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SUMMARY

Whereas most models for incomplete longitudinal data are formulated within the selection model
framework, pattern-mixture models have gained considerable interest in recent years (Little, 1993, 1994).
In this paper, we outline several strategies to fit pattern-mixture models, including the so-called identifying
restrictions strategy. Multiple imputation is used to apply this strategy to realistic settings, such as
quality-of-life data from a longitudinal study on metastatic breast cancer patients.
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1. INTRODUCTION

It is not unusual in practice for some sequences of measurements to terminate early for reasons outside
the control of the investigator, and any unit so affected is often called a dropout. It might therefore be
necessary to accommodate dropout in the modeling process, either to obtain correct inferences, or because
this process itself is of scientific interest.

Rubin (1976) and Little and Rubin (1987, Chapter 6) make important distinctions between different
missing values processes. A dropout process is said to be completely random (MCAR) if the dropout
is independent of both unobserved and observed data and random (MAR) if, conditional on the observed
data, the dropout is independent of the unobserved measurements; otherwise the dropout process is termed
non-random (MNAR). If a dropout process is random then a valid analysis can be obtained through a
likelihood-based analysis that ignores the dropout mechanism, provided the parameter describing the
measurement process is functionally independent of the parameter describing the dropout process, the
so-called parameter distinctness condition. This situation is termed ignorable by Little and Rubin (1987).
This leads to considerable simplification in the analysis. Often, the reasons for dropout are varied and it is
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difficult to justify the assumption of random dropout. Arguably, in the presence of non-random dropout,
a wholly satisfactory analysis of the data is not feasible. Several approaches have been proposed in the
literature. Reviews are provided in Little (1995) and Kenward and Molenberghs (1999).

Most methods are formulated within the selection modeling framework (Little and Rubin, 1987), as
opposed to pattern-mixture modeling (PMM; Little, 1993, 1994). A selection model factors the joint
distribution of the measurement and dropout mechanisms into the marginal measurement distribution and
the dropout distribution conditional on the measurements. This is intuitively appealing since the marginal
measurement distribution would be of interest also with complete data. Further, Little and Rubin’s taxon-
omy is most easily developed in the selection model setting. However, it is often argued, especially in the
context of MNAR models, that selection models, although identifiable, should be approached with caution
(Glynn et al., 1986). Therefore, pattern-mixture models have gained renewed interest in recent years
(Little, 1993, 1994; Hogan and Laird, 1997). Several authors have contrasted selection models and pattern-
mixture models. This is done either (1) to answer the same scientific question, such as marginal treatment
effect or time evolution, based on these two rather different modeling strategies, or (2) to gain additional
insight by supplementing the selection model results with those from a pattern-mixture approach. Exam-
ples include Verbeke et al. (2001) or Michiels et al. (1999) for continuous outcomes, and Molenberghs
et al. (1999) or Michiels et al. (1999) for categorical outcomes. Further references include Ekholm and
Skinner (1998); Molenberghs et al. (1998); Little and Wang (1996); Hedeker and Gibbons (1997); Cohen
and Cohen (1983); Muthén et al. (1987); Allison (1987), and McArdle and Hamagami (1992).

An important issue is that pattern-mixture models are by construction under-identified. Little (1993,
1994) solves this problem through the use of identifying restrictions: inestimable parameters of the
incomplete patterns are set equal to (functions of) the parameters describing the distribution of the
completers. Identifying restrictions are not the only way to overcome under-identification and we will
discuss alternative approaches. While some authors perceive this under-identification as a drawback, we
believe it is an asset since it forces one to reflect on the assumptions made. We will indicate how this can
serve as a starting point for sensitivity analysis. In Section 2 we will introduce the vorozole study, to which
our methods will be applied. Section 3 sketches modeling approaches for incomplete data. Sensitivity
analysis strategies in a pattern-mixture context is the topic of Section 4, while in Section 5 the strategy of
identifying restrictions is considered in detail. In Section 6, this strategy is spelled out for the simple but
insightful case of three outcomes; the vorozole study is used to illustrate the ideas. A full analysis of the
vorozole data is presented in Section 7.

2. THE VOROZOLE STUDY

This study was an open-label, multicenter, parallel group design conducted at 67 North American
centers (29 Canadian, 38 US). Patients were randomized to either vorozole (2.5 mg taken once daily) or
megestrol acetate (40 mg four times daily). The patient population consisted of postmenopausal patients
with histologically confirmed estrogen-receptor positive metastatic breast carcinoma. To expedite enroll-
ment, patients with nonmeasurable/nonassessable disease were entered and eligible patients were stratified
into three groups according to whether they had measurable, assessable, or nonmeasurable/nonassessable
disease. All 452 randomized patients were followed until disease progression or death. The main objective
was to compare the treatment group with respect to response rate while secondary objectives included a
comparison relative to duration of response, time to progression, survival, safety, pain relief, performance
status and quality of life. Full details of this study are reported in Goss et al. (1999). This paper focuses
on overall quality of life, measured by the total Functional Living Index: Cancer (FLIC; Schipper et al.,
1984). A higher FLIC score is the more desirable outcome. Mean changes (and standard deviations) in
FLIC score, per time point (up to two years) and treatment arm are given in Table 1.
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Table 1. Vorozole study. Means (standard deviations) per time (up to two years) and
treatment arm for change in FLIC score versus baseline

Vorozole Megestrol acetate
Month N Mean Standard deviation N Mean Standard deviation

1 198 0.485 14.162 196 −1.622 15.706
2 176 −1.324 16.343 168 −1.268 16.988
4 130 1.031 17.808 136 0.971 16.825
6 94 4.883 17.425 104 1.808 19.038
8 77 7.519 18.506 76 2.737 19.315

