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Abstract 29 

1. Pelagic zones are characterised by consistent large-scale patterns of circulation on 30 

local and global scales. Lake Tanganyika, as an enclosed ecosystem provides a 31 

playing field to study evolutionary and ecological processes applicable to open water 32 

areas worldwide. Despite their important role in the ecosystem, large scale patterns 33 

of the distribution of parasites remain poorly understood. Monogenean parasites 34 

have been proposed as tags for ecosystem dynamics because of their direct life 35 

cycle and often high host specificity. We combined data on spatiotemporal dynamics 36 

of parasites (Kapentagyrus, Monogenea) with morphological variation of clupeid 37 

hosts to investigate general patterns of host-parasite interactions in the pelagic zone 38 

of this ancient lake.  39 

2. Two dominant species of clupeid fishes in the pelagic zone of Lake Tanganyika are 40 

parasitised by two monogenean species of Kapentagyrus with different levels of host 41 

specificity. The host fishes are believed to perform lake-wide migrations driven by 42 

seasonal upwellings. To model spatiotemporal dynamics of host-parasite interaction, 43 

we used temporal data on monogenean infection along the North-South axis of Lake 44 

Tanganyika based on 1730 screened fishes and 3710 parasites together with 45 

phenotypic characterisation of the clupeid hosts.  46 

3. Infection levels are dependent on host body size with contrasting trends in the two 47 

parasite species. We reveal temporal stability of infection with spatial distribution 48 

restricted by host life strategies. Spatial differences between the parasite species 49 

most likely reflect differences in migration between the host species; these are also 50 

reflected by morphological differences between some clupeid populations. Our 51 

results also suggest mutual facilitation of infection.  52 

4. In conclusion, parasite infection is geographically restricted by host life strategies 53 

even in this ecosystem lacking physical barriers. Intensity of infection seems to be 54 

mainly driven by host size, with so far rarely reported mutual facilitation of co-55 

infection. Temporal stability of infection in the pelagic zone contrasts with seasonal 56 
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changes in abundance of clupeid hosts. Overall, our results suggest that parasite 57 

infection dynamics in the open water areas are dependent on life style and not host 58 

density. 59 

 60 
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Introduction 64 

 65 

Trophic and host-parasite interactions in pelagic systems 66 

The pelagic zone, also known as the open water area, represents 99% of the volume of the 67 

biosphere. Pelagic zones are characterised by large-scale patterns of circulation and 68 

upwelling processes (Corman et al., 2010) that support the majority of the biomass targeted 69 

by fisheries (Pauly et al., 2002). Species aggregation is common at all trophic levels and is 70 

driven by the patchiness of primary production (Legendre & Le Fèvre, 1991; Ritz et al., 71 

2011). Migration is a common strategy of pelagic species to cope with seasonal variation of 72 

resources at both small and large geographic scales (Angel, 1993). Small pelagic fishes 73 

(clupeids, mackerels) are known for their schooling behaviour and large distribution ranges 74 

often linked to their long-distance migrations (Teske et al., 2021). Therefore, small pelagic 75 

fishes have been proposed as indicator taxa for ecosystem changes related to e.g., climate 76 

change and overfishing. However, long-distance migration and population dynamics of small 77 

pelagic fish species are challenging to study, due to their high mobility and fragility that 78 

restrict traditional tracking methods. 79 

Metazoan parasites encompass a high proportion of global species diversity (Poulin, 2014; 80 

Windsor, 1998). Despite a largely negative perception, parasites have been recognised as 81 

ecosystem engineers that form substantial biomass in aquatic ecosystems (Kuris et al., 82 

2008) and alter food web topography, including competition and predation, through their 83 

indirect effect on host abundance (Hatcher et al., 2012). They contribute to ecosystem 84 
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energy transfer between trophic levels (Lafferty et al., 2006), e.g. parasites may induce 85 

changes in host behaviour that influence predation (Lefèvre et al., 2009), or act as mediators 86 

in biological invasions (Blackburn et al., 2011). However, the predictability of parasite 87 

communities at ecological timescales is often questioned as there is a lack of common 88 

patterns found in open water areas and in host species with large distribution ranges (Timi & 89 

Poulin, 2003).  90 

Pelagic fish hosts are often considered as parasite species-poor compared to littoral host 91 

communities (Marcogliese, 2002). Although the community structures of parasites have 92 

been assessed in the context of biological tags of their hosts, including in pelagic marine 93 

areas (reviewed in MacKenzie & Abaunza, (2014)), determinants structuring population-level 94 

infection dynamics in pelagic environments are scarce.  95 

 96 

Lake Tanganyika and its pelagic zone 97 

Lake Tanganyika (LT) has been proposed as a natural study system for general principles of 98 

evolution due to its high species diversity and endemicity of various taxa (Coulter, 1991a; 99 

