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Abstract—Neural networks are considered a black-box
model as their strength in modeling complex interactions
makes its operation almost impossible to explain. Still, neural
networks remain very interesting tools as they have shown
promising performance in various classification tasks. Layer-
wise relevance propagation is a technique that, based on
a propagation approach, is able to explain the predictions
obtained by a neural network. In this work, we propose four
adaptations of this technique to operate on multi-label neural
networks. The proposed methods provide new ways of distribut-
ing the relevance between the output layer and the preceding
ones. The efficacy of these adaptations is demonstrated after
an experimental study. The study is carried out based on
existing evaluation criteria in the literature that measure the
explanation’s quality. These methods are applied to a case
study in which a neural network is used to detect secondary
coinfections in patients infected with SARS-CoV-2. Overall, the
proposed methods provide a post-hoc interpretability stage of
the results.

Index Terms—explanation, layer-wise relevance propagation,
neural networks, multi-label scenarios

I. Introduction
Neural networks have demonstrated impressive per-

formance in complex machine learning tasks [1], [2].
However, due to their multilayer nonlinear structure,
they are considered black-box models [3], [4]. As their
strength in modeling complex interactions also makes their
performance almost impossible to explain. In particular,
it is not easy to intuitively and quantitatively understand
the result of their inference, i.e., for a single input data
point that caused the trained neural model to arrive at a
given output. This is especially important in applications
such as medicine where the model’s confidence must be
guaranteed.

One of the most important challenges of Artificial
Intelligence (AI) is the construction of effective and in-
terpretable computational models, which has given rise to

the so-called Explainable AI (XAI) [5], [6]. XAI is defined
as systems with the ability to explain their rationale for
making decisions. If an intelligent system resulting from
a machine learning process is able to solve a problem and
explain its solution, the confidence of its user’s increases,
which contributes to the credibility of AI [7]. This can
be achieved by developing more transparent models or
including a post-hoc interpretability stage.

Several approaches [8]–[10] have been proposed to
understand and interpret the reasoning embedded in a
neural network. Some of them attempt to build more
interpretable models from a trained neural network [11],
while others supplement the neural network model with
an interpretation stage [8]. The Layer-wise relevance
propagation (LRP) [8], [12] technique is an example of
the latter, which has been shown to provide insightful
explanations in the form of the input space’s relevance
for understanding the classification decisions of feed-
forward neural networks. This method allows extracting
a significant subset of inputs as the most influential for
making a prediction.

LRP explains the classifier’s decisions by decomposition,
i.e., it redistributes the obtained prediction backward
using a local redistribution rule until a relevance score is
assigned to each input variable. The local decomposition
rule starts from an initial top-level relevance (i.e., output
layer relevance) whose associated value is the neuron’s
activation value representing the decision class. However,
this approach, as it is, cannot be applied to scenarios
where an input object has a vector of outputs (set of
labels) associated with it instead of a single value, such
as multi-label classification problems [13].

In this work, an adaptation of the LRP method is
proposed to improve the interpretation of the results
obtained by a multi-label neural network. For this purpose,



four approaches that redistribute the activation values
associated with each label towards the input values are
presented. The first approach is based on redistributing all
the activation degrees at once. The second redistributes
the activation degrees of those neurons activated (pre-
dicted labels), while the third does it for each predicted
label independently. In this third approach, an explanation
is generated for each label in the application domain.
The last method performs an aggregation process of the
inferred labels’ activation degrees, resulting in a granular
label from which the redistribution process starts. The
explanation of these methods is based on determining the
relevant inputs in the inference of a label (3rd approach)
or a set of labels (1st, 2nd, and 4th approach). The
effectiveness of our methods (in terms of explanation
quality) on multi-label scenarios is evaluated based on
two different criteria proposed in [9], [10].

These methods are also applied to explain a multi-label
neural network’s output that detects secondary coinfec-
tions in patients infected with SARS-CoV-2. Coinfections
associated with the infection SARS-CoV-2 are classified
into bacterial infections and fungal infections. A patient
may develop one, both, or neither [14]. This case study
aims to combine the neural network proposed for its solu-
tion with a post-hoc stage, including the four approaches
presented in this research. This stage’s inclusion made
it possible to identify the input variables that influence
whether a patient is coinfected with one or more than
two infections simultaneously.

