuǫφǫdσdt,

(8)

where Sǫ is defined in (9). Furthermore, the function Rǫ fulfills (7d) and the initial
condition (7f) almost everywhere.

Observe that, in the definition above, the function Sǫ describes the evolution of the
moving surface Γǫ(t). The evolution of the evolving domain Ωǫ(t) is given by (5).

2.1 Transformation to the fixed domain

As mentioned in the introduction, the present analysis relies on the idea of transforming
Problem Pǫ (or its weak form stated in Definition 1, defined on the evolving domain
Ωǫ(t), to a problem defined in a fixed, reference domain Ωǫ. To this aim, we employ the
Hanzawa transform, [23] (see also [37] for an overview of this topic). With R introduced
above, see (3), the domain Ωǫ is defined by

Ωǫ := Ω \
⋃

k∈Kǫ

BǫR (ǫ(k+m)).

Further, we define Γǫ := ∂Ωǫ \ ∂Ω. In other words, the microscopic domain is obtained
as the union of scaled and shifted reference elements

Y ∗ := Y \BR(m) = (0, 1)n \BR(m).

The boundary of BR(m) is denoted by Γ := ∂BR(m).
With this, for any t ∈ [0, T ] we consider the Hanzawa transformation Sǫ(t, ·) : Ωǫ →

Ωǫ(t), defined as

Sǫ(t, x) := x+
(
Rǫ(t, x)− ǫR

)
χ0

(x
ǫ

)
ν0

(x
ǫ

)
, (9)
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where the functions χ0 and ν0 are Y -periodic extensions to the entire Rn of the functions
defined in Appendix A. Since Rǫ is constant for every cell ǫ(Y + k) with k ∈ Kǫ, and
χ0 ∈ C∞

per(Y ), the function Sǫ is (strongly) differentiable with respect to x. According to
the calculations in Appendix A,

∇Sǫ(t, x) = In +

(
Rǫ − ǫR

ǫ

)
∇y (χ0ν0)

(x
ǫ

)
,

with In ∈ R
n×n being the identity matrix, and

0 <

(
R

R

)n−1

≤ det (∇Sǫ(t, x)) ≤ 1 + 2
(
R−R

)
. (10)

These estimates are crucial for the homogenization, as the functional determinant of the
transformation Sǫ is bounded away from 0, uniformly with respect to ǫ. We emphasize
that Sǫ is defined and smooth on the whole domain Ω, but the Jacobi determinant is not
positive anymore.

Now, define the functions

ũǫ : (0, T )× Ωǫ → R, ũǫ(t, x) := uǫ(t, Sǫ(t, x)),

R̃ǫ : (0, T )× Ωǫ → [ǫR, ǫR], R̃ǫ(t, x) := Rǫ(t, Sǫ(t, x)).
(11)

From Remark 1 we immediately obtain that, in fact, R̃ǫ and Rǫ coincide. However, to
better distinguish the equation on the fixed and the evolving domain, R̃ǫ will appear in
the solution pair (ũǫ, R̃ǫ) for the problem formulated in the fixed domain.

To simplify the writing, the functions defined below will be used frequently in what
follows,

Fǫ(t, x) := ∇Sǫ(t, x), Jǫ(t, x) := det(Fǫ(t, x)). (12)

The inverse and the transpose of the inverse of Fǫ are denoted by

F−1
ǫ (t, x) := (Fǫ(t, x))

−1
, F−T

ǫ (t, x) :=
(
F−1
ǫ (t, x)

)T
. (13)

After employing the Hanzawa transformation (9), (8) can be rewritten in terms of the
variables ũǫ and R̃ǫ. More precisely, for all φ ∈ H1(Ωǫ) and almost every t ∈ (0, T ) it
holds that

∫
Ωǫ

∂t
(
Jǫũǫ

)
φdx −

∫
Ωǫ

ũǫ∂tJǫφdx−
∫
Ωǫ

Vǫ · ∇ũǫφdx

+
∫
Ωǫ

Dǫ∇ũǫ · ∇φdx =
∫
Ωǫ

Jǫfǫφdx−
∫
Γǫ

∂tR̃ǫ(ũǫ − ρ)Jǫφdσ,
(14)

with fǫ, Vǫ and Dǫ defined as

fǫ(t, x) := f(t, Sǫ(t, x)),

Vǫ(t, x) := Jǫ(t, x)F
−T
ǫ (t, x)∂tSǫ(t, x),

Dǫ(t, x) := Jǫ(t, x)F
−1
ǫ D(Sǫ(t, x))F

−T
ǫ (t, x).

(15)

The evolution of the radius R̃ǫ is given by

∂tR̃ǫ(t, x) = Gǫ(t, x, ũǫ, R̃ǫ) =
ǫ

|ǫΓ|

∫

Γǫ(ǫ[ xǫ ])
g

(
ũǫ(t, z),

R̃ǫ(t, z)

ǫ

)
dσ,

7



where Γǫ : R
n → R

n is defined as

Γǫ(z) := ǫΓ + z, for any z ∈ R
n. (16)

The initial conditions read

ũǫ(0) = uin
ǫ (Sǫ(0, ·)) =: ũin

ǫ in Ωǫ,

R̃ǫ(0) = Rin
ǫ (Sǫ(0, ·)) =: R̃in

ǫ in Ωǫ.

As before, one has R̃in
ǫ = Rin

ǫ since Rin
ǫ is constant on every cell ǫ(Y + k), k ∈ Kǫ.

In summary, the problem transformed to the fixed domain is
Problem P̃ǫ. Find ũǫ, R̃ǫ : [0, T )× Ω̄ǫ → R solving

∂t(Jǫũǫ)− Vǫ · ∇ũǫ − ũǫ∂tJǫ = ∇ ·
(
Dǫ∇ũǫ

)
+ Jǫfǫ in (0, T )× Ωǫ, (17a)

−Dǫ∇ũǫ · νǫ = R̃′
ǫ(ũǫ − ρ)Jǫ on (0, T )× Γǫ, (17b)

ũǫ = 0 on (0, T )× ∂Ω, (17c)

∂tR̃ǫ = Gǫ(t, x, ũǫ, R̃ǫ) in (0, T )× Ωǫ, (17d)

ũǫ(0) = ũin
ǫ in Ωǫ, (17e)

R̃ǫ(0) = R̃in
ǫ in Ωǫ. (17f)

The definition of a weak solution of Problem P̃ǫ is given in Definition 2 below.
We now state the assumptions on the data

Assumptions on the data:

(A1) For the microscopic initial data uin
ǫ ∈ H1(Ωǫ) a C > 0 exists such that

‖uin
ǫ ‖H1(Ωǫ) ≤ C

uniformly w.r.t ǫ. Further there exists uin ∈ H1(Ω) such that uin
ǫ converges in the

two-scale sense to uin.

(A2) The initial radii Rin
ǫ ∈ L∞(Ω) are constant on every cell ǫ(Y +k), k ∈ Kǫ. Further-

more, there exist R,R ∈ R, 0 < R < R < 1
2 , such that

ǫR ≤ Rin
ǫ ≤ ǫR in a.e. sense.

Also, we assume that a C > 0 exists such that for any 0 < h ≪ 1 and ℓ ∈ Z
n with

|ǫℓ| < h it holds

ǫ−1‖Rin
ǫ (·+ ℓǫ)−Rin

ǫ ‖L2(Ωh) ≤ C|ℓǫ|,

with Ωh := {x ∈ Ω : dist(∂Ω, x) > h}. Additionally, there exists Rin ∈ L∞(Ω),
such that

ǫ−1Rin
ǫ → Rin in the two-scale sense

in Lp for every p ∈ [1,∞).

(A3) For the (precipitation/dissolution) rate one has g ∈ C1(R2) ∩W 1,∞(R2).

(A4) There exists 0 < δ0 < R−R, such that for all u ∈ R it holds that

8



(i) g(u,R) ≤ 0 for all R ∈
[
R − δ0, R

]
,

(ii) g(u,R) ≥ 0 for all R ∈
[
R,R+ δ0

]
.

(A5) The source term is continuous, f ∈ C0
(
[0, T ]× Ω).

(A6) The diffusion tensor D ∈ C0
(
Ω
)n×n

is symmetric and coercive, i. e., there exists
c0 > 0 such that

D(x)ξ · ξ ≥ c0 for all x ∈ Ω, ξ ∈ R
n.

Note that, by the assumption on the shifts of Rin
ǫ in Assumption (A2), ǫ−1Rin

ǫ is
relatively compact in L2(Ω), and Rin ∈ H1(Ω), see Remark 5.

2.2 Weak formulation of the micro model

Now, we give the definition of the weak solution of the microscopic model (7). In the
following, we suppress the notation ·̃, i. e., the solution of Problem P̃ǫ is denoted (by an
abuse of notation) by (uǫ, Rǫ). We consider weak solutions, as defined below.

Definition 2. The pair (uǫ, Rǫ) with uǫ ∈ L2((0, T ), H1(Ωǫ)) such that ∂t(Jǫuǫ) ∈
L2((0, T ), H1(Ωǫ)

′) and Rǫ ∈ W 1,∞((0, T ), L2(Ωǫ)) s.t. Rǫ, ∂tRǫ ∈ L∞((0, T ) × Ωǫ),
and ǫR ≤ Rǫ ≤ ǫR is a weak solution of Problem P̃ǫ if, for all φ ∈ H1(Ωǫ), it holds for
almost every t ∈ (0, T ) that

〈∂t
(
Jǫuǫ

)
, φ〉H1(Ωǫ)′,H1(Ωǫ) −

∫

Ωǫ

uǫ∂tJǫφdx −
∫

Ωǫ

Vǫ · ∇uǫφdx

+

∫

Ωǫ

Dǫ∇uǫ · ∇φdx =

∫

Ωǫ

Jǫfǫφdx−
∫

Γǫ

∂tRǫ(uǫ − ρ)Jǫφdσ,

(18)

and

∂tRǫ(t, x) =
ǫ

|ǫΓ|

∫

Γǫ(ǫ[xǫ ])
g

(
uǫ(t, z),

Rǫ(t, z)

ǫ

)
dσ. (19)

Additionally, (uǫ, Rǫ) fulfill the initial conditions (17e) and (17f).

Remark 2.

(i) We emphasize that due to the mean value theorem, see [14, Chapter 5.9, Theorem
2], it holds that Rǫ ∈ C0,1([0, T ], L∞(Ωǫ)). Therefore, (19) holds for all t ∈ [0, T ]
and almost every x ∈ Ω.

(ii) In the following we extend Rǫ constantly from every perforated micro cell ǫ(Y ∗ +k)
with k ∈ Kǫ to the whole cell ǫ(Y +k), and therefore Rǫ can be treated as a function
defined on the whole domain Ω.

We will see that ∂tuǫ ∈ L2((0, T ), H1(Ωǫ)
′) and the initial condition for uǫ is well-

defined. However, the norm of ∂tuǫ is of order ǫ−1 and therefore we work with the
time-derivative ∂t(Jǫuǫ) to establish convergence results for the micro solutions to pass
to the limit ǫ → 0.
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Remark 3. In fact, (18)can be rewritten as

〈∂t
(
Jǫuǫ

)
, φ〉H1(Ωǫ)′,H1(Ωǫ) +

∫
Ωǫ

uǫVǫ · ∇φǫdx−
∫
∂Ωǫ

uǫφǫVǫ · νdσ
+
∫
Ωǫ

Dǫ∇uǫ · ∇φdx =
∫
Ωǫ

Jǫfǫφdx−
∫
Γǫ

∂tRǫ(uǫ − ρ)Jǫφdσ,
(20)

This is a consequence of the equality

−
∫

Ωǫ

ũǫ∂tJǫφǫdx−
∫

Ωǫ

Vǫ · ∇ũǫφǫdx =

∫

Ωǫ

ũǫVǫ · ∇φǫdx−
∫

∂Ωǫ

ũǫφǫVǫ · νdσ,

all ũǫ, φǫ ∈ H1(Ωǫ), where Jǫ, Vǫ are defined in (12)–(15). This holds since

∂tJǫ = ∇ · Vǫ (21)

(see [21, p. 105]), which is a direct consequence of Piola’s identity ∇ · (JǫF−1
ǫ ) = 0, see

e.g. [29, p. 117]. More precisely, for the term on the left in (21) one has

∂tJǫ = Jǫtr
(
F−1
ǫ ∂tFǫ

)
(22)

due to the Jacobi formula. For the term on the right, the product rule gives

∇ · Vǫ = tr
(
JǫF

−1
ǫ ∇∂tSǫ

)
+
[
∇ · (JǫF−1

ǫ )
]
· ∂tSǫ.

Using Piola’s identity, (21) follows immediately.

3 Main results

The aim of the paper is two-folded. First, we show the existence of a weak solution of
the microscopic problem in (17) together with uniform a priori estimates with respect to
ǫ. The following theorem is proven in Section 4.

Theorem 1. There exists a weak solution of the (transformed, microscopic) Problem P̃ǫ

in the sense of Definition 2. This solution fulfills the a priori estimates in Lemma 7.

In a second step we use the ǫ-uniform estimates to derive two-scale compactness results
for the micro solutions, and show that the ǫ → 0 limit functions u0 : (0, T )×Ω → R and
R0 : (0, T ) × Ω → R solve a macroscopic model with homogenized coefficients. In this
sense, we start by defining

S0(t, x, y) = y +
(
R0(t, x)−R

)
(χ0ν0)(y),

and

J0(t, x, y) = det(∇yS0(t, x, y)),

V0(t, x, y) = J0(t, x, y)∇yS0(t, x, y)
−1∂tS0(t, x, y),

and the averaged quantities

q(t, x) :=

∫

Y ∗

∇y · V0(t, x, y)dy,

J̄0(t, x) :=

∫

Y ∗

J0(t, x, y)dy.
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Further we define the moving cell surface as

Γ(t, x) := ∂BR0(t,x)(x).

Now, the macroscopic model is
Problem P0. Find u0, R0 : [0, T )× Ω̄ → R solving

∂t
(
J̄0u0

)
− u0q −∇ ·

(
D∗

0∇u0

)

=

∫

Y ∗

J0f0dy − |Γ(t, x)|∂tR0(u0 − ρ) in (0, T )× Ω,

−D∗
0∇u0 · ν = 0 on (0, T )× ∂Ω,

∂tR0 = g(u0, R0) in (0, T )× Ω,

u0(0) = uin in Ω,

R0(0) = Rin in Ω,

(23)

where D∗
0 is the homogenized diffusion coefficient defined in (50) via the cell problems

(48).
We proceed with the definition of a weak solution for the macroscopic model.

Definition 3. A weak solution of the (macroscopic) Problem P0 is a pair (u0, R0) satis-
fying

u0 ∈ L2((0, T ), H1(Ω)) with ∂t
(
J̄0u0

)
∈ L2((0, T ), H1(Ω)′),

R0 ∈ W 1,∞((0, T ), L∞(Ω)),

and for all φ ∈ H1(Ω) and almost every t ∈ (0, T ) it holds that

〈∂t(J̄0u0),φ〉H1(Ω)′,H1(Ω) −
∫

Ω

qu0φdx +

∫

Ω

D∗
0∇u0 · ∇φdx

=

∫

Ω

∫

Y ∗

J0f0dyφdx−
∫

Ω

∂tR0(u0 − ρ)φ|Γ(t, x)|dx.
(24)

Additionally, it holds almost everywhere in (0, T )× Ω

∂tR0 = g(u0, R0).

Further, there hold the initial conditions (J̄0u0)(0) = J̄0(0)u
in and R0(0) = Rin.

We emphasize the from the function spaces in the Definition 3 and the fact that
J̄0 ∈ L∞((0, T ), L∞(Ω)) ∩ L∞((0, T ), H1(Ω)), see Remark 7 and Remark 8, it follows
immediately that (J̄0u0) ∈ C0([0, T ], L2(Ω)), whereas it is not obvious in which sense we
can understand u0(0), see also Remark 8. In the remaining part of this work, we prove
that the macroscopic (weak) solution defined above is obtained as the limit ǫ → 0 of
solutions to the microscopic problems in (17).

