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Abstract. Today’s evolving and inventive attacks allow an adversary to
embed tracking identifiers or malicious triggers in ultrasonic sound and
covertly transmit them between devices without the users’ knowledge.
An adversary can exploit an electronic device by manipulating the mi-
crophone, gyroscope or speaker using ultrasonic sound. Almost all types
of electronic devices are vulnerable to this type of attack. Indeed, some
preventive measures are in place to counter ultrasonic invasion. However,
they are primitive and often are not capable of detecting the attacks.
To this end, we propose FOCUS: Frequency based detection of Covert
Ultrasonic Signals. In particular, FOCUS displays a low-end, low-cost
ultrasonic detection mechanism that can be employed anywhere. We
validate FOCUS through two proof-of-concept (PoC) implementations
utilizing Raspberry Pi and Arduino based hardware modules, respec-
tively. The results demonstrate that FOCUS can detect ultrasonic sound
and alert users of possible ultrasonic invasion.

Keywords: Embedded system, Ultrasonic sound invasion, Network Security &
Privacy

1 Introduction

Collecting information about users is becoming an ever more important part of
the business strategy of various companies. The increasingly stringent regulations
(e.g., the European GDPR1), have caused companies to use new and controver-
sial strategies to collect this information about the user. One of these emerging
technologies is ultrasonic invasion (UI). This technology uses ultrasonic beacons
(UB) that are imperceptible to humans2, but are sensed by mobile devices.

The main application of UB lies in cross-device tracking (xDT). The purpose
of xDT is to establish a profile of the user across different devices. Typically,
1 https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu nl
2 The upper hearing threshold in practice is around 17 kHz. Thus the near-ultrasonic

range is 17-20 kHz
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xDT is done by exchanging unique identifiers between different devices (e.g., an
advertising identifier). This poses a serious privacy threat since, by targeting
different devices, a much more detailed profile can be created than with tradi-
tional tracking technologies (e.g., Cookies). For example, with the use of xDT
by means of UB, it becomes possible to link a work phone with a personal phone
when they are on the same desk. In addition, since the entire process of receiving
the signals emitted from the beacons by electronic devices usually happens in
the background, the users are often unaware of the profile that is being created.

Since API level 26, Android has placed several restrictions3 on background
services, which make the unnoticed processing of UB signals more challenging.
Because these background services consume device resources without the user
being aware, they could result in a deteriorated user experience. Therefore, they
are killed by the Android operating system after 1 minute. For long running
services, the concept of a foreground service was introduced. All this makes
receiving UB signals more difficult, yet not impossible. After all, it is possible
to do the receiving of the signals emitted from the beacons with a background
service within the 1 minute timeframe. Further, the receiving of UB signals can
also be built into an unsuspicious foreground service of an application (e.g., a
music application).

Another measure that makes the sensing of UB signals less stealthy on an An-
droid mobile device, is the run-time permission required to record audio. Since
API level 23, the RECORD AUDIO permission of the MediaRecorder API is
considered a ’dangerous’ permission4. Whereas normal permissions are validated
at application installation, the Android operating system forces dangerous per-
missions to be validated at-run time. However, when UB sensing is for example
built into an application that supports voice messaging, the users are most likely
unaware that permitting the audio record poses a threat to their privacy. Similar
concepts apply to iOS, but are not discussed further in this paper.

What makes this research even more urgent, is the fact that ultrasonic tech-
nology is already being actively deployed. Lisnr [4] is a company, with over
250’000 customers, that offers services using UB (e.g., for contactless transac-
tions using UB between mobile wallets and vendors). Another example is the
company Shopkick, where users can collect points for vouchers by walking into
participating stores that have ultrasonic transmitters installed. Since the pre-
vious two companies only do beacon sensing while their application or website
is open on the user’s mobile device, the users are aware that their microphone
is being used. However, there are also companies that run the entire process in
the background. Silverpush is a company that has developed services to embed
UB sensing as third-party content in, for example, a website or application. In
this way, a user only needs to have an application with a Silverpush component
installed on his device and the personal information, coming from UB embedded
in TV streams, websites or even billboards is completely collected and processed
in the background. In 2017, researchers discovered 234 apps with Shopkick com-

3 https://developer.android.com/about/versions/oreo/background
4 https://developer.android.com/guide/topics/media/mediarecorder
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ponents listening to UB in the background [1]. In this paper, we introduce and
compare three different ways to detect sounds in the near-ultrasonic range and
alert the user of the presence of these signals. We call our solution ’Frequency-
based detection of Covert Ultrasonic Channels (FOCUS)’.