Cristescu et al., 2010). While Lake Tanganyika has all typical characteristics of a pelagic 100 

environment (vertical stratification, seasonal upwellings, simple trophic structure), it also has 101 

clear geographical boundaries and a species-poor pelagic community compared to marine 102 

environments, offering simplified conditions to study pelagic ecosystem dynamics (Paugy & 103 

Lévêque, 2017). It is dominated by two species of clupeid fishes which make up the majority 104 

of fish biomass and are the main source of fisheries production in the four riparian countries 105 

of the lake (Mannini et al., 1996). Despite the difficulty of tagging and effectively tracking 106 

fragile small pelagic species, lake-scale latitudinal migrations of the endemic Tanganyika 107 

clupeids, Limnothrissa miodon (Boulenger, 1906) and Stolothrissa tanganicae Regan, 1917 108 

have been monitored through indirect methods, such as determining the difference in size 109 

and abundance in relation to the season and geographic origin along the lake (Mulimbwa 110 

N’Sibula et al., 2022; Plisnier et al., 2009). Fisheries production across landing sites varies 111 

substantially, indicating seasonal migrations of the Tanganyika clupeids. These patterns 112 
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have been linked to predator avoidance and food-seeking behaviour (Plisnier et al., 2009). 113 

Recent genomic studies of the Tanganyika clupeids find only a weak signal of isolation by 114 

distance and no clear stock structure along the North-South axis of the lake (De Keyzer et 115 

al., 2019; Junker et al., 2020).  116 

Clupeid fishes in Lake Tanganyika are parasitised by two gill-infecting species of 117 

Kapentagyrus Kmentová, Vanhove & Gelnar, 2018 (Kmentová et al., 2018). Kapentagyrus is 118 

a lineage of monogenean flatworms (Monogenea, Dactylogyridae) that has so far only been 119 

reported from African freshwater clupeid hosts (Vanhove et al., 2021). Monogenean 120 

flatworms are obligate parasites of mainly fishes, some of which include pelagic hosts 121 

(Kmentová et al., 2018; Plaksina et al., 2021; Van Der Lingen et al., 2015). Given their short 122 

generation time, high substitution rate and host dependency, obligate parasites can serve as 123 

a magnifying glass of host population dynamics (Catalano et al., 2014; Geraerts et al., 124 

2022). The patterns driving the spatiotemporal distribution of directly transmitted parasites 125 

such as monogenean flatworms may be informative for pelagic ecosystem dynamics as 126 

mediators between the external environment and the hosts. Due to their single-host life cycle 127 

and specificity for pelagic hosts, species of Kapentagyrus in Lake Tanganyika are proposed 128 

as tags for host distribution in the pelagic zone and the dynamics of pelagic ecosystems 129 

(Kmentová et al., 2019; Schoeman et al., 2022). 130 

 131 

Spatiotemporal dynamics in the pelagic zone - a holistic approach 132 

Spatiotemporal dynamics of parasites have been studied mainly in the context of host-driven 133 

determinants of their community composition (reviewed in Lester & MacKenzie, (2009)). 134 

Large-scale population dynamics of parasites infecting pelagic organisms are hardly ever 135 

studied due to the considerable effort required to sample fish hosts along their long-distance 136 

migrations. To date, determinants of population connectivity of parasitic flatworms over large 137 

geographic distances remains to be elucidated (Poulin, 2007). The population structure of 138 

our study species, K. limnotrissae (infecting L. miodon) and K. tanganicanus (infecting both 139 

clupeid species), has previously been analysed over the entire geographic range of the lake, 140 
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including temporal and seasonal sampling. Following the pattern of their clupeid hosts, no 141 

clear differentiation across the North-South axis of LT was found (Kmentová et al., 2020). To 142 

study the ecosystem dynamics in the pelagic zone, surveys of pelagic fishes have been 143 

combined with analyses of their morphological variation (Muniz et al., 2020; Valentin et al., 144 

2014), otolith composition (Javor et al., 2011) and, more recently, population genomics 145 

(Baltazar-Soares et al., 2018; De Keyzer et al., 2019; Junker et al., 2020). This holistic 146 

approach has been proposed not only to study spatiotemporal dynamics in the pelagic zone 147 