Theorem 2. Let (uǫ, Rǫ) be a weak solution of the (microscopic) Problem P̃ǫ, in the
sense of Definition 2. Then, up to a sequence ǫ → 0, it holds that

uǫ → u0 strongly in the two-scale sense in L2, (25)

ǫ−1Rǫ → R0 in Lp((0, T )× Ω) (26)

for all p ∈ [1,∞), where the pair (u0, R0) is a weak solution of the macroscopic model (23),
in the sense of Definition 3. Additionally, we have u0 ∈ C0([0, T ], L2(Ω)) and u0(0) = u0.

For the definition of the two-scale convergence we refer to the Appendix B. The proof
of Theorem 2 is given in Section 5.
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4 Existence of a microscopic solution and a priori es-

timates

In this section we use the Rothe-method to establish the existence of a weak solution of
the microscopic model (17), and therefore (1), in the sense of Definition 2. Futher, we
show a priori estimates for the solution depending explicitly on the parameter ǫ. These
a priori estimates form the basis for the derivation of the macroscopic model.

4.1 The time-discretized model

We start by formulating the time-discretized model. For N ∈ N we define the time step
∆t := T

N
and set tj := j∆t for j ∈ {0, . . . , N}. Then, we are looking for a sequence of

solutions (uj
ǫ, R

j
ǫ) of the time-discretized problems. Clearly, for j = 0 we take u0

ǫ = uin
ǫ

and R0
ǫ = Rin

ǫ .

Definition 4. Let j ∈ {1, . . . , N} and (uj−1
ǫ , Rj−1

ǫ ) ∈ H1(Ωǫ)×L∞(Ωǫ) be given. A pair
(uj

ǫ , R
j
ǫ) ∈ H1(Ωǫ)× L∞(Ωǫ) is a solution of the time-discrete problem at time tj if

Rj
ǫ −Rj−1

ǫ

∆t
= Gj−1

ǫ in Ωǫ, (27)

and for all φ ∈ H1(Ωǫ) it holds that

∫

Ωǫ

Jj
ǫ u

j
ǫ − Jj−1

ǫ uj−1
ǫ

∆t
φdx +

∫

Ωǫ

Dj
ǫ∇uj

ǫ · ∇φdx

=

∫

Ωǫ

V j
ǫ · ∇uj

ǫφdx +

∫

Ωǫ

Jj
ǫ f

j
ǫ φdx +

∫

Ωǫ

uj
ǫ

Jj
ǫ − Jj−1

ǫ

∆t
φdx

−
∫

Γǫ

Gj−1
ǫ (uj−1

ǫ − ρ)φJj
ǫ dσ.

(28)

The time-discrete coefficients above are defined as

Gj−1
ǫ (x) :=

ǫ

|ǫΓ|

∫

Γǫ(ǫ[ xǫ ])
g

(
uj−1
ǫ ,

Rj−1
ǫ

ǫ

)
dσ,

Sj
ǫ (x) := x+ (Rj

ǫ − ǫR)χ0

(x
ǫ

)
ν0

(x
ǫ

)
,

F j
ǫ (x) := In +

Rj
ǫ − ǫR

ǫ
[∇y (χ0ν0)]

(x
ǫ

)
,

Jj
ǫ (x) := detF j

ǫ (x),

Dj
ǫ(x) := Jj

ǫ (x)
[
F j
ǫ (x)

]−1
D
(
Sj
ǫ (x)

) [
F j
ǫ (x)

]−T
,

V j
ǫ (x) := Jj

ǫ (x)
[
F j
ǫ (x)

]−T Rj
ǫ(x) −Rj−1

ǫ (x)

∆t
χ0

(x
ǫ

)
ν0

(x
ǫ

)
,

f j
ǫ (x) := fǫ(t

j , x).

(29)

Remark 4. Given uj−1
ǫ , Rj−1

ǫ , the existence of Rj
ǫ follows straightforwardly from (27).

Moreover, this also gives Jj
ǫ , see (29), which means that, in fact, (28) providing uj

ǫ is
linear. Moreover, as follows from Proposition 1 below, Rj

ǫ is constant on every microcell
ǫ(Y + k), assuming that the same holds for Rj−1

ǫ . Therefore we have F j
ǫ = ∇Sj

ǫ in
classical sense.
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The constant C > 0 used below is generic and does not depend on ∆t or ǫ.

Proposition 1. Let j ∈ {1, . . . , N} and (uj−1
ǫ , Rj−1

ǫ ) ∈ H1(Ωǫ) × L∞(Ωǫ) with ǫR ≤
Rj−1

ǫ ≤ ǫR, and assume Rj−1
ǫ is constant on every microscopic cell ǫ(Y +k) with k ∈ Kǫ.

Then, for ∆t small enough, we have Rj
ǫ ∈ L∞(Ωǫ) with ǫR ≤ Rj

ǫ ≤ ǫR. Also, Rj
ǫ is

constant on ǫ(Y + k), and one has

∥∥∥∥
Rj

ǫ −Rj−1
ǫ

∆t

∥∥∥∥
L∞(Ωǫ)

≤ Cǫ. (30)

Proof. From the assumption g ∈ L∞(R×R) in (A3) one obtains that Rj
ǫ ∈ L∞(Ωǫ), and

that (30) holds true. Further, the definition of Rj
ǫ implies that the function is constant

on every ǫ(Y + k) with k ∈ Kǫ. It remains to check the lower and upper bound of Rj
ǫ :

We only prove the upper bound, since the lower bound follows by the same arguments.
For almost every x ∈ Ωǫ, if R

j−1
ǫ (x) ∈ [ǫ(R− δ0), ǫR

]
we use Assumption (A4) to obtain

Rj
ǫ(x) ≤ Rj−1

ǫ (x) ≤ ǫR.

If ǫR ≤ Rj−1
ǫ (x) < ǫ(R − δ0), taking ∆t ≤ δ0/‖g‖L∞(R×R) gives

Rj
ǫ = Rj−1

ǫ +∆tGj−1
ǫ ≤ Rj−1

ǫ + ǫ∆t‖g‖L∞(R×R) ≤ Rj−1
ǫ + ǫδ0 < ǫR.

Finally, (30) is a direct consequence of Assumption (A3).

The boundedness of Rj
ǫ gives uniform estimates for the time-discrete coefficients, as

follows from the lemma below.

Lemma 1. Let j ∈ {1, . . . , N}, and uj−1
ǫ ∈ H1(Ωǫ), as well as Rj−1

ǫ , Rj
ǫ ∈ L∞(Ωǫ) be

given. Assume that ǫR ≤ Rj−1
ǫ , Rj

ǫ ≤ ǫR and Rj−1
ǫ , Rj

ǫ are constant in every cell ǫ(Y +k)
with k ∈ Kǫ. Then we have Sj

ǫ , F
j
ǫ ∈ C∞(Ωǫ)

n, satisfying

‖Sj
ǫ‖C1(Ωǫ)

= ‖Sj
ǫ‖C0(Ωǫ)

+ ‖F j
ǫ ‖C0(Ωǫ)

≤ C. (31a)

Similarly, for the Jacobi-determinant we have Jj
ǫ ∈ C∞(Ωǫ), with

(
R

R

)n−1

≤ Jj
ǫ ≤ C. (31b)

Further, we have Dj
ǫ ∈ C0(Ωǫ)

n×n and V j
ǫ ∈ C0(Ωǫ)

n, with

‖Dj
ǫ‖C0(Ωǫ)

+ ‖V j
ǫ ‖L∞(Ωǫ) ≤ C. (31c)

Additionally, it holds that

∥∥∥∥
Jj
ǫ − Jj−1

ǫ

∆t

∥∥∥∥
C0(Ωǫ)

≤ C. (31d)

Proof. First, we observe that, since F j
ǫ = ∇Sj

ǫ ∈ C∞(Ωǫ)
n×n, the regularity and the

estimates for F j
ǫ are a direct consequence of the results for Sj

ǫ .
Next, since Rj

ǫ is constant on ǫ(Y + k) for every k ∈ Kǫ, χ0 and ν0 are smooth, and
χ0

(
·
ǫ

)
has compact support in ǫ(Y + k). This immediately implies the smoothness of

Sj
ǫ , F

j
ǫ , J

j
ǫ , and V j

ǫ . Further, we have F j
ǫ = En on the lateral boundary of the micro
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cell ∂(ǫ(Y + k)), and, Assumption (A6) gives Dj
ǫ ∈ C0(Ωǫ)

n×n. Inequality (31a) follows
immediately from ǫR ≤ Rj

ǫ ≤ ǫR. For the estimate (31b), we first notice that the
regularity of the determinant and the essential boundedness of F j

ǫ implies ‖Jj
ǫ ‖L∞(Ωǫ) ≤

C. The lower bound is obtained from the results in Appendix A.
To prove (31c), one needs to control the inverse of F j

ǫ (x). This is achieved by using
the following inequality, stating that a C > 0 exists such that, for any invertible matrix
A ∈ R

n×n, and for an arbitrary norm in R
n×n,

‖A−1‖ ≤ C

| det(A)| ‖A‖
n−1. (32)

This inequality is straightforward for the spectral norm in R
n×n, and extends to any

norm by the equivalence of norms in finite dimensional vector spaces. Then, by (31b),
for almost every x ∈ Ωǫ one gets

∥∥∥
[
F j
ǫ (x)

]−1
∥∥∥ ≤ C

Jj
ǫ (x)

∥∥F j
ǫ (x)

∥∥n−1 ≤ C,

implying (31c). Finally, (31d) follows from the local Lipschitz continuity of the determi-
nant, the essential boundedness of F j

ǫ , and the inequality (30).

We are now able to prove the existence of a weak solution for the time-discrete prob-
lems, together with some ǫ-dependent a priori estimates.

Proposition 2. Let j ∈ {1, . . . , N} and (uj−1
ǫ , Rj−1

ǫ ) ∈ H1(Ωǫ) × L∞(Ω) be given such
that ǫR ≤ Rj−1

ǫ ≤ ǫR, and Rj−1
ǫ is constant on every cell ǫ(Y +k), k ∈ Kǫ. For ∆t small

enough, there exists a weak solution (uj
ǫ , R

j
ǫ) of the time-discrete problem from Definition

4.

Proof. As mentioned in Remark 4, the existence of Rj
ǫ is straightforward, while uj

ǫ is the
weak solution of a linear problem. Moreover, from the proof of Proposition 1, one gets
that choosing ∆t ≤ δ0/‖g‖L∞(R×R) guarantees that the estimates there, and therefore in
Lemma 1 as well, are valid. The variational equation (28) can be rewritten as

ajǫ(u
j
ǫ , φ) = ljǫ(φ) for all φ ∈ H1(Ωǫ),

with ajǫ : H
1(Ωǫ)×H1(Ωǫ) → R and ljǫ : H

1(Ωǫ) → R defined by

ajǫ(u, φ) :=

∫

Ωǫ

Jj−1
ǫ

∆t
uφdx +

∫

Ωǫ

Dj
ǫ∇u · ∇φdx −

∫

Ωǫ

V j
ǫ · ∇uφdx,

ljǫ(φ) :=

∫

Ωǫ

Jj−1
ǫ

∆t
uj−1
ǫ φdx+

∫

Ωǫ

Jj
ǫ f

j
ǫ φdx −

∫

Γǫ

Gj−1
ǫ

(
uj−1
ǫ − ρ

)
Jj
ǫ φdσ.

Obviously, ajǫ is bilinear and ljǫ is linear, and both are continuous. To apply the Lax-
Milgram Lemma we have to prove the coercivity of the bilinear-form ajǫ . Since Jj−1

ǫ is
bounded away from 0 (uniformly w.r.t. ǫ and j) and D is coercive, we get the coercivity
of Dj

ǫ , i. e., there exists a constant d > 0, such that for every x ∈ Ωǫ it holds that

Dj
ǫ(x)ξ · ξ ≥ d for all ξ ∈ R

n.

Further, the essential boundedness of V j
ǫ implies the existence of a constant C1 > 0, such

that

−
∫

Ωǫ

u V j
ǫ · ∇udx ≥ −C1‖u‖2L2(Ωǫ)

− d

2
‖∇u‖2L2(Ωǫ)

.
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Together, we obtain for all u ∈ H1(Ωǫ)

ajǫ(u, u) ≥
∫

Ωǫ

[
Jj−1
ǫ

∆t
− C1

]
|u|2dx+

d

2
‖∇u‖2L2(Ωǫ)

.

Recalling the lower bounds for Jj−1
ǫ , which are uniform with respect to j, this implies

the coercivity of ajǫ for ∆t small enough, and the claim is proved.

Proposition 3. Assume ∆t small enough. Then, a C > 0 not depending on of ǫ and ∆t
exists such that the sequence of time-discrete solutions (uj

ǫ, R
j
ǫ) (j = 1, . . . , N) satisfies

the estimates

max
j∈{1,...,N}

‖uj
ǫ‖L2(Ωǫ) +∆t

N∑

j=1

‖∇uj
ǫ‖2L2(Ωǫ)

≤ C.

Proof. We take ∆tuj
ǫ as test function in (28) to obtain

A1
ǫ +A2

ǫ : =

∫

Ωǫ

(
Jj
ǫ u

j
ǫ − Jj−1

ǫ uj−1
ǫ

)
uj
ǫdx+∆t

∫

Ωǫ

Dj
ǫ∇uj

ǫ · ∇uj
ǫdx

= ∆t

∫

Ωǫ

V j
ǫ · ∇uj

ǫu
j
ǫdx+∆t

∫

Ωǫ

Jj
ǫ f

j
ǫ u

j
ǫdx+∆t

∫

Ωǫ

(
uj
ǫ

)2 Jj
ǫ − Jj−1

ǫ

∆t
dx

−∆t

∫

Γǫ

Gj−1
ǫ

(
uj−1
ǫ − ρ

)
uj
ǫJ

j
ǫ dσ

=:

4∑

i=1

Bi
ǫ.

For the first term on the left-hand side we have

A1
ǫ =

1

2

∥∥
√
Jj
ǫ u

j
ǫ

∥∥2
L2(Ωǫ)

+
1

2

∥∥
√
Jj
ǫ u

j
ǫ −

√
Jj−1
ǫ uj−1

ǫ

∥∥2
L2(Ωǫ)

− 1

2

∥∥
√
Jj−1
ǫ uj−1

ǫ

∥∥2
L2(Ωǫ)

−
∫

Ωǫ

√
Jj−1
ǫ

(√
Jj−1
ǫ −

√
Jj
ǫ

)
uj
ǫu

j−1
ǫ dx.

We denote the last term above by B5
ǫ . Now, using the coercivity of Dj

ǫ as in the proof of
Proposition 2, we obtain

A2
ǫ ≥ ∆t d

∥∥∇uj
ǫ

∥∥2
L2(Ωǫ)

.

To estimate the terms Bi
ǫ (i = 1, . . . , 5), we first observe that

|B1
ǫ | ≤ ‖V j

ǫ ‖L∞(Ωǫ)∆t‖∇uj
ǫ‖L2(Ωǫ)‖uj

ǫ‖L2(Ωǫ) ≤ C∆t‖uj
ǫ‖2L2(Ωǫ)

+
d∆t

4
‖∇uj

ǫ‖2L2(Ωǫ)
.

For the second and the third term, we use Lemma 1 to obtain

|B2
ǫ | ≤ C∆t

(
‖f j

ǫ ‖2L2(Ωǫ)
+ ‖uj

ǫ‖2L2(Ωǫ)

)
,

|B3
ǫ | ≤ C∆t‖uj

ǫ‖2L2(Ωǫ)
.