10 68 6.309 16.312 60 2.733 16.808
12 58 4.207 21.079 39 2.821 21.738
14 42 3.857 19.806 32 2.219 20.789
16 37 0.189 18.590 22 1.409 18.940
18 26 1.423 25.942 15 2.533 23.086
20 24 0.750 14.405 11 5.909 21.422
22 20 −1.500 15.426 6 4.500 13.248
24 15 1.733 15.068 5 1.400 8.050

Patients underwent screening, and for those deemed eligible a detailed examination at baseline
(occasion 0) took place. Further measurement occasions were months 1, then from months 2 at bi-monthly
intervals until month 44. Goss et al. (1999) analysed FLIC using a two-way ANOVA model with effects
for treatment, disease status and their interaction. No significant treatment effect was found. The main
conclusion from the primary analysis was that vorozole is well tolerated and as effective as megestrol
acetate in the treatment of postmenopausal advanced breast cancer patients with disease progression after
tamoxifen treatment. In this paper we will, apart from treatment and time evolution, consider effects of
dominant site of the disease as well as of clinical stage.

3. PATTERN-MIXTURE MODELS AND SENSITIVITY ANALYSIS

In modeling missing data one is interested in f (yi , di |θ,ψ), the joint distribution of the measurements
Yi and the dropout indicators Di defined by adding 1 to the time of the last measurement. One approach is
to use selection models based on the factorization f (yi , di |θ,ψ) = f (yi |θ) f (di |yi ,ψ). Another is to use
the opposite factorization f (yi , di |θ,ψ) = f (yi |di ,θ) f (di |ψ), this being the basis for pattern-mixture
models. Molenberghs et al. (1998) showed that pattern-mixture models allow for a natural analog of MAR,
hence enabling a similar classification of missing data mechanisms.

Sensitivity analysis for pattern-mixture models can be done in many different ways. An important
distinction is whether pattern-mixture models are to be contrasted with selection models or to be
considered in their own right. In the latter case, it is natural to conduct sensitivity analysis within the
pattern-mixture family, for which the focus is on handling unidentified components. We will explicitly
consider two strategies to deal with under-identification.

• Strategy 1. Little (1993, 1994) advocated the use of identifying restrictions and presented a number
of examples. We will outline a general framework for identifying restrictions in Section 4, with
CCMV (introduced by Little 1993), ACMV, and neighboring case missing value restrictions (NCMV)
as important special cases. ACMV is the natural counterpart of MAR in the PMM framework
(Molenberghs et al., 1998). This provides a way to compare ignorable selection models with their
counterparts in the pattern-mixture setting. Molenberghs et al. (1999) and Michiels et al. (1999) took
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up this idea in the context of binary outcomes, with a marginal global odds ratio model to describe the
measurement process (Molenberghs and Lesaffre, 1994).

• Strategy 2. As opposed to identifying restrictions, model simplification can be done in order to identify
the parameters. The advantage is that the number of parameters decreases, which is desirable since
the length of the parameter vector is a general issue with pattern-mixture models. Indeed, Hogan and
Laird (1997) noted that in order to estimate the large number of parameters in general pattern-mixture
models, one has to make the awkward requirement that each dropout pattern occurs sufficiently often.
Broadly, we distinguish between two types of simplifications.

— Strategy 2a. Trends can be restricted to functional forms supported by the information available
within a pattern. For example, a linear or quadratic time trend is easily extrapolated beyond the
last obtained measurement. One only needs to provide an ad hoc solution for the first or the first
few patterns. In order to fit such models, one simply has to carry out a model building exercise
within each of the patterns separately.

— Strategy 2b. Alternatively, one can let the parameters vary across patterns in a controlled parametric
way. Thus, rather than estimating a separate time trend within each pattern, one could for example
assume that the time evolution within a pattern is unstructured, but parallel across patterns. This is
implemented by treating pattern as a covariate. The available data can be used to assess whether
such simplifications are supported within the time ranges for which there is information.

While the second strategy is computationally simple, there is a price to pay. Indeed, simplified models,
qualified as ‘assumption rich’ by Sheiner et al. (1997), are also making untestable assumptions, just as
in the selection model case. Indeed, using the fitted profiles to predict their evolution beyond the time of
dropout is based on extrapolation. For example, it is not possible to assume an unstructured time trend in
incomplete patterns, except if one restricts attention to the time range from onset until dropout. In contrast,
assuming a linear time trend allows estimation in all patterns containing at least two measurements.
However, it is less obvious what the precise nature of the dropout mechanism is. An obvious modeling
approach, in particular for normally distributed outcomes, is to specify the dropout mechanism as a
polytomous regression. In the identifying restrictions setting on the other hand, the assumptions are clear
from the start.

A final observation, applying to both strategies, is that pattern-mixture models do not always
automatically provide estimates and standard errors of marginal quantities of interest, such as overall
treatment effect or overall time trend. Hogan and Laird (1997) provided a way to derive selection model
quantities from the pattern-mixture model. Several authors have followed this idea to formally compare
the conclusions from a selection model with the selection model parameters in a pattern-mixture model
(Verbeke et al., 2001, Michiels et al., 1999).