(Abaunza et al., 2008; Kerr et al., 2017), but also other aquatic ecosystems such as large 148 

rivers (Lavoué et al., 2008).  149 

 150 

In this study, we investigate the spatiotemporal dynamics of parasites alongside the 151 

morphology of their clupeid hosts as a flag taxon for the pelagic zone worldwide. We 152 

combine geographical and seasonal results on parasite infection, and morphology of the 153 

targeted fish hosts with previously published knowledge on the biology and genetic 154 

population structure of monogenean parasites infecting clupeids, fishery statistics, seasonal 155 

and annual cycles in primary productivity and upwelling (schematic representation of study 156 

design presented in Fig. 1). 157 

 158 
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 159 
Fig. 1: Schematic visualisation of the study system of monogenean parasites infecting 160 

clupeid fishes in Lake Tanganyika. 161 

 162 

We hypothesise that 1) given the suggested high level of North-South mobility of clupeid 163 

fishes in Lake Tanganyika (Plisnier et al., 2009; De Keyzer et al., 2019; Junker et al., 2020), 164 

the population infection dynamics of Kapentagyrus spp. are not related to the spatiotemporal 165 

origins, 2) given the contrasting host range between the two species of Kapentagyrus and 166 

the differences in lifestyle between the host species, spatial differences in infection will be 167 

more pronounced in K. limnotrissae, and 3) following previously published results on 168 

contrasting introduction success in different host life stages (Kmentová et al., 2019), we 169 

expect host size-driven differential occurrence of Kapentagyrus spp. on L. miodon. 170 

 171 

Methodology 172 

 173 

Kapentagyrus 

limnotrissae

Kapentagyrus 

tanganicanus

Limnothrissa miodon

Stolothrissa tanganicae
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Sample collection and species identification 174 

In total, 1730 specimens of two endemic pelagic clupeid species, L. miodon (733) and S. 175 

tanganicae (997), were collected along the North-South axis of Lake Tanganyika, including 176 

all three subbasins (North, Central, and South) in two different seasons (rainy season from 177 

October to April and dry season from May to September) within a four-year period (Fig. 2, 178 

Table S1). Freshly caught fish specimens were either obtained in collaboration with the 179 

experimental fishing unit of the Centre de Recherche en Hydrobiologie - Uvira (CRH) (Uvira, 180 

Democratic Republic of the Congo) or purchased from local fishermen. We combine newly 181 

obtained data on monogenean infection of clupeids in LT with those published in previous 182 

studies (Kmentová et al., 2020, 2018). Host specimens were collected within a period of 2 183 

weeks (August 2016, April 2018, and October 2019) to avoid sampling the same population 184 

twice, because both clupeid species are highly mobile (De Keyzer et al., 2019; Mulimbwa 185 

N’Sibula & Mannini, 1993). Whole fish and/or gills were preserved in absolute ethanol. Host 186 

specimens were examined for the presence of monogenean parasites according to the 187 

procedure described in Kmentová et al. (2018). Species level identification of Kapentagyrus 188 

spp. was based on distinctive characters of the hard parts of the attachment organ in the 189 

posterior part of their bodies (for more details see Kmentová et al., (2018)). In the case of L. 190 

miodon, the only species of the two clupeids that hosts two monogenean species, 191 

monogenean individuals that could not be identified at the species level were only included 192 

in the counts of total infection intensities. 193 
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 10 

Fig. 2: Overview of screened fish hosts and incidence of infection of collected parasite 

populations. Season and year of origin (x-axis) and standard length of the fish host (y-axis, 

SL in cm) of a) Kapentagyrus limnotrissae ex Limnothrissa miodon, b) Kapentagyrus 

tanganicanus ex Limnothrissa miodon, c) Kapentagyrus tanganicanus ex Stolothrissa 

tanganicae. Infected fishes are depicted in blue, non-infected in red. The total number of fish 

screened at a certain time point is mentioned above each of the boxplots. Subbasin division 

is visible by different shapes used for sampling localities with diamonds representing 

northern subbasin, a circle representing central subbasin and squares representing southern 

subbasin. The purple colour indicates the sampling localities of fish specimens used in the 

geomorphometric analyses. 

 

Parasite population dynamics 

To investigate the host parameters that might influence infection levels, the dataset was 

divided into three host-parasite combinations according to host species (i: K. limnotrissae ex 

L. miodon, ii: K. tanganicanus ex L. miodon, iii: K. tangicanus ex S. tanganicae). We 

modelled the infection intensity per host specimen against a range of other parameters, 

including sampling location (as subbasin - North, Central, South), season (dry period from 

May to September, rainy period from October to April), and host size (standard length) as 

explanatory variables (Table 1) as well as infection levels of the respective other parasite 

species if applicable, i.e. K. tanganicanus in (i) and K. limnotrissae in (ii). Because of 

seasonal migration and previous records on spatiotemporal variation in body size (Plisnier et 

al., 2009), we expect an interaction of host size with locality and season, respectively. 

Several studies also suggested that infection levels of monogeneans are related to fish size 

(Akoll et al., 2012; Šimková et al., 2004). Therefore, we included interaction effects between 

host size and the remaining parameters in the initial models. 

