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Abstract: Over recent years, significant improvements have been made in the understanding of
(epi)genetics and neuropathophysiological mechanisms driving the different forms of multiple
sclerosis (MS). For example, the role and importance of the bidirectional communications between
the brain and the gut—also referred to as the gut-brain axis—in the pathogenesis of MS is receiving
increasing interest in recent years and is probably one of the most promising areas of research
for the management of people with MS. However, despite these important advances, it must be
noted that these data are not—yet—used in rehabilitation. Neurorehabilitation is a cornerstone
of MS patient management, and there are many techniques available to clinicians and patients,
including technology-supported rehabilitation. In this paper, we will discuss how new findings on
the gut microbiome could help us to better understand how rehabilitation can improve motor and
cognitive functions. We will also see how the data gathered during the rehabilitation can help to get a
better diagnosis of the patients. Finally, we will discuss how these new techniques can better guide
rehabilitation to lead to precision rehabilitation and ultimately increase the quality of patient care.

Keywords: rehabilitation; genes; gut microbiome; precision medicine; rehabilomics; technology-
supported rehabilitation

1. Introduction

Multiple Sclerosis (MS) is one of the most prevalent neurological disorders, affect-
ing over 2.5 million people worldwide. It is an autoimmune and demyelinating central
nervous system (CNS) condition [1]. MS is associated with a variety of symptoms, such
as physical performance impairment and tiredness [2], anxiety and depression [3], and
cognitive impairments [4]. To date, the pathophysiology of MS is still largely unknown,
although it is widely assumed that immune responses to multiple myelin antigens cause
disease development [5].

One of the most probable mechanisms for MS pathology has been proposed to be
cytokine and adipokine imbalance in the CNS and peripheral blood circulation in persons
with MS [6]. Interestingly, it has been shown that physical activity and rehabilitation
exercises may be associated with increasing IL-10 levels and decreasing TNF-α levels in
people with MS (pwMS) [7].

Major advances have been made in the prognosis (thanks to the multi-omics ap-
proaches) and in the management of pwMS, largely due to the development of technology-
supported rehabilitation [8]. Omics technologies are high-throughput biochemical assays
that test molecules of the same kind in a biological sample extensively and concurrently [9].
The goal of multi-omics, also known as integrated omics, pan-omics, and trans-omics,
is to merge two or more omics data sets to help in data processing, visualization, and
interpretation to discover or further understand the mechanism of biological activity [10].

Genes 2023, 14, 63. https://doi.org/10.3390/genes14010063 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes14010063
https://doi.org/10.3390/genes14010063
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-7729-4700
https://doi.org/10.3390/genes14010063
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes14010063?type=check_update&version=3


Genes 2023, 14, 63 2 of 14

Rehabilitation, which involves counseling and symptomatic therapy, is now thought to
be one of the most effective treatments for maintaining optimal functioning and, therefore,
quality of life in people with MS (pwMS) [11].

The disease’s intricacy, the difficulties in establishing the best treatment, and the wide
variety of symptoms necessitate a holistic approach to the patient that includes both pharma-
cology and neurorehabilitation [11]. The availability of multi-omics data has transformed
medicine and biology by opening up options for integrated system-level methods [12].

However, there is currently a lack of integration of the data and information from the
medical world (e.g., multi-omics) and rehabilitation specialists, although this information
could be useful in selecting the most appropriate rehabilitation techniques. In looking
at the problem from the opposite direction, there is also a lack of communication and a
lack of use of the data (e.g., ranges of motion, smoothness, strength) obtained during the
rehabilitation towards the medical world to obtain a more precise diagnosis and follow-up
of patients since have to undergo many rehabilitation sessions. It is, therefore, possible to
perform longitudinal follow-up.