For B4
ǫ we use that ‖Gj−1

ǫ ‖L∞(Γǫ) ≤ Cǫ, and the scaled trace inequality,

ǫ‖uǫ‖2L2(Γǫ)
≤ C‖uǫ‖2L2(Ωǫ)

+
d

4
ǫ2‖∇uǫ‖2L2(Ωǫ)

(33)
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for all uǫ ∈ H1(Ωǫ), which can be obtained by a standard decomposition argument for
Ωǫ. Then, for ǫ ≤ 1,

|B4
ǫ | ≤ C∆t

(
1 + ǫ‖uj

ǫ‖2L2(Γǫ)
+ ǫ‖uj−1

ǫ ‖2L2(Γǫ)

)

≤ C∆t
(
1 + ‖uj

ǫ‖2L2(Ωǫ)
+ ‖uj−1

ǫ ‖2L2(Ωǫ)

)
+

d∆t

4

(
‖∇uj

ǫ‖2L2(Ωǫ)
+ ‖∇uj−1

ǫ ‖2L2(Ωǫ)

)
.

For the last term B5
ǫ occuring in the term A1

ǫ , we use the Lipschitz continuity of
√· away

from 0, to obtain with (31d)

|B5
ǫ | ≤ C∆t

∫

Ωǫ

∣∣∣
√
Jj
ǫ −

√
Jj−1
ǫ

∣∣∣
∆t

|uj
ǫ ||uj−1

ǫ |dx

≤ C∆t

∫

Ωǫ

∣∣Jj
ǫ − Jj−1

ǫ

∣∣
∆t

·
(
|uj

ǫ |2 + |uj−1
ǫ |2

)
dx

≤ C∆t
(
‖uj

ǫ‖2L2(Ωǫ)
+ ‖uj−1

ǫ ‖2L2(Ωǫ)

)
.

Altogether, we obtain

1

2

∥∥
√
Jj
ǫ u

j
ǫ

∥∥2
L2(Ωǫ)

+
1

2

∥∥
√
Jj
ǫ u

j
ǫ −

√
Jj−1
ǫ uj−1

ǫ

∥∥2
L2(Ωǫ)

−1

2

∥∥
√
Jj−1
ǫ uj−1

ǫ

∥∥2
L2(Ωǫ)

+
d∆t

2
‖∇uj

ǫ‖2L2(Ωǫ)

≤ C∆t
(
1 + ‖f j

ǫ ‖2L2(Ωǫ)
+ ‖uj−1

ǫ ‖2L2(Ωǫ)
+ ‖uj

ǫ‖2L2(Ωǫ)

)
+

d∆t

4
‖∇uj−1

ǫ ‖2L2(Ωǫ)
.

Summing up these inequalities over j = 1 to an arbitrary k ∈ {1, . . . , N}, we use again
the boundedness of Jj

ǫ proved above and Assumption (A1) to obtain that, for ∆t small
enough,

‖uk
ǫ‖2L2(Ωǫ)

+

k∑

j=1

∥∥
√
Jj
ǫ u

j
ǫ −

√
Jj−1
ǫ uj−1

ǫ

∥∥2
L2(Ωǫ)

+∆t

k∑

j=1

‖∇uj
ǫ‖2L2(Ωǫ)

≤C


1 + ‖uin

ǫ ‖2L2(Ωǫ)
+∆t

k∑

j=1

‖f j
ǫ ‖2L2(Ωǫ)

+∆t

k∑

j=1

‖uj
ǫ‖2L2(Ωǫ)

+∆t‖∇uin
ǫ ‖2L2(Ωǫ)




≤C


1 + ‖f‖C0(Ω,L2(Ω)) +∆t

k−1∑

j=1

‖uj
ǫ‖2L2(Ωǫ)


 .

Now, the discrete Gronwall-inequality implies the desired result.

4.2 The interpolation in time

In this section, we define the piecewise constant and piecewise linear interpolation of the
discrete values with respect to time. Let (uj

ǫ , R
j
ǫ) for j ∈ {1, . . . , N} be a weak solution

of the time-discrete problem from Proposition 2 with initial condition (uin
ǫ , Rin

ǫ ). For

16



t ∈ (tj−1, tj ] with j = 1, . . . , N , we define:

U
ǫ

∆t(t) := uj
ǫ, Û ǫ

∆t(t) := uj−1
ǫ +

t− tj−1

∆t

(
uj
ǫ − uj−1

ǫ

)
,

R
ǫ

∆t(t) := Rj
ǫ , R̂ǫ

∆t(t) := Rj−1
ǫ +

t− tj−1

∆t

(
Rj

ǫ −Rj−1
ǫ

)
,

J
ǫ

∆t(t) := Jj
ǫ , Ĵǫ

∆t(t) := Jj−1
ǫ +

t− tj−1

∆t

(
Jj
ǫ − Jj−1

ǫ

)
,

W
ǫ

∆t(t) := Jj
ǫ u

j
ǫ, Ŵ ǫ

∆t(t) := Jj−1
ǫ uj−1

ǫ +
t− tj−1

∆t

(
Jj
ǫ u

j
ǫ − Jj−1

ǫ uj−1
ǫ

)
.

For t < 0 we extend the functions constantly by the initial value. We emphasize that
for the existence proof of the continuous problem (17) it is not necessary to consider the

interpolations W
ǫ

∆t and Ŵ ǫ
∆t. However, we use these functions to show the boundedness

of ∂t(Jǫuǫ) in L2((0, T ), H1(Ωǫ)
′) uniformly with respect to ǫ, what is obtained directly

from the a priori estimates of ∂tŴ
ǫ
∆t. We are not able to prove such a uniform bound for

∂tuǫ. This is caused by the fact that the gradient of Jj
ǫ is of order ǫ−1, i. e., we have

‖∇Jj
ǫ ‖L∞(Ωǫ) ≤ Cǫ−1 for all j ∈ {1, . . . , N}. (34)

This can be easily seen from the definition of Jj
ǫ and the results from Proposition 1. Let

us start with the a priori estimates for W
ǫ

∆t and Ŵ ǫ
∆t:

Lemma 2. The functions W
ǫ

∆t and Ŵ ǫ
∆t fulfill the following a priori estimates:

∥∥W ǫ

∆t

∥∥
L∞((0,T ),L2(Ωǫ))

+ ǫ
∥∥∇W

ǫ

∆t

∥∥
L2((0,T ),L2(Ωǫ))

≤ C,
∥∥Ŵ ǫ

∆t

∥∥
L∞((0,T ),L2(Ωǫ))

+ ǫ
∥∥∇Ŵ ǫ

∆t

∥∥
L2((0,T ),L2(Ωǫ))

+
∥∥∂tŴ ǫ

∆t

∥∥
L2((0,T ),H1(Ωǫ)′)

≤ C.

Proof. Except for the time derivative, all estimates follow directly from Lemma 1, Propo-
sition 3, and (34). Hence, we only give a detailed proof for the inequality of ∂tŴ

ǫ
∆t. Choose

φ ∈ H1(Ωǫ) with ‖φ‖H1(Ωǫ) ≤ 1 as a test function in (28), to obtain for t ∈ (tj−1, tj)

∫

Ωǫ

∂tŴ
ǫ
∆tφdx =−

∫

Ωǫ

Dj
ǫ∇uj

ǫ · ∇φdx+

∫

Ωǫ

Vǫ · ∇uj
ǫφdx +

∫

Ωǫ

Jj
ǫ f

j
ǫ φdx

+

∫

Ωǫ

uj
ǫ

Jj
ǫ − Jj−1

ǫ

∆t
φdx−

∫

Γǫ

Gj−1
ǫ (uj−1

ǫ − ρ)Jj
ǫ φdσ.

(35)

We only consider in more detail the boundary term. From the trace inequality (33) we
obtain

‖φ‖L2(Γǫ) ≤ C

(
1√
ǫ
‖φ‖L2(Ωǫ) +

√
ǫ‖∇φ‖L2(Ωǫ)

)
≤ Cǫ−

1

2 .

Using again the trace inequality, the estimates |Γǫ| ≤ Cǫ−1 and ‖Gj−1
ǫ ‖L∞(Γǫ) ≤ Cǫ, and

Lemma 1, we get

−
∫

Γǫ

Gj−1
ǫ (uj−1

ǫ − ρ)Jj
ǫ φdσ ≤ Cǫ

(
‖uj−1

ǫ ‖L2(Ωǫ)‖φ‖L2(Γǫ) + ǫ−
1

2 ‖φ‖L2(Γǫ)

)

≤ C
(
‖uj−1

ǫ ‖L2(Ωǫ) + ‖∇uj−1
ǫ ‖L2(Ωǫ) + 1

)
.
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Hence, from equation (35) we obtain using again Lemma 1

∥∥∂tŴ ǫ
∆t

∥∥
H1(Ωǫ)′

≤ C
(
1 + ‖uj−1

ǫ ‖L2(Ωǫ) + ‖uj
ǫ‖L2(Ωǫ) + ‖∇uj

ǫ‖L2(Ωǫ) + ‖f j
ǫ ‖L2(Ωǫ)

)
.

The a priori estimates from Proposition 3 and the assumption on f and the initial con-
ditions imply

∥∥∂tŴ ǫ
∆t

∥∥2
L2((0,T ),H1(Ωǫ)′)

≤ C∆t

N∑

j=1

(
1 + ‖uj

ǫ‖2L2(Ωǫ)
+ ‖∇uj−1

ǫ ‖2L2(Ωǫ)
+ ‖f j

ǫ ‖2L2(Ωǫ)

)
≤ C,

what gives us the desired result.

Lemma 3. The functions J
ǫ

∆t and Ĵǫ
∆t fulfill the following a priori estimates:

∥∥Jǫ

∆t

∥∥
L∞((0,T ),C0(Ωǫ))

+ ǫ
∥∥∇J

ǫ

∆t

∥∥
L∞((0,T ),C0(Ωǫ))

≤ C,
∥∥Ĵǫ

∆t

∥∥
W 1,∞((0,T ),C0(Ωǫ))

+ ǫ
∥∥∇Ĵǫ

∆t

∥∥
C0([0,T ]×Ωǫ)

≤ C.

Additionally, both functions are bounded from below, i. e., there exits a constant c0 > 0,
such that for almost every t ∈ (0, T ) and every x ∈ Ωǫ it holds that

c0 ≤ J
ǫ

∆t(t, x), c0 ≤ Ĵǫ
∆t(t, x).

Proof. This is an easy consequence of (34) and Lemma 1.

Lemma 4. We have R
ǫ

∆t ∈ L∞((0, T ) × Ω) and R̂ǫ
∆t ∈ W 1,∞((0, T ), L2(Ω)) such that

R̂ǫ
∆t, ∂tR̂

ǫ
∆t ∈ L∞((0, T ) × Ω). For almost every t ∈ (0, T ) the functions R

ǫ

∆t, R̂
ǫ
∆t, and

∂tR̂
ǫ
∆t are constant on every micro cell ǫ(Y +k) for k ∈ Kǫ. Further, we have the estimate

∥∥Rǫ

∆t

∥∥
L∞((0,T )×Ω)

+
∥∥R̂ǫ

∆t

∥∥
L∞((0,T )×Ω)

+
∥∥∂tR̂ǫ

∆t

∥∥
L∞((0,T )×Ω)

≤ Cǫ.

Proof. This follows directly from Proposition 1.

Lemma 5. For U
ǫ

∆t and Û ǫ
∆t we have the following a priori estimates:

∥∥U ǫ

∆t

∥∥
L∞((0,T ),L2(Ωǫ))

+
∥∥∇U

ǫ

∆t

∥∥
L2((0,T ),L2(Ωǫ))

≤ C,
∥∥Û ǫ

∆t

∥∥
L∞((0,T ),L2(Ωǫ))

+
∥∥∇Û ǫ

∆t

∥∥
L2((0,T ),L2(Ωǫ))

+ ǫ
∥∥∂tÛ ǫ

∆t

∥∥
L2((0,T ),H1(Ωǫ)′)

≤ C.

Proof. Again, we only consider the time-derivative, because the other inequalities are
direct consequences of Proposition 3. An elemental calculation gives us for t ∈ (tj−1, tj)

∂tÛ
ǫ
∆t(t) =

1

Jj
ǫ

∂tŴ
ǫ
∆t(t)−

uj−1
ǫ

Jj
ǫ

Jj
ǫ − Jj−1

ǫ

∆t
.

Hence, for all φ ∈ H1(Ωǫ) with ‖φ‖H1(Ωǫ) ≤ 1, we obtain

〈
∂tÛ

ǫ
∆t(t), φ

〉
H1(Ωǫ)′,H1(Ωǫ)

≤
∥∥∂tŴ ǫ

∆t(t)
∥∥
H1(Ωǫ)′

∥∥∥∥
φ

Jj
ǫ

∥∥∥∥
H1(Ωǫ)

+

∥∥∥∥
uj−1
ǫ

Jj
ǫ

∥∥∥∥
L2(Ωǫ)

∥∥∥∥
Jj
ǫ − Jj−1

ǫ

∆t

∥∥∥∥
L∞(Ωǫ)

≤ C
(
ǫ−1
∥∥∂tŴ ǫ

∆t(t)
∥∥
H1(Ωǫ)′

+ 1
)
,

where for the second inequality we used Lemma 1 and Proposition 3, see also (34). From
Lemma 2 we obtain the desired result.
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Based on these uniform a priori estimates with respect to ∆t, we pass to the limit
∆t → 0 to obtain a solution of the continuous microscopic model (17).

Corollary 1. There exists uǫ ∈ L2((0, T ), H1(Ωǫ)) ∩ H1((0, T ), H1(Ωǫ)
′), such that up

to a subsequence of {dt} it holds for 1
2 < β < 1

Û ǫ
∆t ⇀ uǫ weakly in L2((0, T ), H1(Ωǫ)),

Û ǫ
∆t → uǫ in L2((0, T ), Hβ(Ωǫ)),

∂tÛ
ǫ
∆t ⇀ ∂tuǫ weakly in L2((0, T ), H1(Ωǫ)

′),

U
ǫ

∆t → uǫ in L2((0, T ), L2(Ωǫ)),

∇U
ǫ

∆t ⇀ ∇uǫ weakly in L2((0, T ), L2(Ωǫ)),

U
ǫ

∆t → uǫ in L2((0, T ), L2(Γǫ)),

for ∆t → 0. Further, we have the following a priori estimate:

‖uǫ‖L2((0,T ),H1(Ωǫ)) + ǫ‖∂tuǫ‖L2((0,T ),H1(Ωǫ)′) ≤ C.

Additionally, we have uǫ ∈ L∞((0, T ), L2(Ωǫ)) with

‖uǫ‖L∞((0,T ),L2(Ωǫ)) ≤ C.

Proof. From the a priori estimates in Lemma 5 we obtain the existence of functions
uǫ, u

∗
ǫ ∈ L2((0, T ), H1(Ωǫ)) and ∂tuǫ ∈ L2((0, T ), H1(Ωǫ)

′), such that up to a subsequence

Û ǫ
∆t ⇀ uǫ weakly in L2((0, T ), H1(Ωǫ)),

Û ǫ
∆t ⇀ uǫ weakly∗ in L∞((0, T ), L2(Ωǫ)),

U
ǫ

∆t ⇀ u∗
ǫ weakly in L2((0, T ), H1(Ωǫ)),

∂tÛ
ǫ
∆t ⇀ ∂tuǫ weakly in L2((0, T ), H1(Ωǫ)

′).

The a priori estimates follow directly from the lower semi-continuity of the norm with
respect to the weak- and weak∗-topology. Since for 1

2 < β < 1 the embedding H1(Ωǫ) →֒
Hβ(Ωǫ) is compact, the Aubin-Lions Lemma implies the strong convergence of Û ǫ

∆t in
L2((0, T ), Hβ(Ωǫ)). Let us check uǫ = u∗

ǫ . For t ∈ (tj−1, tj) it holds that

∥∥Û ǫ
∆t(t)− U

ǫ

∆t(t)
∥∥2
L2(Ωǫ)

≤ 4‖uj
ǫ − uj−1

ǫ ‖2L2(Ωǫ)

= 4∆t(∂tÛ
ǫ
∆t, u

j
ǫ − uj−1

ǫ )L2(Ωǫ)

≤ 4∆t
∥∥∂tÛ ǫ

∆t(t)
∥∥
H1(Ωǫ)′

‖uj
ǫ − uj−1

ǫ ‖H1(Ωǫ).