Infection parameters of parasites often present a substantial amount of zero counts (Lester, 

2012; Tinsley et al., 2020). Therefore, we fitted infection levels using zero-inflated models 

(ZIMs) with a Poisson probability distribution that assume that the excess of zero counts is 
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produced by a separate process. In the present case, we hypothesised that the excess of 

zero counts result from a lack of contact with parasites in some specimens, while true zeros 

arise from host resistance (Wang, et al., 2017; Zuur et al., 2009). We fitted generalised linear 

models without zero-inflation to test whether these assumptions are true. The present 

datasets are overdispersed (residual deviance/residual degrees-of-freedom > 1.5 for a 

Poisson distribution). To address this overdispersion, we used a negative binomial 

probability distribution. Finally, host specimens most likely represent non-independent 

samples, as fishes belonging to the same schools may have experienced more similar 

parasite exposure scenarios. Therefore, we also tested whether including the sampling day 

and locality as random effects in a mixed model further improved the model fit. To avoid 

overfitting, we simplified models through a backwards elimination procedure using the 

function drop1 including a χ² test. All effects that failed to significantly improve model fit were 

removed, starting from the interaction effects.  

All model-based analyses were carried out in R v4.1.2 (R Core Team, 2022). Models were 

fitted using the package glmmTMB v1.1.2.3 (Brooks et al., 2017). The package glmmTMB 

offers models with two options for negative binomial distributions (options nbinom1 and 

nbinom2) that implement linear and quadratic parameterisation, respectively (see Hardin & 

Hilbe, (2007)). Both options were tested here. We compared model fits using the Akaike 

information criterion (AIC) through the function AICtab in the package bbmle v1.0.24 (Bolker, 

2017). We also checked model fits through quantile-quantile plots and residual vs. fitted 

plots as provided by the package DHARMa v0.4.5 (Hartig, 2017). 

Based on the best-fitting model, we predicted infection levels for all three host-parasite 

combinations as a function of the subbasin and season, as well as the continuous variables 

the hosts’ standard length and the level of co-infections through the package emmeans 

(Lenth, 2022). The resulting figures were plotted through the packages emmeans and 

ggplot2 (Wickham, 2016). 

 

Geomorphometrics of clupeid hosts 
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We expect host phenotype to be potentially linked to different environmental conditions in 

the subbasins. Therefore, the two host species were examined to investigate the potential 

link between the morphological variation and geographic origin of host specimens. In 

addition to classical morphological assessment, the evaluation of body shape variation can 

be quantified via geomorphometrics (Elewa, 2004). Specimens collected from six different 

localities along the lake shoreline within two weeks in October 2019 were selected (Fig. 2 

and Table S1). Photographs were taken using Canon 4000D reflex camera equipped with an 

EF-S 18-55 mm III-lens, set on 55 mm for a total of 224 specimens of S. tanganicae and 195 

specimens of L. miodon. The body shape of each specimen was captured by a set of 20 

fixed landmarks. Landmarks are reference points of coordinates in 2D or 3D (2D for this 

study), and contain essential information on size, shape and scale (Elewa, 2004; Savriama, 

2018). They were set using the tpsDig2 software v2.31 (Rohlf, 2018) using a tps file created 

with the tpsUtil software v1.78 (Rohlf, 2018). The landmarks were defined based on previous 

studies conducted with other species of clupeids (De La Cruz Agüero & Rodríguez, 2004; 

Mounir, Ewague, Znari, & Elmghazli, 2019; Silva, 2003), see Fig. 3.  

 

Fig. 3: Position of landmarks recovered for 2D digitisation of specimen of a) Limnothrissa 

miodon and b) Stolothrissa tanganicae. 

(a)

(b)
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Morphological variation within the two clupeid species was analysed with MorphoJ v2 

(Klingenberg, 2011). We made a distinction between analyses based on whole-body 

landmarks vs. head-only landmarks. For the analyses of the whole body, we used all 

obtained landmarks, for the head-only analyses, landmarks 1, 2 and 11-20 were included. 

To extract the shape information, full Procrustes fits of landmark data were performed and 

aligned by longitudinal axes of the specimens. Three classifiers (species, locality of origin, 

and subbasin) were imported for further analyses. Principal Component Analysis (PCA) was 

performed on the covariance matrix to visualise the shape variation. Highly deviating 

specimens, identified by the PCA plot, were excluded from the analysis. Regressions against 

the standard length (measured separately from each specimen) of each specimen followed 

by a 10,000 replicate permutation test were performed on the first three individual PC axes. 

Due to the significant correlation between the standard length and PCA loadings/Procrustes 

distances (see Figs. S1 & S2), the final PCAs were performed on residuals which resulted 

from the regression analyses of Procrustes distances and standard length. Canonical 

Variate Analyses (CVA) on the residuals (see above) and permutation tests of 10,000 

replicates, were performed to test for differences in morphology between specimens from 

different sites of origin or subbasins. The resulting figures were plotted through the R 

packages ggplot2 (Wickham, 2016), RColorBrewer (Neuwirt, 2022), ggtext (Wilke, 2020) and 

tidyverse (Wickham et al., 2019).  

