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Abstract

Hyperparameter optimization (HPO) is a necessary step to ensure the best possible per-
formance of Machine Learning (ML) algorithms. Several methods have been developed to
perform HPO; most of these are focused on optimizing one performance measure (usually
an error-based measure), and the literature on such single-objective HPO problems is vast.
Recently, though, algorithms have appeared that focus on optimizing multiple conflicting
objectives simultaneously. This article presents a systematic survey of the literature pub-
lished between 2014 and 2020 on multi-objective HPO algorithms, distinguishing between
metaheuristic-based algorithms, metamodel-based algorithms and approaches using a mix-
ture of both. We also discuss the quality metrics used to compare multi-objective HPO
procedures and present future research directions.

Keywords Hyperparameter optimization - Multi-objective optimization - Metamodel -
Meta-heuristic - Machine learning

1 Introduction

Nowadays, Artificial Intelligence (Al) is omnipresent in everyday life. Current technologi-
cal advances allow us to analyze huge amounts of data to generate knowledge that is used
in many different ways, e.g. for automatic user recommendations (Cai et al. 2020), image
recognition (Phillips et al. 2005; Andreopoulos and Tsotsos 2013), and supporting health-
care-related tasks (Jiang et al. 2017). In general, Al can be seen as a computer technology
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capable of carrying out functions that traditionally required human intelligence (Ertel
2018). Although learning is a key element in many areas of artificial intelligence, the very
concept of learning is mainly studied in the Machine Learning (ML) subfield. According
to Mitchell (1997), “a computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P if its performance at tasks in T, as
measured by P, improves with experience E”. ML algorithms and their parameters must
be intelligently configured to make the most of the data. Those parameters that need to
be specified before training the algorithm are usually referred to as hyperparameters: they
influence the learning process, but they are not optimized as part of the training algorithm.

The impact of these hyperparameters on algorithm performance should not be underes-
timated (Kim et al. 2017; Kong et al. 2017; Singh et al. 2020; Cooney et al. 2020); yet, their
optimization (hereafter referred to as hyperparameter optimization or HPO) is a challeng-
ing task, as traditional optimization methods are often not applicable (Luo 2016). Indeed,
classic convex optimization methods such as gradient descent tend to be ill-suited for HPO,
as the measure to optimize is usually a non-convex and non-differentiable function (Sta-
moulis et al. 2018; Parsa et al. 2019). Furthermore, the hyperparameters to optimize may
be discrete, categorical and/or continuous (typical hyperparameters for an Artificial Neural
Network (ANN), for instance, are the number of layers, the number of neurons per layer,
the type of optimizer, and the learning rate). The search space can also contain conditional
hyperparameters; e.g., the hyperparameters in a support vector machine algorithm depend
on the type of kernel used. Finally, the time needed to train a machine learning model
with a given hyperparameter configuration on a given dataset may already be substantial,
particularly for moderate to large datasets; as a common HPO algorithm requires multiple
such training cycles, the algorithm itself needs to be computationally efficient to be useful
in practice.

HPO should not be confused with the more general topic of automatic algorithm con-
figuration (AC), which is much broader in scope (see Lopez-Ibafiez et al. 2016; Hutter et al.
2009 for examples on this topic). In AC, in general, the aim is to find a well-perform-
ing parameter configuration for an arbitrary algorithm on a given, finite set of problem
instances. In HPO, we typically search for a well-performing hyperparameter configuration
on a single data set, for a specific task (classification, image recognition, or other). The
scope of AC is also broader than that of HPO, in the sense that the target algorithm does
not necessarily carry out a learning process for the task under study; e.g., it also comprises
the optimization of solvers and/or metaheuristics.

HPO has gained increasing attention in recent years, probably spurred by the popularity
of deep learning algorithms, which have demanding characteristics (e.g., the need for large
amounts of data and time to train the models, high model complexity, and a diverse mix of
hyperparameter types). Previously, analysts tended to use simple methods to look for the
“best” hyperparameter settings. The most basic of these is grid search (Montgomery 2017):
the user creates a set of possible values for each hyperparameter, and the search evaluates
the Cartesian product of these sets. Although this strategy is easy to implement and easy to
understand, its performance is influenced by the number of hyperparameters to optimize,
and the (number of) values chosen on the grid. Random search (Bergstra and Bengio 2012)
provides an alternative to grid search, and tends to be popular when some of the hyper-
parameters are more important than others; e.g, learning rate and momentum are critical
to guarantee a faster convergence of neural networks (Guo et al. 2020). More advanced
optimization methods have also been put forward, such as meta-learning methods (Bui
and Yi 2020), neural architecture search (NAS) methods (Jing et al. 2020), multi-fidelity
algorithms (such as Freeze-thaw Bayesian optimization (Swersky et al. 2014), Successive
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halving algorithm (Karnin et al. 2013), Hyperband (Li et al. 2017), Bayesian Optimiza-
tion Hyperband (Falkner et al. 2018), and Multi-task Bayesian optimization (Swersky
et al. 2013)), population-based optimization algorithms (such as Population-based training
(PBT) (Jaderberg et al. 2017) and Population-based Bandits (PB2) (Parker-Holder et al.
2020)), and reinforcement learning algorithms (such as HypRL (Jomaa et al. 2019)) and
the model-based Reinforcement Learning algorithm (Wu et al. 2020)).

So far, these more advanced approaches have largely focused on single-objective HPO
problems. Multi-objective optimization is particularly relevant in HPO, as different con-
flicting objectives may be important for the analyst (e.g., the error-based performance of
the target ML algorithm, inference time, model size, energy consumption, etc.). Multi-
objective HPO should not be confused with multi-task learning (MTL). In multi-objective
HPO, we seek to optimize the hyperparameter configuration for a specific task, on a sin-
gle data set, in view of marrying multiple conflicting objectives. MTL, by contrast, seeks
to optimize the HP configuration for multiple tasks, potentially using multiple datasets;
while the performance metrics for the individual tasks can be seen as multiple simultane-
ous objectives, they are not necessarily in conflict.