Integration with respect to time implies

∥∥Û ǫ
∆t − U

ǫ

∆t

∥∥2
L2((0,T ),L2(Ωǫ))

≤ 4∆t

N∑

j=1

∫ tj

tj−1

∥∥∂tÛ ǫ
∆t(t)

∥∥
H1(Ωǫ)′

‖uj
ǫ − uj−1

ǫ ‖H1(Ωǫ)dt

≤ 2∆t


∥∥∂tÛ ǫ

∆t

∥∥2
L2((0,T ),H1(Ωǫ)′)

+∆t

N∑

j=1

‖uj
ǫ − uj−1

ǫ ‖2H1(Ωǫ)




≤ C∆t

ǫ

∆t→0−→ 0,

19



where in the last estimate we used the results from Proposition 3 and Lemma 5. The tri-
angle inequality implies uǫ = u∗

ǫ and the strong convergence of U
ǫ

∆t in L2((0, T ), L2(Ωǫ)).
It remains to show the strong convergence of the traces. This follows directly from

the following interpolated trace inequality: There exists a constant Cǫ > 0 (which may
depend on ǫ), such that for all v ∈ H1(Ωǫ) it holds that

‖v‖2L2(Γǫ)
≤ Cǫ

(
‖v‖2L2(Ωǫ)

+ ‖v‖L2(Ωǫ)‖v‖H1(Ωǫ)

)
.

Now, the strong convergence of U
ǫ

∆t in L2((0, T ), L2(Ωǫ)) implies the strong convergence
of the traces in L2((0, T ), L2(Γǫ)).

Corollary 2. There exists Rǫ ∈ W 1,∞((0, T ), L2(Ω)) constant on every micro cell ǫ(Y+k)
for k ∈ Kǫ and Rǫ, ∂tRǫ ∈ L∞(0, T )× Ω), such that up to a subsequence of {dt} it holds
for every p ∈ [1,∞)

R̂ǫ
∆t

∗
⇀ Rǫ weakly∗ in W 1,∞((0, T ), L2(Ω)),

R
ǫ

∆t → Rǫ in L∞((0, T )× Ω),

R
ǫ

∆t → Rǫ in L∞((0, T )× Γǫ),

for ∆t → 0 and all α ∈ (0, 1). Further, we have

‖Rǫ‖W 1,∞((0,T ),L2(Ω)) + ‖Rǫ‖L∞((0,T )×Ω) + ‖Rǫ‖L∞((0,T )×Γǫ) ≤ Cǫ.

Proof. The first convergence follows directly from the a priori estimates in Lemma 4.
Further, due to the Arzelà-Ascoli theorem, R̂ǫ

∆t converges to Rǫ in C0,α([0, T ], L∞(Ω))

for arbitrary α ∈ (0, 1). We emphasize that for every t ∈ [0, T ] the set {R̂ǫ
∆t(t)}∆t is a

finite dimensional subset of L∞(Ω) and is therefore relatively compact. The convergence

in C0,α([0, T ], L∞(Ω)) implies the strong convergence of R̂ǫ
∆t in L∞((0, T ) × Ω) and,

since R̂ǫ
∆t is constant on every micro cell, in L∞((0, T ) × Γǫ). Let us check the strong

convergence of R
ǫ

∆t. We have
∥∥Rǫ

∆t(t, ·)− R̂ǫ
∆t(t, ·)

∥∥
L∞((0,T )×Ω)

≤ 2 max
j∈{1,...,N}

∥∥Rj
ǫ −Rj−1

ǫ

∥∥
L∞(Ω)

≤ C∆t.

The triangle inequality implies R
ǫ

∆t → Rǫ in L∞((0, T )×Ω). The inequality follows from
Lemma 4.

We will prove later in Lemma 6 that also the time derivative of ∂tR̂
ǫ
∆t converges

strongly in the Lp-sense. Now, let us define the function

Jǫ(t, x) = det

(
In +

Rǫ(t, x)− ǫR

ǫ
∇y(χ0ν0)

(x
ǫ

))
. (36)

In the following corollary we prove the convergence of J
ǫ

∆t and Ĵǫ
∆t to the function Jǫ for

∆t → 0.

Corollary 3. Up to a subsequence, for every p ∈ (1,∞) there holds the following conver-
gence

J
ǫ

∆t → Jǫ in L∞((0, T )× Ωǫ),

Ĵǫ
∆t ⇀ Jǫ weakly in Lp((0, T ),W 1,p(Ωǫ)),

Ĵǫ
∆t → Jǫ in L∞((0, T )× Ωǫ),

∂tĴ
ǫ
∆t ⇀ ∂tJǫ weakly in Lp((0, T )× Ωǫ)
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for ∆t → 0. We emphasize that, due to the structure of Jǫ in (36), we have Jǫ ∈
C0([0, T ]× Ωǫ). Further, the following inequality holds

‖Jǫ‖C0([0,T ]×Ωǫ)
+ ‖∂tJǫ‖L∞((0,T )×Ωǫ) + ǫ‖∇Jǫ‖C0([0,T ]×Ωǫ)

≤ C.

Proof. First of all, let us check the convergence of J
ǫ

∆t. Using the Lipschitz continuity of
the determinant and the essential boundedness of R

ǫ

∆t with respect to ∆t, we obtain

∥∥Jǫ − J
ǫ

∆t

∥∥
L∞((0,T )×Ωǫ)

≤ C

ǫ

∥∥Rǫ −R
ǫ

∆t

∥∥
L∞((0,T )×Ωǫ)

∆t→0−→ 0.

Further, we have from (31d)

‖Ĵǫ
∆t − J

ǫ

∆t‖L∞((0,T )×Ωǫ) ≤ 2‖Jj
ǫ − Jj−1

ǫ ‖L∞((0,T )×Ωǫ) ≤ C∆t.

The weak convergence of Ĵǫ
∆t in Lp((0, T ),W 1,p(Ωǫ)) ∩W 1,p((0, T ), Lp(Ωǫ)) now follows

directly from the a priori estimates in Lemma 3. The estimates for Jǫ are a consequence
of Lemma 3, formula (36), and the inequality for Rǫ in Corollary 2.

Corollary 4. Up to a subsequence, we have the following convergence results:

Ŵ ǫ
∆t ⇀ Jǫuǫ in L2((0, T ), H1(Ωǫ)),

∂tŴ
ǫ
∆t ⇀ ∂t

(
Jǫuǫ

)
in L2((0, T ), H1(Ωǫ)

′),

W
ǫ

∆t → Jǫuǫ in L2((0, T ), L2(Ωǫ))

for ∆t → 0. Further, we have the a priori estimate

‖Jǫuǫ‖L∞((0,T ),L2(Ωǫ)) + ǫ‖∇(Jǫuǫ)‖L2((0,T ),L2(Ωǫ)) + ‖∂t(Jǫuǫ)‖L2((0,T ),H1(Ωǫ)′) ≤ C.

Proof. The existence of a limit function Wǫ such that the convergence results above hold
(up to a subsequence) for Jǫuǫ replaced by Wǫ follows as in the proofs above. The identity

Wǫ = Jǫuǫ follows easily from the pointwise almost everywhere convergence of Ĵǫ
∆tÛ

ǫ
∆t to

Jǫuǫ (for a subsequence) and Ŵ ǫ
∆t = Ĵǫ

∆tÛ
ǫ
∆t.

4.3 Existence for the continuous model

Now, we want to pass to the limit ∆t → 0 in the time-discrete problem from Definition
4. Let us define the piecewise constant coefficients in the following way for t ∈ (tj−1, tj):

Gǫ
∆t(t, x) := Gj−1

ǫ (x), Sǫ
∆t(t, x) := Sj

ǫ (x), F ǫ
∆t(t, x) := ∇Sj

ǫ (x),

Dǫ
∆t(t, x) := Dj

ǫ , V ǫ
∆t(t, x) := V j

ǫ , f ǫ
∆t := f j

ǫ .

Multiplying the variational equation (28) with φ ∈ C∞
0

(
[0, T )×Ωǫ

)
and integrating with

respect to time gives us:
∫ T

0

∫

Ωǫ

∂tŴ
ǫ
∆tφdxdt +

∫ T

0

∫

Ωǫ

Dǫ
∆t∇U

ǫ

∆t · ∇φdxdt

=

∫ T

0

∫

Ωǫ

V ǫ
∆t · ∇U

ǫ

∆tφdxdt +

∫ T

0

∫

Ωǫ

J
ǫ

∆tf
ǫ
∆tφdxdt

+

∫ T

0

∫

Ωǫ

U
ǫ

∆t∂tĴ
ǫ
∆tφdxdt −

∫

Γǫ

Gǫ
∆t

(
U

ǫ

∆t(· −∆t)− ρ
)
J
ǫ

∆tφdσdt.

(37)
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To pass to the limit ∆t → 0 in (37), we need the following convergence results for the
interpolated coefficients:

Lemma 6. Up to a subsequence of {dt} we have the following convergence results for
arbitrary p ∈ [1,∞)

∂tR̂
ǫ
∆t = Gǫ

∆t → Gǫ(uǫ, Rǫ) in Lp((0, T )× Γǫ), (38a)

Dǫ
∆t → Dǫ in Lp((0, T )× Ωǫ), (38b)

V ǫ
∆t → Vǫ in Lp((0, T )× Ωǫ) (38c)

for ∆t → 0.

Proof. We start with the convergence (38a). We have

∥∥Gǫ
∆t −Gǫ(uǫ, Rǫ)

∥∥2
L2((0,T )×Γǫ)

≤ Cǫ2
N∑

j=1

∑

k∈Kǫ

∫ tj

tj−1

∫

Γǫ(ǫk)

∣∣∣∣g
(
uj−1
ǫ ,

Rj−1
ǫ

ǫ

)
− g

(
uǫ,

Rǫ

ǫ

)∣∣∣∣
2

dσdt.

= Cǫ2
n∑

j=1

∫ tj

tj−1

∥∥∥∥g
(
uj−1
ǫ ,

Rj−1
ǫ

ǫ

)
− g

(
uǫ,

Rǫ

ǫ

)∥∥∥∥
2

L2(Γǫ)

dt.

Using the Lipschitz continuity of g, we obtain

∥∥Gǫ
∆t −Gǫ(uǫ, Rǫ)

∥∥2
L2((0,T )×Γǫ)

≤ Cǫ2
(∥∥U ǫ

∆t(· −∆t)− U
ǫ

∆t

∥∥2
L2((0,T )×Γǫ)

+
∥∥Rǫ

∆t(· −∆t)−R
ǫ

∆t

∥∥2
L2((0,T )×Γǫ)

)
.

We emphasize that for t < 0 we have U
ǫ

∆t = uin
ǫ and R

ǫ

∆t = Rin
ǫ . Because of the conver-

gence results from Corollary 1 and 2, as well as the Kolmogorov compactness theorem,
the right-hand side tends to 0 for ∆t → 0. Hence, we have ∂tR̂

ǫ
∆t = Gǫ

∆t → Gǫ(uǫ, Rǫ)
in L2((0, T ) × Γǫ) for ∆t → 0. Since Gǫ

∆t ∈ L∞((0, T ) × Γǫ), the dominated conver-
gence theorem of Lebesgue implies that the convergence also holds up to a subsequence
in Lp((0, T )× Γǫ) for all p ∈ (1,∞).

For the convergence (38b) we first notice that

Dǫ
∆t = J

ǫ

∆t [F
ǫ
∆t]

−1 D(Sǫ
∆t) [F

ǫ
∆t]

−1 ,

and therefore, due to the convergence results from Corollary 2 and 3, we obtainDǫ
∆t → Dǫ

almost everywhere in (0, T )×Ωǫ up to a subsequence. Since Dǫ
∆t is essential bounded, the

dominated convergence theorem of Lebesgue implies Dǫ
∆t → Dǫ in Lp((0, T )× Ωǫ). The

last convergence (38c) follows by similar arguments, where we here additionally use the
strong convergence (and therefore the pointwise almost everywhere convergence up to a

subsequence) of ∂tR̂
ǫ
∆t proved above. We emphasize that due to the strong convergence of

∂tR̂
ǫ
∆t is also valid in Lp((0, T )×Ω), since it is constant on every micro cell ǫ(Y +k).

As a consequence of the previous results, we can easily prove the existence result in
Theorem 1:

Proof of Theorem 1. This follows directly by passing to the limit in the variational equa-
tion (37) and in (19). To establish the initial condition, we just integrate by parts with
respect to time in (17) and (37). Since this is standard, we skip the details.
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In the following Lemma we summarize the a priori estimates for the weak solution
(uǫ, Rǫ) which will be necessary for the derivation of the macroscopic model:

Lemma 7. A constant C > 0 not depending on ǫ exists such that the weak solution
(uǫ, Rǫ) from Theorem 1 satisfies the a priori estimates

ǫ‖∂tuǫ‖L2((0,T ),H1(Ωǫ)′) + ‖uǫ‖L∞((0,T ),L2(Ωǫ)) + ‖uǫ‖L2((0,T ),H1(Ωǫ)) ≤ C,

1

ǫ
‖Rǫ‖L∞((0,T )×Ωǫ) +

1

ǫ
‖∂tRǫ‖L∞((0,T )×Ωǫ) ≤ C,

‖∂t(Jǫuǫ)‖L2((0,T ),H1(Ωǫ)′) + ‖Jǫuǫ‖L∞((0,T ),L2(Ωǫ))

+ǫ‖∇(Jǫuǫ)‖L2((0,T ),L2(Ωǫ)) ≤ C.

Also, for the Hanzawa transformation Sǫ and the Jacobi-determinant Jǫ one has

‖Sǫ‖L∞((0,T )×Ωǫ) + ‖∇Sǫ‖L∞((0,T )×Ωǫ) +
1

ǫ
‖∂tSǫ‖L∞((0,T )×Ωǫ) ≤ C,

‖Jǫ‖L∞((0,T )×Ωǫ) + ‖∂tJǫ‖L∞((0,T )×Ωǫ) + ǫ‖∇Jǫ‖L∞((0,T )×Ωǫ) ≤ C.

Finally, there exists a constant c0 > 0 such that (independently of ǫ)

c0 ≤ Jǫ(t, x) for almost every (t, x) ∈ (0, T )× Ωǫ.

Additionally, the differential equation (7d) for Rǫ and the boundedness of g immedi-
ately implies with the mean value theorem the following uniform estimates:

Corollary 5. It holds that

‖Rǫ‖C0,1([0,T ],L∞(Ω)) + ‖Jǫ‖C0,1([0,T ],L∞(Ω)) ≤ C.

5 Derivation of the macroscopic model

In this section we show that the sequence of micro solutions (uǫ, Rǫ) converges in a suitable
sense to the solution of the macro-model (23). For this we prove two-scale compactness
results which allow to pass to the limit in the variational equation for the micro model
(18). However, the a priori estimates in Lemma 7 only guarantee weak convergence for uǫ

and Rǫ, and this is not enough to pass to limit in (18), since also the strong convergence
of the coefficients, which depend in a nonlinear way on the micro solution itself, is needed.
Also to pass to the limit in the boundary term and in equation (19) strong convergence
is necessary. We refer the reader to the Appendix B for a short overview on the two-scale
convergence.