4. IDENTIFYING RESTRICTION STRATEGIES

In line with the results obtained by Molenberghs et al. (1998), we restrict attention to monotone
patterns. In general, we have t = 1, . . . , T dropout patterns where the dropout indicator is d = t + 1. For
pattern t , the complete data density is given by

ft (y1, . . . , yT ) = ft (y1, . . . , yt ) ft (yt+1, . . . , yT |y1, . . . , yt ). (1)

The first factor is clearly identified from the observed data, while the second factor is not. It is assumed
that the first factor is known or, more realistically, modeled using the observed data. Then, identifying
restrictions are applied in order to identify the second component.
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While, in principle, completely arbitrary restrictions can be used by means of any valid density
function over the appropriate support, strategies which relate back to the observed data are particularly
appealing. One can base identification on all patterns for which a given component, ys say, is identified.
A general expression for this is

ft (ys |y1, . . . ys−1) =
T∑

j=s

ωs j f j (ys |y1, . . . ys−1), s = t + 1, . . . , T . (2)

We will use ωs as shorthand for the set of ωs j used. Every non-negative ωs which sums to one provides a
valid identification scheme.

We incorporate (2) into (1) to give

ft (y1, . . . , yT ) = ft (y1, . . . , yt )

T −t−1∏
s=0

[
T∑

j=T −s

ωT−s, j f j (yT−s |y1, . . . , yT−s−1)

]
. (3)

Expression (3) clearly shows which information is used to complement the observed data density in
pattern t in order to establish the complete data density.

We consider three special but important cases. Little (1993) proposes CCMV which uses the following
identification:

ft (ys |y1, . . . , ys−1) = fT (ys |y1, . . . , ys−1), s = t + 1, . . . , T .

In other words, information which is unavailable is always borrowed from the completers. This strategy
can be defended when the bulk of the subjects are complete and only small proportions are assigned to the
various dropout patterns. Also, extension of this approach to non-monotone patterns is particularly easy.

Alternatively, the nearest identified pattern can be used:

ft (ys |y1, . . . , ys−1) = fs(ys |y1, . . . , ys−1), s = t + 1, . . . , T .

We will refer to these restrictions as neighboring case missing values or NCMV.
The third special case of (2) will be ACMV (Molenberghs et al., 1998). To derive the corresponding

ωs vectors, we first re-express (2) as

ft (ys |y1, . . . , ys−1) = f(�s)(ys |y1, . . . , ys−1), (4)

for s = t + 1, . . . , T . Here, f(�s)(.|.) ≡ f (.|., d > s), with d an indicator for time of dropout. Note that
d is one more than the length of the observed sequence. Now, we can transform (4) as follows:

ft (ys |y1, . . . , ys−1)

= f(�s)(ys |y1, . . . , ys−1)

=
∑T

j=s α j f j (y1, . . . , ys)∑T
j=s α j f j (y1, . . . , ys−1)

(5)

=
T∑

j=s

α j f j (y1, . . . , ys−1)∑T
j=s α j f j (y1, . . . , ys−1)

f j (ys |y1, . . . , ys−1). (6)

Next, comparing (6) to (2) yields

ωs j = α j f j (y1, . . . , ys−1)∑T
	=s α	 f	(y1, . . . , ys−1)

. (7)
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We have now derived two equivalent explicit expressions of the MAR case. Expression (5) is the
conditional density of a mixture, whereas (2) with (7) is a mixture of conditional densities. Clearly,
ω defined by (7) is valid. Restrictions (2), with CCMV, NCMV and ACMV as special cases, can be
incorporated in a comprehensive strategy to fit PMMs, which we will now sketch. Thereafter, several
points will be clarified.

1. Fit a model to the pattern-specific identifiable densities: ft (y1, . . . , yt ). This results in a parameter
estimate, γ̂ t .

2. Select an identification method of choice.
3. Using this identification method, determine the conditional distributions of the unobserved out-

comes, given the observed ones:

ft (yt+1, . . . , yT |y1, . . . , yt ). (8)

4. Using standard multiple imputation methodology (Rubin, 1987; Schafer, 1997; Verbeke and
Molenberghs, 2000), draw multiple imputations for the unobserved components, given the observed
outcomes and the correct pattern-specific density (8).

5. Analyze the multiply-imputed sets of data using the method of choice. This can be another
pattern-mixture model, but also a selection model or any other desired model.

6. Inferences can be conducted in the standard multiple imputation way.

We have seen how general identifying restrictions (2), with CCMV, NCMV and ACMV as special
cases, lead to the conditional densities for the unobserved components, given the observed ones. This
came down to deriving expressions for ω, such as in (7) for ACMV, corresponding to items 2 and 3 of the
strategy outline. In several cases, the conditional density is a mixture of normal densities. Then, drawing
from (2) consists of two steps. First, draw a random uniform variate U to determine which of the n − s +1
components one is going to draw from. Specifically, the kth component is chosen if

k−1∑
j=s

ωs j � U <

k∑
j=s

ωs j ,

where k = s, . . . , n. Note that if k = 1, the left hand sum is set equal to zero. Next, draw from the kth
component.

Note that, except in cases with only a few time points, the number of ω parameters proliferates rapidly.
There are several ways to deal with this. First, special but important restrictions such as NCMV, CCMV
and ACMV do not suffer from this problem since each of the ω involved is then determined by the choice
of restriction. Second, one may set all ω equal to the same constant, chosen from a small set, for example
spanning the unit interval. Third, one could put prior distributions on the ω, perhaps governed by simple
hyperpriors. The first solution is followed in this paper. The other ones require further exploration.

With Gaussian or categorical outcomes, the conditional distribution of the unobserved outcomes
given the observed, is simple to construct. However, for other distributions, it is less straightforward, in
which case, the conditional distributions will have to be replaced by the corresponding ratio of marginal
distributions. While this changes the algebra, it does not change the methodology fundamentally.