 

Results 

 

Parasite population dynamics 

For all three datasets (i–iii), a zero-inflated negative binomial mixed model resulted in the 

best fit (Table 1). In any case, seasonality failed to significantly improve model fit. Therefore, 

both the parameter and its interaction with the standard length were removed from all 

models. 
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For K. tanganicanus (i and iii), a monogenean infecting both species of clupeids, the models 

with a quadratic parameterisation (nbinom2) outperformed the models with a linear 

parameterisation. Kapentagyrus limnotrissae infecting L. miodon (ii), only improved the 

model fit marginally (ΔAIC = 2; χ2 (1, 2) = 2310, p = 0.038). In the post-hoc analysis, we 

found only minor differences between infection levels of K. tanganicanus (Figs. 4&5), yet 

subbasin identity contributed significantly to the overall model fit (Table 1). Infection 

intensities of K. tanganicanus increased with host size (Figs. 4&5) and with co-infection 

numbers of K. limnotrissae (Fig. 6). For L. miodon, this increase was generally weaker in the 

southern subbasin and particularly strong in the North. The host standard length had a 

significant interaction with the subbasin. For S. tanganicae, only the standard lengths of the 

hosts were a determinant of infection intensity. For K. limnotrissae (ii), the models with a 

linear parameterisation (nbinom1) outperformed those with a quadratic parameterisation. 

The interaction effect of subbasin with the standard length did not improve model fit and 

was, therefore, removed. The three minimal adequate models can be found in Table 1. 

Infection levels in the South of Lake Tanganyika were significantly lower than in other 

subbasins (Fig. 6). Infections significantly decreased with host standard length and 

increased with co-infection numbers of K. tanganicanus (Fig. 6). 
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Table 1: Stepwise backwards selection of effects (step 1 and 2) in generalised linear (mixed) models for each and host-parasite combination. 1 

Models with the lowest values of the AIC (minimal adequate models) are highlighted in bold.  2 

  
K. tanganicanus ex L. miodon (i) K. limnotrissae ex L. miodon (ii) K. tanganicanus ex S. tanganicae (iii) 

  
full model step 1 step 2 full model step 1 step2 full model step 1 step2 

Zeroinfl Mixed 
effects 

 
-ii:SL-
Season:SL 

-Season 
 

-Subbasin:SL-
Season:SL 

-Season 
 

-Season:SL-
Subbasin:SL 

-Subbasin-
Season 

Poisson 
 

3714 3770 3899 1999 2011 2012 2368 2367 2366 

NBinom1 
 

2585 2582 2610 1579 1615 1646 2053 2048 2067 

NBinom2 
 

2506 2504 2525 1638 1677 1693 2096 2094 2098 

Poisson locality, 
date 3078 NA 2970 1856 NA NA 2101 2113 2107 

NBinom1 locality, 
date 2487 2484 2484 1564 1560 1560 1990 1986 1981 

NBinom2 locality, 
date 2429 2427 2425 1591 1591 1589 1981 1981 1975 

Abbreviations: standard length (SL), zero inflated model (Zeroinfl), negative binomial distribution (NBinom1,2), Poisson distribution (Poisson). 3 

 4 
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5 

Fig. 4: Predictions for infection intensity of Kapentagyrus tanganicanus ex Limnothrissa 6 

miodon with 95% confidence intervals under the minimal adequate model (Table 1). a) 7 

Infection intensity in different subbasins showed no significant differences (CIs in blue, 8 

direction of overlap in red) with estimated marginal means on the x-axis, b) Infection intensity 9 

increased with standard length (SL) of the host, c) Infection intensity increased with higher 10 

infection intensities of Kapentagyrus limnotrissae. 11 

 12 

 13 
Fig. 5: Prediction of infection intensity of Kapentagyrus tanganicanus ex Stolothrissa 14 

tanganicae. The infection intensity increased with the standard length (SL) of the host. 15 
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 16 
Fig. 6: Predictions for infection intensity of Kapentagyrus limnotrissae ex Limnothrissa 17 

miodon. a) Infection intensity related to subbasin origin with the confidence interval (in blue) 18 

and direction of overlap (in red) with estimated marginal means on the x-axis, b) Infection 19 

intensity as a function of the standard length (SL) of the host, c) Infection intensity as 20 

function of co-infection by Kapentagyrus tanganicanus. 21 

 22 

Geomorphometrics of clupeid hosts 23 

Geomorphometric analyses revealed strong similarity of head morphology between 24 

specimens from different localities and subbasins of the lake in both clupeid species. In the 25 

case of L. miodon, the first three PC axes explained 22.1%, 17.1% and 12.3% of the 26 

variation, respectively (see Fig. 7A&B), with visible North-South gradient mainly along the 27 