The paper is organized as follows. Section II describes
the LRP technique while Section III introduces four
adaptations of this technique to operate on multi-label
neural networks. Section IV presents the experimental
study carried out to evaluate the quality of our proposal’s
explanation. A case study applying the proposed meth-
ods is described in Section V. Finally, some concluding
remarks are given in Section VI.

II. LRP
LRP [8] is a technique that provides neural networks

the ability to explain themselves. It belongs to a class
of explanation methods that explain the neural network’s
output for a specific example, x, giving a score for each
input variable to be ranked.

This technique explains the classifier’s decisions by de-
composition. Mathematically, it redistributes the classifier
output f(x) backward using local redistribution rules until
it assigns a relevance score Ri to each input variable. This
rule fulfills an important property, namely conservation of
relevance, defined by Equation (1),

∑
i

R 0
i = · · · =

∑
j

R T−2
j =

∑
k

R T−1
k = · · · = f(x). (1)

It ensures that the network’s output is fully redis-
tributed to the input domain. In other words, no relevance

is lost, and no additional relevance is generated. The
relevance scores Ri of each input variable determine how
much this variable has contributed to the prediction. If
the degree calculated for an input variable is positive
(Ri > 0), it indicates that it supports that output, but if
it is negative (Ri < 0), it goes against that prediction.

The local redistribution rule redistributes relevance
from layer T to layer T − 1 in the following way:

R T−1
i =

∑
j

aiwij∑
i aiwij + ε

R T
j (2)

where ai is the neuron activations at layer T − 1, Rj is
the relevance scores associated to the neurons at layer T
and wij is the weight connecting neuron i to neuron j. A
small stabilization term ε is added to prevent division by
zero.

A downside of this propagation rule (at least if ε =
0) is that the denominator may tend to zero if lower-
level contributions to neuron j cancel each other out. The
numerical instability can be overcome by setting ε > 0.
However, in that case, the conservation idea is relaxed to
gain better numerical properties. A way to achieve exact
conservation is by separating the positive and negative
activations in the relevance propagation formula, as it does
by the αβ-rule given by Equation (3),

R T−1
i =

∑
j

(α
aiw

+
ij∑

i aiw
+
ij

− β
aiw

−
ij∑

i aiw
−
ij

)R T
j (3)

where ()+ and ()− are the positive and negative weights
connecting i to j, respectively. The parameters α and β
are chosen subject to the constraint α+ β = 1 [15].

Intuitively, both rules redistribute relevance proportion-
ally from layer T to each neuron in layer T−1 based on two
criteria. First, the neuron activation ai, i.e., more activated
neurons receive a larger share of relevance. Secondly,
the strength of the connection wij , i.e., more relevance
flows through more prominent connections. However, in
the output layer’s particular case, the LRP procedure
is started on a single neuron whose relevance is set
to Rj = f(x). This is not applicable in all scenarios,
specifically in multi-label scenarios.

III. Extending LRP to Multi-label Neural Networks
In multi-label scenarios, each object has associated a

vector of outputs instead of being associated with a single
value [13], [16]. Let us suppose that U is an N -dimensional
object space called the universe, and L = {l1, l2, . . . , lK}
denotes the label space with K possible class labels. The
task of multi-label learning is to learn a function f : U −→
2L from the multi-label training set, where x ∈ U is a M -
dimensional attribute vector and Li ⊆ L is the set of labels
associated with x.

Then, each label l ∈ L is mapped by a neuron in the
neural network’s output layer. Therefore, it is necessary to
define how to redistribute the classifier’s output f(x). For



this purpose, the following four approaches are proposed.
The difference between them lies in how the relevance
values are propagated from the output layer (T ) to its
preceding layer (T −1) and the initial top-level relevances
in the redistribution process.