In the paper, we will first discuss the latest finding of genetics analysis as well as
the modification of gut microbiota observed in pwMS. Then we will discuss the different
rehabilitation strategies and then see how the information from the gut microbiota can be
used as an indicator of the progress of the patients during the rehabilitation process. Finally,
we will discuss how the information collected during the rehabilitation process can be used
to integrate more functional information in the follow-up and management of pwMS.

2. The Multi-Omics Approach

Multi-omics is a novel approach in which data sets from various omics groups
are combined during analysis. The various omics strategies analyzed include individ-
ual components: genomics, epigenomics, transcriptomics, proteomics, metabolomics
and phenomics [13], as well as the complex relationship between these components
(see Figure 1) [14]. A multi-omics method allows us to answer fundamental biological
issues such as which genes are expressed into RNA (i.e., transcriptomics) and translated
into proteins (i.e., boproteomics), as well as which metabolites are present or vary under
different situations (i.e., metabolomics). The rapid development and democratization
of the technologies (e.g., DNA and RNA (next-generation) sequencing [15], single-cell
sequencing [16], DNA methylation analysis [17], Quantitative Mass Spectrometry-Based
Proteomics [18] and metabolomics [19]) coupled with the development of bioinformatics
allows the rapid development of this field. Major advances have been made thanks to the
integration of this information.

First, we will provide a brief summary of the current findings in genetics.
A total of 233 statistically independent and genome-wide significant associations with

MS susceptibility have been discovered in the most recent GWAS study [20]. The team
discovered that the major histocompatibility complex (MHC) comprises 32 connections,
one of which is the first MS locus on a sex chromosome, which is located on chromosome
X. The autosomal non-MHC genome comprises the remaining 200 associations. A large
number of these loci are probably definitely real susceptibility loci. The genome-wide and
suggestive effects account for 48% of the estimated MS heritability [20]. However, recently,
environmental variables, rather than purely genetics, have been proposed as important
predictors of vulnerability [21]. Therefore, we will mostly focus on the microbiome, one of
the most promising developments in this field.
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Figure 1. Schematic representation showing the integration of the different omics technology (white
boxes on the left) and their roles and interactions (grey boxes, center) with the gut microbiome,
adapted from [13–15].

The role and importance of bidirectional communications between the brain and the
gut—also known as thegut-brain axis—in the pathogenesis of various central nervous disor-
ders has grown in recent years and is likely one of the most promising areas of research [22].
The gut microbiome is made up of many different microorganisms: approximately 1000
bacterial species and 7000 bacterial strains have been identified, totaling 1013–1014 differ-
ent microorganisms in the gut [23]. The gut–brain axis is a bidirectional communication
axis that includes, among other things, the intestinal microbiome, the intestinal barrier,
intestinal inflammation, and the intestinal/systemic/brain immune systems [24]. The
gut–brain axis is involved in both normal and pathological central nervous system func-
tion [25,26], and gut microbiota alterations are associated with modulation in the immune
system markers [27].

A recent review summarized the quantified evidence of gut microbiome in several
neurological disorders, including MS [28]. Ten studies involving a total of 307 pwMS and
311 healthy controls were included. Despite the small number of patients and controls,
there was a relatively high consistency seen at the genus level involving 11 associations in
the different studies (Actinomyces, Akkermansia, Bifidobacterium, Coprococcus, Dialister, Dorea,
Faecalibacterium, Haemophilus, Megasphaera, Paraprevotella, and Slackia) and six associations
in the opposite direction—the direction of the modification was found inconsistent between
the different studies (Butyricicoccus, Clostridium, Gemmiger, Parabacteroides, Phascolarctobac-
terium, and Prevotella) [28]. From a neurophysiopathological point of view, Akkermansia is
certainly one of the most important microbiota. Akkermansia is found in the mucus layer of
the large intestine [29], where it is involved in the process of maintaining the integrity of the
intestine and degrading mucin [30]. Akkermansia can stimulate dendritic cells to produce
TGF-β and interleukin 6 (IL6) and 1 (IL1), activating regulatory T Cells (Tregs), which may
be relevant for the pathogenesis of MS. Changes in gut microbiota are connected to CNS
inflammation in neurological disorders and MS is a neuroinflammatory condition.