Our work aims to provide an overview of the state-of-the-art in the field of multi-
objective hyperparameter optimization for machine learning algorithms, highlighting
the approaches currently used in the literature, the typical performance measures used as
objectives, and discussing remaining challenges in the field. To the best of our knowledge,
our work presents the first comprehensive review of these multi-objective HPO approaches.
Previous reviews (Hutter et al. 2015; Luo 2016; Yang and Shami 2020; Feurer and Hutter
2019; Talbi 2021) mainly discuss single-objective HPO approaches, often focusing on par-
ticular contexts (such as biomedical data analysis), specific target algorithms (such as Deep
Neural Networks) or specific approaches (Sequential Model-based Bayesian Optimization,
multi-fidelity approaches). While two of the most recent surveys (Feurer and Hutter 2019;
Talbi 2021) mention multi-objective HPO on the sidelines, they only list some examples or
common strategies relevant to this topic, without discussing the actual approaches.

The remainder of this article is organized as follows. Section 2 discusses the meth-
odology used in the literature search. Section 3 formalizes the concepts of single- and
multi-objective hyperparameter optimization and discusses the most commonly used per-
formance measures in HPO algorithms. Section 4 categorizes the existing methods for
multi-objective hyperparameter optimization. Section 5 discusses the pros and cons of the
algorithms. Finally, Sect. 6 summarizes the findings, highlighting potential improvements
and avenues for further research.

2 Methodology

Given the remarkable surge in publications on HPO since 2014, we focused on research
published between 2014 and 2020. Figure 1 shows an overview of the search and selection
process.

We first performed a WoS (Web of Science) search, using the search terms shown in
Table 1. Although the main focus is on multi-objective HPO, we also consider the occur-
rence of the phrase “single objective” in the abstract (AB), as it is common to transform
multiple objectives into a single objective by means of a scalarization function. As the
use of surrogates is common in single-objective HPO for deep learning networks (e.g.,
Wistuba et al. 2018; Sjoberg 2019; Victoria and Maragatham 2021), we also searched for
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Fig.1 Overview of search and selection process
Table 1 Search term details
Tj
AND
AB
AND query
wWC
TI Hyperparameter optimization, hyperparameter tun-
ing, parameter optimization,
Hyperparameter, parameter tuning
TS Hyperparameter optimization, hyperparameter tuning
AB Neural networks, deep learning, constraint, overfit-
ting, multiobjective,
Multi objective, multi-objective, many-objective,
many objective, single objective,
Surrogate, metamodel, gaussian process, kriging
wC Computer Science, Artificial Intelligence

Computer Science, Information Systems
Computer Science, Theory & Methods
Computer Science, Interdisciplinary Applications

T1I Title, TS Topic, AB Abstract, WC Web of Science Categories

articles mentioning the terms “surrogate”, ‘“metamodel”, “deep learning”, “neural net-
works”, “Gaussian process”, and “kriging” in the abstract. The choice of hyperparameters
is also related to overfitting (Feurer and Hutter 2019). Finally, we also include the term
“constraint”, as the required performance targets (e.g., maximum memory consumption,
training time Stamoulis et al. 2018; Hu et al. 2019) may be presented as constraints in
(multi-objective) HPO. We limited our search to publications (including conference pro-
ceedings, articles, book chapters, and meeting abstracts) in computer science-related cat-
egories (WC).

We subsequently completed the set of papers through (1) scanning suggestions of
papers on Google Scholar alerts, and (2) a reference search. We limited the latter to elec-
tronic collections only, and solely considered journals/conference proceedings/workshop

@ Springer



A survey on multi-objective hyperparameter optimization... 8047

proceedings that were indexed on WoS (for the WoS journals, we included accepted pre-
prints of forthcoming articles).

The papers obtained through the WoS and manual search were manually filtered based
on the title and abstract, to ensure they were related to the topic of discussion. We filtered
out irrelevant papers, such as those that focus on the optimization of industrial processes
(Chen et al. 2014), meta-learning (Vanschoren 2019), optimization of internal parameters
(Wawrzynski 2017), and papers related to AutoML systems that are not focused on hyper-
parameter optimization (such as model selection algorithms (van Rijn et al. 2015; Silva
et al. 2016) or pure feature selection methods (Hegde and Mundada 2020)). Neural Archi-
tecture Search (NAS) is usually considered a distinct category with its own methods and
techniques for optimizing the structure of a neural network; hence, articles on NAS were
only considered when the problem was addressed as an HPO problem. Articles focusing on
more specific aspects of NAS (such as Negrinho et al. 2019) are beyond the scope of this
research.

A full read of the articles, combined with a reference search, resulted in a final selection
of 48 relevant articles. Most of these articles (about 60%) were published in conferences
or workshops, though there has been an increase in scientific journal articles in 2020 (see
Fig. 2); these were mainly published in Q1/Q2 journals belonging to the Computer Science
field.

3 HPO: concepts and performance measures

Section 3.1 provides an overview of the basic concepts related to HPO, while Sect. 3.2
discusses the main performance measures (objectives) used in such optimization. Finally,
Sect. 3.3 discusses the quality metrics used for comparing the performance of multi-objec-
tive HPO algorithms.

3.1 HPO: concepts and terminology

In mathematics and computer science, an algorithm is a finite sequence of well-defined
instructions that, when fed with a set of initial inputs, eventually produces an output. Fig-
ure 3 shows that in HPO, the optimization algorithm forms an “outer” shell of optimiza-
tion instructions; the “inner” optimization refers to the training and cross-validation of the
target ML algorithm (e.g., ANN, SVM, etc.). This inner optimization trains the target algo-
rithm to perform the task it should perform (e.g., predicting house prices from a data set,

mmm Conferences
Journals

2
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__ e — —

2014 2015 2016 2017 2018 2019 2020

Fig.2 Number of articles that address multi-objective HPO, according to the publication source (2014—
2020)

@ Springer



8048 A. Morales-Hernandez et al.

HPO algorithm
—-‘ ML algorithm J—»
Hyperparameters Performance measure
. —* *Square meters House price
* Learning rate R *Root mean
* Number of neurons ooms square error
um L . *Region
* Regularization coefficient

* Training epochs

Fig. 3 Example of the interplay between the HPO algorithm and the target ML algorithm (in this case, an
ANN for predicting house prices)

using a set of features). In turn, the HPO algorithm takes the hyperparameters of the target
ML algorithm as input and produces a number of performance measures as output (e.g.,
RMSE, energy consumption, etc.). The aim of the HPO algorithm is to optimize the set
of hyperparameters, in view of obtaining the best possible outcomes for the performance
measures considered.