Our solution provides the following contributions:

1. To the best of our knowledge, FOCUS is the first work to consider the
external detection of signals in the near-ultrasonic range. This external de-
tection intercepts the signal, allowing users to detect the attack, even before
it reaches their device. This opens up the path to external mitigation mech-
anisms that prevent the ultrasonic signals from reaching or influencing the
victim device.

2. FOCUS runs completely in the background of the user’s device, allowing the
detection of ultrasonic sound without any interaction.

3. FOCUS operates completely wireless, allowing the detector to be installed
in hard-to-reach places.

4. We present two PoC implementations, based on Arduino and Raspberry Pi
hardware modules, and we show that the results are promising. Because
of the limited resources in the Arduino module, standard frequency analy-
sis methods cannot be deployed. Therefore, we propose and implement an
lightweight solution for detecting ultrasound signals on low-cost platforms.

The remainder of this article is organized in the following manner. We dis-
cuss the state-of-the-art on acoustic air-gapped covert channels in Section 2 and
provide a background overview in Section 3. In Section 4, we give the problem
setting and in Section 5, we discuss the system model and adversarial assump-
tions. Sections 6 and 7 discuss the protocol and the results obtained. In Sections
8 and 9, we discuss the advantages and disadvantages of our solution and give
a security analysis. Finally, the paper is concluded in Section 10, where we also
discuss the possibility of future research.

2 Related Work

A covert channel is a means of communication between two entities that was
not anticipated by the designer of the entities. The concept of a covert channel
was first formulated by Lampson in 1973 [11]. Since this type of communication
is not intended to happen, covert channels can pose a serious privacy threat
by bypassing existing communication protocols (e.g., for the purpose of data
exfiltration). A special type of covert channels are air-gapped covert channels.
What makes this type of covert channel more dangerous than other types, is
the fact that it can occur between entities that are physically and logically
disconnected from each other. The classification proposed by [8] divides air-
gapped covert channels into five main categories: electromagnetic, magnetic,
optical, thermal, and acoustic. However, in FOCUS, the main emphasis lies on
the acoustic channel. Thus we discuss acoustic in the below section.
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2.1 Acoustic

The covert channel that this paper focuses on, is the acoustic covert channel.
This type of channel uses sound waves to exchange information between two
computers. Depending on the type of sound used, two main categories can be
distinguished: audible and ultrasonic acoustic covert channels.

Audible. This acoustic method uses a sound with a frequency that can be
perceived by the human hearing (smaller than about 17 kHz). The concept was
first explored by Madhavapeddy et al. [12], who conducted a comparative study
between different modulation schemes to establish a speaker-to-microphone com-
munication between two computers. Since this approach requires the transmitter
to be equipped with a speaker, speakerless audible acoustic covert channels were
later introduced by Guri et al.: Fansmitter uses noise from the fans of a PC for
the transmitter [7]. DiskFiltration, as an alternative, uses noise coming from the
actuator arm of a hard disk drive [9]. The main drawback that all these audible
methods share is the fact that the noise can be perceived by the victim.

(Near)-Ultrasonic. This type of covert-channel, which uses signals in the
17-20 kHz range, is the main subject of this paper. Near-ultrasonic signals have
the advantage that they are imperceptible to human hearing, yet can be gener-
ated and sensed by commodity hardware. This is because commodity micro-
phones typically have a sampling frequency of 44.1 kHz. A first speaker-to-
microphone implementation of this type of covert channel between computers
was realized by Madhavapeddy et al. in 2005 [12] and could achieve speeds of 8
bps over a distance of 3.4 m. Later work by Carrara et al. achieved speeds of 230
bps, over a distance of 11 m, with a speaker-to-microphone implementation [5].
In 2015, Deshotels et al. accomplished a speaker-to-microphone ultrasonic covert
channel between smartphones that could achieve a bit rate of 345 bps over a dis-
tance of 30 m [6]. All of these implementations share the disadvantage of requir-
ing a microphone for detection. However, in secure environments, microphones
are often not available due to security reasons. Therefore, Guri et al. proposed
a microphoneless approach, in which a passive speaker is reversed by means of
jack retasking and can therefore serve as a receiver [8]. Another microphoneless
approach was presented in 2018 by Matyunin et al. Their research demonstrated
that it is possible to use a MEMS gyroscope as a receiver for ultrasonic signals
near the resonant frequency of the gyroscope (19-29 kHz) [13].