Interestingly important changes in gut microbiota composition have also been high-
lighted in depression [31], a common symptom of MS (with an increased incidence of up to
71% compared to the control population) [32]. It is of note that there is no overlap in the gut
microbiome notification in MS and depression [28,31], nor at the genus level [33]. In this
recent bidirectional Mendelian Randomization study, the authors did not find a significant
risk for the development of MS in persons carrying variants associated with depression or
for risk of depression in individuals who are genetically susceptible to MS [33].

Concerning fatigue, another frequent symptom of MS, the evidence is less clear in MS
patients as most of the studies are currently performed in cancer patients [34].
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3. (Conventional) Rehabilitation

The bacteria that live in the gut tend to be sensitive to environmental influences and
interventions such as changes in food and medicine, as well as physical exercise [35,36].
Engaging in regular physical activity is a helpful intervention for pwMS. This intervention
provides a number of benefits, including improved brain function and the status of the
immune system, as well as an increased ability to carry out day-to-day activities [37,38].
Positive modifications of the gut microbiota have also been linked in a number of studies
to the frequent participation in physical exercise in both human subjects and animals [39].

Rehabilitation strategies are a group of therapies aimed at improving functioning and
reducing impairment in persons with chronic diseases who interact with their environment.
Person-centered rehabilitation indicates that the therapies and techniques chosen for each
individual should be based on their goals and preferences [40]. Rehabilitation can be
provided in a variety of settings, including inpatient or outpatient hospital settings, private
clinics, and community settings such as a person’s home. Rehabilitation professionals
include physiotherapists, occupational therapists, speech and language therapists and
audiologists, orthotists and prosthetists, clinical psychologists, physical medicine and
rehabilitation physicians, and rehabilitation nurses, among others [41]. Rehabilitation and
exercises have been found effective in improving MS effects such as fatigue [2], activity and
participation [42], and therefore the quality of life [43] of pwMS.

Clinical outcomes are often determined by observing participants’ motor actions
(e.g., to capture motor impairments and functional limitations using specific tests and
scales such as the Expanded Disability Status Scale [EDSS] [44]). Regrettably, these eval-
uations are time-consuming and impracticable to do on a consistent basis during the
intervention period. Too often, outcome measurements are gathered only at baseline and
discharge. This is a concern since the absence of longitudinal data precludes rehabilitation
professionals from exploring the possibility of changing the intervention in order to max-
imize motor progress. The development of new technologies is one solution and could
eventually lead to the development of a hybrid formula between sessions performed with
clinicians and technology-led sessions.

4. Technology-Supported Rehabilitation

The rapid development of technology and computer science has changed our environ-
ment and our way of life enormously over the last decades. The use and implementation
of new technologies to assist and improve physiotherapy and the rehabilitation process
is called technology-supported rehabilitation. The technology that is, or can be used, in
rehabilitation can be divided into three categories: (i) high-tech devices whose price and
complexity of use limit their use in specialized centers (i.e., robotic gait rehabilitation
[e.g., Lokomat® from Hocoma, Lexo® from Tyromotion], exoskeleton [EksoNR® from ekso-
BIONICS]), (ii) devices that can be used by the clinicians in their daily practice (i.e., serious
games exercises with or without virtual reality headset [e.g., Jintronix, CorpusVR]), and (iii)
systems and solutions that can be used by the patients alone at home (i.e., mobile health
applications [e.g., Physitrack, MoveUP, Physiotools]) (Figure 2).
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Figure 2. Schematic representation of technology-supported rehabilitation. Note that several tech-
nologies can be used in different categories (namely specialized centers, private practice or at-home).
The x-axis represents the price and ease of use of the technology. For example, robotics technology is
expensive (>$100,000) and requires trained staff, while mHealth apps prices are usually between $1
and $50 per year and can be used by the patients themselves without help or support. On the y-axis
is the availability of the devices for both patients and clinicians.