5. A SPECIAL CASE: THREE MEASUREMENTS

In this section, we consider the special but insightful case of three measurements. In Section 5.1, we
gain further insight into the general modeling strategy described in the previous section. These methods are
then applied to the vorozole study in Section 5.2. The relative simplicity of this method will be employed
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to provide further insight into the technical aspects of the proposed procedure. The data analysis of three
measurements will also lay the foundations for an efficient full analysis of the data over the entire study
period, which is the subject of Section 6.

5.1 Derivations

In this case, there are only three patterns, and identification (3) takes the following form:

f3(y1, y2, y3) = f3(y1, y2, y3), (9)

f2(y1, y2, y3) = f2(y1, y2) f3(y3|y1, y2), (10)

f1(y1, y2, y3) = f1(y1) [ω f2(y2|y1) + (1 − ω) f3(y2|y1)] f3(y3|y1, y2). (11)

Since f3(y1, y2, y3) is completely identifiable from the data, and for f2(y1, y2, y3) there is only one
possible identification, given (2), the only place where a choice has to be made is pattern 1. Setting ω = 1
corresponds to NCMV, while ω = 0 implies CCMV. Using (7) in this particular case, ACMV corresponds
to

ω = α2 f2(y1)

α2 f2(y1) + α3 f3(y1)
. (12)

The conditional density f1(y2|y1) in (11) can be rewritten as

f1(y2|y1) = α2 f2(y1, y2) + α3 f3(y1, y2)

α2 f2(y1) + α3 f3(y1)
.

Next, let us illustrate how draws from the conditional densities can be conducted. To this end, we
consider identification scheme (9)–(11), initially avoiding the specification of a parametric form for these
densities. The following steps are required:

1. Estimate the parameters of the identifiable densities: f3(y1, y2, y3), f2(y1, y2), and f1(y1). Then,
for each of the m imputations we have to execute the following steps.

2. To properly account for the uncertainty with which the parameters are estimated, we need to draw
from them as is customarily done in multiple imputation. It will be assumed that in all densities
from which we draw, this parameter vector is used.

3. For pattern 2. Given an observation in this pattern, with observed values (y1, y2), calculate the
conditional density f3(y3|y1, y2) and draw from it.

4. For pattern 1. We now have to distinguish between three substeps.

(a) The proportions ω need to be chosen or determined. Every ω in the unit interval is valid.
Specific cases are: NCMV (ω = 1); CCMV (ω = 0). For ACMV, ω is calculated from (12).
Note that, given y1, this is a constant, depending on α2 and α3.
In order to pick one of the two components f2 or f3, we need to generate a random uniform
variate, U say, except in the boundary NCMV and CCMV cases. Then continue with (b)
and (c).

(b) If U � ω, calculate f2(y2|y1) and draw from it. Otherwise, do the same based on f3(y2|y1).
(c) Given the observed y1 and the y2 which has just been drawn, calculate the conditional density

f3(y3|y1, y2) and draw from it.

Multiple imputation implies repeating steps 2–4 M times.
We now expand on steps 1 and 2 and assume that the observed densities are estimated using linear

mixed models. Then, f3(y1, y2, y3), f2(y1, y2), and f1(y1) produce fixed-effect and variance parameters.
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Group all of them in γ and assume a draw is made from their distribution, γ∗ say. To this end, their
precision estimates need to be computed. These are easily obtained in most standard software packages,
such as SAS, rendering this step a very straightforward one.

We illustrate this for (10). Generally, we would opt for the linear mixed model (Laird and Ware,
1982; Diggle, 1988; Diggle et al., 1994; Verbeke and Molenberghs, 1997, 2000). Writing β for the p-
dimensional vector containing the fixed effects, and εi ∼ N (0, �) as the vector of correlated error terms,
the linear model is

Y i = Xiβ + εi .

In the pattern-mixture case, the parameters involved in this model will be allowed to depend on dropout
pattern. Now, assume that the i th subject has only two measurements, and hence belongs to the second
pattern. Let its design matrices be Xi and Zi for the fixed effects and random effects, respectively. Its
mean and variance for the third pattern are

µi (3) = Xiβ
∗(3), (13)

Vi (3) = Zi D∗(3)Z ′
i + �i (3), (14)

where (3) indicates that the parameters are specific to the third pattern.
Now, based on (13), (14) and the observed values yi = (yi1, yi2)

′, the parameters for the conditional
density follow immediately:

µi,2|1(3) = µi,2(3) + Vi,21(3)[Vi,11(3)]−1(yi − µi,2(3)),

Vi,2|1(3) = Vi,22(3) − Vi,21(3)[Vi,11(3)]−1Vi,12(3),

where a subscript 1 indicates the first two components and a subscript 2 refers to the third component.
Draws from every other conditional density can be obtained in essentially the same way.

5.2 Application to the vorozole study

To provide a specific illustration, we now apply the proposed methodology to those subjects with 1–3
follow-up measurements, respectively. 190 subjects are included, with subsample sizes 35, 86, and 69,
respectively. The pattern probabilities are

π̂ = (0.184, 0.453, 0.363)′, (15)

and asymptotic covariance matrix

V̂ar(π̂) =
 0.000 791 −0.000 439 −0.000 352

−0.000 439 0.001 304 −0.000 865
−0.000 352 −0.000 865 0.001 217

 . (16)

These figures, apart from giving a feel for the relative importance of the various patterns, are needed to
calculate the marginal treatment effect and to test for its importance, which was the primary goal of the
analysis.