PC2. In case of S. tanganicae, the first three PC axes explained 24.2%, 18.1% and 11.8% of 28 

the variation, respectively (see Fig. 7C&D), with no visible structuring according to locality of 29 

origin. As wireframes displayed variation in the positioning of the full body, most likely related 30 

to the preservation of specimens, results based on the whole-body shape are presented in 31 
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the supplementary information only and should be interpreted with caution (Figs. S1&2). 32 

Based on the wireframes of the head shape (Fig. 8), differences in the relative position of the 33 

snout, eye and operculum are visible along the displayed PC axes. 34 

 35 

The results of our CVAs confirmed the trend visible mainly along the second PC axis with 36 

significant differences in the shape of the whole body and head related to the geographic 37 

origin of L. miodon (Tables 2 and S1). Specifically, head shape differences increased with 38 

geographic distance in L. miodon. Although the CVAs indicated significant shape differences 39 

between some of the localities in both the full body and head datasets of S. tanganicae (see 40 

Tables 2 and S1), no consistent geographical pattern was detected in the PCAs. In both 41 

species, differences in the head shape were more pronounced in relation to geographic 42 

origin compared to the full body. 43 

 44 

 45 
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Fig. 7: Biplots of Principal Component Analyses (PCA) showing the shape variation in the 46 

head across the sampled localities of a) Limnothrissa miodon, first two PCs displayed, b) 47 

Limnothrissa miodon, first and third PCs displayed, c) Stolothrissa tanganicae, first two PCs 48 

displayed, d) Stolothrissa tanganicae, first and third PCs displayed.  49 

 50 
Fig. 8: Wireframes showing the shape variation in the head based on the coordinates of 51 

Principal Component Analyses of a) Limnothrissa miodon, PC1, b) Limnothrissa miodon, 52 

PC2, c) Limnothrissa miodon, PC3, d) Stolothrissa tanganicae, PC1, e) Stolothrissa 53 

tanganicae, PC2, f) Stolothrissa tanganicae, PC3. The target shape is presented in blue, the 54 

starting shape in pink.  55 

 56 

 57 

 58 

 59 

 60 
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Table 2: Results of Canonical Variate Analyses of head shape variation for a) Limnothrissa 61 

miodon b) Stolothrissa tanganicae. Values of Procrustes distances are displayed below the 62 

diagonal, P-values are shown above the diagonal. Significant P-values (<0.05) are indicated 63 

in bold. Number of samples are indicated between brackets behind the locality names with 64 

designation of the subbasin, N – North, C – Central, S – South). 65 

 66 

Discussion 67 

Temporal stability and spatial differences of infection 68 

Previous studies indicate that the distribution of aquatic parasites is determined by 69 

environmental factors (Timi & Poulin, 2003). Also, many parasites are vulnerable to 70 

extinction, as a decline in population size of the host can negatively affect the often-71 

overdispersed distribution of parasite populations (Lester, 2012). In Lake Tanganyika, 72 

annual differences in fisheries production are believed to be caused by natural cycles of 73 

clupeid species. This is visible in density changes of fish populations over a spatiotemporal 74 

gradient (Mölsä et al., 1999; Plisnier et al., 2009). Additionally, seasonal fluctuations in 75 

clupeid catches in Lake Tanganyika are driven by external factors related to the 76 

hydrodynamics and the weather. Despite the reported North-South clupeid migrations 77 

resulting in seasonal fluctuations of host population densities and mean size distribution of 78 

(a) Mulongwe (28) Kalundu (34) Kalemie (20) Mpulungu (27) Nsumbu (58) Kalambo (23) 

Mulongwe (N) x 0.3842 0.0207 0.0002 0.0466 0.0001 

Kalundu (N) 0.0252 x 0.0029 0.0002 0.0376 0.0001 

Kalemie (C) 0.0447 0.0423 x <.0001 0.0355 0.0005 

Mpulungu (S) 0.0519 0.0472 0.0550 x 0.0027 0.2593 

Nsumbu (S) 0.0298 0.0263 0.0308 0.0340 x 0.0008 

Kalambo (S) 0.0603 0.0536 0.0489 0.0264 0.0379 x 

(b) Mulongwe (30) Kalundu (38) Kalemie (21) Mpulungu (64) Nsumbu (40) Kalambo (30) 