A. LRPmlV1

The idea of this approach is to propagate backward
the activation values of all output neurons. This means
that the initial top-level relevance is defined as {R1 =

a
(T )
1 , R2 = a

(T )
2 , . . . , RK = a

(T )
K }. The redistribution rule

that distributes the relevance in the i-th neurons of layer
T − 1 is defined by the Equation (4),

R T−1
i =

∑
1≤j≤K

(α
aiw

+
ij∑

i aiw
+
ij

− β
aiw

−
ij∑

i aiw
−
ij

)R T
j . (4)

Figure 1 shows the process of relevance redistribution
of LRPmlV1 for a sample multi-label neural network.
This neural network has four layers: an input layer, two
hidden layers, and an output layer. The input layer has
M neurons, one for each attribute in {f1, f2, . . . , fM},
and the output layer has K labels, one for each label
in {l1, l2, . . . , lK}. The input is first propagated for-
ward through the network. The last layer activations
{a(4)1 , a

(4)
2 , . . . , a

(4)
K } are set as the relevance scores for

the last layer and used as the base for relevance re-
distribution. Using the redistribution rules in Equation
(3) and (4), relevance is redistributed back along the
network, layer by layer, until the input layer relevance
scores {R(1)

1 , R
(1)
2 , . . . , R

(1)
M } are obtained.

B. LRPmlV2

This approach aims to propagate backward only the
activation values of those output neurons whose activation
value is greater than a threshold (i.e., in the output layer,
only the neurons’ activations corresponding to the inferred
labels for the input are considered). The initial top-level
relevance is defined as {Rj = a

(T )
j : a

(T )
j > ξ} where

j = 1, . . . ,K. The redistribution rule that distributes the
relevance in the i-th neurons of layer T − 1 is defined by
the Equation (5),

R T−1
i =

∑
1≤j≤K

a
(T )
j >ξ

(α
aiw

+
ij∑

i aiw
+
ij

− β
aiw

−
ij∑

i aiw
−
ij

)R T
j . (5)

Figure 2 shows the relevance redistribution process of
LRPmlV2 for an input labeled by the neural model with
(l1) and (lK) as the activation values associated with those
labels exceeded the ξ threshold.
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Figure 1: Relevance flow across a multi-label neu-
ral network after applying LRPmlV1. The figure’s
top part represents the inference process from the
{f (1)

1 , f
(1)
2 , . . . , f

(1)
M } activation values of the input layer

to the {a(4)1 , a
(4)
2 , . . . , a

(4)
K } activation values in the output

layer. In contrast, the bottom part represents the explana-
tion process from the {a(4)1 , a

(4)
2 , . . . , a

(4)
K } activation values

of the output layer to the {R(1)
1 , R

(1)
2 , . . . , R

(1)
M } activation

values of the input layer.
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Figure 2: Relevance flow across a multi-label neu-
ral network after applying LRPmlV2. The figure’s
top part represents the inference process from the
{f (1)

1 , f
(1)
2 , . . . , f

(1)
M } activation values of the input layer

to the {a(4)1 , a
(4)
2 , . . . , a

(4)
K } activation values in the output

layer. In contrast, the bottom part represents the explana-
tion process from the {a(4)1 , a

(4)
K } activation values of the

output layer to the {R(1)
1 , R

(1)
2 , . . . , R

(1)
M } activation values

of the input layer.

C. LRPmlV3

The explanations given by this approach differ from the
others proposed. In this case, the intuition is to provide an
independent explanation for each label, i.e. to find to what



extent each input variable contributed to the prediction
of a given label.

In this sense, the idea is to propagate the neuron’s acti-
vation value associated with the j-th label to be explained.
Accordingly, the redistribution rule that distributes the
relevance in the i-th neurons of layer T − 1 is defined by
the Equation (6),

R T−1
i = (α

aiw
+
ij∑

i aiw
+
ij

− β
aiw

−
ij∑

i aiw
−
ij

)R T
j . (6)

Figure 3 shows the relevance redistribution process of
LRPmlV3 when the initial top-level relevance is R1 = a

(4)
1 .

The {R(1)
1 , R

(1)
2 , . . . , R

(1)
M } values indicate the relevance of

the {f (1)
1 , f

(1)
2 , . . . , f

(1)
M } attributes in the inference of the

l1 label.
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Figure 3: Relevance flow across a multi-label neu-
ral network after applying LRPmlV3. The figure’s
top part represents the inference process from the
{f (1)

1 , f
(1)
2 , . . . , f

(1)
M } activation values of the input layer

to the {a(4)1 , a
(4)
2 , . . . , a

(4)
K } activation values in the output

layer. In contrast, the bottom part represents the explana-
tion process from the {a(4)1 } activation values of the output
layer to the {R(1)

1 , R
(1)
2 , . . . , R

(1)
M } activation values of the

input layer.