2.2 Differences with previous research

Whereas previous research has focused on developing a complete communication
protocol (i.e. transmitter and receiver), this research focuses on the external de-
tection of ultrasonic covert channels using a microphone. The main difference
is that this research tries to intercept the ultrasonic signal with an external
device, rather than having the detection happen on the victim’s device, like
in [13,8,12,6,5]). In this way, it is possible to intercept the sound before the
victim has a chance to process it, opening up the path to external prevention
mechanisms. In addition, developing both a transmitter and receiver has the
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convenience that the receiver can already have information about the transmit-
ted signal in advance (e.g., the frequency in [6]), which makes the sensing much
easier but not applicable to any other general ultrasonic signal. Another point
in which this study differs from previous ones is the fact that earlier research
used spectral analysis for detection, whereas in this paper, a novel approach is
proposed that does not require a high-end analog-to-digital converter (ADC).
For example, [13] uses a fast Fourier transform (FFT) on the acquired data from
the gyroscope. Similarly, [8] uses spectral analysis for detection (Praat tool5).
On top of that, [8] requires the use of an invasive kernel driver to remap the
audio jack to an input, while this paper focuses on minimal invasive approaches.
Our proof-of-concept implementation on a low-end Arduino platform shows that
the detection can successfully be done without the use of traditional frequency
analysis mechanisms.

3 Background

This section provides background information on various types of modulation
schemes that can be used in a near-ultrasonic communication protocols. Then,
an overview is given of the algorithms typically used to decode the received ultra-
sonic signal on the victim’s device. Finally, this section highlights an important
limitation to the use of spectral analysis for the detection of ultrasound.

3.1 Possible modulation schemes

For the transmission of ultrasonic signals, several modulation schemes have been
proposed. On-off keying (OOK) uses the presence or absence of a sine wave signal
to encode a 1 or a 0, respectively. Although this approach is the simplest, in most
cases OOK has a lower data rate than the other modulation schemes. Another
modulation scheme is phase-shift keying (PSK), in which data are encoded by
varying the phase of a signal of constant frequency. This scheme, however, has
the disadvantage that discontinuities can occur in the ultrasonic signal, which
can still produce an audible click [2] from the speakers. A final modulation
scheme, that is used in practice by SilverPush and Lisnr [2], is frequency-shift
keying (FSK). FSK encodes bits by changing the frequency of a carrier signal.
The number of frequencies that can be used, and associated the data rate, are
determined by the allowed frequency range and by noise. Like PSK, discontinu-
ities can occur in the signal with this modulation scheme, resulting in audible
clicks from the speakers. One solution to these clicks, which was proposed by
Deshotels, is to gradually decrease the amplitude of the signal at the begin-
ning and end of each transmitted character [6]. Since the modulation scheme
employed depends on the attacker, this study considers any signal in the near-
ultrasonic range as a potential covert channel. In addition, it is not known in
advance which frequencies are used by the attacker, so the full range of 17-20
5 https://www.fon.hum.uva.nl/praat/
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kHz is to be considered. However, if the frequencies are known in advance, more
efficient detection is possible.

3.2 Algorithms used for decoding ultrasound

Previous research indicated that Fast Fourier Transform (FFT) and Goertzel
are the main algorithms for the detection of UB [2]. Both FFT and Goertzel are
algorithms for efficiently computing the Discrete Fourier Transform (DFT) of a
digital signal, whose output can be regarded as samples of the Discrete Time
Fourier Transform (DTFT) of a digital signal. That is, the DTFT, which is a
subcategory of the Z-transform, converts an input sequence in the time domain
into an output sequence in the frequency domain. In general, the DTFT of an
infinitely long sequence is given by:

Where H(ω) in general, is a complex number function of the angular fre-
quency ω. For the detection of ultrasonic signals, only the magnitude of the
complex number is of interest and the phase can be disregarded. As a result,
the magnitude can be computed directly without separately calculating the real
and imaginary parts. In this way, the computational efficiency of the algorithm
is improved.