More formally, the single-objective HPO problem can be formalized as follows. Con-
sider a target ML algorithm .4 with N hyperparameters, such that the n-th hyperparameter
has a domain denoted by A,. The overall hyperparameter configuration space is denoted
as A = A X A, X -+ X Ay. A vector of hyperparameters is denoted by 4 € A, and an algo-
rithm A with its hyperparameters set to 4 is denoted by A;. In the case of HPO, the avail-
able data are split into a training set, a validation set, and a test set. The learning process of
the algorithm takes place on the training set (D,,,;,) and is validated on the validation set
(D, uig)- We can then formalize the single-objective HPO problem as (Feurer and Hutter
2019):

1}16111\1 V(‘C | Ai’ Dtrain’ Dvalid)

where V(L | A;, D,,4in» Dyuiia) 18 @ validation protocol that uses a loss function £ to estimate
the performance of a model A, trained on D,,,;,, and validated on D,,;,. Popular choices for
the validation protocol V(-) are the holdout and cross-validation process (see Bischl et al.
2012 for an overview of validation protocols). Without loss of generality, we assume in the
remainder of this article that the loss function should be minimized.

The previous definition can be readily extended to multi-objective optimization (see Li
and Yao 2019). Consider a multi-objective hyperparameter optimization problem with N
hyperparameters and a set L. containing m performance measures (objective functions).
These can reflect the error-based performance of the algorithm, but also other metrics such
as algorithm complexity (as detailed later in Sect. 3.2). The multi-objective HPO prob-
lem can then be formalized as follows (assuming that all performance measures should be
minimized):

111’16111;1 V(L | Al’ Drmin’ Dvalid)

Typically, there is a trade-off among the different objectives: for instance, between the per-
formance of a model and training time (increasing the accuracy of a model often requires
larger amounts of data and, hence, a higher training time; see e.g., Rajagopal et al. 2020),
or between different error-based measures (e.g., between confusion matrix-based measures
(Tharwat 2020) of a binary classification problem; see Horn and Bischl 2016). Considering
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these trade-offs is often crucial: e.g., in medical diagnostics (de Toro et al. 2002), the
simultaneous consideration of objectives such as sensitivity and specificity is essential
to determine if the machine learning model can be used in practice. The goal in multi-
objective HPO is to obtain the Pareto-optimal solutions, i.e., those solutions for which
none of the objectives can be improved without negatively affecting any other objective.
In the decision space, the set of optimal solutions is referred to as the Pareto set; in objec-
tive space, it yields the Pareto front (or Pareto frontier). The Pareto-optimal solutions are
also referred to as the non-dominated solutions (Emmerich and Deutz 2018). Ideally, these
solutions should be diverse (i.e., spread across the different areas of the Pareto front), while
approximating this front as well as possible (i.e., showing convergence to the Pareto front).

In (general) multi-objective optimization problems, the multiple objectives are often
scalarized into one single function, such that the problem can be solved as a single-objec-
tive problem. Care should be taken, though, when selecting the scalarization approach:
e.g., not all approaches allow to detect non-convex parts of the front (see Miettinen and
Mikeld 2002 for further details about scalarization functions). Scalarization methods have
also been applied in multi-objective HPO; see Section 4 for further details.

3.2 Multi-objective HPO: typical objectives

Tables 2 and 3 show an overview and concise description of the performance measures
occurring in the current literature on multi-objective HPO (Table 2 focuses on error-based
measures, while Table 3 summarizes the non-error-based measures). These measures will
reappear later in Section 4, when we categorize the different multi-objective HPO algo-
rithms. As evident from Table 2, for regression problems, the error-based metrics are com-
monly based on the squared errors; for classification problems, they are commonly related
to the elements of the confusion matrix [True Positives (TP), False Negatives (FN), False
Positives (FP), and True Negatives (TN)].

Error-based measures are heavily used in multi-objective HPO, as they ensure a
response from the model that is close to reality. Additionally, model complexity objectives
are often included [following Occam’s razor principle; (Blumer et al. 1987)], along with
time-based metrics (e.g., training time on embedded devices) and/or (computational) cost
objectives. The complexity of a neural network, for instance, is often estimated using the
number of parameters (weights of the connections between neurons) (Liang et al. 2019; Lu
et al. 2020; Baldeon and Lai-Yuen 2020; Calisto and Lai-Yuen 2020). The number of fea-
tures can also be used as a complexity measure: see Sopov and Ivanov (2015), Martinez-de
Pison et al. (2017), Binder et al. (2020), Faris et al. (2020), Bouraoui et al. (2018). The
more features the training algorithm has to consider, the more expensive it will be. On the
other hand, considering fewer features may negatively affect the error-based performance
of the algorithm.

Metrics reflecting model size naturally depend on the target ML algorithm to be opti-
mized (e.g., the number of neurons in a single-layer NN (Juang and Hsu 2014), the number
of support vectors in a SVM (Bouraoui et al. 2018), the DNN file size (Shinozaki et al.
2020), or the number of models used (Garrido and Herndndez 2019) for ensemble algo-
rithms). Alternatively, the number of floating point operations (FLOPs) in a NN can be
used (Wang et al. 2019, 2020; Lu et al. 2020; Chin et al. 2020; Loni et al. 2020). This
metric is also used to reflect the energy consumption (Han et al. 2015); likewise, the num-
ber of parameters in a NN is used as a measure for complexity as well as for model size.
Both FLOPs and the number of parameters are sometimes used as memory consumption
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Table 3 Non error-based
performance measures used in
multi-objective HPO algorithms

Type Performance measure

Complexity Number of floating points operations (FLOPs) or
number of multiply-adds (MAdds) in NNs

Number of features used to train the ML algorithm
Model size Number of parameters (weights) in a NN
Number of neurons in NNs
Number of support vectors in SVM
The file size used to save a DNN
Number of models used in an ensemble
Time Related to the target ML algorithm (Training
and Prediction time, inference time on forward
passes of ANN, decoding time), or the optimiza-
tion
Hardware-based ~ Memory footprint
measures Energy consumption
Other Diversity measures in ensembles.
Outliers detected by a threshold-based algorithm.

measures (Laskaridis et al. 2020), and can be combined with a time-based measure (Shah
and Ghahramani 2016). Time-based measures can be related to the training phase (Tan-
aka et al. 2016; Rajagopal et al. 2020; Laskaridis et al. 2020; Lu et al. 2020), the predic-
tion phase (Hernandez et al. 2016; Abdolsh et al. 2019; Garrido and Hernidndez 2019), the
inference process on forwarding passes in ANNs (Kim et al. 2017), or the whole optimiza-
tion process (Richter et al. 2016).