D. LRPmlV4
This approach aims to turn the multi-label neural

network into a single-label network, but only at the time
of explanation. The idea is to determine the inputs that
allowed inferring that combination of labels, aggregating
all the corresponding neurons’ activation values so that the
relevance value to be redistributed backward is higher.

In this way, the relevance redistribution process is
performed similarly to the classical LRP in terms of the
initial top-level relevance since the decomposition process
is based on a single output value. The idea is to build a
neural granule with all the neurons activated for a given
input. After building the granule, an aggregation process

of the activation values for each neuron belonging to the
granule is carried out. In this way, the relevance of the
granule is Rgr =

⊕
j=1,...,K a

(T )
j : a

(T )
j > ξ. Accordingly,

the redistribution rule that distributes the relevance in
the i-th neurons of layer T − 1 is defined by the Equation
(7),

R T−1
i = (α

aiw
+
igr∑

i aiw
+
igr

− β
aiw

−
igr∑

i aiw
−
igr

)Rgr . (7)

In addition, all connections between the T −1 layer and
the T layer are removed, and new connections between the
T − 1 layer and the T ′ layer (i.e., layer associated with
the granular neuron) are made. For example (see Figure
2), if neuron n

(3)
1 is connected to n

(4)
1 and n

(K)
1 , with a

weight w(3)
11 and w

(3)
1K , respectively, then a connection is set

between n
(3)
1 and ngr whose associated weight is w

(3)
1gr

=

w
(3)
11 ⊕ w

(3)
1K . Figure 2 shows the relevance redistribution

process of LRPmlV4 for an input labeled with the labels
(l1) and (lK), as a

(4)
1 > ξ and a

(4)
K > ξ. In this case, the

initial top-level relevance is Rgr = a
(4)
1 ⊕ a

(4)
K .
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Figure 4: Relevance flow across a multi-label neu-
ral network after applying LRPmlV4. The figure’s
top part represents the inference process from the
{f (1)

1 , f
(1)
2 , . . . , f

(1)
M } activation values of the input layer

to the {a(4)1 , a
(4)
2 , . . . , a

(4)
K } activation values in the output

layer (T ). In contrast, the bottom part represents the
explanation process from the a(4)1 ⊕a

(4)
K activation values of

the T ′ layer to the {R(1)
1 , R

(1)
2 , . . . , R

(1)
M } activation values

of the input layer.

This method’s advantage over LRPmlV1 and LRPmlV2
is that it achieves a relevance redistribution process similar
to that obtained by classical LRP since it compacts all
the relevance information from the output neurons into a
single neuron. In this way, the information received by the
input layer is more compact, which is difficult to achieve,
for example, in datasets with many labels.



IV. Numerical Experiments and Discussion
This section evaluates the quality of the explanations

of the four LRP methods for a multi-label scenario. To do
this, we first describe the multi-label datasets involved
in this study and detail the multi-label neural model
employed. Then, we discuss results from two different
evaluation criteria existing in the literature.

A. Characterization of datasets
We use five multi-label datasets taken from the RUMDR

repository [17]. In these problems (see Table I), the
number of objects ranges from 502 to 43,807, the number
of attributes goes from 72 to 294, and the number of labels
from 6 to 174. More details about these datasets are given
next:

• cal500 [18]: It is a music dataset, composed by 502
songs. Each one was manually annotated by at least
three human annotators, who employ a vocabulary of
174 tags concerning to semantic concepts. These tags
span 6 semantic categories: instrumentation, vocal
characteristics, genres, emotions, acoustic quality of
the song, and usage terms.

• emotions [19]: It is a small dataset to classify
music into emotions that it evokes according to
the Tellegen-Watson-Clark model of mood: amazed-
suprised, happy-pleased, relaxing-calm, quiet-still,
sad-lonely, and angry-aggresive. It consists of 593
songs with 6 classes.

• mediamill [20]: It is a multimedia dataset for
generic video indexing, which was extracted tom
the TRECVID 2005/2006 benchmark. This dataset
contains 85 hours of international broadcast news
data categorized into 100 labels, and each video
instance is represented as a 120-dimensional feature
vector of numeric features.

• scene [21]: It is an image dataset that contains
2407 images, annotated in up to 6 classes: beach,
sunset, fall foliage, field, mountain, and urban. Each
image is described with 294 visual numeric features
corresponding to spatial color moments in the LUV
space.