In practice, SilverPush would use only Goertzel and Shopkick would use only
FFT. In addition, Lisnr would use both Goertzel and FFT. Whereas FFT has
a lower time complexity to compute a range of frequencies, Goertzel has the
advantage of detecting a single frequency with little computational effort. The
latter is mainly important in mobile applications, where battery consumption
plays an important role. In addition, a recent comparison of Goertzel and FFT
for dual Tone Multi-Frequency (DTMF) detection showed that for smaller bin
sizes, Goertzel gives more accurate results [10]. In this study, FFT failed to
detect DTMF tones correctly for a bin size smaller than 128, while Goertzel’s
algorithm was successful. In this regard, Goertzel solves the reliability problem
of external detection, which was mentioned by [8] as the main limitation of this
approach.

3.3 Limitation of spectral analysis

The main disadvantage of the FFT and Goertzel algorithms for the detection of
UB, is that they require a high-end analog-to-digital converter (ADC) according
to the Nyquist theorem. To address this problem, this paper also proposes a
simpler approach that does not require this ADC and uses of a digital counter.
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4 Problem Setting

Wherever we go and whatever we might be doing, as long as we have an elec-
tronic device with a microphone, speakers or gyroscope, that device might be
listening. All types of electronic smart devices (e.g., laptops, tablets, headphones,
smartwatches, IoT home appliances) are working with the most clandestine and
unavoidable methods for tracking our locations and behaviour.

Ad-tracking audio signals are used by mobile apps, which our phone can
detect but we cannot. For example, we watch television as regular viewers and we
have our phone(s) nearby or with us in the TV room. Presently, TVs are working
as beacons that emit ultrasound and our phone(s) are working as receivers.
Beacons emit high frequency sounds and receivers listen to them.

TV

WEBSITE

BILLBOARD
MOBILE PHONE

1

2

Ultrasonic covert signal

Microphone
and/or
Malicious App

Transfer 
personal data

Fig. 1. Ultrasonic invasion through TV, websites, advertising boards

As shown in Figure 4, TVs, ultrasonic beacon embedded websites or ultra-
sound emitting ad boards will emit ultrasound during commercial breaks that we
will not notice, but our phones and IoT appliances with microphones will. Our
phones can create an identifier with details about us watching a specific show
at a specific time after receiving signals from the TV. Our phone can save these
details and share with various applications, which will then give it to third-party
users. The core idea is to link several devices we own in order to locate us and
gather information about us. Beacons may be incorporated into tablets, phones,
websites, and even billboards. This whole process takes place in the background
and does not require user permission.

5 System Details

In this section we describe our system model and adversarial assumptions.
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TV

WEBSITE

BILLBOARD

MOBILE PHONE

DETECTOR 
DEVICE

1 2

Ultrasonic covert signal

Fig. 2. System Model

System Model We consider a typical setting where a user has a mobile phone,
laptop or desktop and TV or has access to an advertising billboard. In designing
the ultrasonic detection scheme of such a system, we consider the presence of
three main entities as shown in Figure 2.

– Ultrasound emitter: As shown in Figure 2, TVs, websites, billboards etc. are
ultrasound emitters. Using the embedded ultrasound beacon, these devices
emit ultrasound to gather information about users.

– Detector device: This device operates externally from the attacker and the
victim, and detects the ultrasound emitted by the attacker. Furthermore, it
alerts the victim of the malicious activity happening. In our PoC implemen-
tation we use Arduino and Raspberry Pi platforms as detector devices.

– Mobile device: The mobile device shown in Figure 2 serves a dual function.
On the one hand, this device is the victim, and will transmit various per-
sonal data to a database upon detection of ultrasonic signals emitted by the
attacker. On the other hand, the mobile device also constitutes a part of
the proposed solution, in the sense that it communicates with the detector
device to alert the user.

Adversarial assumptions We presume for our adversarial ability analysis that
a victim (user) frequently uses a mobile phone, watches TV, and surfs the In-
ternet. In terms of attacker capabilities, we look at previous research [15,3] as
well as commercial implementations (Shopkick, Lisnr, Signal360, and Silverpush)
that use microphones as receivers that can be exploited to track a victim’s lo-
cation or gain private information from the victim’s mobile. Thus for attackers
capabilities we assume three main attack scenarios:

– Web tracking: Ultrasonic beacons embedded in websites can emit ultrasound
which can be received by the microphone of a victim’s mobile.
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– Commercial advertisement tracking: The adversarial media (e.g., TV or Bill-
board) provider uses the ultrasonic beacons with encoded tracking IDs that
are embedded in broadcast content. The adversary can monitor what and
when users watch by capturing these IDs with an application installed on
the user’s mobile device.