The increasing computational cost of Deep Learning models generally translates into
higher hardware costs. As a result, optimization using both algorithm performance and
hardware cost should be considered, especially for edge devices. Hardware-related costs
can be measured in different ways; e.g., through energy consumption (Hernandez-Lobato
et al. 2016) or memory utilization (Chandra and Lane 2016). In many cases, these meas-
ures are estimated as a function of the hyperparameters. For instance, Parsa et al. (2019)
present an abstract energy consumption model that depends on the neural network architec-
ture (number of layers, number of outputs of each layer, kernel size, etc).

Some objectives encountered in the literature do not fall into any of the categories
above. In Table 3, they are grouped into the category “Other” (e.g., diversity measures for
ensembles (Kuncheva 2014)).

3.3 Quality metrics for comparing multi-objective HPO algorithms

The surveyed literature presents different metrics to judge and/or compare the strengths
and weaknesses of multi-objective HPO algorithms. The first set of quality metrics is
related to the resulting Pareto front. Here, hypervolume is the most widely used (Horn
and Bischl 2016; Hernandez et al. 2016; Shah and Ghahramani 2016; Horn et al.
2017; Garrido and Hernindez 2019; Lu et al. 2020). It computes the volume of the
area enclosed by the Pareto front and a reference point, specified by the user. Binder
et al. (2020) compute the generalization dominated hypervolume, which is obtained by
evaluating the non-dominated solutions of the validation set on the test set data. Other
quality metrics based on the Pareto front are the difference in performance between
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each solution on the front and the single-objective version of the algorithm (holding the
other objectives steady) (Chatelain et al. 2007), the average distance (or Generational
Distance) of the front to a reference set (such as the approximated true Pareto front
obtained by exhaustive search, see Smithson et al. 2016; or an aggregated front, see
Giilcti and Kus 2021), a coverage measure computed as the percentage of the solutions
of an algorithm A dominated by the solutions of another algorithm B (Juang and Hsu
2014; Li et al. 2004), or metrics based on the shape of the Pareto front (Abdolsh et al.
2019) or its diversity (Juang and Hsu 2014; Li et al. 2004). The latter can be computed
using the spacing and the spread of the solutions: spacing evaluates the diversity of the
Pareto points along a given front (Giilcli and Kus 2021), whereas spread evaluates the
range of the objective function values (see Zitzler et al. 2000).

Some authors use performance measures that do not relate to the quality of the front
obtained; e.g., execution time (Parsa et al. 2019; Richter et al. 2016; Horn et al. 2017),
number of performance evaluations (Parsa et al. 2019), CPU utilization in parallel
computer architectures (Richter et al. 2016), measures that were not considered as an
objective and that are evaluated in the Pareto solutions (usually, confusion matrix-based
measures for classification problems; see Salt et al. 2019), or measures that are specific
for the HPO algorithm used (e.g., the number of new points suggested per batch is used
by Gupta et al. (2018) to evaluate the performance of the search executed during batch
Bayesian optimization).

4 Multi-objective HPO algorithms: categorization

In this section, we categorize the literature on multi-objective HPO algorithms based on
the way in which the algorithms perform the search for the optimal solutions (i.e., the
search methodology). We distinguish the following three categories (Fig. 4):

e Metaheuristic-based optimization algorithms (Sect. 4.1): these algorithms use a
metaheuristic to guide the search process, based on the empirically observed input/out-
put observations.

e Metamodel-based optimization algorithms (Sect. 4.2): in these algorithms, a meta-
model is fit to the empirical input/output observations, and an acquisition function is
used to search for the optimal HPO configurations.

e Hybrid algorithms (Sect. 4.3): a metamodel is fit to the input/output observations, and a
metaheuristic is used to guide the search for better solutions.

mmm Metaheuristic-based algorithms
Metamodel-based algorithms
= Hybrid algorithms

| 2

| 3 i

| 1 | | | = -
2014 2015 2016 2017 2018 2019 2020

Fig.4 Multi-objective HPO algorithms: number of articles per category (2014-2020)
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4.1 Metaheuristic-based HPO algorithms

Heuristic search attempts to optimize a problem by improving the solution based on a
given heuristic function or a cost measure (Russell and Norvig 2010). A heuristic search
method does not always guarantee to find the optimal solution but aims to find a good or
acceptable solution within a reasonable amount of time and memory usage. Metaheuris-
tics are algorithms that combine heuristics (which are often problem-specific) in a more
general framework (Bianchi et al. 2009). Figure 5 summarizes the general procedure of
a metaheuristic-based algorithm for multi-objective optimization (MOO). The algorithm
generates new solution(s) starting from one or more initial solution(s). Depending on the
algorithm, the information available from the search process so far (which can include
updates in the sampling distribution used by the metaheuristic, or other adjustments such
as updates in the velocity vectors in Particle Swarm Optimization, or the pheromone paths
in Ant Colony Optimization) can be updated before the next iteration starts, and/or bad
solutions can be discarded. The process is repeated until a stop criterion is met.

While some metaheuristics start from a single initial solution (e.g., Tabu Search (Glover
1986)), others (referred to as population-based algorithms) start from a set of solutions
(e.g., Ant Colony Optimization (Dorigo and Blum 2005) and Evolutionary Algorithms,
e.g. Evolution Strategies and Genetic Algorithms (Mitchell 1998)).

For ease of reference, Table 4 gives an overview of the metaheuristic-based algo-
rithms currently used in multi-objective HPO, while Table 5 gives an overview of
the experimental comparisons reported in these papers. Clearly, the most popular
metaheuristic-based algorithm for multi-objective HPO is the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II; Deb et al. 2002). This is not surprising, as genetic
algorithms have shown to perform quite well in single-objective HPO settings: see, e.g.,
Deighan et al. (2021), who showed that they cannot only obtain CNN configurations
from scratch but can also refine state-of-the-art CNNs. NSGA-II builds on the original
NSGA algorithm (Srinivas and Deb 1994); yet, it is computationally less expensive (a
temporal complexity of O(MN?) versus O(MN?) for the original algorithm, where M is
the number of objectives and N is the population size). Another important difference is
the preservation of the best solutions, through an elitist selection according to the fitness
and spread of solutions. Ekbal and Saha (2015) applied NSGA-II to jointly optimize
hyperparameters and features, and demonstrated the superiority of the resulting models
over others (trained with default hyperparameters, and using all the features included in

- Ye
@ Create a set of initial - Stopping criteria es Return Pareto @
solutions satisfied? optimal solutions

Update search
R information
(optional)

Create new solution(s) f--- v

Discard bad
solutions (optional)

Fig.5 General procedure in metaheuristic-based MOO algorithms
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a dataset). Binder et al. (2020) observed analogous results optimizing a SVM, kkNN,
and XGBoost. Yet, according to the generalization-dominated hypervolume, NSGA-II
performed slightly worse than ParEGO, a Bayesian optimization-based approach (see
Knowles 2006 for further details). Binder et al. (2020) thus suggest to prefer NSGA-II
over ParEGO only when model evaluations are cheap and marginal degradation of per-
formance is acceptable.