Rehabilitation can be facilitated by existing technology and help both the patients and
the clinicians. Another great potential of using technology to support rehabilitation is that
different measurements can be taken while patients are performing the rehabilitation, either
in the clinic or at home. These set of measurements can be used as continuous outcomes
(e.g., reaction time, smoothness of the motion, number of steps) to monitor the evolution
of the patients during the rehabilitation process (e.g., high-intensity training, stretching,
balance training) and adapt the plan according to the real needs (e.g., improving quality of
life, decreasing level of fatigue) and specificities (e.g., different forms of MS) of the patients.
The current development of inexpensive and portable systems using wearable sensors
is gaining popularity in the rehabilitation area, and such systems can be used in daily
clinics with patients to measure, for example, upper limb motion [45], hand function [46],
balance [47], and gait [48].

The majority of devices allow the continuous recording of the motions performed by
patients during rehabilitation exercises [49,50]. These measures are technically referred to
as biomarkers. The word refers to a large subset of medical indicators ‘indicators of the
normal biological processes, pathogenic processes, or responses to an exposure or inter-
vention, including therapeutic interventions accurately and reproducibly measured from
outside the patient’ [51]. Rehabilomics has been defined by Wagner as “a novel framework
from which to discuss biomarkers in research and clinical care that addresses research
gaps and clinical treatment needs specific to physical medicine and rehabilitation” [52].
Rehabilomics combines the systematic data collection of rehabilitation-relevant phenotypes
and transdisciplinary analysis of biomarkers to better understand the biology, function,
prognosis, complications, treatments, adaptation, and recovery of people with disabilities.

This physiologically based conceptual framework essentially adds an “-omic” layer to
the scientific study of rehabilitation processes and results, personalizing a biomolecular
approach to rehabilitation therapy aimed at improving individual recovery [53]. These
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analyses could be used later to adjust the dose, type and intensity of the different rehabilita-
tion exercises at an earlier stage of the research or to decide to discontinue an intervention
if it turns out that the patient cannot benefit [54].

Mobile health technologies (i.e., wearable, portable, body-fixed sensors, or home-
integrated devices) that evaluate mobility in an unsupervised way on a daily basis during
activities of daily living are gaining popularity as supplemental clinical assessments [55].
Due to the fact that data gathered in these ecologically valid, patient-relevant contexts
capture varied and uncommon occurrences, they may circumvent the limitations of con-
ventional clinical examinations (i.e., ceiling effect, time-consuming, cross-sectional evalua-
tion) [56]. Remote health monitoring, based on non-invasive and wearable sensors and com-
munication and information technology, enables patients to remain safer at home [57,58].
In addition to the safety effect, the remote monitoring of patients during activities of daily
life between sessions is a significant part of the application of new technology in rehabili-
tation. Continuous data gathering can be used to detect considerably smaller changes in
patient status (i.e., improvement or deterioration) [59] and should be utilized in research
to produce more accurate and sensitive outcomes such as digital biomarkers [60]. Us-
ing digital biomarkers may monitor and gather biological, physiological, and anatomical
data objectively and more continuously [61]. Moreover, persistent, objective monitoring
can uncover illness characteristics not found in the clinic using classical tests [62]. Using
smartphone-based digital biomarkers both for assessment and to drive the rehabilitation
process is a significant area of development due to their widespread availability [63]. There
are two distinct types of digital biomarkers: active (supervised) ones in which partici-
pants must complete specific tasks, such as cognitive tasks (e.g., Lumosity, BrainHQ, Peak
Brain Training) [64,65], and passive (unsupervised) ones in which the outcomes are de-
rived from the natural use of the smartphone, a technique known as digital phenotyping
(e.g., Neurocast) [66]. Digital phenotyping can be used to track age-dependent cognitive
and behavioral processes in MS patients and has shown good responsiveness to changes in
disease activity, fatigue, and clinical disability [67].