– Data theft: Adversary app components can be embedded as third party
content in ignorant applications installed on different devices of the victim.
We assume that there is at least one device with an infected app that can
transmit, and at least one device with an infected app that can receive. In
this way, sensitive personal data can be exchanged between different devices
via ultrasonic communication in the background, and thus an aggregated
profile of the victim can be established.

6 Our Protocol: Ultrasonic Invasion Detection

FOCUS is comprised of three different detection mechanisms, respectively uti-
lizing low-end, mid-end, and high-end hardware. First, a low-end approach is
presented that uses a digital counter as a software-based high-frequency detector
implemented on an Arduino. Next, the mid-end approach is discussed that uses
the Goertzel algorithm on a Raspberry Pi. Although it was not implemented, an
ESP32 or ARM Cortex-M could also be used for this purpose. A third high-end
approach, employs the Goertzel algorithm on a smartphone and is provided for
reference purposes only. After all, detection with a smartphone (victim’s device)
is essentially no longer external detection, as it will not help to prevent the ul-
trasonic invasion. Nevertheless, this detector is useful to indicate whether the
ultrasounds detected by one of the other approaches can be effectively used as a
covert channel. In case the FOCUS implementation on the smartphone does not
detect ultrasound, a malicious application on the smartphone probably cannot
either and no privacy threat is present. Finally, a smartphone app is proposed
that integrates the low-end and high-end approaches, alerting the user of the
presence of malicious activity.

6.1 Low-end: Arduino

For this implementation, an Iduino 1485297 microphone volume sensor with an
operating range of 50 Hz to 20 kHz is used. The digital output of this micro-
phone is connected to the interrupt pin of an Arduino Uno Rev 3 that uses
an ATmega328P microprocessor running at a clock frequency of 16 MHz. The
sampling rate of the ADC of this Arduino model is 9600 Hz and is therefore in-
sufficient to utilize Goertzel or FFT algorithms. The digital output of the sound
sensor produces a high signal if the intensity of the detected sound is above a
certain threshold and a low signal below this threshold. This threshold is ad-
justable with a potentiometer and, for this research, was experimentally set to
the lowest possible value at which ambient noise does not produce a high sig-
nal. In this way, the highest possible sensitivity can be obtained. For the supply
voltage we use 5V, which ensures that the high output is also 5V.
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A program was subsequently written in the Arduino IDE that, using the
Arduino’s built-in hardware interrupts, counts the number of edge transitions
of the microphone pulses over a 100 ms period. Each period of a sine wave
causes four transitions from high to low or from low to high by intersecting the
upper or lower threshold. From this, it can be concluded that if more than 6800
transitions are detected during a 100 ms period, sound with a frequency higher
than 17 kHz is present. However, in order to account for deviations of pulses
that are not detected (e.g., due to ambient noise), the lower threshold is set
in practice at 6750 transitions. Because the sensitivity of the microphone for
frequencies higher than 20 kHz is too low, no pulses will be generated for these
frequencies and consequently an upper threshold is irrelevant. The pseudo-code
of the algorithm for the digital counter software high-frequency detector is given
in Algorithm 1.

Algorithm 1 Software high-frequency detector
1: if first measurement then
2: timestamp← millis ()
3: first measurement← false
4: else
5: if millis ()− timestamp >= 100 then
6: if number of pulses >= 6750 {17kHz} then
7: detected← true
8: end if
9: first measurement← true

10: number of pulses← 0
11: end if
12: end if

6.2 Mid-end: Raspberry Pi

For the mid-end implementation, a Lioncast Universal USB microphone is used,
connected to a Raspberry Pi model 3 v1.2. This Raspberry Pi runs on a quad-
core Broadcom BCM2837 CPU with a clock speed of 1.2 GHz. The digital data
measured by the microphone are read out in Python using the PyAudio library.
A sampling rate of 44.1 kHz and a chunk size of 8192 are used for this purpose.
Next, for each chunk, it is determined whether ultrasound is present. Depending
on whether this sound is present or not, a message is displayed or the next chunk
is taken in, respectively. The detection of ultrasound in a given chunk is done
by applying the Goertzel algorithm6 from Algorithm 2 to the chunk for each
frequency between 17 and 20 kHz in steps of 10 Hz. Subsequently, the calculated
magnitude is compared to a threshold to determine the presence of ultrasound
signals. This threshold is empirically set at the lowest possible value at which no
false positives are detected, which is 50’000. The variable “coeff” in the algorithm
6 https://www.embedded.com/the-goertzel-algorithm/
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is a constant determined by the sampling frequency, the target frequency and
the chunk size.