Contrary to NSGA-II, the Multi-Objective Evolutionary Algorithm based on Decom-
position (MOEA/D) (Zhang and Li 2007) uses scalarization to solve the multi-objec-
tive HPO problem. Both MOEA/D and NSGA-II have shown to improve the accuracy
of the resulting model compared with manual hyperparameter selection (Magda et al.
2017; Calisto and Lai-Yuen 2020). In Baldeon and Lai-Yuen (2020), MOEA/D is com-
pared with a Bayesian Optimization approach (using Gaussian Process Regression
with Expected Improvement as acquisition function), for tuning an adaptive convolu-
tional neural network (AdaResU-Net) used for medical image segmentation. The use of
MOEA/D resulted in a reduction in the number of parameters to train; the comparison
is not really reliable, though, as the Bayesian approach was used in a single-objective
optimizer, focusing only on segmentation accuracy and not on model size. The ENS-
MOEA/D algorithm proposed by Zhao et al. (2012) presents a further improvement
to the original MOEA/D algorithm, by adaptively adjusting the neighborhood size (as
large neighborhood sizes favor more global search, while smaller sizes lead to more
local search). Zhang et al. (2020) apply this method to optimize the hyperparameters of
a Variational Model Decomposition (VMD) procedure, used to pre-process time series
for forecasting wind speeds. The authors prove that this yields better forecasts, yet they
did not perform any comparison against other HPO procedures.

The Covariance matrix adaptation-evolutionary strategy (CMA-ES) (Hansen et al.
2003) is a population-based metaheuristic that differs from Genetic Algorithms in the
use of a fixed-length real-valued vector as a gene (instead of the typical vector of binary
components), and a multivariate Gaussian distribution to generate new solutions. Multi-
objective CMA-ES can be formulated considering the dominance of solutions on the
Pareto Frontier, to redefine the ranking function used to determine the best solution
found so far (now a Pareto front) (Tanaka et al. 2016; Qin et al. 2017; Shinozaki et al.
2020). Shinozaki et al. (2020) optimize DNN-based Spoken Language Systems using
this approach; the resulting networks had lower word error rates and were smaller than
the networks designed by NSGA-II. Additionally, multi-objective CMA-ES generated
smaller networks than the one obtained with single-objective CMA-ES (using the error-
based measure as an objective to optimize). In our opinion, though, this last comparison
does not make much sense, since network size did not appear as an objective in the
single-objective setting.

Analogous to Genetic Algorithms, Particle Swarm Optimization (PSO) (Eberhart
and Kennedy 1995) works with a population of candidate solutions, known as particles.
Each particle is characterized by a velocity and a position. The particles search for the
optimal solutions by continuously updating their position and velocity. Their movement
is influenced not only by their own local best-known position but is also guided toward
the best-known position found by other particles in the search space. A multi-objective
PSO algorithm (OMOPSO) was developed by Sierra and Coello (2005), using Pareto
dominance and crowding distance to filter out the best particles. It employs different
mutation operators which act on subsets of the swarm, and applies the e-dominance con-
cept (see Laumanns et al. 2002 for more details) to fix the size of the set of final solu-
tions produced by the algorithm.
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Strength Pareto Evolutionary Algorithm II (SPEA-II) (Zitzler et al. 2001) adds several
improvements to the original SPEA algorithm presented by Zitzler and Thiele (1999). Loni
et al. (2019) used the algorithm to optimize six hyperparameters of a CNN, yielding more
accurate and less complex networks than could be obtained with hand-crafted networks, or
with NAS algorithms.

Differential Evolution (DE) (Storn and Price 1997) is similar to Genetic Algorithms but
differs in the way in which the solutions are coded (using real vectors instead of binary-
coded ones) and, consequently, in the way in which the evolutionary operators are applied.
Multi-Objective Differential Evolution (MODE) (Babu and Gujarathi 2007) selects the
non-dominated solutions to generate new solutions on each iteration. To reduce the com-
putational effort while maintaining accuracy, a memetic adaptive DE method (MADE) was
developed by Li et al. (2019). DE depends significantly on its control parameter settings.
Therefore, MADE uses a historical memory of successful control parameter settings to
guide the selection of future control parameter values (Tanabe and Fukunaga 2013). Addi-
tionally, a local search method (e.g., the Nelder-Mead simplex method (NMM) (Li et al.
2019), or chaotic local search (Pathak et al. 2020)) is employed to refine the solutions, and
a ranking-based elimination strategy (using non-dominated and crowding distance sorting)
is proposed to maintain the most promising solutions.

Ant Colony Optimization (ACO) (Dorigo et al. 1996) is inspired by the behavior of
real ants; the basic idea is to model the HPO problem as the search for a minimum cost
path in a graph. ACO algorithms can be applied to solve multi-objective problems, and
may differ in three respects (Alaya et al. 2007): (1) the way solutions are built, using only
one pheromone structure for an aggregation of several objectives, or associating a different
pheromone structure with each objective (Iredi et al. 2001; Gravel et al. 2002; 2) the way in
which solutions are updated (Iredi et al. 2001; Baran and Schaerer 2003) and (3) the incor-
poration of existing problem-specific knowledge into the transition rule that defines how to
create new solutions from existing ones (Gravel et al. 2002; Doerner et al. 2004). The lat-
ter is included in a multi-objective version of ACO (MO-RACACO, Hsu and Juang 2013)
for Fuzzy Neural Network (FNN) optimization (Juang and Hsu 2014). The results showed
that MO-RACACO outperformed other population-based MO algorithms (MO-EA, Juang
2002; and MO-ACOr, Socha and Dorigo 2008) in terms of the coverage measure obtained,
yet it did not always obtain the best diversity values.