5.1 Compactness results

The crucial point is to obtain the strong convergence of uǫ, Rǫ, and ∂tRǫ. Standard
arguments for uǫ of Aubin-Lions-type, see [30], fail, since we have no uniform bound for
the time derivative ∂tuǫ with respect to ǫ (remember, the norm is of order ǫ−1). Hence,
it makes sense to consider also the sequence Jǫuǫ which has bounded time derivative,
but which gradient behaves badly with respect to ǫ. We will see that together with
the uniform bounds on Jǫ this is enough to guarantee to strong convergence of uǫ via a
variational argument. The strong convergence of Rǫ is obtained by using the Kolmogorov-
compactness theorem, see [6], based on uniform bounds for the difference of small shifts.
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Combining the strong two-scale convergence of uǫ and Rǫ, we are able to show the strong
convergence of ∂Rǫ and identify its limit. Before proceeding, we observe that, since Ωǫ

is connected, there exists an extension of uǫ to the whole domain Ω (also denoted uǫ to
avoid an excess of notations) such that ([1, 10], see Section 5.1.3 for more details)

‖uǫ‖L2((0,T ),H1(Ω)) ≤ C. (39)

5.1.1 Weak two-scale compactness results

We start with some (weak) two-scale convergence results which follow directly from the a
priori estimates in Lemma 7. For the definition and some basic compactness results for
the two-scale convergence see the Appendix B:

Corollary 6. Up to a subsequence the following convergence results for the microscopic
solutions (uǫ, Rǫ) of problem (7) are valid:

(i) There exist u0 ∈ L2((0, T ), H1(Ω)) and u1 ∈ L2((0, T )×Ω, H1
per(Y

∗)/R)), such that

uǫ → u0 in the two-scale sense in L2,

∇uǫ → ∇xu0 +∇yu1 in the two-scale sense in L2,

uǫ ⇀
∗ u0 weakly∗ in L∞((0, T ), L2(Ω)).

(ii) There exists R0 ∈ W 1,∞((0, T ), L2(Ω)) with R0 ∈ L∞((0, T ) × Ω) and ∂tR0 ∈
L∞((0, T )× Ω), such that for every p ∈ [1,∞)

ǫ−1Rǫ ⇀
∗ R0 weakly∗ in W 1,∞((0, T ), L2(Ω)),

ǫ−1Rǫ → R0 in the two-scale sense in Lp,

ǫ−1∂tRǫ → ∂tR0 in the two-scale sense in Lp.

Additionally the two-scale convergences above also hold in the two-scale sense on Γǫ

in Lp.

(iii) Defining

S0(t, x, y) := y +
(
R0(t, x)−R

)
(χ0ν0)(y),

it holds for every p ∈ (1,∞) that

Sǫ → x in L∞((0, T )× Ω),

∇Sǫ → ∇yS0 in the two-scale sense in Lp.

Proof. These results follow directly from the a priori estimates in Lemma 7 and standard
two-scale compactness results from Lemma 10 in the Appendix B. We point out that R0 is
independent of the microscopic variable y ∈ Y , since Rǫ is constant on every microscopic
cell ǫ(Y + k) with k ∈ Kǫ.

5.1.2 Strong convergence of Rǫ

Next, we prove the strong convergence of ǫ−1Rǫ in the Lp-sense, where we make use of the
Kolmogorov-compactness theorem, see for example [6]. We first introduce the following
notation for 0 < h:

Ωh := {x ∈ Ω : dist(x, ∂Ω) > h}.
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Further, for ℓ ∈ Z
n we define

Kℓ

ǫ := {k ∈ Z
n : ǫ(Y + k+ ℓ) ∪ ǫ(Y + k) ⊂ Ω} ,

and

Ωℓ

ǫ := int
⋃

k∈Kℓ
ǫ

ǫ(Y ∗ + k), Γℓ

ǫ :=
⋃

k∈Kℓ
ǫ

ǫ(Γ + k).

We emphasize that Ωℓ
ǫ ⊂ Ω|ǫℓ| and for |ǫℓ| < h

2 and ǫ small enough it holds that

Ωh ⊂ int
⋃

k∈Kℓ
ǫ

ǫ(Y + k). (40)

Proposition 4. For all p ∈ [1,∞) it holds up to a subsequence that

ǫ−1Rǫ → R0 in Lp((0, T )× Ω).

Additionally, we have R0 ∈ L∞((0, T ), H1(Ω)).

Proof. It is enough to show that Rǫ → R0 in L2((0, T ) × Ω). Then, the desired result
follows from the dominated convergence theorem of Lebesgue. We use the Kolmogorov-
compactness theorem. Let s ∈ R and ξ ∈ R

n, then we have to show:

sup
ǫ>0

ǫ−1‖Rǫ(t+ s, x+ ξ)−Rǫ(t, x)‖L2((0,T )×Ω)
(s,ξ)→0−→ 0,

where we can extend Rǫ by zero to R × R
n. Since ǫ−1Rǫ is uniformly bounded with

respect to ǫ in L∞((0, T )×Ω), it is enough to show for 0 < h ≪ 1 and |s|+ |ξ| < h
2 that

sup
ǫ>0

ǫ−1‖Rǫ(t+ s, x+ ξ)−Rǫ(t, x)‖L2((h,T−h)×Ωh)
(s,ξ)→0−→ 0.

First of all, we have

‖Rǫ(t+ s, x+ ξ)−Rǫ(t, x)‖L2((h,T−h)×Ωh)

≤ ‖Rǫ(t+ s, x)−Rǫ(t, x)‖L2((h,T−h)×Ω) + ‖Rǫ(t, x+ ξ)−Rǫ(t, x)‖L2((0,T )×Ωh).

For the first term we obtain from the essential boundedness of g:

ǫ−2‖Rǫ(t+ s, x)−Rǫ(t, x)‖2L2((h,T−h)×Ω)

=

∫ T−s

0

1

|ǫΓ|2

(∫ t+s

t

∫

Γǫ(t,ǫ[xǫ ])
g

(
uǫ(τ, z),

Rǫ(τ, z)

ǫ

)
dzdτ

)2

dt

≤ Cs2 ‖g‖2L∞(R×Rn).

Let us consider the term including the shifts in the spatial variable. We have (see [19,
Proof of Theorem 13]) for t ∈ (0, T )

‖Rǫ(t, x+ ξ)−Rǫ(t, x)‖L2(Ωh) ≤
∑

j∈{0,1}n

∥∥∥∥Rǫ

(
t, x+ ǫj+ ǫ

[
ξ

ǫ

])
−Rǫ(t, x)

∥∥∥∥
L2(Ωh)

.

(41)
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Let ℓ := ℓ(ǫ, j) := j+

[
ξ

ǫ

]
. Then for t ∈ (0, T ) we obtain with (19)

ǫ−2‖Rǫ(t, x+ ǫℓ)−Rǫ(t, x)‖2L2(Ωh) ≤ Cǫ−2‖Rin
ǫ (x + ℓǫ)−Rin

ǫ ‖2L2(Ωh)

+C

∫

Ωh

[
1

|ǫΓ|

∫ t

0

∫

Γǫ(t,ǫ[ xǫ ])
g

(
uǫ(s, z + ǫl),

Rǫ(s, z + ǫl)

ǫ

)

− g

(
uǫ(s, z),

Rǫ(s, z)

ǫ

)
dzds

]2
dx =: A1

ǫ +A2
ǫ .

For the first term A1
ǫ including the initial value we immediately obtain from the As-

sumption (A2) that A1
ǫ ≤ C|ℓǫ|2. For A2

ǫ , using the trace inequality (33), the Lipschitz
continuity of g, (40), and that Rǫ constant on every micro cell gives

A2
ǫ ≤ C

|ǫΓ|

∫

Ωh

∫ t

0

∫

ǫΓ

∣∣∣uǫ

(
s, z + ǫ

[x
ǫ

]
+ ǫℓ

)
− uǫ

(
s, z + ǫ

[x
ǫ

])∣∣∣
2

+ ǫ−2
∣∣∣Rǫ

(
s, z + ǫ

[x
ǫ

]
+ ǫℓ

)
−
(
s, z + ǫ

[x
ǫ

])∣∣∣
2

dσzdsdx

≤
∑

k∈Kℓ
ǫ

{
C

|ǫΓ|ǫ
n

∫ t

0

∫

ǫΓ

|uǫ(s, z + ǫk+ ǫℓ)− uǫ(s, z + ǫk)|2 dσzds

+
C

|ǫΓ|ǫ2
∫

ǫ(Y+k)∩Ωh

∫ t

0

∫

ǫΓ

|Rǫ(s, z + ǫk+ ǫℓ)−Rǫ(s, z + ǫk)|2 dσzdsdx

}

= Cǫ

∫ t

0

∫

Γℓ
ǫ

|uǫ(s, z + ǫℓ)− uǫ(s, z)|2dσzds

+ C

∫ t

0

∫

Ωh

ǫ−2|Rǫ(s, z + ǫℓ)−Rǫ(s, z)|2dzds.

Therefore,

A2
ǫ ≤ C

∫ t

0

∫

Ωℓ
ǫ

|uǫ(s, z + ǫℓ)− uǫ(s, z)|2 + ǫ2|∇uǫ(s, z + ǫℓ)−∇uǫ(s, z)|2dzds

+

∫ t

0

∫

Ωh

ǫ−2|Rǫ(s, z + ǫℓ)−Rǫ(s, z)|2dzds

≤ C

∫ t

0

∫

Ω|ǫℓ|

∫ 1

0

|∇uǫ(s, z + λǫℓ)|2 · |ǫℓ|2dλdzds

+ Cǫ2 + Cǫ−2‖Rǫ(·, ·+ ǫℓ)−Rǫ‖2L2((0,t)×Ωh).

We can now use the a priori estimate for ∇uǫ, as proved in Lemma 7. Although these
are obtained for the perforated domain Ωǫ, they remain valid for the extension of uǫ to
Ω, see (39). From the above, we obtain

A2
ǫ ≤ C

(
‖∇uǫ‖2L2((0,t)×Ω)|ǫℓ|2 + Cǫ2 + ǫ−2‖Rǫ(·, ·+ ǫℓ)−Rǫ‖2L2((0,t)×Ωh)

)

≤ C
(
|ǫℓ|2 + Cǫ2 + ǫ−2‖Rǫ(·, ·+ ǫℓ)−Rǫ‖2L2((0,t)×Ωh)

)
.

The Gronwall-inequality gives

ǫ−2‖Rǫ(t, x+ ǫℓ)−Rǫ(t, x)‖2L∞((0,T ),L2(Ωh)) ≤ C
(
|ǫℓ|2 + ǫ2

)
.
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With ℓ = j+

[
ξ

ǫ

]
and (41) we obtain

ǫ−1‖Rǫ(t, x+ ξ)−Rǫ(t, x)‖L∞((0,T ),L2(Ωh)) ≤ C (|ξ|+ ǫ) . (42)

Hence, for arbitrary ρ > 0 there exists ǫ0, δ0 > 0, such that, for all ξ ∈ R
n with |ξ| < δ0

it holds that

sup
ǫ≤ǫ0

ǫ−1‖Rǫ(t, x+ ξ)−Rǫ(t, x)‖L∞((0,T ),L2(Ωh)) ≤ ρ. (43)

Since the sequence ǫ is countable there are only finitely many ǫ (denoted by ǫ1, . . . , ǫN)
such that ǫi > ǫ0 for i = 1, . . . , N . Due to the Kolmogorov-compactness theorem there
exists δi > 0 such that for all |ξ| < δ0

ǫ−1‖Rǫi(t, x+ ξ)−Rǫi(t, x)‖L∞((0,T ),L2(Ωh)) ≤ ρ.

Hence, (43) is also valid for all |ξ| < δ := min{δ0, . . . , δN} and if we take the supremum
over all ǫ. This gives the strong convergence of ǫ−1Rǫ to R0 in L2((0, T )× Ω).

It remains to establish the higher regularity of R0 with respect to x. This is an easy
consequence of (42). In fact, using the strong convergence (up to a subsequence) of Rǫ in
Lp((0, T )× Ω) for p ∈ [1,∞) showed above, we obtain with |ξ| < h

2 for ǫ → 0 in (42)
∥∥∥∥
R0(t, x+ ξ)−R0

|ξ|

∥∥∥∥
Lp((0,T ),L2(Ωh))

≤ C,

with a constant C > 0 which can be chosen independently of p. This implies R0 ∈
Lp((0, T ), H1(Ω)) with Lp-norm bounded uniformly with respect to p and the proposition
is proved.

Remark 5.

(i) The above proof shows that we also have the pointwise convergence

ǫ−1Rǫ(t, ·) → R0(t, ·) in Lp(Ω)

for almost every t ∈ (0, T ) and 1 ≤ p < ∞.

(ii) In the same way as we proved the regularity of R0, we obtain the regularity of the
initial condition R0 ∈ H1(Ω) from the Assumption (A2).

Corollary 7. For all p ∈ [1,∞) it holds up to a subsequence that

ǫ−1Rǫ → R0 strongly in the two-scale sense on Γǫ in Lp.

Proof. We use the equivalent characterization of the strong two-scale convergence via the
strong convergence of the unfolded sequence Tǫ(ǫ−1Rǫ) in Lp((0, T )×Ω×Γ), see Lemma
13 in the Appendix B. Since Rǫ is constant on every micro cell, Tǫ(Rǫ) is constant with
respect to y ∈ Y and therefore ∇yTǫ(Rǫ) = 0. Hence, we have with the trace inequality

‖Tǫ(ǫ−1Rǫ)−R0‖Lp((0,T )×Ω×Γ)

≤ C

(
‖Tǫ(ǫ−1Rǫ)−R0‖Lp((0,T )×Ω×Y ∗) + ‖∇y(Tǫ(ǫ−1Rǫ)−R0)︸ ︷︷ ︸

=0

‖Lp((0,T )×Ω×Y ∗)

)

≤ C‖Tǫ(ǫ−1Rǫ)−R0‖Lp((0,T )×Ω×Y )
ǫ→0−→ 0,

where the convergence follows from Proposition 4 and Lemma 13.
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Let us define

J0(t, x, y) := det
(
∇yS0(t, x, y)

)
,

D0(t, x, y) := J0(t, x, y)∇yS0(t, x, y)
−1D(x)∇yS0(t, x, y)

−T .

For the definition of S0 see Corollary 6. We emphasize that 0 < c0 ≤ J0(t, x, y) for a
constant c0 > 0 and almost every (t, x, y) ∈ (0, T )×Ω× Y ∗, and therefore ∇yS(t, x, y)

−1

exists almost everywhere. From the strong convergence of Rǫ, proved in Proposition 4,
we immediately obtain:

Corollary 8. For 1 ∈ [1,∞) it holds up to a subsequence that

∇Sǫ → ∇yS0 strongly in the two-scale sense in Lp,

Jǫ → J0 strongly in the two-scale sense in Lp,

Dǫ → D0 strongly in the two-scale sense in Lp.

Additionally, the strong two-scale convergence of ∇Sǫ and Jǫ is also valid on Γǫ in Lp.

Proof. Again, we use the unfolding operator. We have

‖Tǫ(∇Sǫ)−∇yS0‖Lp((0,T )×Ω×Y ∗) = ‖(Tǫ(ǫ−1Rǫ)−R0)χ0ν0‖Lp((0,T )×Ω×Y ∗)

≤ C‖(Tǫ(ǫ−1Rǫ)−R0)‖Lp((0,T )×Ω×Y ∗)

The right-hand side converges to zero for ǫ → 0 because of Proposition 4. For Jǫ we use
the essential boundedness of Tǫ(Jǫ) and J0 on (0, T ) × Ω × Y ∗ uniformly with respect
to ǫ, to obtain with the local Lipschitz continuity of the determinant (using Tǫ(Jǫ) =
det(Tǫ(∇Sǫ)))

‖Tǫ(Jǫ)− J0‖Lp((0,T )×Ω×Y ∗) ≤ C‖Tǫ(∇Sǫ)−∇yS0‖Lp((0,T )×Ω×Y ∗)
ǫ→0−→ 0.

To show the convergence of Dǫ, we first notice that due to (32) the inverse gradients
Tǫ(∇S−1

ǫ ) and ∇yS
−1
0 are essential bounded on (0, T )× Ω× Y ∗) uniformly with respect

to ǫ. This gives

‖Tǫ(∇S−1
ǫ )−∇yS

−1
0 ‖Lp((0,T )×Ω×Y ∗) ≤ C‖Tǫ(∇Sǫ)−∇yS0‖Lp((0,T )×Ω×Y ∗)

ǫ→0−→ 0,

where we have used the straightforward equality

A−1 −B−1 = A−1(B −A)B−1,

valid for any invertible matrices A,B ∈ R
n×n. Using now (15), the convergence above

yields the strong two-scale convergence of Dǫ.
The convergence results for ∇Sǫ and Jǫ on Γǫ follow by similar arguments and using

Corollary 7.