• yeast [22]: This dataset contains micro-array ex-
pressions and phylogenetic profiles for 2417 yeast
genes. Each gen is annotated with a subset of 14
functional categories (e.g., metabolism, energy, etc.)
of the functional catalog’s top level.

Table I: Characterization of datasets.

Objects Attributes Labels

cal500 502 68 174
emotions 593 72 6
mediamill 43807 120 101

scene 2407 294 6
yeast 2417 103 14

B. Multi-label neural networks
The proposed architecture involves a fully-connected

neural network with four layers: an input layer, two hidden
layers, and an output layer. The number of hidden neurons
is equal to 2 × M and 2 × K, where M and K are the
numbers of attributes and labels of the problem. This
model operates with scaled exponential linear units [23].

Also, we adopted a squared hinge loss function to
increase the margins between positive and negative labels
in terms of the learning algorithm [24]. The weights
associated with the multi-layer networks are adjusted
using the Adam optimization algorithm with the number
of epochs set to 200.

On the other hand, Hamming Loss (HL) in Equation
(8), is adopted to measure the performance of the multi-
label neural model. HL is probably the most widely used
performance metric in multi-label scenarios that quantifies
the proportion of incorrectly predicted labels [13]. The
closer its value is to zero, the more accurate the model is.

HL =
1

N

1

K

N∑
i=1

|Li∆Yi| (8)

where ∆ operator returns the symmetric difference be-
tween Li (the real label set of the ith object) and Yi (the
predicted one).

C. Evaluating the quality of explanations
The authors of [3] and [9] proposed an explanation

quality criterion based on perturbation analysis. They
state that: The perturbation of input variables, which are
highly important for the prediction, leads to a steeper
decline of the prediction score than the perturbation of
input dimensions, which are of lesser importance.

The proposed explanation methods provide a score for
each input variable. Thus, according to this relevance
score, the input variables can be sorted, obtaining a
ranking of attributes. Therefore, it is possible to iteratively
perturb input variables (starting from the most relevant
ones) and track the prediction score after every pertur-
bation step. The decrease in prediction accuracy (i.e., the
increase in the HL value) can be used as an objective
measure of the explanation’s quality since a large increase
indicates that the explanation method was successful in
identifying the truly relevant input variables.

Figures 5, 6, and 7 show the HL value when the
attributes with the highest relevance value according to
the LRPmlV1, LRPmlV2, and LRPmlV4 algorithms are
perturbed. This perturbation is based on replacing the
input values with random values in the application domain
using a uniform distribution. We set the threshold ξ = 0,
although other values are possible. Later, we will study
the effect of this parameter on the performance of the
LRPmlV2 method.

These figures illustrate an increase in the HL value
when the most relevant attribute (first in the ranking)



0

0.04

0.08

0.12

0.16

0.2

1 3 5

H
am

m
in

g 
Lo

ss

Number of Perturbed Attributes

cal500

emotions

mediamill

scene

yeast

Figure 5: Error of classification (in terms of Hamming
Loss) when the values of the five most relevant at-
tributes, according to the ranking resulting from applying
LRPmlV1, are replaced by a random value in their
application domain.
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Figure 6: Error of classification (in terms of Hamming
Loss) when the values of the five most relevant at-
tributes, according to the ranking resulting from applying
LRPmlV2, are replaced by a random value in their
application domain.

is perturbed, particularly in the cal500 dataset when the
LRPmlV4 algorithm is employed. Moreover, in most cases,
as the number of perturbed attributes increases, so does
the HL value. However, in the mediamill dataset, more
attributes need to be perturbed for this increase to be
evident. This is because mediamill has several attributes
(more than five) with a high relevance value that influence
the result.

Figure 8 shows a similar experiment to the previous ones
but based on the relevance ranking obtained by LRPmlV3
for a particular object (in the emotions dataset) when
the activation value of the l3 label is propagated. In this
case, it is explored to what extent the perturbation of the
most relevant attribute affects a label’s value. Note in the
figure how after the perturbation, the object that should
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Figure 7: Error of classification (in terms of Hamming
Loss) when the values of the five most relevant at-
tributes, according to the ranking resulting from applying
LRPmlV4, are replaced by a random value in their
application domain.

be labeled with l3 turns out not to be.
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Figure 8: Hamming Loss achieved when perturbing the
values of the five most relevant attributes (according to the
ranking resulting from applying LRPmlV3) in predicting
the l3 label.