Simulated annealing (SA) is a probabilistic technique for finding the global optimum
of a single-objective problem (Kirkpatrick et al. 1983). Giilcii and Kus (2021) applied a
multi-objective approach (MOSA) to optimize 14 hyperparameters of a CNN. The algo-
rithm selects new solutions based on their relative merit (measured by the dominance rela-
tionship) w.r.t. the current solutions.

The Nelder-Mead simplex method (NMM) (Olsson and Nelson 1975) has been applied
by Albelwi and Mah (2016) to optimize seven hyperparameters for a CNN. As NMM is a
single-objective optimization procedure, the objectives need to be scalarized (the authors
used a weighted sum approach). NMM is a local optimization procedure, so it may get
stuck in a local minimum. This may be avoided by running the algorithm from different
starting points, which increases the probability of reaching the global minimum. Alter-
natively, modifications to the algorithm have been proposed (as in McKinnon 1998) that
allow the algorithm to escape from local minima, yet at the cost of a large number of
iterations.
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Fig.6 Generic optimization procedure in metamodel-based MOO algorithms

4.2 Metamodel-based HPO algorithms

Training a machine learning algorithm can be computationally expensive, e.g. due to the
target algorithm’s own structure (e.g., Deep Learning models), the amount and complexity
of the data to process, resource limitations (execution time, memory and energy consump-
tion, etc), and/or the type of training algorithm used. Therefore, different HPO approaches
have been developed that employ less expensive models (referred to as metamodels or sur-
rogate models) to emulate the computation of the real performance functions. The resulting
algorithms have also been referred to as Efficient Global Optimization (EGO) or Bayesian
Optimization (BO) algorithms, and use an acquisition function or infill criterion to guide
the search. Figure 6 summarizes the main steps in such an algorithm.

The optimization starts with a set of initial points (input/output observations) to train
the metamodel. Next, the acquisition function is used to select one or more new points
(infill points) to be evaluated. The use of this acquisition function is a key element in the
search (approaches that combine metamodels with metaheuristic search are referred to as
hybrid methods, and are discussed in Sect. 4.3). The metamodel is updated with this new
information (adding the new I/O observations to the initial set), and the procedure contin-
ues until a stopping criterion is met.

For ease of reference, Table 6 gives an overview of the metamodel-based algorithms
currently used for multi-objective HPO, while Table 7 gives an overview of the experi-
mental comparisons reported in this part of the literature. As evident from Table 6, most
multi-objective HPO articles use a Gaussian Process (GP) metamodel. GPs use a covari-
ance function, or kernel, to compute the spatial correlation among several output obser-
vations for a given performance measure (i.e., a given objective of the HPO algorithm;
see Fig. 3). In this approach, it is assumed that HPO input configurations that differ only
slightly from one another (i.e., they are close to each other in the search space) are strongly
positively correlated w.r.t. their outputs; as the configurations are further apart in the search
space, the correlation dies out. The choice of the kernel in a GP is important, as it deter-
mines the shape of the assumed correlation function. In general, the most common kernels
used in GP-based metamodels are the Gaussian kernel and the Matérn kernel (Ounpraseuth
2008). Using the kernel, the analyst can not only predict the estimated outputs (i.e., in our
case, the performance measures) at non-observed input locations (i.e., hyperparameter con-
figurations), but can also estimate the uncertainty on these output predictions. Both the
predictions and their uncertainty are reflected in the acquisition function to search for new
hyperparameter settings. We refer the reader to Rojas-Gonzalez and Van Nieuwenhuyse
(2020) for a detailed review of acquisition functions, for (general, non-HPO related) single
and multi-objective optimization problems.
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Table 6 also shows the acquisition functions that have been used so far in multi-objec-
tive HPO. Clearly, the most popular one is Expected Improvement (EI, which was origi-
nally proposed by Jones et al. 1998). The EI represents the expected improvement over the
best outputs found so far, at an (arbitrary) non-observed input configuration. As EI was
originally developed for single-objective problems, it is usually applied in multi-objective
problems where the objectives are scalarized. Salt et al. (2019), for instance, optimize a
Spiking Neural Network (SNN) using a weighted function of three individual objectives
(the accuracy, the sum square error of the membrane voltage signal, and the reward of the
spiking trace). Three acquisition functions were studied; EI, Probability of Improvement
(POI), and Upper Confidence Bound (UCB). The performance obtained with POI was sig-
nificantly better than that obtained with EI and UCB, and overall, the BO-based approach
required significantly fewer evaluations than evolutionary strategies such as SADE.

Another way to use BO in multi-objective HPO is to fit a metamodel to each objec-
tive independently. Parsa et al. (2019) use such an approach in their Pseudo Agent-Based
multi-objective Bayesian hyperparameter Optimization (PABO) algorithm; they use the
dominance rank (based on the predictor values of each objective) as an infill criterion.
This evidently yields different infill points for the respective objectives (in their case, an
error-based objective and an energy-related objective). The infill point suggested for one
objective function is then also evaluated for the other objective function, provided that it
is not dominated by any previous HPO configuration analyzed. In this way, the algorithm
speeds up the search for Pareto-optimal solutions. The experiments indeed demonstrated
that PABO outperforms NSGA-II in terms of speed.

Other authors have studied HPO problems when the performance measures are corre-
lated (Shah and Ghahramani 2016), or when one of the measures is clearly more important
than the others (Abdolsh et al. 2019). The algorithm proposed by Shah and Ghahramani
(2016) models the correlations between accuracy, memory consumption, and training time
of an ANN using a multi-output Gaussian process or Co-Kriging (Liu et al. 2018). The
authors propose a modification to the expected hypervolume (EHV) that reflects these cor-
relations; this modified EHV is then used as an acquisition function, preferring the infill
point that increases the expected hypervolume of the Pareto front the most. The algorithm
is compared to ParEGO, (Knowles 2006), random search, and a GP using the original EHV
metric. The results suggest that the modified EHV criterion increases the speed of the opti-
mization, requiring fewer iterations to converge to the Pareto optimal solutions.