5.1.3 Strong convergence of uǫ

Next, we prove the strong convergence of uǫ in the two-scale sense to the limit function
u0. Since we have no uniform bound of ∂tuǫ with respect to ǫ, standard methods (see
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[30]) fail. Therefore, we first introduce a regularized auxiliary problem: We consider for
t ∈ (0, T ) and φ0 ∈ C∞([0, T ]× Ω) the problem

−∆wǫ + wǫ = Jǫ(uǫ − φ0) in Ωǫ,

−∇wǫ · ν = 0 on ∂Ωǫ

(44)

Obviously, there exists a unique weak solution wǫ ∈ L2((0, T ), H1(Ωǫ)). We have the
following additional regularity with respect to time and uniform a priori estimates with
respect to ǫ.

Lemma 8. It holds that wǫ ∈ H1((0, T ), H1(Ωǫ)) with

‖∂twǫ‖L2((0,T ),H1(Ωǫ)) + ‖wǫ‖L∞((0,T ),H1(Ωǫ)) ≤ C, (45)

with a constant C > 0 independent of ǫ.

Proof. Testing the weak formulation of (44) with wǫ we obtain for a constant c0 > 0
almost everywhere in (0, T ) with Lemma 7

‖wǫ‖2L2(Ωǫ)
+ ‖∇wǫ‖2L2(Ωǫ)

=

∫

Ωǫ

Jǫ(uǫ − φ0)wǫdx

≤ ‖Jǫ‖L∞(Ωǫ)‖uǫ − φ0‖L2(Ωǫ)‖wǫ‖L2(Ωǫ).

≤ C‖wǫ‖L2(Ωǫ)

≤ C +
1

2
‖wǫ‖2L2(Ωǫ)

.

This implies

‖wǫ‖L∞((0,T ),H1(Ωǫ)) ≤ C,

where the constant C is independent of ǫ, but depends on the L∞((0, T ), L2(Ω))-norm of
φ0.

Let us check the estimate for the time-derivative. We define for 0 < h ≪ T the
difference quotient with respect to time for a function φǫ : (0, T )× Ωǫ → R by

∂h
t φǫ(t, x) :=

φǫ(t+ h, x)− φǫ(t, x)

h
for (t, x) ∈ (0, T − h)× Ωǫ.

Applying ∂h
t to the equation (44), we obtain

−∆∂h
t wǫ + ∂h

t wǫ = ∂h
t [Jǫ(uǫ − φ0)] in Ω,

−∇∂h
t wǫ · ν = 0 on ∂Ωǫ.

Testing the weak formulation of the equation above with ∂h
t wǫ and integrating with

respect to time, we obtain

∫ T−h

0

∫

Ωǫ

∇∂h
t wǫ · ∇∂h

t wǫ + |∂h
t wǫ|2dxdt =

∫ T−h

0

∫

Ωǫ

∂h
t [Jǫ(uǫ − φ0)]∂

h
t wǫdxdt

≤ ‖∂h
t (Jǫ(uǫ − φ0))‖L2((0,T−h),H1(Ωǫ)′)‖∂h

t wǫ‖L2((0,T−h),H1(Ωǫ))

≤ C(θ) + θ‖∂h
t wǫ‖2L2((0,T−h),H1(Ωǫ))
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for all θ > 0 and a constant C(θ) > 0 depending on θ, where in the last inequality we
used the a priori bounds for ∂t(Jǫuǫ), Jǫ, and ∂tJǫ from Lemma 7. The constant C(θ)
depends on the L2((0, T ) × Ω)-norm of ∂tφ0 and φ0. For θ small enough the last term
can be absorbed from the left-hand side and we obtain

‖∂h
t wǫ‖L2((0,T−h),H1(Ωǫ)) ≤ C.

This gives the desired result.

Remark 6.

(i) By a density argument we want to choose φ0 = u0. However, in the proof of the
Lemma above we have to work with smooth φ0, since we need the time deriva-
tive ∂t(Jǫφ0) and it is not clear whether the time-derivative ∂t(Jǫu0) exists and is
bounded (not even clear ∂tu0 ∈ L2((0, T ), H1(Ω)′)!).

(ii) The inequality (45) depends on the norm

‖φ0‖L2((0,T ),H1(Ω)) + ‖∂tφ0‖L2((0,T )×Ω).

In the proof of the following Proposition 5 we will choose a sequence φ0 = φk which
converges only in L2((0, T ), H1(Ω)), i. e., the norm of the time-derivative ∂tu0 is
in general not bounded. We will see in the proof that this has no influence on the
result.

(iii) Due to the Sobolev-embedding and since Ωǫ is connected, we also have

‖wǫ‖L2((0,T ),Lq(Ωǫ)) ≤ C

for q = 2n
n−2 if n 6= 2 and q ∈ [1,∞) if n = 2.

Corollary 9. There exists w0 ∈ L2((0, T ), H1(Ω)) and an extension w̃ǫ ∈ L2((0, T ), H1(Ω))
of wǫ, such that up to a subsequence it holds that

w̃ǫ ⇀ w0 weakly in L2((0, T ), H1(Ω)),

w̃ǫ → w0 in L2((0, T ), L2(Ω)).

Especially, we obtain the strong two-scale convergence of wǫ to w0.

Proof. We refer to [1] for the extension and for the strong convergence see [30, Theorem
2.1] or [19, Lemma 10].

Obviously, w0 ∈ L2((0, T ), H1(Ω)) solves the following macroscopic problem:

−∇ · (A∇w0) + w0 = J̄0(u0 − φ0) in (0, T )× Ω,

−A∇w0 · ν = 0 on (0, T )× ∂Ω,
(46)

with

J̄0(t, x) :=

∫

Y ∗

J0(t, x, y)dy for almost every (t, x) ∈ (0, T )× Ω,

and A ∈ R
n×n is defined by

Aij =

∫

Y ∗

(
∇χi + ei

)
·
(
∇χj + ej

)
dy,
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and χi ∈ H1
per(Y

∗)/R are the solutions of the following cell problems:

−∇ ·
(
∇χi + ei

)
= 0 in Y ∗,

−
(
∇χi + ei

)
· ν = 0 on Γ,

χi is Y -periodic,

∫

Y ∗

χidy = 0.

Proposition 5. Up to a subsequence it holds that

χΩǫ
uǫ → χY ∗u0 strongly in the two-scale sense in L2,

uǫ|Γǫ
→ u0 strongly in the two-scale sense on Γǫ in L2.

Proof. We choose a sequence φk ∈ C∞
0 ((0, T )×Ω), such that φk → u0 in L2((0, T ), H1(Ω))

for k → ∞. We denote by wk
ǫ the solutions of (44) for φ0 = φk and wk

0 is the solution of
(46) for φ0 = φk. Testing (44) with uǫ − φk, we obtain with 0 < c0 ≤ Jǫ

c0‖uǫ − φk‖2L2(Ωǫ)
≤
∫

Ωǫ

Jǫ(uǫ − φk)
2dx

=

∫

Ωǫ

∇(uǫ − φk) · ∇wk
ǫ dx+

∫

Ωǫ

(uǫ − φk)w
k
ǫ dx

≤ ‖uǫ − φk‖H1(Ωǫ)‖wk
ǫ ‖H1(Ωǫ).

Hence, we get

c0
2
‖uǫ − u0‖2L2((0,T )×Ωǫ)

≤ c0‖uǫ − φk‖2L2((0,T )×Ωǫ)
+ c0‖u0 − φk‖2L2((0,T )×Ωǫ)

≤ ‖uǫ − φk‖L2((0,T ),H1(Ωǫ))‖wk
ǫ ‖L2((0,T ),H1(Ωǫ)) + c0‖u0 − φk‖2L2((0,T )×Ωǫ)

.
(47)

The second term on the right-hand side tends to zero for k → ∞, due to the choice of φk.
For the first term we notice that due to the strong convergence of φk in L2((0, T ), H1(Ω))
and Lemma 7, we have

‖uǫ − φk‖L2((0,T ),H1(Ω)) ≤ C

for a constant C > 0 independent of k and ǫ. We have to estimate ‖wk
ǫ ‖L2((0,T ),H1(Ωǫ)).

From (44) we obtain by testing with wk
ǫ after integration with respect to time:

‖wk
ǫ ‖2L2((0,T ),H1(Ωǫ))

=

∫ T

0

∫

Ωǫ

Jǫ(uǫ − φk)w
k
ǫ dxdt

=

∫ T

0

Jǫ(uǫ − u0)w
k
ǫ dxdt +

∫ T

0

∫

Ωǫ

Jǫ(u0 − φk)w
k
ǫ dxdt

≤
∫ T

0

∫

Ωǫ

Jǫ(uǫ − u0)w
k
ǫ dxdt

+ ‖Jǫ‖L∞((0,T )×Ωǫ)‖u0 − φk‖L2((0,T )×Ωǫ)‖wk
ǫ ‖L2((0,T )×Ωǫ)

≤
∫ T

0

∫

Ωǫ

Jǫ(uǫ − u0)w
k
ǫ dxdt+ C‖u0 − φk‖2L2((0,T )×Ωǫ)

+
1

2
‖wk

ǫ ‖2L2((0,T )×Ωǫ)
.
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Hence, we obtain

‖wk
ǫ ‖2L2((0,T ),H1(Ωǫ))

≤ C

(∫ T

0

∫

Ωǫ

Jǫ(uǫ − u0)w
k
ǫ dxdt+ ‖u0 − φk‖2L2((0,T )×Ωǫ)

)
.

We show that the first term on the right-hand side converges to zero for fixed k and ǫ → 0.
We have

∫ T

0

∫

Ωǫ

Jǫ(uǫ − u0)w
k
ǫ dxdt =

∫ T

0

∫

Ωǫ

(
Jǫ − J0

(
x,

x

ǫ

))
(uǫ − u0)w

k
0dxdt

+

∫ T

0

∫

Ωǫ

J0

(
x,

x

ǫ

)
(uǫ − u0)w

k
0dxdt

+

∫ T

0

∫

Ωǫ

Jǫ(uǫ − u0)(w
k
ǫ − wk

0 )dxdt

= : A1
ǫ +A2

ǫ +A3
ǫ .

For the third term A3
ǫ we obtain with the a priori estimates from Lemma 7 and the strong

convergence of w̃k
ǫ from Corollary 9

|A3
ǫ | ≤ ‖Jǫ‖L∞((0,T )×Ωǫ)‖uǫ − u0‖L2((0,T )×Ωǫ)‖wk

ǫ − wk
0‖L2((0,T )×Ωǫ)

ǫ→0−→ 0.

Since J0
(
x, x

ǫ

)
wk

0 is an admissible test-function in the two-scale sense, we obtain from the
(weak) two-scale convergence of uǫ from Corollary 6 that A2

ǫ → 0 for ǫ → 0. It remains
to estimate A1

ǫ . From Remark 6 we have wk
0 ∈ L2((0, T ), Lq(Ω)) for q > 2. Hence, there

exists p ∈ (1,∞) such that 1
p
+ 1

q
= 1

2 . From the Hölder-inequality we get with Lemma 7

|A1
ǫ | ≤ C

∥∥∥Jǫ − J0

(
x,

x

ǫ

)∥∥∥
Lp((0,T )×Ωǫ)

‖uǫ − u0‖L∞((0,T ),L2(Ωǫ))‖wk
0‖L2((0,T ),Lq(Ωǫ))

≤ C
∥∥∥Jǫ − J0

(
x,

x

ǫ

)∥∥∥
Lp((0,T )×Ωǫ)

ǫ→0−→ 0,

where at the end we used the strong two-scale convergence of Jǫ, see also Remark 9 in
the Appendix B. Altogether, we get:

lim sup
ǫ→0

‖wk
ǫ ‖L2((0,T ),H1(Ωǫ)) ≤ C‖u0 − φk‖L2((0,T )×Ω).

Altogether, we obtain from (47)

lim sup
ǫ→0

‖uǫ − u0‖L2((0,T )×Ωǫ) ≤ C
(
‖u0 − φk‖2L2((0,T )×Ω) + ‖u0 − φk‖L2((0,T )×Ω)

)
.

For k → ∞ we get the first convergence in the statement. To prove the strong two-scale
convergence on the surface Γǫ we use the trace inequality (33) to obtain with Lemma 7

√
ǫ‖uǫ − u0‖L2((0,T )×Γǫ) ≤ C

(
‖uǫ − u0‖L2((0,T )×Ωǫ) + ǫ‖∇uǫ −∇u0‖L2((0,T )×Ωǫ)

)

≤ C‖uǫ − u0‖L2((0,T )×Ωǫ) + Cǫ,

which tends to 0 for ǫ → 0.
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5.1.4 Strong convergence of ∂tRǫ

In this section we identify the limit of ∂tRǫ, i. e., we show ∂tR0 = g(u0, R0).

Lemma 9. Let wǫ ∈ L1((0, T ) × Γǫ) and w0 ∈ L1((0, T ),W 1,1(Ω)) such that wǫ → w0

strongly in the two-scale sense on Γǫ in L1. Then we have

1

|ǫΓ|

∫

Γǫ(ǫ[ ·ǫ ])
wǫ(t, z)dσ → w0 in L1((0, T )× Ω).

Proof. First of all we extend the function w0 to a function in L1((0, T ),W 1,1(Rn)) and use
the same notation w0 for the extended function. Now, we define for all (t, x) ∈ (0, T )×Ω

hǫ(t, x) :=
1

|ǫΓ|

∫

Γǫ(ǫ[xǫ ])
wǫ(t, z)dσ.

Hence, we have to show that

hǫ → w0 in L1((0, T )× Ω).

We also define for (t, x) ∈ (0, T )× Ω (see (16) for the definition of Γǫ(x))

g0ǫ (t, x) :=
1

|ǫΓ|

∫

Γǫ(x)

w0(t, z)dσ,

h0
ǫ(t, x) := g0ǫ

(
t, ǫ
[x
ǫ

])
.

Then we have

‖hǫ − w0‖L1((0,T )×Ω)

≤ ‖hǫ − h0
ǫ‖L1((0,T )×Ω) + ‖h0

ǫ − g0ǫ‖L1((0,T )×Ω) + ‖g0ǫ − w0‖L1((0,T )×Ω)

=: A1
ǫ +A2

ǫ +A3
ǫ .

For the first term A1
ǫ we have

A1
ǫ =

∫ T

0

∫

Ω

∣∣∣∣∣
1

|ǫΓ|

∫

Γǫ(ǫ[xǫ ])
wǫ(t, z)− w0(t, z)dσz

∣∣∣∣∣ dxdt

≤ 1

|ǫΓ|
∑

k∈Kǫ

∫ T

0

∫

ǫ(Y+k)

∫

Γǫ(ǫk)

|wǫ(t, z)− w0(t, z)|dzdxdt

≤ ǫn

|ǫΓ|

∫ T

0

∫

Γǫ

|wǫ(t, z)− w0(t, z)|dσdt

≤ Cǫ‖wǫ − w0‖L1((0,T )×Γǫ)
ǫ→0−→ 0,

due to the strong two-scale convergence of wǫ, see also Lemma 13 in the Appendix B.
For the term A2

ǫ we use a density argument together with the mean value theorem.
More precisely, let wℓ ∈ C∞

0 ((0, T ) × R
n) be a sequence with wℓ → w0 for ℓ → ∞ in

L1((0, T ) × R
n). Remember that w0 is extended by zero to the whole R

n. We mention

33



that we can also choose a sequence converging in L1((0, T ),W 1,1(Ω)), but this is not
necessary. We define

gℓǫ(t, x) :=
1

|ǫΓ|

∫

Γǫ(x)

wℓ(t, z)dσ,

hℓ
ǫ(t, x) := gℓǫ

(
t, ǫ
[x
ǫ

])
.