A second desirable property of an explanation technique
is that it produces a continuous explanation function [10].
This means that: If two data points are nearly equivalent,
then the explanations of their predictions should also be
nearly equivalent. According to [10], the continuity of
the explanation (or lack of it) can be quantified by the
Equation (9),

QE = max
∀x∈U
x 6=x′

∥∥σ(x)− τ(x′)
∥∥
1∥∥x− x′

∥∥
2

(9)

where σ(x) and τ(x′) are the rankings of the attributes
according to their relevance associated with the object’s
output x and x′, respectively. Also,

∥∥.∥∥
1

is the normalized
Spearman distance [25], and

∥∥.∥∥
2

is the L2 norm (i.e.,



Euclidean norm). A value close to zero means that the
quality of the explanation is better.

Table II shows the performance of LRPmlV1,
LRPmlV2, LRPmlV3 and LRPmlV4 according to Equa-
tion (9). Each column represents the quality of explanation
(QE) obtained for each of these approaches on a set of
objects. In each case, we measure the extent to which
similar objects in a dataset have similar relevance values
associated with their attributes. For example, in a dataset,
if an object x is similar to an object x′, then the relevance
rankings of their attributes σ(x) and τ(x′) should also be
similar. Therefore, the more this assumption is fulfilled
in a dataset, the closer the value of QE is to 0, i.e., the
better the quality of the method’s explanation.

Table II: The QE of LRPmlV1, LRPmlV2, LRPmlV3, and
LRPmlV4. LRPmlV3 is applied by propagating the label
l3 backward.

LRPmlV1 LRPmlV2 LRPmlV3 LRPmlV4

cal500 0.33 0.34 0.36 0.32
emotions 0.30 0.23 0.19 0.32
mediamill 0.43 0.36 0.38 0.13

scene 0.05 0.05 0.04 0.05
yeast 0.18 0.14 0.15 0.11

The results show that LRPmlV4 provides more accurate
explanations in datasets with many labels (i.e., cal500
and mediamill) or many attributes (i.e., scene). However,
in those datasets with fewer labels, such as emotions,
LRPmlV2 achieves better explanations. In this compari-
son, LRPmlV3 is not considered since the reported values
merely indicate the explanations’ quality in terms of the
l3 label and not of a global decision as the other methods
do. Note that l3 is adopted to choose a particular label for
experimentation, i.e., only for experimentation purposes
without following a particular criterion.

Figure 9 shows the performance of the LRPmlV2
method (in terms of QE) when the value of the threshold ξ
is varied in the range [−1, 1). This range is adopted based
on the activation function’s characteristics, i.e., the scaled
linear exponential unit [23]. The idea of this experiment
is to show the effect of the threshold ξ on the method’s
performance. It shows how as the threshold ξ approaches
zero, the quality of the method’s explanation is better.

V. Case Study: SARS-CoV-2 Associated Coinfections
The methods proposed in this research are applied as

a post-hoc interpretability stage to explain the results
obtained by a neural network used to detect secondary
coinfections in patients infected with SARS-CoV-2.

A. Description of the problem
COVID-19 has been affected worldwide since the end

of 2019. Clinical studies have shown that a factor that
increases its lethality is secondary infections [14]. In the
first stage of the ongoing research at the “Comandante
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Figure 9: Performance of the LRPmlV2 method when the
value of the threshold ξ is varied in the range [−1, 1). In
this case, the emotions dataset is used.

Manuel Fajardo Rivero” Hospital in Santa Clara, Cuba,
it is evidenced that 60% of the patients with secondary
infections coexisting with the SARS-CoV-2 virus died.

Coinfections associated with the infection SARS-CoV-2
are classified into bacterial infections and fungal infections,
i.e., patients may develop one, both, or neither of them.
From a machine learning point of view, this is considered
a multi-label classification problem. One of the most effec-
tive multi-label classification methods is neural networks,
which have also been successfully applied in the diagnosis
of COVID-19 [1], [26]. Section IV describes the multi-label
neural network used to solve this problem. However, one
aspect to be taken into account in the construction of a
neural model, especially in medical applications [27], is
their interpretability [6].

B. Dataset under consideration
A dataset of 42 patients is available. Although the

number of cases is low since this problem is relatively new,
specialists in this medical field consider this information
sufficient. They usually perform their analyses on similar
patient samples. Also, tests performed on the neural model
with well-known cases have been effective.