We have seen that the technology can be used not only to increase the quality of
the rehabilitation but also provides a unique opportunity to collect continuous data in a
more ecological way (i.e., rehabilomics and digital biomarkers). This can be particularly
relevant for rehabilitation as one of the biggest current limitations of the translation in
rehabilitation is that the outcomes used in the research study, mainly subjective evaluated
by the clinicians, may not be sensitive enough to detect subtle modifications of the patients
because of low resolution and ceiling effect [68,69].

In the next part of the paper, we will see how we can integrate and use these data from
the rehabilomics within the well-established multi-omics approach.

5. Toward a (More) Integrated Approach: The Precision Medicine

There is, currently, to the author’s best knowledge, only a very limited number of
studies trying to integrate omics information into the rehabilitation process.

Two studies about the use of gut microbiota as an outcome of rehabilitation interven-
tion have been recently published in the field of MS.

In a first pilot study, authors highlighted the positive effect of a high-impact mul-
tidimensional rehabilitation program of gut microbiota on a small sample of 14 pwMS.
This pilot investigation reveals the possibility of a short, high-impact multimodal re-
habilitation program, including neuromotor rehabilitation, sailing course, mindfulness
program and Mediterranean diet, to modify MS-typical dysbiosis by lowering pathobionts
levels while restocking SCFA-producing beneficial bacteria, restoring a partial eubiotics
profile. As shown by lower circulating levels of lipopolysaccharide and a drop in pro-
inflammatory lymphocyte populations, such alterations might offset the normal inflamma-
tory tone seen in MS [70].

In the second study 42 pwMS were included and participated in a six month home-
based rehabilitation program [71]. After the intervention, the authors showed that exercises
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significantly increased Prevotella counts and decreased Akkermansia counts but had no
effect on circulating cytokine levels. However, Akkermansia muciniphila, prevotella and
Bacteroides count changes in response to the intervention were correlated with changes in
IL10 (r = −0.52, r = 0.67, and r = −0.55, respectively) [71].

These two studies show promising results and indicate that partial return of a eubiotic
profile may assist in counterbalancing the inflammatory tone seen in MS, as seen by lower
circulating lipopolysaccharide levels and pro-inflammatory cell populations.

It has been previously highlighted that multidisciplinary measurements, including
clinical, functional and patient-reported outcome measures in combination with extensive
patient profiling, can enhance personalized treatment and rehabilitation strategies [72,73].
Therefore, let us now discuss why the data collected during the rehabilitation process
should be included in the multi-omics analysis. A schematic representation is presented
in Figure 3. At the time of diagnosis, genetic information will be of interest to define
the type of MS [74], and this information will not change over time (apart from epigenet-
ics and the activation resulting in transcription). Then, most of the outcomes of interest
will be subject to significant variation and fluctuation during the course of the disease.
The gut microbiome is, for example, subject to variations depending on diet [75,76], con-
stipation [77], seasons and environment [78], global and local inflammation levels [79],
stress [80], and medication [81].

Concerning rehabilitation, both motor and cognitive functions will show very impor-
tant variations over time (important variations during the day, week or seasonal fluctua-
tions) [82]. Of course, if we only perform cross-sectional evaluations, the chance of missing
these variations is high and therefore, the risk of over- or under-estimating the impact of
the disease on the patients’ functions is high [82].