It is of interest to study the treatment-arm-specific pattern probabilities as well. For the vorozole
arm, the subsample sizes are 18, 48, and 36, producing probabilities π̂v = (0.177, 0.471, 0.354)′ with
asymptotic covariance matrix

V̂ar(π̂v) =
 0.001 425 −0.000 814 −0.000 611

−0.000 814 0.002 442 −0.001 628
−0.000 611 −0.001 628 0.002 239

 .
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For the megestrol acetate arm, the subsample sizes are 17, 38, and 33, giving probabilities
π̂m = (0.193, 0.432, 0.375)′ and asymptotic covariance matrix

V̂ar(π̂m) =
 0.001 771 −0.000 948 −0.000 823

−0.000 948 0.002 788 −0.001 840
−0.000 823 −0.001 840 0.002 663

 .

The treatment-arm-specific probabilities are not significantly different from each other. A classical χ2 test
produces p = 0.864. Hence, we will employ expressions (15) and (16).

5.2.1 Model fitting. The patients in this study drop out mainly because they relapse or die. This in itself
poses specific challenges that can be addressed within the pattern-mixture framework much more easily
than in the selection model framework. Indeed, if one is prepared to make the assumption that a patient
who dies is representative of a slice of the population with the same characteristics and probability of
death, then identifying restrictions (i.e. extrapolation beyond the time of death) is meaningful. If one does
not want to extrapolate beyond the moment of death, one can restrict modeling to the observed data only.
The former viewpoint refers to strategy 1, while the latter refers to strategy 2. An intermediate approach
would be to allow for extrapolation beyond relapse and not beyond death. (For the current dataset, the
information needed in order to do so is unavailable.) Note that while this may seem a disadvantage of
pattern-mixture models, we believe it is an asset, because this framework not only forces one to think
about such issues, it also provides a modeling solution no matter which point of view is adopted. This
contrasts with selection models where extrapolation always occurs, at least implicitly.

For strategy 1, we start with fitting a model to the observed data, including linear and quadratic time
effects, as well as their interactions with baseline value. Further, time by treatment interaction is included,
for consistency with the original analysis plan. All effects interact with time, in order to force profiles to
pass through the origin, since we are studying change versus baseline. An unstructured 3 × 3 covariance
matrix is assumed for each pattern. Parameter estimates are presented in Table 2, in the ‘initial’ column.
Obviously, not all effects are estimable in this initial model.

We summarize this model graphically. Since there is one binary (treatment arm) and one continuous
covariate (baseline level of FLIC score), insight can be obtained by plotting the models for selected values
of baseline. Precisely, we chose the minimum, average, and maximum values (Figure 1). Note that the
extrapolation can have surprising effects, even with these relatively simple models. Thus, while this form
of extrapolation is simple, its plausibility can be called into question.

This initial model provides a basis, and its graphical representation extra motivation, to consider
identifying restriction models. Results are presented in Table 2. In all of the plots (Figures 2–4), the same
mean response scale as in Figure 1 was retained, illustrating that the identifying restriction strategies
extrapolate much more closely to the observed data mean responses. There are some differences among
the identifying restriction methods. Roughly speaking, CCMV extrapolates rather towards a rise whereas
NCMV seems to predict more of a decline, at least for baseline value 53. Further, ACMV indicates rather
a steady state. For the other baseline levels, a status quo or a mild increase is predicted. This conclusion
needs to be considered carefully. Since these patients drop out mainly because they relapse or die, it seems
unlikely to expect a rise in quality of life. Hence, it is likely that the dropout mechanism is not CCMV,
since this strategy always refers to the best group, i.e. the one with the best prognosis. ACMV, which
compromises between all strategies, may be more realistic, but here NCMV is likely to be better since
information is borrowed from the nearest pattern.

Nevertheless, the NCMV prediction looks more plausible since the worst baseline value shows
declining profiles, whereas the best one leaves room for improvement. Should one want to explore the
effect of assumptions beyond the range of (2), one can allow ωs to include components outside the unit
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Table 2. Vorozole study. Multiple imputation estimates and standard errors for
CCMV, NCMV, and ACMV restrictions

Effect Initial CCMV NCMV ACMV
Pattern 1

Time 3.40(13.94) 13.21(15.91) 7.56(16.45) 4.43(18.78)
Time ∗ base −0.11(0.13) −0.16(0.16) −0.14(0.16) −0.11(0.17)
Time ∗ treat 0.33(3.91) −2.09(2.19) −1.20(1.93) −0.41(2.52)
Time2 −0.84(4.21) −2.12(4.24) −0.70(4.22)
Time2 ∗ base 0.01(0.04) 0.03(0.04) 0.02(0.04)
σ11 131.09(31.34) 151.91(42.34) 134.54(32.85) 137.33(34.18)
σ12 59.84(40.46) 119.76(40.38) 97.86(38.65)
σ22 201.54(65.38) 257.07(86.05) 201.87(80.02)
σ13 55.12(58.03) 49.88(44.16) 61.87(43.22)
σ23 84.99(48.54) 99.97(57.47) 110.42(87.95)
σ33 245.06(75.56) 241.99(79.79) 286.16(117.90)

Pattern 2

Time 53.85(14.12) 29.78(10.43) 33.74(11.11) 28.69(11.37)
Time ∗ base −0.46(0.12) −0.29(0.09) −0.33(0.10) −0.29(0.10)
Time ∗ treat −0.95(1.86) −1.68(1.21) −1.56(2.47) −2.12(1.36)
Time2 −18.91(6.36) −4.45(2.87) −7.00(3.80) −4.22(4.20)
Time2 ∗ base 0.15(0.05) 0.04(0.02) 0.07(0.03) 0.05(0.04)
σ11 170.77(26.14) 175.59(27.53) 176.49(27.65) 177.86(28.19)
σ12 151.84(29.19) 147.14(29.39) 149.05(29.77) 146.98(29.63)
σ22 292.32(44.61) 297.38(46.04) 299.40(47.22) 297.39(46.04)
σ13 57.22(37.96) 89.10(34.07) 99.18(35.07)
σ23 71.58(36.73) 107.62(47.59) 166.64(66.45)
σ33 212.68(101.31) 264.57(76.73) 300.78(77.97)