Algorithm 2 Goertzel algorithm for 1 considered frequency
1: for every sample do
2: Q0 ← coeff ∗Q1 −Q2 + sample
3: Q2 ← Q1
4: Q1 ← Q0
5: end for

6: magnitudeSquared ← Q2
1+Q2

2 −Q1 ∗Q2 ∗ coeff

6.3 High-end: smartphone
The high-end implementation uses the built-in microphone of a Samsung Galaxy
S8+, which runs on an octa-core Exynos 8895 CPU with a clock speed of 2.3 GHz.
The detection of ultrasonic signals is done in an analogous way for this imple-
mentation as for the mid-end approach. However, an application developed via
Android Studio in Java is used here, rather than a Python script. The measured
digital data from the microphone are read out in this application using the Au-
dioRecord API at a sampling rate of 44.1 kHz. For the chunk size, we opt to
take the minimum size supported by the device. Specifically for the Samsung
Galaxy S8+, the chunk size is 3528. For this implementation, the threshold for
the magnitude calculated with the Goertzel algorithm is set at 100’000.

When an ultrasound signal is detected, the International Mobile Equipment
Identity (IMEI) number, phone number and software version of the device are
automatically sent to a Cloud Firestore NoSQL database. The IMEI number,
which usually consists of 15 digits, is a unique identifier for each cell phone. Since
this number could, for example, be used to track a stolen device or to unlock a
device, it could, coupled with the information from the ultrasonic signal, pose
a serious privacy threat for the victim. In addition to sending personal data to
the database, the FOCUS application alerts the user of the malicious activity by
means of a notification, indicating the frequency at which ultrasound has been
detected.

7 Evaluation

In this section, we discuss the performance evaluation of FOCUS in terms of
detection distance and frequency sensitivity, based on our proof-of-concept im-
plementation described in Section 6.

7.1 Detection distance
First of all, the maximum distance at which a reliable detection is possible is
determined for the various detection methods. For this purpose, the transmit-
ter uses a sine wave of 17 kHz emitted by the built-in speakers of a MacBook
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Pro A1989 at different volume levels. These speakers are calibrated using the
Audio/Musical Instrument Digital Interface (MIDI) settings to operate at 44.1
kHz, in order to match the sampling rate of the mid-end and high-end detec-
tion methods and in order to consider the lowest quality transmitter capable of
generating UB signal. To generate the sine signals, the Szynalski7 Online Tone
Generator is used. For the mid-end and high-end FOCUS implementation, three
different positions relative to the speakers are verified: above the laptop, next to
the laptop, and in front of the laptop. Where the first position is more focused
on detecting commercial advertisement tracking, the last two positions are more
tailored to simulate a typical desk environment (e.g., for web tracking). For the
low-end implementation, however, only the position above the laptop is con-
sidered in the measurements. This is because the other positions do not give a
sufficiently reliable result, with in many cases even no detection possible. For
each position, three volume levels are considered based on the MacBook Pro’s
volume settings: maximum volume, half volume, and quarter volume. Measured
with the Decibel X app8 directly above the speakers, for a frequency of 17 kHz,
these levels correspond to 92 dB, 84 dB and 67 dB, respectively. For the high-end
approach, an additional fourth level is considered, corresponding to a setting of
1/16 volume and 57 dB. All measurements are performed in a 450 cm by 350
cm room with a normal level of background noise (e.g., people talking). Due to
the dimensions of the room, and because of their limited relevance, the exact
distance is not determined for distances greater than 200 cm and less than 1 cm.

Since the low-end detection mechanism operates in a different manner than
the mid-end and high-end mechanisms, different criteria are imposed to deter-
mine when reliable detection occurs. For the Arduino, we look at a status LED
that turned on for 100 ms with each detection. If this LED remains permanently
high, it can be concluded that the considered distance can be reliably detected.
For the Raspberry Pi and the smartphone we look at whether detection is pos-
sible for the considered distance three times in a row within the three iterations
of the Goertzel algorithm.