In this particular context, the rehabilitation process, and more specifically the use
of technology-supported rehabilitation, provided a unique opportunity to switch the
way we are gathering functional data of pwMS from a cross-sectional to a longitudi-
nal way. Technology-supported rehabilitation has therefore gained popularity due to its
ability to provide an objective and, if necessary, blind assessment, which can be auto-
mated (time saver) and allows for a measurable evaluation of motor function by taking
into account the patient’s characteristics (e.g., kinematics, activity level, intensity, muscle
activity, co-contraction, posture, smoothness, heart rate, stress, etc. [83]) and therapy adher-
ence [84]. Technology allows this data collection without adding extra workload on the
clinicians or patients since the data are collected automatically during the rehabilitation
exercises or during activities of daily living [85], using both quantitative or more qualitative
(i.e., patients’ reported outcomes) measurements [86]. Therefore, rehabilitation biomarkers
are growing progressively from simple clinical behavioral measures based on quantitative
scales to brain imaging and neurophysiological studies [87].
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Figure 3. Schematic representation of the potential integration of rehabilomics data in the assessment
and longitudinal follow-up of the patients over the course of the disease. Compared to other clinical
measurements (e.g., genetics analysis performed once, brain imaging performed at intervals of
several years, analysis of the microbiome should be performed more regularly to catch seasonal
fluctuations [78]), functional data collected during the rehabilitation process and/or in the living
environment can capture with more accuracy the fluctuations (e.g., changes in motor and/or cognitive
functions [82]) of the patients during the rehabilitation sessions (indicated by the black sinusoidal
line on the schema, vertical white lines indicated the rehabilitation sessions) and during activities of
daily living (indicated by the white sinusoidal line on remote monitoring box), which is of particular
importance for pwMS, since they can be done on a regular basis (i.e., rehabilitation) or continuous
basis (i.e., remote monitoring).

6. Current Challenges and Call for Actions

If the potential added values of such kinds of continuous evaluation are obvious,
such as adapting treatments (i.e., pharmaceutical, rehabilitation plans) to the actual need
and specificity of the patients (i.e., personalized medicine) to maximize the benefits of the
intervention, building such a platform is highly challenging.

The challenges can be seen at two distinct levels: technological and human.
Let us first focus on the current obstacles and limitations related to the technology and

its implementation.
First, an important investment must be carried out to acquire the rehabilitation equip-

ment and the sensors (remote monitoring) in order to acquire the data. The price of these
systems (Figure 2) varies enormously, ranging from several hundreds of thousands of EUR
for the exoskeleton and robotics to a couple of dollars for mHealth applications. Note that,
of course, these systems are also used for the care of the patients [8], not only for collecting
data. Therefore, these investments also have a direct positive impact on the patients.

This takes us to the second most significant existing limitation: the lack of reimburse-
ment from the social security system. The organization and involvement of healthcare
systems in the rehabilitation process varies by nation, and we will not go into detail about
reimbursement here. However, it is well known that financial concerns and a lack of exper-
tise and familiarity with the use of (new) technology are two of the most significant barriers
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to the deployment of technology for patients, regardless of their diseases [88,89]. Another
important point that could help the implementation of such technologies is the recognition
of these systems as medical devices. In 2020 the FDA approved the first game-based
therapeutic device for children with attention deficit hyperactivity disorders. The device
is designed for usage as part of a treatment program that may include clinician-directed
therapy, medication, and/or educational activities to address the disorder’s symptoms [90].
Since then, the game has been increasingly used in the United States.

Interestingly, it is of note that the COVID-19 epidemic has not only disturbed health-
care systems but has also accelerated the development, deployment, and acknowledgment
of new technology, in particular, mHealth, in rehabilitation [91]. It is crucial to highlight,
however, that most of the steps implemented during the crisis may be transitory, and it is
anticipated that efforts in this direction will continue once the crisis has passed.