The MOBO-PC algorithm proposed by Abdolsh et al. (2019) adjusts the Expected
Hypervolume Improvement (EHI) acquisition function to account for the probability that
the novel HP configuration satisfies a set of user-defined preference-order constraints. In
this way, it manages to focus its search on the Pareto solutions that are most relevant for
the user, as opposed to the other algorithms that are used as a comparison in the paper
(PESMO, Hernandez et al. 2016; SMS-EGO, Ponweiser et al. 2008; Stepwise Uncertainty
Reduction, Picheny 2014; and ParEGo, Knowles 2006), which try to find solutions across
the entire Pareto front.

Other acquisition functions used in metamodel-based algorithms are the Lower Confi-
dence Bound (LCB) or Upper Confidence Bound (UCB). These use a (user-defined) con-
fidence bound to focus the search on local areas or explore the search space more globally.
Richter et al. (2016) use a multipoint LCB which simultaneously generates g hyperpa-
rameter configurations. A GP is used to model the misclassification error and the loga-
rithmic runtime. The results demonstrated an improvement in CPU utilization (and, thus,
an increase in the number of hyperparameter evaluations) within the same time budget.
Confidence bounds are also used by Chin et al. (2020) to optimize the hyperparameters
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of Slimmable Neural Networks. The algorithm fits a GP to each individual performance
measure, hence obtaining information to compute individual UCBs. These UCBs are then
scalarized, and the resulting single objective function is minimized to obtain the next infill
point. The proposed algorithm succeeds in reducing the complexity of the NNs studied;
yet, the authors did not compare its performance with any other multi-objective HPO
algorithms.

The Predictive Entropy Search (PES) criterion is used by multiple authors, as an infill
criterion for different algorithms. Hernandez et al. (2016) use PESMO (multi-objective
PES) to optimize a NN with six hyperparameters, in view of minimizing the prediction
error and the training time. PESMO seeks to minimize the uncertainty in the location of the
Pareto set. The algorithm is compared with ParEGO, SMS-EGO, and SUR, showing that
PESMO gives the best overall results in terms of hypervolume and the number of expen-
sive evaluations required for training/testing the neural network. Garrido and Hernéndez
(2019) use PESMOC (a modified version of PESMO which takes into account constraints)
to optimize an ensemble of Decision Trees. The experiments show that PESMOC is able to
obtain better results than a state-of-the-art method for constrained multi-objective Bayesian
optimization (Feliot et al. 2017), in terms of the hypervolume obtained and the number of
evaluations required. Finally, Hernandez-Lobato et al. (2016) used PES to design a neu-
ral network with three layers. While most of the HPO methods collect data in a coupled
way by always evaluating all performance measures jointly at a given input, these authors
consider a decoupled approach in which, at each iteration, the next infill configuration is
selected according to the maximum value of the acquisition functions across all objectives.
The results showed that this approach obtains better solutions (compared to NSGA-II and
random search) when computational resources are limited; yet, the trade-offs found among
the performance measures may be affected and one of the objectives can turn out to be pri-
oritized over the others.

Random forests (RFs) (Ho 1995) are an ensemble learning method that trains a set of
decision trees having low computational complexity. Each tree is trained with different
samples, taken from the initial set of observations. For classification outputs, the RF uses a
voting procedure to determine the decision class; for regression output, it returns the aver-
age value over the different trees. As for GP, RFs allows the analyst to obtain an uncer-
tainty estimator for the prediction values. Some examples are the quantile regression for-
ests method (Meinshausen and Ridgeway 2006), which estimates the prediction intervals,
and the U-statistics approach (Mentch and Hooker 2016). Horn and Bischl (2016) use RFs
as metamodel to optimize the hyperparameters of three ML algorithms: SVM, Random
Forest, and Logistic regression. Using LCB as an acquisition function, the authors show
that SMS-EGO and ParEGO outperform random sampling and NSGA-IIL.

Whereas GP-based approaches model the density function of the resulting outcomes
(performance measures) given a candidate input configuration, Tree-structured Parzen
Estimators (TPE) (Bergstra et al. 2011) model the probability of obtaining an input con-
figuration, given a condition on the outcomes. TPEs naturally handle not only continuous
but also discrete and categorical inputs, which are difficult to handle with a GP. Moreover,
TPE also works well for conditional search spaces (where the value of a given hyper-
parameter may depend on the value of another hyperparameter), and has demonstrated
good performance on HPO problems for single-objective optimization (Bergstra et al.
2013; Thornton et al. 2013; Falkner et al. 2018). While it can, in theory, also be applied
to multi-objective settings by scalarizing the performance measures, Chandra and Lane
(2016) obtained disappointing results when comparing this approach with random sam-
pling, GP and Genetic Algorithms for optimizing an Augmented Tchebycheff scalarized
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function (Miettinen 2012) (using fixed weights) of three performance measures for ANNSs:
GP performed best, while TPE performed worst. Unfortunately, the authors reported the
performance based solely on the scalarized value of the three performance measures; they
did not report on any other quality metrics, such as hypervolume. They also did not dis-
cuss the reason for the poor TPE performance, such that it remains unclear whether this
is due to the scalarization function, or to the characteristics of the search space. A (non-
scalarized) multi-objective version of TPE has been proposed by Ozaki et al. (2020) and is
included in the software Optuna (Akiba et al. 2019).

Strikingly, the majority of current HPO algorithms routinely ignore the fact that the
obtained performance measures are noisy. The noise can be due to either the target ML
algorithm itself (when it contains randomness in its procedure, such as a NN that ran-
domly initializes the weights), but even if there is no randomness involved, there will
be noise on the outcomes due to the use of k-fold cross-validation during the training of
the algorithm. This type of cross-validation is common in HPO: it involves the creation
of different splits of the data into a training and validation set. This process is repeated
k times; the performance measures of a given hyperparameter combination will thus
differ for each split. Current HPO algorithms focus simply on the average performance
measures over the different splits during the search for the Pareto-optimal points; the
inherent uncertainty on these performance measures is ignored. Horn et al. (2017) are
one of the few authors to highlight the presence of noise. The paper assumes, though,
that noise is homogenous (i.e., it doesn’t differ over the search space), and only focuses
on different strategies for handling this noise. These strategies are used in combination
with the SMS-EGO algorithm (Ponweiser et al. 2008) and compared with the rolling
tide evolutionary algorithm (RTEA) (Fieldsend and Everson 2014) and random search.
The results show that simply ignoring the noise (by evaluating a given HPO combi-
nation only once, and considering the resulting performance measures as determinis-
tic) performs poorly, even worse than a repeated random search. The best strategy is to
reevaluate the (most promising) HP settings. According to the authors, this can likely be
explained by the fact that the frue noise on the performance measures in HPO settings is
heterogeneous (i.e., its magnitude differs over the search space). Reevaluation of already
observed HP settings is then required to improve the reliability of the observed perfor-
mance measures. The interested reader is referred to Jalali et al. (2017) for a discussion
of the impact of noise magnitude and noise structure on the performance of (general)
optimization algorithms.