Pattern 3

Time 29.91(9.08) 29.91(9.08) 29.91(9.08) 29.91(9.08)
Time ∗ base −0.26(0.08) −0.26(0.08) −0.26(0.08) −0.26(0.08)
Time ∗ treat 0.82(0.95) 0.82(0.95) 0.82(0.95) 0.82(0.95)
Time2 −6.42(2.23) −6.42(2.23) −6.42(2.23) −6.42(2.23)
Time2 ∗ base 0.05(0.02) 0.05(0.02) 0.05(0.02) 0.05(0.02)
σ11 206.73(35.86) 206.73(35.86) 206.73(35.86) 206.73(35.86)
σ12 96.97(26.57) 96.97(26.57) 96.97(26.57) 96.97(26.57)
σ22 174.12(31.10) 174.12(31.10) 174.12(31.10) 174.12(31.10)
σ13 87.38(30.66) 87.38(30.66) 87.38(30.66) 87.38(30.66)
σ23 91.66(28.86) 91.66(28.86) 91.66(28.86) 91.66(28.86)
σ33 262.16(44.70) 262.16(44.70) 262.16(44.70) 262.16(44.70)

interval. In this situation, one has to ensure that the resulting density is still non-negative over its entire
support.

In strategy 2b, pattern is included as a covariate. An initial model is considered with the following
effects: time, the interaction between time and treatment, baseline value, pattern, treatment∗baseline,
treatment∗pattern, and baseline∗pattern. Further, a quadratic in time is included, as well as its interaction



Strategies to fit pattern-mixture models 255

Fig. 1. Vorozole study. Extrapolation based on model fitted to observed data (strategy 2a). For three levels of baseline
value (minimum, average, maximum), plots of mean profiles over time are presented. The bold portion of each curve
runs from baseline until the last obtained measurement, while the extrapolated piece is shown in thin line type. The
dashed line refers to megestrol acetate, the solid line is the vorozole arm.

Fig. 2. Vorozole study. Complete case missing value restrictions analysis. For three levels of baseline value (minimum,
average, maximum), plots of mean profiles over time are presented. The bold portion of each curve runs from baseline
until the last obtained measurement, while the extrapolated piece is shown in thin line type. The dashed line refers to
megestrol acetate, the solid line is the vorozole arm.
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Fig. 3. Vorozole study. Neighboring case missing value restrictions analysis. For three levels of baseline value
(minimum, average, maximum), plots of mean profiles over time are presented. The bold portion of each curve runs
from baseline until the last obtained measurement, while the extrapolated piece is shown in thin line type. The dashed
line refers to megestrol acetate, the solid line is the vorozole arm.

Fig. 4. Vorozole study. Available case missing value restrictions analysis. For three levels of baseline value (minimum,
average, maximum), plots of mean profiles over time are presented. The bold portion of each curve runs from baseline
until the last obtained measurement, while the extrapolated piece is shown in thin line type. The dashed line refers to
megestrol acetate, the solid line is the vorozole arm.
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Table 3. Vorozole study. Strategy 2b

Effect Pattern Estimate (s.e.)
Time 1 7.29(15.69)
Time 2 37.05(7.67)
Time 3 39.40(9.97)
Time ∗ treat 1 5.25(6.41)
Time ∗ treat 2 3.48(5.46)
Time ∗ treat 3 3.44(6.04)
Time ∗ base 1 −0.21(0.15)
Time ∗ base 2 −0.34(0.06)
Time ∗ base 3 −0.36(0.08)
Time ∗ treat ∗ base −0.06(0.04)
Time2 1 −9.18(2.47)
Time2 2 −9.18(2.47)
Time2 3 −7.70(2.29)
Time2 ∗ treat 1.10(0.74)
Time2 ∗ base 0.07(0.02)
σ11 173.63(18.01)
σ12 117.88(17.80)
σ22 233.86(26.61)
σ13 89.59(24.56)
σ23 116.12(34.27)
σ33 273.98(48.15)

with baseline, treatment, and pattern. No interactions beyond the third order are included, and an
unstructured covariance matrix is assumed common to all three patterns. This implies that the current
model is not equivalent to a strategy 1 model, where all parameters are pattern-specific. The estimated
model parameters are presented in Table 3 and the graphical representation is given in Figure 5. Early
dropouts decline immediately, whereas those who stay longer in the study first show a rise and then a
decline. However, this is less pronounced for higher baseline values. On the other hand, the extrapolation
based on the fitted model is very unrealistic, rendering this deceptively simple approach a bad choice.
These findings reinforce the need for careful reflection on the extrapolation method.

5.2.2 Hypothesis testing. We focus on treatment effect. A by-product of the pattern-mixture strategy
is that a pattern-specific treatment effect can result. This is the case for all five models in Tables 2 and 3.
Since here the main scientific interest is on the estimation of the marginal treatment effect, we can combine
the pattern-specific effects into a pattern-averaged effect, as outlined in the appendix. We apply this
approach to the models in Tables 2 and 3. All three pattern-mixture strategies will be considered. Since
the identifying restriction strategies are slightly more complicated than the others, we will consider the
other strategies first.