Third, with respect to data, it is important to ensure the quality of these. A distinction
must be made here between data acquired in a supervised manner (with the physiother-
apist during the rehabilitation) and data acquired in an unsupervised manner (remote
monitoring). For the first one, since they are acquired under the control of a clinician, the
quality can be checked directly [84]. For home assessment, two types of activities can be
monitored: rehabilitation exercises and activities of daily living. On the one hand, for the
rehabilitation exercises, a recent study highlighted the fact that when recording at home
and comparing to their performance in the lab, individuals performed all activities equally.
However, as compared to the physiotherapist’s demonstrations, participants completed all
exercises faster, showing the necessity for a wearable device with user input that will set the
tempo of the activity [92]. On the other hand, for the remote assessment (i.e., assessment
during activities of daily living), since direct control of the clinicians is not possible and the
activities are not as well standardized as the rehabilitation exercises [58], the assessment of
the data quality is a much bigger challenge [93]. Different data sources (e.g., GPS, weather
information, self-reported outcomes, quality of sleep, etc.) must be used to assess the
quality of the data and evaluate the context in which these data were collected [94,95].

The next challenge is then the merging and synchronization of different data sources
(i.e., the different rehabilitation technologies presented in Figure 2 but also the other omics
technologies), data format and time series into one single database. Then, once the data
are stored and well synchronized, important data cleaning and selection process must
be carried out to extract the most relevant features from the big database [96]. Another
potential limitation is the difficulty of accessing hospital medical data since these are often
protected with limited outside access, and the data may be stored in different databases [97],
but important efforts are being made to ease the access and use of the medical health records
in pwMS [98].

However, we do not have to reinvent the wheel. Tremendous efforts have already
been made in the omics world [99], so all the techniques previously developed can be
easily implemented within the rehabilomics framework even with relatively small sample
size studies [100].

The second group of limitations concerns the acceptance of the technology by both the
patients and the clinicians.

Because most pwMS are young and are familiar with smartphones, apps, and mo-
bile technology, familiarity with technology should not be a concern for the majority of
them [101], but it can be a serious barrier for other illnesses or patient groups (e.g., older
pwMS with dementia) [102]. Efforts must also be made to educate healthcare personnel
since they must be fully informed of the technology and its limits in order to persuade
patients to utilize it. In addition to the quality of the data (see the previous section), an-
other important potential limitation is the low—or lack of—patient adherence to home
exercises. It is indeed well known that adherence to home exercises is relatively low in
physical rehabilitation (only about 30% of the patients do the right amount of exercises and
repetitions) [103]. This low adherence could potentially lead to an insufficient amount of
data (i.e., missing data) to successfully capture small changes in patients’ functions [104].
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Fortunately, one of the most important potential advantages of the new technologies is
that most of the exercises can be combined with serious games, and gamification has been
shown to increase patient motivation and adherence [105].

In order to ease the implementation and use of new technology in the healthcare sector
in general, and more specifically in rehabilitation, the next step would be to incorporate
technological solutions into the healthcare system, including compensation for patients,
education of healthcare professionals on these solutions, and integration of data obtained
with the technologies in patients’ medical records. This might hasten and simplify the
incorporation of these technologies into the everyday care and rehabilitation of pwMS.
If successfully implemented, such kinds of highly multidimensional and longitudinal
databases could be used to unravel the complex relationship between genetics, inflamma-
tions, imaging and functional data and allow us to further understand the implications of
the genes in the functional pathophysiology of pwMS.

7. Conclusions

The multi-omics approach has drastically helped the understanding of the complex
pathophysiological underlying neurodegenerative disorders such as MS. While these dis-
ciplines are still currently mainly used to develop new drugs therapy, this information
should also be used to advance rehabilitation.

On the other hand, it is essential to incorporate more functional data both in basic re-
search and in the clinical follow-up of patients. To do this, physiotherapists are on the front
line, and thanks to the use of new technologies, a lot of data can be collected automatically
during revalidation sessions but also during activities of daily life. It is, therefore, of the
utmost importance to develop highly multi and interdisciplinary collaborations between
researchers, clinicians, and data specialists to integrate these data into one single pipeline
to move forward in this field.
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