Table 1. Detectable distances with a 17 kHz signal

low-end mid-end high-end
Position (cm) Position (cm) Position (cm)

Volume level (dB) 1 2 3 1 2 3 1 2 3
95 40 >200 140 160 >200 >200 >200
84 30 160 25 90 >200 >200 >200
67 10 60 10 50 >200 >200 >200
57 >200 80 175

Table 1 shows the resulting distances for the different detection scenarios
for a frequency of 17 kHz. One can see that all of the FOCUS implementations
7 https:www.szynalski.comtone-generator
8 https://play.google.com/store/apps/details?

id=com.skypaw.decibel&hl=nl&gl=US
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are capable of detecting the 17 kHz signal under every circumstance. Moreover,
the high-end method can detect further than the mid-end approach and the
latter further than the low-end approach. In addition, it can be stated that for
position 1, further distances can be achieved than for positions 2 and 3. This
can be explained by the orientation of the laptop speakers.

7.2 Frequency sensitivity

To verify the frequency sensitivity of the different FOCUS implementations,
the different measurements are replicated with the same criteria at a frequency
of 20 kHz. In this way, we consider both the lowest and the highest frequency
of the UB, in order to allow for a reliable detection. The same volume levels are
considered for this experiment, but for 20 kHz this correspond to 84 dB, 72 dB,
63 dB and 45 dB, respectively.

Table 2. Detectable distances with a 20 kHz signal

low-end mid-end high-end
Position (cm) Position (cm) Position (cm)

Volume level (dB) 1 2 3 1 2 3 1 2 3
84 60 >200 50 130 >200 >200 >200
72 20 50 < 1 10 >200 >200 >200
63 < 1 20 < 1 < 1 >200 80 110
45 35 5 10

Table 2 shows the resulting distances for the different detection scenarios
for a frequency of 20 kHz. One can see that, again, all of the implementations
are capable of detecting the signal under every circumstance. In general, it can
be concluded that for a 20 kHz signal, lower detection distances can be realized
than for a 17 kHz sine wave. This is because the sensitivity of a typical consumer
microphone drops as the signal approaches 20 kHz. An exception to this observa-
tion is position 1 for the low-end detection method, where for the 20 kHz signal
a greater distance was established. Possibly this can be explained by deviations
in the signal caused by the acoustics, resulting in insufficient transitions being
detected to reach the lower threshold.

7.3 Real-world performance

To demonstrate the real-world implications of FOCUS, 30 international websites
were evaluated for ultrasonic beacons through FOCUS. Each of these websites
was visited, using a VPN, from India and the USA. For each website, the scenario
of an everyday user was assumed (e.g., adding an item to the shopping basket)
and, where possible, a number of videos on the site were also evaluated. In
this process, in one video 9, ultrasound was detected by both the smartphone
9 https://www.instructure.com/en-au/canvas/resources/higher-education/canvas-

learning-management-platform-across-globe-higher-education-students-leaders
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and the Raspberry Pi implementation of FOCUS. However, due to the lack of
data, it cannot be stated with certainty whether this is effectively a beacon.
Moreover, as previously mentioned by [2], who monitored the audio output of
the top 500 Alexa websites, finding beacons is a time-consuming process that
can be compared to looking for a needle in a haystack. All this suggests that
larger-scale research is needed.

8 Security Analysis

Our main goal is to detect ultrasonic sound in the victim’s vicinity and inform
the victim about the ultrasound detection. Although we can not prevent the
ultrasonic invasion yet, detecting the signal and notifying the user will still help
to raise awareness in order to take precautions.

For the three attack scenarios from the adversarial model, as described in
section 5, it is known that commercial advertisement tracking is already actively
employed by commercial companies (e.g., Shopkick, Lisnr, Signal360). Also, pre-
vious research has already shown that web tracking is possible by de-anonymizing
a session in the Tor browser [14]. By intercepting the ultrasound signals between
the attacker and the victim, FOCUS is able to detect both attack scenarios.
In addition, FOCUS also demonstrates the danger of a data-theft scenario. In
the high-end detection method, personal information is sent to a database upon
detection. By implementing this approach across different apps with different
privileges on different devices, it is possible to establish an aggregated profile
of the victim. For this scenario as well, by intercepting the ultrasonic signals,
FOCUS can demonstrate that a malicious activity is happening.