For strategy 2a, recall that the parameters are presented in Table 2 as the initial model. The treatment
effect vector is β = (0.33, −0.95, 0.82)′ with V = diag(15.28, 3.44, 0.90), since the paaterns are
analyzed separately. This leads to the test statistic β′V −1β = 1.02 on three degrees of freedom, producing
p = 0.796.
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Fig. 5. Vorozole study. Models with pattern used as a covariate (strategy 2b). For three levels of baseline value
(minimum, average, maximum), plots of mean profiles over time are presented. The bold portion of each curve runs
from baseline until the last obtained measurement, while the extrapolated piece is shown in thin line type. The dashed
line refers to megestrol acetate, the solid line is the vorozole arm.

To calculate the marginal treatment effect, we apply (22)–(25). The marginal effect is estimated as
β̂0 = −0.07 (s.e. 1.16). The corresponding asymptotic p-value is 0.95. Both approaches agree on the
non-significance of the treatment effect.

For strategy 2b, the parameters are presented in Table 3. The treatment effect vector is
β = (5.25, 348, 3.44)′ with non-diagonal covariance matrix

V =
41.12 23.59 25.48

23.59 29.49 30.17
25.48 30.17 36.43

 .

The correlation between them is quite substantial. The reason is that some parameters, in particular the
other treatment effects (three-way interaction with baseline and time, interaction with quadratic in time),
are common to all three patterns, hence inducing dependence across patterns. This leads to the test statistic
β′V −1β = 0.70 on three degrees of freedom, producing p = 0.874. Calculating the marginalized
treatment effect, we obtain β̂0 = 3.79 (s.e. 5.44). The corresponding asymptotic p-value is 0.49. The
different numerical value of the treatment effect, as compared to those obtained with the other strategies,
is entirely due to the presence of a quadratic treatment effect which, for ease of exposition, is left out of
the picture in testing here. It is straightforward to add this parameter to the contrast(s) being considered,
should one want to do so.

For strategy 1, we will consider several approximate methods of inference. The CCMV case will be
discussed in detail. The two other restriction types are entirely similar. There are three treatment effects,
one for each pattern. Hence, multiple imputation produces a vector of treatment effects and the within,
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Table 4. Vorozole study. Tests of treatment effect for CCMV, NCMV,
and ACMV restrictions

Parameter CCMV NCMV ACMV

Stratified analysis

k 3 3 3
τ 12 12 12
denominator d.f. w 28.41 17.28 28.06
r 1.12 2.89 1.14
F statistic 0.044 0.022 0.030
p-value 0.988 0.995 0.993

Marginal analysis

Marginal effect (s.e.) −0.85(0.77) −0.63(1.22) −0.74(0.85)
k 1 1 1
τ 4 4 4
denominator d.f. w 4 4 4
r 1.49 4.57 1.53
F statistic 0.072 0.018 0.054
p-value 0.801 0.900 0.828

between and total covariance matrices:

βCC = (−2.09, −1.68, 0.82
)′

, (17)

WCC =
1.67 0.00 0.00

0.00 0.59 0.00
0.00 0.00 0.90

 , (18)

BCC =
2.62 0.85 0.00

0.85 0.72 0.00
0.00 0.00 0.00

 , (19)

and

TCC =
4.80 1.02 0.00

1.02 1.46 0.00
0.00 0.00 0.90

 . (20)

In a stratified analysis, we want to test the hypothesis H0 : β = 0. Using (17)–(19), we can apply multiple
imputation methodology. Note that even though the analysis is done per pattern, the between and total
matrices have non-zero off-diagonal elements. This is because the imputation is based on information
from other patterns, hence introducing inter-pattern dependence. Results are presented in Table 4. All
p-values are non-significant, in line with earlier evidence from strategies 1 and 2, although a bit more
extreme.

For the marginal parameter, the situation is more complicated here than with strategies 1 and 2. Indeed,
classical theory often assumes inference is geared towards the original vector, or linear contrasts thereof.
Formula (21) represents a non-linear transformation of the parameter vector and therefore needs further
development. First, consider π to be part of the parameter vector. Since there is no missingness involved
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Table 5. Vorozole study. Strategy 2b.
Reduced model.

Effect Pattern Estimate (s.e.)
Time 33.06(6.67)
Time ∗ treat 0.40(0.84)
Time ∗ base −0.29(0.06)
Time 2 1 −16.71(3.46)
Time 2 2 −8.56(1.90)
Time 2 3 −7.09(1.78)
Time 2 ∗ base 0.06(0.01)
σ11 178.02(18.46)
σ12 121.75(18.30)
σ22 238.31(26.98)
σ13 88.75(24.94)
σ23 121.10(34.70)
σ33 274.58(48.32)

in this part, it contributes to the within matrix, but not to the between matrix. Then, using (22), the
approximate within matrix for the marginal treatment effect is

W0 = π′Wπ + β′Var(π)β,

with, for the between matrix, simply
B0 = π′ Bπ.

The results are presented in the second panel of Table 4. All three p-values are in between those
obtained for strategies 2 and 3. Of course, all five agree on the non-significance of the treatment effect.
The reason for the differences is to be found in the way the treatment effect is extrapolated beyond the
period of observation. Indeed, the highest p-value is obtained for strategy 2a and, from Figure 1, we learn
that virtually no separation between both treatment arms is projected. On the other hand, wider separations
are seen in Figure 5. Finally, we note that all conclusions are conditional upon the unverifiable assumption
that the posited restrictions (and hence, dropout mechanisms) are correct. This underscores the need for
sensitivity analysis.