Then we have

A2
ǫ ≤ ‖h0

ǫ − hℓ
ǫ‖L1((0,T )×Ω) + ‖hℓ

ǫ − gℓǫ‖L1((0,T )×Ω) + ‖gℓǫ − g0ǫ‖L1((0,T )×Ω)

=: B1
ǫ,ℓ +B2

ǫ,ℓ +B3
ǫ,ℓ.

For the first term we get with similar decomposition arguments as for the term A1
ǫ above

and the trace inequality (33)

B1
ǫ,ℓ ≤ Cǫ‖wℓ − w0‖L1((0,T )×Γǫ)

≤ C
(
‖w0 − wℓ‖L1((0,T )×Ω) + ǫ‖∇w0 −∇wℓ‖L1((0,T )×Ω)

)
.

The first term on the right-hand side converges to 0 for ℓ → ∞ uniformly with respect to
ǫ. The second term on the right-hand side goes to 0 for ǫ → 0 (for fixed ℓ ∈ N). For the
term B2

ǫ,ℓ we get

B2
ǫ,ℓ ≤

1

|ǫΓ|

∫ T

0

∫

Ω

∫

Γǫ(x)

∣∣∣wℓ

(
t, z − ǫ

{x
ǫ

})
− wℓ(t, z)

∣∣∣ dσzdxdt

≤ ǫ

|ǫΓ|

∫ T

0

∫

Ω

∫

Γǫ(x)

∫ 1

0

∣∣∣∇wℓ

(
t, z − s ǫ

{x
ǫ

})∣∣∣ dsdσzdxdt

≤ Cǫ‖∇wℓ‖C0([0,T ]×Ω).

Hence, B2
ǫ,ℓ → 0 for ǫ → 0 for every fixed ℓ ∈ N. For B3

ǫ,ℓ we have

B3
ǫ,ℓ ≤

1

|ǫΓ|

∫ T

0

∫

Ω

∫

Γǫ(0)

|wℓ(t, x+ z)− w0(t, x+ z)|dσzdxdt

=
1

|ǫΓ|

∫ T

0

∫

Γǫ(0)

∫

Ω+z

|wℓ(t, x) − w0(t, x)|dxdσzdt

≤ C‖wℓ − w0‖L1((0,T )×Rn),

and therefore B3
ǫ,ℓ → 0 for ℓ → ∞, uniformly with respect to ǫ.

It remains to estimate the term A3
ǫ . With the notation from above we obtain

A3
ǫ ≤ ‖g0ǫ − gℓǫ‖L1((0,T )×Ω) + ‖gℓǫ − wℓ‖L1((0,T )×Ω) + ‖wℓ − w0‖L1((0,T )×Ω).

The first term was already considered above, and the last term obviously tends to 0 for
ℓ → ∞. For the second term, we argue as for B2

ǫ,ℓ to obtain

‖gℓǫ − wℓ‖L1((0,T )×Ω) ≤
1

|ǫΓ|

∫ T

0

∫

Ω

∫

Γǫ(x)

|wℓ(t, z)− wℓ(t, x)|dσzdxdt

≤ Cǫ‖∇wℓ‖C0([0,T ]×Ω).

Hence, A3
ǫ goes to zero for ǫ → 0. Altogether, we obtain the desired result.
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As an immediate consequence we obtain the strong convergence of ǫ−1∂tRǫ:

Proposition 6. Up to a subsequence ǫ → 0, it holds that

ǫ−1∂tRǫ → ∂tR0 in Lp((0, T )× Ω)

for p ∈ [1,∞), with R0 satisfying the equation

∂tR0 = g(u0, R0) a.e. in (0, T )× Ω.

Especially, we have up to a subsequence

ǫ−1∂tRǫ → ∂tR0 strongly in the two-scale sense on Γǫ in Lp.

Proof. The convergence of ǫ−1∂tRǫ in L1((0, T )×Ω) is a direct consequence of Lemma 9
by choosing

wǫ(t, x) := g
(
uǫ(t, x), ǫ

−1Rǫ(t, x)
)
,

w0(t, x) := g(u0(t, x), R0(t, x)).

The strong convergence of uǫ and ǫ−1Rǫ, see Proposition 4 and 5, and the Lipschitz
continuity of g imply the strong two-scale convergence of wǫ on Γǫ in L1. Further it holds
that w0 ∈ L2((0, T ), H1(Ω)), due to the Lipschitz-continuity of g and the regularity of
u0 and R0, see Proposition 4. Then, Lemma 9 implies the convergence of ǫ−1∂tRǫ in
L1((0, T )× Ω), and the result for arbitrary p ∈ [1,∞) follows again from the dominated
convergence theorem of Lebesgue. Now, from ∂tR0 = g(u0, R0), we obtain

∇∂tR0 = ∂1g(u0, R0)∇u0 + ∂2g(u0, R0)∇R0 ∈ L2((0, T )× Ω)

Using that Rǫ is constant on each micro cell and the trace inequality (33), we obtain with
the same arguments as in the proof of Corollary 7

√
ǫ‖ǫ−1∂tRǫ−∂tR0‖L2((0,T )×Γǫ)

≤ C
(
‖ǫ−1∂tRǫ − ∂tR0‖L2((0,T )×Ωǫ) +

√
ǫ‖∇∂tR0‖L2((0,T )×Ωǫ)

)

ǫ→0−→ 0.

Arguing again as in Corollary 7, the convergence is also valid for all p ∈ [1,∞), and the
proposition is proved.

Corollary 10. Up to a subsequence ǫ → 0, one has for every p ∈ [1,∞) that

∂tJǫ → ∂tJ0 strongly in the two-scale sense in Lp.

Proof. This is a direct consequence of the Jacobi formula (22) and the strong two-scale
convergence results in Corollary 8 and Proposition 6.

5.2 Derivation of the macroscopic equation

In this section we derive the macroscopic model in the limit ǫ → 0. In a first step, we
derive the cell problems on the reference element Y ∗. In the second step, we derive the
macroscopic equation on Ω. We emphasize that we already derived the limit equation for
the radius in Proposition 6.
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First of all, choose φǫ(t, x) = ǫφ
(
t, x, x

ǫ

)
for φ ∈ C∞

0 ((0, T )× Ω, C∞
per(Y

∗)) as a test-
function in (18). Due to our a priori estimates in Lemma 7, all the terms except the
diffusion term are of order ǫ. Hence, for ǫ → 0 we obtain from the strong two-scale
convergence of Dǫ from Corollary 8 and the two-scale convergence of ∇uǫ from Corollary
6

∫ T

0

∫

Ω

∫

Y ∗

D0(t, x, y)
[
∇xu0(t, x) +∇yu1(x, y)

]
· ∇yφ(t, x, y)dydxdt = 0.

From the linearity of the problem we obtain for u1 the representation

u1(t, x, y) =

n∑

i=1

∂xi
u0(t, x)wi(t, x, y),

where wi ∈ L2((0, T )× Ω, H1(Y ∗)/R) are the solutions of the cell problems

−∇y ·
(
D0

(
∇ywi + ei

))
= 0 in (0, T )× Ω× Y ∗,

−D0

(
∇ywi + ei

)
· ν = 0 on (0, T )× Ω× Γ,

wi is Y -periodic,

∫

Y ∗

wi(t, x, y)dy = 0 f.a.e. (t, x) ∈ (0, T )× Ω.

(48)

We emphasize that the L∞-regularity ofD0 with respect to (t, x) implies the L∞-regularity
of ∇ywi with respect to (t, x).

Next, we derive the macroscopic equation. We choose φǫ = φ with φ ∈ C∞
0

(
(0, T )×Ω

)

as a test-function in (18) and integrate with respect to time:

∫ T

0

〈∂t(Jǫuǫ), φ〉H1(Ωǫ)′,H1(Ωǫ)dt−
∫ T

0

∫

Ωǫ

uǫ∂tJǫφdxdt

−
∫ T

0

∫

Ωǫ

Vǫ · ∇uǫφdxdt0 +

∫ T

0

∫

Ωǫ

Dǫ∇uǫ · ∇φdxdt

=

∫ T

0

∫

Ωǫ

Jǫfǫφdxdt −
∫ T

0

∫

Γǫ

∂tRǫ(uǫ − ρ)Jǫφdσdt.

(49)

Let us pass to the limit in every single term. For the term including the time-derivative
we use the following fact: First of all, using the strong two-scale convergence of Jǫ from
Corollary 8 and uǫ from Proposition 5, it is easy to check that Jǫuǫ converges (even
strongly by the dominated convergence theorem of Lebesgue [4, Theorem 3.25]) in the
two-scale sense to J0u0 in L2. Then, due to the a priori estimate of Jǫuǫ in Lemma 7, we
obtain that for the zero extension J̃ǫuǫ of Jǫuǫ to the whole domain Ω it holds that (see
also Lemma 11 in the appendix)

∂t

(
J̃ǫuǫ

)
⇀ ∂t

(
J̄0u0

)
weakly in L2((0, T ), H1(Ω)′),

with

J̄0(t, x) :=

∫

Y ∗

J0(t, x, y)dy.

Remark 7. Since J0 is polynomial in R0 with coefficients depending on y in a smooth
way, we easily obtain that J̄0 ∈ L∞((0, T ), H1(Ω)).
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Now, we obtain

∫ T

0

〈∂t(Jǫuǫ), φ〉H1(Ωǫ)′,H1(Ωǫ)dt =

∫ T

0

〈
∂t

(
J̃ǫuǫ

)
, φ
〉
H1(Ω)′,H1(Ω)

dt

ǫ→0−→
∫ T

0

〈∂t(J̄0u0), φ〉H1(Ω)′,H1(Ω)dt.

We emphasize that J̄0 is the volume of the moving cell Y ∗(t, x) defined by

Y ∗(t, x) := Y \BR0(t,x)(x),

i. e., we have J0(t, x) = |Y ∗(t, x)|. For the second term on the left-hand side in (49) we
use the strong two-scale convergence of uǫ from Proposition 5, as well as the two-scale
convergence of ∂tJǫ to ∂tJ0, see Proposition 10, to obtain

∫ T

0

∫

Ωǫ

uǫ∂tJǫφdxdt
ǫ→0−→

∫ T

0

∫

Ω

∫

Y ∗

u0(t, x)∂tJ0(t, x, y)φ(t, x)dydxdt.

Since the L2-norm of Vǫ is of order ǫ, the third term on the left-hand side in (49) vanishes
for ǫ → 0. Using the strong two-scale convergence ofDǫ from Corollary 8 and the two-scale
convergence of ∇uǫ from Corollary 6, we obtain

lim
ǫ→0

∫ T

0

∫

Ωǫ

Dǫ∇uǫ · ∇φdxdt =

∫ T

0

∫

Ω

∫

Y ∗

D0

[
∇u0 +∇yu1

]
· ∇φdydxdt

=

∫ T

0

∫

Ω

D∗
0(t, x)∇u0 · ∇φdxdt,

with the homogenized diffusion coefficient D∗
0 ∈ L∞((0, T )× Ω)n×n defined by

(
D0(t, x)

∗
)
ij
:=

∫

Y ∗

D0(t, x, y)
[
∇ywi(t, x, y) + ei

]
·
[
∇ywj(t, x, y) + ej

]
dy, (50)

where wi are the solutions of the cell problems (48). For the first term on the right-hand
side of (49) we have

lim
ǫ→0

∫ T

0

∫

Ωǫ

Jǫfǫφdxdt =

∫ T

0

∫

Ω

∫

Y ∗

J0f0φdydxdt,

where we used the two-scale convergence of Jǫ and Sǫ, and the continuity of f , see
Assumption (A5). It remains to pass to the limit in the boundary term in (49). We
only consider in more detail the term including uǫ. The strong two-scale convergence of
ǫ−1∂tRǫ and Jǫ on Γǫ in Lp from Proposition 6 and Corollary 8, as well as the strong
two-scale convergence of uǫ on Γǫ in L2 from Proposition 5 imply the strong two-scale
convergence of the product ǫ−1∂tRǫuǫJǫ on Γǫ in Lq for q = 2p

4+p
∈ (1, 2) (with p > 4). In

fact, this is an immediate consequence of the characterization of the two-scale convergence
via the unfolding operator, see Lemma 13 in the Appendix B. Hence, we obtain

lim
ǫ→0

∫ T

0

∫

Γǫ

∂tRǫ(uǫ − ρ)Jǫφdσdt =

∫ T

0

∫

Ω

∂tR0(u0 − ρ)φ

∫

Γ

J0dσydxdt.

Let us define the moving cell surface Γ(t, x) by

Γ(t, x) := ∂BR0(t,x)(m).
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Using the identity (52) we obtain |∇yS
−T
0 ν| = |ν| = 1 on Γ, and we get that

∫

Γ

J0dσy =

∫

Γ(t,x)

dσ = |Γ(t, x)|

is the surface area of Γ(t, x). Altogether we obtain in the limit ǫ → 0:

∫ T

0

〈∂t(J̄0u0),φ〉H1(Ω)′,H1(Ω)dt−
∫ T

0

∫

Ω

∂tJ̄0u0φdxdt +

∫ T

0

∫

Ω

D∗
0∇u0 · ∇φdxdt

=

∫ T

0

∫

Ω

∫

Y ∗

J0f0dyφdxdt −
∫ T

0

∫

Ω

∂tR0(u0 − ρ)φ|Γ(t, x)|dxdt

for all φ ∈ C∞
0 ((0, T ) × Ω) and by density for all φ ∈ L2((0, T ), H1(Ω)). Using the

relation ∂tJ0 = ∇y ·V0 and the notation q :=
∫
Y ∗ ∇y ·V0dy, we obtain the the variatioanl

equation (24). To finish the proof of Theorem 2 we have to establish the initial condition
u(0) = uin, where we have to show u0 ∈ C0([0, T ], L2(Ω). Of course, due to Lemma 11,
it holds that (J̄0u0)(0) = J̄0u

in. The spatial regularity of R0 from Proposition 4, the
equality ∂tR0 = g(u0, R0) almost everywhere in (0, T ) × Ω and the boundedness of g
imply

R0 ∈ C0,1([0, T ], L∞(Ω)) ∩ L∞((0, T ), H1(Ω)).

Together with the positivity of J0, we obtain

J̄−1
0 ∈ C0,1([0, T ], L∞(Ω)) ∩ L∞((0, T ), H1(Ω)).

Hence, for q > n we obtain

J̄−1
0 ∂t(J̄0u0)− J̄−1

0 u0∂tJ̄0 ∈ L2((0, T ),W 1,q(Ω)′).

Now, the product rule implies

∂tu0 = J̄−1
0 ∂t(J̄0u0)− J̄−1

0 u0∂tJ̄0 ∈ L2((0, T ),W 1,q(Ω)′).

Especially, due to [38, Lemma 7.3], we have u0 ∈ C0([0, T ], L2(Ω)) and the initial condition
u0(0) ∈ L2(Ω) makes sense. Using (J̄0u0)(0) = J̄0u

in and J̄0 ∈ C0([0, T ], L∞(Ω), we get
the initial condition u0(0) = uin.

Remark 8.

(i) The proof above gives the following regularity results

J̄0 ∈ C0,1([0, T ], L∞(Ω)) ∩ L∞((0, T ), H1(Ω)),

∂tu0 ∈ L2((0, T ),W 1,q(Ω)′)

for q > n.

(ii) The macroscopic equation is formulated on the fixed domain Ω. The moving bound-
ary is in the cell problems. In fact, if we define

w̃i(t, x, y) := wi(t, x, S
−1
0 (t, x, y)) for (t, x, y) ∈ (0, T )× Ω× Y ∗(t, x),
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then w̃i solves the following problem on the moving cell Y ∗(t, x)

−∇y ·
(
D(∇yw̃i +∇y(S

−1
0 )T ei

)
= 0 in Y ∗(t, x),

−D(∇yw̃i +∇y(S
−1
0 )T ei) · ν = 0 on Γ(t, x),∫

Y ∗(t,x)

J−1
0 (t, x, S−1

0 (t, x, y))w̃i(t, x, y)dy = 0, w̃i is Y -periodic.

The evolution of Y ∗(t, x) is given by S0 and therefore coupled via the ODE for R0

to the macroscopic solution u0.