9 Discussion

In this article, our main objective is to detect UB signals and to alert the user
of this clandestine practice. Particularly, we verify different possible detection
methods against different positions and sound levels. Nevertheless, in addition
to the advantages, each mechanism has specific disadvantages.

For the Arduino approach, it is not possible to determine at which exact
frequency the detected sound was located, only whether ultrasound was present
or not. Although the software high-frequency detector employed should theoret-
ically be able to determine the frequency, it yields inconsistent results during
measurements. In addition, for this approach, reliable detection is only possible
in the extension of the speakers and the maximum detection distance is small
compared to the other FOCUS implementations. However, since this implemen-
tation would be mounted directly against the speaker being monitored, this does
not pose a threat to the effectiveness of this solution.

Another disadvantage of the low-end approach is the fact that detection is
not possible under the presence of strong noise at lower audible frequencies.
The main reason for this lies in the fact that the microphone used (as well as
most consumer microphones) has a higher sensitivity for signals with a frequency
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Fig. 3. Transition between high and low states of microphone volume sensor

lower than 17 kHz than for ultrasonic signals. As a result, the superposition of the
audible signals and the ultrasonic signals does not produce sufficient transitions
to reach the threshold of the digital counter. This is also shown in Figure 3,
where only the signal with the lower frequency is able to cause transitions.

One solution, which was also verified in Simulation Program with Integrated
Circuit Emphasis (SPICE), would be to use the analog output instead of the dig-
ital output of the microphone. This output can then be filtered using a high-pass
filter (e.g., a second-order Butterworth high-pass filter) so that only the ultra-
sonic signals are passed through. By subsequently comparing the resulting signal
to an adjustable reference voltage via an operational amplifier comparator, it is
possible to detect whether ultrasonic beacons are present in the measured signal.
To make this method less sensitive to high-frequency noise, the comparator can
be a Schmitt trigger that provides hysteresis.

The smartphone FOCUS implementation on the other hand has the advan-
tage that it can achieve the most accurate detection of the three approaches.
However, this approach carries the disadvantage of high battery consumption
on the detecting device, due to constant resource consumption of the Goertzel
algorithm. For practical applications, it is therefore unlikely that it will be used
for long periods of time. However, if it is known in advance which frequencies
are being exploited by the attacker, the Goertzel algorithm can only be executed
on these frequencies and low-power detection is possible.

As for the FOCUS smartphone application, we are aware that the Android
Operating System requires permission to access the microphone and the phone,
the former to detect the ultrasound and the latter to access the IMEI number
and the phone number, which are sent to the Cloud Firestore Database upon
detection. This paper assumes that the malicious app components are embedded
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in an app for which the user would unsuspectingly accept these permissions (e.g.,
apps that enable phone calls).

Since FOCUS focusses on the presence or absence of a sine wave, it is capa-
ble of detecting both FSK and OOK modulation schemes. These are the only
schemes used in practice, because PSK causes phase discontinuities resulting in
audible clicks. In addition, as the Arduino implementation of FOCUS relies on
the zero crossing rate, it could theoretically be generalized to detect DolphinAt-
tack as well when paired with an ultrasonic microphone. Indeed, DolphinAttack
is based on double-sideband transmitted-carrier amplitude modulation (AM-
DSB-TC). By using the zero crossing rate, it should be possible to detect the
carrier and therefore the presence of the attack signal.

10 Conclusion and Future Work

This paper presents FOCUS, an environment for the detection of ultrasonic in-
vasion. We develop three different approaches for ultrasound detection: low-end,
mid-end and high-end. The low-end approach employs a novel low-cost software
high-frequency detector that utilizes a digital counter. While in the measure-
ments, the high-end method serves as a reference, the mid-end and low-end
approaches are compared in terms of detection distance and frequency sensitiv-
ity. We demonstrate the performance of FOCUS through two proof-of-concept
implementations based on a Raspberry-Pi and an Arduino, respectively. The
results confirm both the practicality and efficiency of FOCUS.

In future work we will, in addition to the detection, develop a means of
preventing the attacks. Further, we will explore the practical applications of
ultrasonic invasion (e.g., the exploitation of electronic voting machines).
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