Each patient in a dataset has three possible labels
associated with it: the patient has no coinfection (l1),
has bacterial coinfection (l2), has fungal coinfection (l3).
The variables that characterize it are divided into five
large groups: epidemiological (G1), clinical (G2), radio-
logical (G3), clinical laboratory (G4), and microbiological
(G5)—the latter group including antimicrobial susceptibil-
ity and all information related to coinfection. More details
about these variable groups are given next:

G1: age (A0), sex (A1), stay in hospital (A2), status
at admission (A3), hospitalization room (A4), personal
pathological history (A18−A29).

G2: clinical diagnosis (A5 − A17), clinical condition
(A30 − A42), heart rate (A43), respiratory rate (A44),



evacuation status (A48−A50), medications used (A51−
A58), invasive procedures (A59−A61).

G3: x-ray report (A45−A47).
G4: global leukocyte count (A62), neutrophil nuclear

polymorphs (A63), lymphocytes (A64), platelets (A65),
hemoglobin (A66), hematocrit (A67), creatinine (A68),
tgp (A69), tgo (A70), d-dimer (A71), ggt (A72), ldh (A73),
fa (A74), lactate (A75), urea (A76), cholesterol (A77),
triglycerides (A78), uric acid (A79), glycemia (A80).

G5: number of laboratory cultures (A81), isolated mi-
croorganism ((escherichia.coli (A82), candida.spp (A83),
psuedomona aeruginosa (A84), coagulase negative staphy-
lococcus (A85), staphylococcus aureus (A86), acinetobac-
ter baumannnii calcoaceticus complex (A87), klebsiella
pneumoniae (A88), moraxella.spp (A89), enterobacter
aerogenes (A90)), antimicrobial resistance (A91), mul-
tidrug resistance (A92), type of laboratory culture ((stool
culture (A93), urine culture (A94), endotracheal tube
culture (A95), central venous catheter culture (A96),
blood culture (A97), tracheostomy culture (A98)).

C. Additional details on the neural network learning
process

At the data preparation stage, nominal attributes (i.e.,
non-numeric attributes) are coded from a one-hot encod-
ing. A mean value replaces missing values in the attribute’s
normal value range, which is done using the expert’s
knowledge. Finally, all attributes are normalized.

The average HL value associated with the classifier is
0.1545 after performing a leave-one-out cross-validation
process. It is a particular case of cross-validation where
the number of folds equals the number of objects in the
dataset. Thus, the learning algorithm is applied once for
each object, using all other objects as a training set and
using the selected object as a single-item test set.

D. Identifying influential input variables in a patient with
bacterial and fungal coinfections

Figures 10, 11, and 14 show the attribute rele-
vance heatmap (resulting from applying the LRPmlV1,
LRPmlV2 and LRPmlV4 methods) for a patient X
presenting bacterial (l2) and fungal (l3) coinfection at the
same time. Likewise, Figures 12 and 13 show this for the
LRPmlV3 method as the activation values of labels l2 and
l3 are propagated backward. Each attribute (represented
by a cell in the heatmap) has its associated relevance
value. Each color’s intensity represents the influence that
the attribute has on the output predicted by the neural
model. The proposed methods explain the neural model’s
result for a specific case (in this case, patient X). This
means that the attributes that influence patient X output
do not necessarily influence other patients’ decisions with
different characteristics. The methods report that,

• A91 (with RLRPmlV 1(A91) = 1.23,
RLRPmlV 2(A91) = 0.7, RLRPmlV 4(A91) = 0.6), A84
(with RLRPmlV 1(A84) = 0.90, RLRPmlV 2(A84) =

0.49, RLRPmlV 4(A84) = 0.43), and A92 (with
RLRPmlV 1(A92) = 0.87, RLRPmlV 2(A92) = 0.49,
RLRPmlV 4(A92) = 0.43) are the three most relevant
attributes for a patient to have both coinfections.

• A79 (with RLRPmlV 1(A79) = −0.77,
RLRPmlV 2(A79) = −0.4), and A12 (with
RLRPmlV 4(A12) = −0.35) have a negative relevance.