6. ANALYSIS OF THE VOROZOLE STUDY

From Section 5 it is clear that the apparently simpler strategies 2a and b are to be avoided. In the
current analysis, using all available data, we therefore restrict attention to strategy 1.

The distribution of subjects over patterns is described in Table 6. The largest portion of the subjects
remains on study for less than one year, with very few in the subsequent six-month period and only three
subjects on trial after 18 months. Based on this information, we chose to remove the three subjects in the
last patterns.

The selection of covariates was done by analogy with Section 5.2.1. Covariates kept in the models are
time, time interactions with baseline and treatment group, time2 and the interaction between time2 and
baseline. As before, we opted for NCMV, CCMV and ACMV identifying restrictions.

Assessment of the marginal treatment effect leads to p = 0.9407 for NCMV, p = 0.7570 for CCMV,
and p = 0.0487 for ACMV. This needs careful discussion. First, there is a considerable difference with
the assessment based on just three measurements, where all three strategies yielded non-significant results.
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Table 6. Vorozole study. Distribution over patterns

Number Number
Pattern of measurements of subjects Proportion Percentage

3 1 35 0.0873 8.73
4 2 86 0.214 21.45
5 3 69 0.172 17.21
6 4 45 0.112 11.22
7 5 29 0.072 7.23
8 6 33 0.082 8.23
9 7 22 0.055 5.49

10 8 17 0.042 4.24
11 9 19 0.047 4.74
12 10 9 0.022 2.24
13 11 10 0.025 2.49
14 12 6 0.015 1.50
15 13 8 0.020 2.00
16 14 3 0.007 0.75
17 15 4 0.010 1.00
18 16 3 0.007 0.75
20 18 1 0.002 0.25
21 19 1 0.002 0.25
25 23 1 0.002 0.25

Second, the strategies differ dramatically from each other, which is in disagreement with the earlier
analysis. The MAR-based ACMV restrictions yield a significant effect, albeit borderline, whereas the
others do not lead to evidence in favour of a treatment difference. This suggests that the treatment effect
found is conditional on the ACMV (MAR) assumption.

A graphical representation is given in Figure 6. It is, of course, rather difficult to get a clear message
from the multitude of patterns, except that for ACMV, as opposed to the other two, the extrapolated profiles
lie closer to the observed profiles.

7. CONCLUDING REMARKS

In this paper, we have illustrated three distinct strategies to fit pattern-mixture models. In this way, we
have brought together several existing practices. Little (1993, 1994) has proposed identifying restrictions,
which we here formalized as strategy 1 using the connection with MAR and multiple imputation.
Strategies 2 and 3 refer to fitting a model per pattern and using pattern as a covariate, respectively.

By contrasting these strategies on a single set of data, one obtains a range of conclusions rather
than a single one, which provides insight into the sensitivity to the assumptions made. Especially with
the identifying restrictions, one has to be very explicit about the assumptions. Moreover, this approach
offers the possibility of considering several forms of restrictions. Special attention should be given to the
ACMV restrictions, since they are the MAR counterpart within the pattern-mixture context. In addition, a
comparison between the selection and pattern-mixture modeling approaches is useful to obtain additional
insight into the data and/or to assess sensitivity.

The identifying restrictions strategy provides further opportunity for sensitivity analysis. Indeed, since
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Fig. 6. Vorozole study. Models using all patterns. Strategy 1. For the average level of baseline value and for both
treatment arms, plots of mean profiles over time are presented. The solid portion of the curves runs from baseline
until the last obtained measurement, while the extrapolated piece is shown in dashed type.

CCMV and NCMV are extremes for the ωs vector in (2), it is very natural to consider the idea of ranges
in the allowable space of ωs . Clearly, any ωs which consists of non-negative elements that sum to one
is allowable, but also the idea of extrapolation could be useful, where negative components are allowed,
provided that tehy correspond to valid conditional densities.

We believe that our approach can play a useful role, as one of a collection of sensitivity tools. Of
course, a sensitivity analysis can be conducted within different frameworks, and there are times where the
setting will determine which framework is the more appropriate one (for example Bayesian or frequentist),
in conjunction with technical and computational considerations. Draper (1995) has considered ways of
dealing with uncertainty in the very natural Bayesian framework, and developments in the missing value
setting are ongoing. A thorough comparison between the various frameworks will be interesting and worth
undertaking in the future.

SAS and GAUSS codes, for both the three-pattern and general versions, are available from the authors’
web pages.
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APPENDIX: ESTIMATING MARGINAL EFFECTS

Let β	d represent the treatment-effect parameter estimates 	 = 1, . . . , g (assuming there are g groups)
in pattern d = 1, . . . , T and let πd be the proportion of subjects in pattern d. Then, the estimates of the
marginal treatment effects β	 are

β	 =
T∑

d=1

β	dπd , 	 = 1, . . . , g. (21)

The variance is obtained using the delta method. Precisely, it assumes the form

Var(β1, . . . , βg) = AV A′, (22)

where

V =
(

Var(β	d) 0
0 Var(πd)

)
(23)

and

A = ∂(β1, . . . , βg)

∂(β11, . . . , βT g, π1, . . . , πT )
. (24)

The estimate of the variance–covariance matrix of the β̂	d is obtained from statistical software. The
multinomial quantities are easy to obtain from the pattern-specific sample sizes. In the case of the
Vorozole data, these quantities are presented in (15) and (16). A Wald test statistic for the null hypothesis
H0 : β1 = · · · = βg = 0 is then given by

β′
0 AV A′β0, (25)

where β0 = (β1, . . . , βg)
′.
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