Mulongwe (N) x 0.0060 0.0570 0.0029 <.0001 0.0014 

Kalundu (N) 0.0479 x 0.0651 0.5339 0.0321 0.1954 

Kalemie (C) 0.0387 0.0401 x 0.0191 0.0116 0.0336 

Mpulungu (S) 0.0382 0.0188 0.0336 x 0.0196 0.3979 

Nsumbu (S) 0.0584 0.0339 0.0368 0.0270 x 0.0785 

Kalambo (S) 0.0467 0.0301 0.0353 0.0189 0.0274 x 
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the hosts (Kimirei & Mgaya, 2007; Mulimbwa N’Sibula et al., 2022), in line with our 79 

hypothesis we found the spatiotemporal dynamics of Kapentagyrus spp. in the pelagic zone 80 

to be seasonally independent. This result confirms previously suggested independence on 81 

seasonal host population cycles of rather short-lived parasites (Lester & MacKenzie, 2009) 82 

of which monogeneans in the tropical areas with an estimated generation time of days up to 83 

a few weeks might be considered (Tomnatik, 1990). Alternatively, host fluctuations could 84 

appear over longer cycles that were not covered by the sampling design of our study. While 85 

we could not disentangle the effects of host size and geographic origin for K. tanganicanus, 86 

K. limnotrissae exhibited a slight spatial differentiation along the North-South axis. We 87 

suggest that this pattern is driven by temporal residency and patchy distribution of L. miodon 88 

in the littoral habitat before reaching a certain size and becoming pelagic. In general, the 89 

geographic distribution of parasites infecting pelagic fish hosts is linked to life cycle 90 

complexity (number of host species with different distribution ranges) with limited spatial 91 

distribution of monogeneans only to certain areas, as in the case of Sprattus sprattus L. 92 

(Kleinertz et al., 2012) and Clupea harengus L. (Actinopterygii, Clupeidae) (Rahimian et al., 93 

1999) in the North Sea. In comparison to monogeneans infecting clupeid fishes in Lake 94 

Tanganyika, no host size related infection intensity was observed in the case of Mazocraes 95 

alosae Hermann, 1782 on two species of Alosa Linck, 1790 (Actinopterygii, Clupeidae) from 96 

North-Atlantic coastal waters (Gérard et al., 2017). Host behaviour and season were shown 97 

to drive temporal differences in infection levels of M. alosae on Alosa immaculata Bennett, 98 

1835 in the northern Black and Azov Seas (Plaksina et al., 2021).  99 

A holistic approach for stock identification has been highlighted before (Begg and Waldman, 100 

1999). The combination of parasite community data and host morphometric data aided in the 101 

discovery of multiple stocks of horse mackerel (Trachurus trachurus L.) in the North Atlantic 102 

(Abaunza et al., 2008) and in the stock identification of Australian sardines (Sardinops sagax 103 

(Jenyns, 1842)) along the East African coast (Van Der Lingen et al., 2015). Unlike parasites 104 

with complex life cycles, directly transmitted parasites have the advantage that distribution is 105 
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limited to the target host enabling elucidation of large-scale and long-term population 106 

dynamics of certain host-parasite interaction (Catalano et al., 2014). Using a 107 

geomorphometric approach, we found intraspecific morphological differences in the LT 108 

clupeid species linked to the geographic origin of the specimens especially in L. miodon. 109 

Morphological variation can be driven by various environmental factors (Mounir et al., 2019; 110 

Sultan & Stearns, 2005). In our study, the level of geographically determined morphological 111 

variation differed between the studied fish species. The shape differences in the relative 112 

position of snout and eyes may be related to the geographical distance and more concretely 113 

subbasin origin of L. miodon. The environment in the middle part of the lake could serve as a 114 

transit site between the northern and southern parts. Moreover, compared to other areas, 115 

the northern peak can be seen as the most affected by anthropogenic pressures (Cohen et 116 

al., 2005). Morphological variation of the head was also visible in S. tanganicae, but without 117 

a clear geographical pattern. These results indicate a more profound shape differentiation in 118 

L. miodon compared to S. tanganicae, despite originating from the same localities. The 119 

absence of clearly geographically determined morphological differences in S. tanganicae 120 

can be explained by the lack of residential behaviour. Although the results indicate that the 121 

population of L. miodon is more structured compared to S. tanganicae, the lack of a clear 122 

geographic cline supports the high level of population connectivity of this species across the 123 

lake (Junker et al., 2020). As hypothetised, given the host life-stage dependency of K. 124 

limnotrissae, contrasting infection levels related to geographic origin suggest that the spatial 125 

distribution of the parasites and the morphological response of the clupeid hosts follow 126 

similar geographic patterns. Overall, our results on lake-wide parasite occurrence and 127 

seasonal dynamics combined with characterisation of clupeid hosts support the hypothesis 128 

of largely unrestricted migration in S. tanganicae and the lack of barriers in the pelagic zone 129 

of the lake (De Keyzer et al., 2019; Junker et al., 2020; Mulimbwa N’Sibula et al., 2022). 130 