6 Conclusion

We analyzed a reaction-diffusion problem in an evolving micro-domain depending on the
solution of the equation, and derived a macroscopic model. The homogenized model is
only depending on the macroscopic variable x ∈ Ω. The information about the evolving
microstructure are contained in the effective coefficients. The homogenized diffusion co-
efficient is given via solutions of cell problems on evolving reference element, depending
on the limit functions u0 and R0. Hence, in every macroscopic point x ∈ Ω, we have to
solve a cell problem depending on the solution itself, what leads to a strongly coupled
problem which numerical treatment is highly challenging.

We emphasize that the methods in this paper are not restricted to the scalar case
and linear reaction kinetics. In fact, the results simply extend to systems with Lipschitz-
continuous reaction rates for example of Michaelis-Menton-type.

Our results depend highly on the assumption that the evolution of the surface is given
by an ordinary equation. In general, one has to consider for example an hyperbolic level
set problem coupled to the transport equation, and even global-in-time solutions for the
microscopic solutions are not guaranteed and even cannot be expected. However, for the
treatment of more realistic applications on has to take into account such kind of models.

In our results we made no statements about the uniqueness of the micro- and the
macro-model. For the homogenization process, uniqueness for the upscaled model is
important to obtain the convergence of the whole sequence, which is not guaranteed in
our case. However, the low regularity of the product J̄0u0 and ∂tu0 causes trouble for
the application of standard energy arguments. In the microscopic model, especially the
nonlinear boundary term including the time-derivative ∂tRǫ makes things complicated.
Here, one should take into account entropy methods, see for example [28, 34].

From a physical point of point of view we would expect nonegativity and essential
boundedness for a solution. An upper bound can be obtained for the micro-model under
additional assumptions on the data, e.g., boundedness of uin

ǫ and f = 0 (or f depending on
uǫ with suitable growth conditions). Nonnegativity for the micro-model can be obtained
for growing grains, i. e., ∂tRǫ ≥ 0. In the present model, using the average over the
boundary of the perforation in the differential equation of Rǫ complicates the proof for
nonnegativity, as there is no pointwise relation between uǫ and ∂tRǫ. On the other hand,
this structure guarantees that the perforations remain radially symmetric. The treatment
of these problems are part of our ongoing work.
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A Some elemental calculations

Recalling (3), we choose a fixed δ0 ∈
(
0,min{ 1

2 −R,R}
)
and define the symmetric cut-off

function χ ∈ C∞
0 (R)) such that

0 ≤ χ(z) ≤ 1 for all z ∈ R,

χ(z) = 1 if |z| ≤ δ0
2
,

χ(z) = 0 if |z| ≥ δ0,

zχ′(z) < 0 if |z| ∈
(
δ0
2
, δ0

)
.

Further, with Γ = ∂BR(m) being the sphere of radius R centered in m, we let dΓ denote
the signed-distance function to Γ

dΓ(y) =

{
dist(y,Γ) if |y| ≥ R,

−dist(y,Γ) if |y| < R.

Clearly, for any y ∈ R
n one has dΓ(y) = ‖y − m‖ −R which is a smooth function for all

arguments y 6= m.
With this, we consider the function

χ0 : Y → R, χ0(y) = χ(dΓ(y)), (51)

which is Y -periodic and smooth (also in m, since it vanishes in a neighborhood of m),
having a compact support in Y .

Further, for any y ∈ Γ we denote by ν0(y) the unit normal in y to Γ pointing outwards
BR(m). In this simplified setting we have ν0(y) =

y−m

|y−m| = ∇dΓ(y), and we use the same

expression to extend ν0 to the set Y \ {m}.
With r s.t. 0 < r < 1

2 we let Y ∗
r be the perforated cell

Y ∗
r := Y \Br(m).

Recalling that the radius in (7d) is time-dependent, given the function R0 : [0, T ] →
[
R,R

]

we define the Hanzawa transform S0 : [0, T ]× Y ∗
R
→ Y by

S0(t, y) := y +
(
R0(t)−R

)
χ0(y)ν0(y).

Clearly, an equivalent form of S0 reads

S0(t, y) := m+
1

‖y −m‖
[
‖y −m‖+

(
R0(t)−R

)
χ(‖y −m‖ −R)

]
(y −m).
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As will be seen below, for any t ∈ [0, T ], S0(t, ·) : Y ∗
R
→ Y ∗

R0(t)
is a bijective mapping.

Note that the function S0 is defined on the entire cell Y , but is only bijective in a
neighborhood of Γ.

With In denoting the unit matrix in R
n×n, the derivatives of S0 are

∇S0(t, y) = In +
(
R0(t)−R

)
[ν0(y)⊗∇yχ0(y) + χ0(y)∇yν0(y)] ,

∂tS0(t, y) = R′
0(t)χ0(y)ν0(y).

Also, for the functions χ0 and ν0 we have

∇χ0(y) =
y −m

|y −m|χ
′
(
|y −m| −R

)
= ν0(y)χ

′
(
|y −m| −R

)
,

∇ν0(y) =
1

|y −m|In − 1

|y −m|3 (y −m)⊗ (y −m) =
1

|y −m|In − 1

|y −m|ν0(y)⊗ ν0(y).

This gives

∇S0 =

(
1 +

χ0

|y −m|(R0 −R)

)
In +

[
(R0 −R)

(
χ′(|y −m| −R)− χ0

|y −m|

)]
ν0 ⊗ ν0.

(52)

To compute the Jacobian determinant of S0 we use the matrix determinant lemma
(see [24], Theorem 13.3.8., or [11]) stating that

det(A+ u⊗ v) = (1 + vTA−1u) det(A),

for any invertible matrix A ∈ R
n×n and column vectors u, v ∈ R

n. After an elemental
calculation, one has

det(∇S0(t, y)) =
(
1 + χ′(|y −m| −R)(R0(t)−R)

)
·
(
1 +

χ0(y)

|y −m| (R0(t)−R)

)n−1

.

Using the definition of χ and with R0 ∈ [R,R], for all y ∈ Y ∗
R

one has

1 ≤ 1 + χ′(|y −m| −R)(R0 −R) ≤ 1 + ‖χ′‖L∞(R)

(
R−R

)
,

0 <
R

R
≤ R0

R
≤ 1 +

χ0(y)

|y −m| (R0 −R) ≤ 1,

as |y −m| ≥ R. Therefore

0 <

(
R

R

)n−1

≤ det(∇S0(t, y)) ≤ 1 + ‖χ′‖L∞(R)

(
R−R

)
.

In particular, this shows that S0(t, ·) is a bijection from Y ∗
R

to Y ∗
R0(t)

.

B Two-scale convergence and unfolding

In this section we briefly summarize the concept of the two-scale convergence and the
unfolding operator. These methods provide the basic techniques to pass to the limit
ǫ → 0 in the microscopic problem.
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B.1 Two-scale convergence

We start with the definition of the two-scale convergence, which was first introduced and
analyzed in [33] and [2], see also [27].

Definition 5. A sequence uǫ ∈ Lp((0, T ) × Ω) for p ∈ [1,∞) is said to converge in
the two-scale sense in Lp to the limit function u0 ∈ Lp((0, T ) × Ω × Y ), if for every
φ ∈ Lp′

((0, T )× Ω, Cper(Y )) the following relation holds

lim
ǫ→0

∫ T

0

∫

Ω

uǫ(t, x)φ
(
t, x,

x

ǫ

)
dxdt =

∫ T

0

∫

Ω

∫

Y

u0(t, x, y)φ(t, x, y)dydxdt.

A two-scale convergent sequence uǫ convergences strongly in the two-scale sense to u0, if

lim
ǫ→0

‖uǫ‖Lp((0,T )×Ω) = ‖u0‖Lp((0,T )×Ω×Y ).

Remark 9. Let u0 ∈ Lp((0, T )×Ω, C0
per(Y )). Then uǫ converges strongly in the two-scale

sense to u0 in Lp if and only if

lim
ǫ→0

∥∥∥uǫ − u0

(
x,

x

ǫ

)∥∥∥
Lp((0,T )×Ω)

= 0.

In [3, 32] the method of two-scale convergence was extended to oscillating surfaces:

Definition 6. A sequence of functions uǫ ∈ Lp((0, T ) × Γǫ) for p ∈ [1,∞) is said to
converge in the two-scale sense on the surface Γǫ in Lp to a limit u0 ∈ Lp((0, T )×Ω×Γ),
if for every φ ∈ C

(
[0, T ]× Ω, Cper(Γ)

)
it holds that

lim
ǫ→0

ǫ

∫ T

0

∫

Γǫ

uǫ(t, x)φ
(
t, x,

x

ǫ

)
dσdt =

∫ T

0

∫

Ω

∫

Γ

u0(t, x, y)φ(t, x, y)dσydxdt.

We say a two-scale convergent sequence uǫ converges strongly in the two-scale sense,
if additionally it holds that

lim
ǫ→0

ǫ
1

p ‖uǫ‖Lp((0,T )×Γǫ) = ‖u0‖Lp((0,T )×Ω×Γ).

We have the following compactness results (see e.g., [2, 27, 32]:

Lemma 10. For every p ∈ (1,∞) we have:

(i) For every bounded sequence uǫ ∈ Lp((0, T )×Ω) there exists u0 ∈ Lp((0, T )×Ω×Y )
such that up to a subsequence

uǫ → u0 in the two-scale sense in Lp.

(ii) For every bounded sequence uǫ ∈ Lp((0, T ),W 1,p(Ω)) there exist u0 ∈ Lp((0, T )×Ω)
and u1 ∈ Lp((0, T )× Ω,W 1,p

per(Y )/R), such that up to a subsequence

uǫ → u0 in the two-scale sense in Lp,

∇uǫ → ∇xu0 +∇yu1 in the two-scale sense in Lp.
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(iii) For every sequence uǫ ∈ Lp((0, T ),W 1,p(Ω)) with uǫ and ǫ∇uǫ bounded in Lp((0, T )×
Ω), there exists u0 ∈ Lp((0, T )×Ω,W 1,p

per(Y )) such that up to a subsequence it holds
that

uǫ → u0 in the two-scale sense in Lp,

ǫ∇uǫ → ∇yu0 in the two-scale sense in Lp.

(iv) For every sequence uǫ ∈ Lp((0, T )× Γǫ) with

ǫ
1

p ‖uǫ‖Lp((0,T )×Γǫ) ≤ C,

there exists u0 ∈ Lp((0, T )× Ω× Γ) such that up to a subsequence

uǫ → u0 in the two-scale sense on Γǫ in Lp.

Concerning the time derivative we have the following result:

Lemma 11. Let wǫ ∈ L2((0, T ), H1(Ωǫ)) ∩H1((0, T ), H1(Ωǫ)
′) with

‖∂twǫ‖L2((0,T ),H1(Ωǫ)′) + ‖wǫ‖L2((0,T )×Ωǫ) + ǫ‖∇wǫ‖L2((0,T )×Ωǫ) ≤ C.

Denote by w̃ǫ the zero extension to the whole domain Ω. Let w0 ∈ L2((0, T )×Ω, H1
per(Y ))

denote the two-scale limit of w̃ǫ (up to a subsequence) from Lemma 10 (vanishing on
Y \ Y ∗) and define w̄0 :=

∫
Y
wdy. Then, again up to a subsequence, it holds that

∂tw̃ǫ → ∂tw̄0 weakly in L2((0, T ), H1(Ω)′).

If additionally w̃ǫ(0) converges in the two-scale sense to w0 ∈ L2(Ω× Y ), then we have

w̄0(0) =

∫

Y

w0dy. (53)

Proof. This follows by standard two-scale arguments and integration by parts in time, so
we skip the details.

B.2 The unfolding operator

When dealing with nonlinear problems it is helpful to work the unfolding method which
gives a characterization for the weak and strong convergence, see Lemma 13 below. For
a detailed investigation of the unfolding operator and its properties we refer to [9]. For
a perforated domain (here we also allow the case Y ∗ = Y , i. e., Ωǫ = Ω) we define the
unfolding operator for p ∈ [1,∞] by

Tǫ : Lp((0, T )× Ωǫ) → Lp((0, T )× Ω× Y ∗), Tǫ(φǫ)(t, x, y) = φǫ

(
t, ǫ
[x
ǫ

]
+ ǫy

)
.

In the same way, we define the boundary unfolding operator for the oscillating surface Γǫ

via

Tǫ : Lp((0, T )× Γǫ) → Lp((0, T )× Ω× Γ), Tǫ(φǫ)(t, x, y) = φǫ

(
t, ǫ
[x
ǫ

]
+ ǫy

)
.

We emphasize that we use the same notation for the unfolding operator on Ωǫ and the
boundary unfolding operator Γǫ. We summarize the basic properties of the unfolding
operator, see [9]:
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Lemma 12. Let p ∈ [1,∞].

(i) For φǫ ∈ Lp((0, T )× Ωǫ) it holds that

‖Tǫ(φǫ)‖Lp((0,T )×Ω×Ωǫ) = ‖φǫ‖Lp((0,T )×Y ∗).

(ii) For φǫ ∈ Lp((0, T ),W 1,p(Ωǫ)) it holds that

∇yTǫ(φǫ) = ǫTǫ(∇xφǫ).

(iii) For φǫ ∈ Lp((0, T )× Γǫ) it holds that

‖Tǫφǫ‖Lp((0,T )×Ω×Γ) = ǫ
1

p ‖φǫ‖Lp((0,T )×Γǫ).

The following lemma gives a relation between the unfolding operator and the two-
scale converges. Its proof is quite standard and we refer the reader to [5] and [9] for more
details (see also [47, Proposition 2.5]).

Lemma 13. Let p ∈ [1,∞).

(a) For a sequence uǫ ∈ Lp((0, T )× Ω), the following statements are equivalent:

(i) uǫ → u0 weakly/strongly in the two-scale sense in Lp,

(ii) Tǫuǫ → u0 weakly/strongly in Lp((0, T )× Ω× Y ).

(b) For a sequence uǫ ∈ Lp((0, T )× Γǫ) the following statements are equivalent:

(i) uǫ → u0 weakly/strongly in the two-scale sense on Γǫ in Lp,

(ii) Tǫuǫ → u0 weakly/strongly in Lp((0, T )× Ω× Γ).
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Basel, 2005.

[39] R. Schulz and P. Knabner. Derivation and analysis of an effective model for biofilm
growth in evolving porous media. Math. Methods Appl. Sci., 40(8):2930–2948, 2017.

46



[40] R. Schulz, N. Ray, F. Frank, H. S. Mahato, and P. Knabner. Strong solvability up to
clogging of an effective diffusion-precipitation model in an evolving porous medium.
Eur. J. Appl. Math., 28(2):179 – 207, 2017.

[41] T. Sweijen, C. van Duijn, and S. Hassanizadeh. A model for diffusion of water into
a swelling particle with a free boundary: Application to a super absorbent polymer
particle. Chemical Engineering Science, 172:407–413, 2017.

[42] B. W. van de Fliert and R. van der Hout. A generalized Stefan problem in a diffusion
model with evaporation. SIAM J. Appl. Math., 60(4):1128–1136, 2000.

[43] C. J. van Duijn and I. S. Pop. Crystal dissolution and precipitation in porous media:
Pore scale analysis. J. Reine Angew. Math., 2004(577):171–211, 2004.

[44] T. van Noorden. Crystal precipitation and dissolution in a thin strip. Eur J. Appl.
Math., 20(1):69–91, 2009.

[45] T. van Noorden and I. Pop. A stefan problem modelling crystal dissolution and
precipitation. IMA J. Appl. Math., 72(2):393–411, 2008.

[46] T. L. van Noorden. Crystal precipitation and dissolution in a porous medium:
Effective equations and numerical experiments. SIAM Multiscale Model. Simul.,
7(3):1220–1236, 2009.

[47] A. Visintin. Towards a two-scale calculus. ESAIM Control Optim. Cal. Var.,
12(3):371–397, 2006.

[48] D. Wiedemann. The two-scale transformation method. Asymptot. Anal., Pre-press:1
– 24, 2022.

47