• Similar results are obtained with the LRPmlV3
method, where the attributes A91, A84, and A92
(with RLRPmlV 3(A91) = 0.24, RLRPmlV 3(A84) =
0.16, RLRPmlV 3(A92) = 0.15) have a high influ-
ence on l2, and l3 (with RLRPmlV 3(A91) = 0.45,
RLRPmlV 3(A84) = 0.34, and RLRPmlV 3(A92) =
0.33). Also, A79 has a negative impact on l2
(with RLRPmlV 3(A79) = −0.14), and l3 (with
RLRPmlV 3(A79) = −0.26).

• Several attributes have a near-zero relevance in the
presence of any of these coinfections.

• The differences between these results lie in that
LRPmlV1, LRPmlV2, and LRPmlV4 show higher
relevance values than LRPmlV3. This is expected
since the relevance resulting from using LRPmlV3
is distributed individually for each label.
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Figure 10: LRPmlV1 output. The cell in the upper left
corner, attribute A91 (in dark green), represents the
attribute most influences the patient X output. While
the cell in the lower right corner, attribute A79 (in dark
red), represents the attribute that goes most against that
prediction. Tracking this heatmap as a ranking, the first
attributes are A91, A84, A92, and the last attributes are
A44, A2, A79.

This result was evaluated using expert criteria as sug-
gested in [28]. The experts assessed explanations obtained
from cases already known to them. They estimated that
the most relevant attributes when a patient presents both
coinfections coincide with those obtained by the proposed
methods.
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Figure 11: LRPmlV2 output. The cell in the upper left
corner, attribute A91 (in dark green), represents the
attribute most influences the patient X output. While
the cell in the lower right corner, attribute A79 (in dark
red), represents the attribute that goes most against that
prediction. Tracking this heatmap as a ranking, the first
attributes are A91, A84, A92, and the last attributes are
A2, A44, A79.
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Figure 12: LRPmlV3 output when l2 label is propagated.
The cell in the upper left corner, attribute A91 (in dark
green), represents the attribute most influences the patient
X output. While the cell in the lower right corner, attribute
A79 (in dark red), represents the attribute that goes
most against that prediction. Tracking this heatmap as
a ranking, the first attributes are A91, A84, A92, and the
last attributes are A2, A44, A79.

VI. Concluding Remarks

The risk that intelligent systems may represent for hu-
man beings in some applications that are very sensitive to
human life, e.g., those intended for medicine, has led to the
need to develop systems capable of solving problems whose
solutions can be explained. This is especially relevant when
intelligent systems have been created using approaches
such as neural networks. Different techniques have been
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Figure 13: LRPmlV3 output when l3 label is propagated.
The cell in the upper left corner, attribute A91 (in dark
green), represents the attribute most influences the patient
X output. While the cell in the lower right corner, attribute
A79 (in dark red), represents the attribute that goes
most against that prediction. Tracking this heatmap as
a ranking, the first attributes are A91, A92, A84, and the
last attributes are A45, A12, A79.
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Figure 14: LRPmlV4 output. The cell in the upper left
corner, attribute A91 (in dark green), represents the
attribute most influences the patient X output. While
the cell in the lower right corner, attribute A12 (in dark
red), represents the attribute that goes most against that
prediction. Tracking this heatmap as a ranking, the first
attributes are A91, A92, A84, and the last attributes are
A79, A45, A12.

developed in the so-called XAI. LRP falls into the category
of interpretability post-hoc methods since it is applied to
explain a solution inferred by the intelligent system for a
given object.

This research presents the adaptation of the LRP
method for multi-label classification scenarios. Four alter-
natives of redistribution of activation levels are proposed,
developed from the fact that a multi-label solution may
include the activation of more than one label at the



same time. Experimental studies (in terms of explanation
quality) developed from international multi-label datasets
show that three of the proposed methods (LRPmlV1,
LRPmlV2, LRPmlV4) are effective in globally interpret-
ing the results in a multi-label neural network. While
LRPmlV3 is effective in cases where a local interpretation
is needed, i.e., based on a single label’s output. However,
the disadvantage of the LRPmlV2 method is the need
to use a threshold, which could affect the method’s
performance. On the other hand, LRPmlV4 is the most
suitable method for those datasets with many labels,
which is very common in multi-label problems.

The proposed methods are applied to a real problem
as a post-hoc stage in predicting coinfections associated
with SARS-CoV-2. The interpretation of the neural model
results provided the Cuban medical community dedicated
to COVID-19 studies with an intelligent system that
satisfies the clinical requirements necessary for its use.
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