Habitat differences between the clupeid hosts over their lifespan most likely drive contrasting 131 

spatial patterns of infection between closely related parasite species. This result further 132 

supports the importance of host species with the highest dispersal capacity on the spatial 133 
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distribution of parasites, as reported for Cichlidogyrus casuarinus Pariselle, Muterezi 134 

Bukinga & Vanhove, 2015 infecting pelagic cichlids in the lake (Kmentová et al., 2021). 135 

Contrasting levels of gene flow between the two parasite species related to geographic 136 

origin along the North-South axis of the lake (Kmentová et al., Under review) may therefore 137 

be associated with lifestyle differences between the two clupeid species.  138 

Host size and life-stage dependent habitat preference drive parasite occurrence 139 

The diurnal and geographically small-scale migrations of Tanganyika clupeids are generally 140 

better understood than the long term patterns. Vertically, these clupeids respond to light and 141 

oxygen concentration and follow the diurnal movements of their prey. Horizontally, they 142 

migrate between the offshore waters of the pelagic and the inshore waters of the littoral 143 

habitat throughout their development (Matthes 1967). A recent long-term study of the 144 

reproductive activities of the clupeids in the northern subbasin identified the littoral zone as 145 

the main spawning ground for L. miodon, and the pelagic zone as the equivalent for S. 146 

tanganicae (Mulimbwa N’sibula et al., 2022). Juveniles of both species occur in littoral 147 

habitats, but in general S. tanganicae lives and spawns at greater distances from the shore 148 

than L. miodon (Coulter, 1970, 1991b; Mannini et al., 1996). Eggs of L. miodon can even be 149 

deposited just above the sandy bottom of the littoral zone. Juveniles of L. miodon, but not S. 150 

tanganicae, occupy sandy beaches right by the shore (Mulimbwa N’Sibula et al., 2022).  151 

In line with our hypothesis, the body size of the clupeid hosts appears to be a major 152 

determinant of infection, as it significantly affects infection intensities for all three host-153 

parasite combinations. Such an overall positive correlation between fish size and 154 

monogenean infection intensities has been associated with a larger habitat offered by larger 155 

hosts (Alvarez-Pellitero & Gonzalez-Lanza, 1982; Poulin, 2000). Considering the age-156 

dependent migration of L. miodon from the littoral to the pelagic zone, the contrasting 157 

infection intensities associated with host size between K. limnotrissae and K. tanganicanus 158 

suggests a spatial stratification of infection linked with the ontogenetic migration of L. miodon 159 
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from the littoral to the pelagic zone. This apparent replacement contrasts with the positive 160 

effect of each parasite species' infection intensity on that of the other species. We suggest a 161 

combination of changes in host habitat and facilitation of infection caused by host immune 162 

deficiency or suppression at the base of this pattern. Suppression of the fish immune system 163 

allowing higher infection intensities has been shown in previous studies on monogeneans 164 

(Rohlenová et al., 2011; Sitjà-Bobadilla, 2008) and other parasite taxa (Klemme et al., 2016). 165 

Alternatively, the antagonistic interaction between the two parasite species could explain the 166 

resulting pattern, as proposed e.g., in the monogenean communities infecting Astyanax 167 

aeneus (Günther, 1860) in Neotropical rivers in Mexico (Salgado-Maldonado et al., 2019). 168 

However, so far there is no evidence of negative or any direct interspecific monogenean 169 

interaction between closely related species (Šimková et al., 2000; Soler-Jiménez & Fajer-170 

Ávila, 2012). 171 

Conclusion 172 

Lake Tanganyika is an ancient and pristine lake known for a spectacular level of species 173 

diversity and endemism. The existence of schooling pelagic fishes in an enclosed ecosystem 174 

promotes studies on general ecosystem dynamics of pelagic areas. The link between 175 

theoretical/experimental studies and dynamics in natural ecosystems is largely unknown 176 

(Lindegren et al., 2016) and a common framework is lacking (Ritz et al., 2011). Incorporation 177 

of host-parasite interactions increases our knowledge on the interconnectedness of trophic 178 

levels (Lafferty et al., 2006). Our holistic approach based on spatiotemporal distribution of 179 

fish parasites and morphological variation of the host species reveals insights on the 180 

ecosystem dynamics along a North-South axis, and habitat preferences of two important 181 

fisheries targets. As restricted migration of L. miodon is considered as one of the drivers of 182 

profound North-South differences in parasite occurrence and fish morphology, being also 183 

indicated in recent studies (De Keyzer et al., 2019; Junker et al., 2020), such results should 184 

be considered in fisheries management plans. Our results suggest that parasite population 185 

dynamics in pelagic zones are dependent on spatial distribution of the hosts in both large 186 
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and small scales. Intensity of infection seems to be mainly driven by fish size with mutual 187 

facilitation in case of co-infection. Lack of seasonality in infection intensity points to 188 

environmental stability of the pelagic zone and absence of density dependent infection.  189 
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