Koch et al. (2015) adapt SMS-EGO (Ponweiser et al. 2008) and SEXI-EGO (Emmerich
et al. 2011) for noisy evaluations, to optimize the hyperparameters of a SVM. The authors
again assume that the noise is homogenous, and compare the performance of both algo-
rithms with different noise handling strategies (the reinterpolation method proposed by
Forrester et al. (2006), and static resampling). Both algorithms use the expected hyper-
volume improvement (EHI) as an infill criterion, though the actual calculation of the crite-
rion is different (causing Sexi-EGO to require larger runtimes). The results show that both
SMS-EGO and SEXI-EGO work well with the reinterpolation method, yielding compara-
ble results in terms of hypervolume.

4.3 Hybrid HPO algorithms

A limited number of papers have combined aspects of metamodel-based and popu-
lation-based HPO approaches: these are referred to in Table 8, summarizing their main
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Table 9 Experimental comparisons reported in the literature on hybrid MO HPO algorithms

HPO Algorithm Ref. Compared against Quality metrics
ANN + DSE Smithson et al. (2016) Exhaustive search Generational Distance
(MLP/CART/RBF/ Lu et al. (2020) NAS algorithms Cumulative hypervolume,
GP) + NSGA-II model size, and CPU/GPU
latency

characteristics. Table 9 gives an overview of the experimental comparisons reported in
these papers.

Smithson et al. (2016) use an ANN as a metamodel to estimate the performance of the
target ML algorithm. The neural network is embedded into a Design Space Exploration
(DSE) metaheuristic, and is used to intelligently select new solutions that are likely to be
Pareto optimal. The algorithm starts with a random solution, and iteratively generates new
solutions that are evaluated with the ANN. DSE decides if the solution should be used to
update the ANN knowledge, or should be discarded. Compared with manually designed
networks from the literature, the proposed algorithm yields results with nearly identical
performance, while reducing the associated costs (in terms of energy consumption).

The algorithm proposed by Martinez-de Pison et al. (2017) combines HPO with feature
selection (as opposed to other algorithms, e.g., Ekbal and Saha 2015; Le6n et al. 2019;
Guo et al. 2019). First, a GP (with UCB as an acquisition function) is used to obtain the
best HPO setting (according to the RMSE), considering the full set of features. Next, a var-
iant of GA (GA-PARSIMONY, Sanz-Garcia et al. 2015) is used to select the best features
of the problem, given the hyperparameters obtained in the first step. In this way, the final
model has high accuracy and lower complexity (i.e., fewer features), and optimization time
is significantly reduced. In our opinion, however, this approach is still suboptimal, as the
two optimization problems (HPO and feature selection) are solved sequentially, instead of
jointly. Calisto and Lai-Yuen (2021) use an evolutionary strategy combined with a Random
Forest metamodel, to optimize 10 hyperparameters of a CNN. In the beginning of the opti-
mization, the algorithm updates the population of solutions using the evolutionary strategy;
only after some iterations, the selection of the new candidates is guided by the RF, which
is updated each time with all new Pareto front solutions. The final networks found by the
algorithm perform better than (or equivalent to) state-of-the-art architectures, while the
size of the architectures and the search time are significantly reduced.

Although most NAS algorithms are out of scope for this survey, we include the work by
Lu et al. (2020), as it can be considered an HPO algorithm. The algorithm (NSGANetV2)
simultaneously optimizes the architectural hyperparameters and the model weights of a
CNN, using a bi-level approach consisting of NSGA-II combined with a metamodel. The
metamodel is used to estimate performance measures, which are then optimized by an evo-
lutionary algorithm (such approaches have also been applied successfully to non-HPO set-
tings, see e.g., Jin 2011; Dutta and Gandomi 2020). In the upper level of the optimization,
the metamodel is built using an initial set of candidate solutions. In each iteration of the
upper level, NSGA-II is executed on the metamodel to detect the Pareto-optimal HP set-
tings (configuration of layers, channels, kernel size, and input resolution of the CNN). At
the lower level, the weights of the CNN are trained on a subset of the Pareto-optimal solu-
tions. The metamodel is then updated with the results of the actual performance evalua-
tions. Four different metamodels were studied; Multilayer Perceptron (MLP), Classification
and Regression Trees (CART), Radial Basis Functions (RBF), and GP. Given that none of
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them consistently outperformed the others, the authors propose to select the best meta-
model in every iteration. On standard datasets (CIFAR-10, CIFAR-100, and ImageNet),
the resulting algorithm matches the performance of state-of-the-art NAS algorithms ( et al.
2019; Mei et al. 2020), but at a reduced search cost.

5 Multi-objective HPO algorithms: pros and cons

In this section, we discuss the weakness and strengths of the different algorithms. We
focus on four different aspects: (1) the computational complexity of the algorithm, (2)
the ability to accommodate high dimensional input spaces, (3) the ability to handle mixed
input spaces, and (4) the ease of use of parallel computations. Unfortunately, none of the
papers studied in this review provides explicit details on these aspects in the publication.
In general, we often observed a surprising lack of detail with respect to many methodo-
logical aspects (such as the nature of the hyperparameters being optimized, the nature of
the genetic operators and the design of the initial population in metaheuristic-based algo-
rithms, the design of experiments used, the final Pareto-optimal solutions provided by the
algorithm, etc.). In many cases, there is even no pseudocode provided for the algorithm,
and detailed descriptions of novel metrics (if any) used to measure the performance of the
target ML algorithm are lacking. This lack of detail is likely caused by the fact that most
papers aim to solve a particular practical application and the hyperparameter optimization
was usually not seen as the main contribution of the paper.

Consequently, the discussion in this section remains quite general, and relies largely on
the results of our own independent research, based on the information found in methodo-
logical papers for the algorithms considered. This information also allowed us to outline
rough pseudocodes of the algorithms (which are presented in Appendix 1). Although we
emphasize (again) that these pseudocodes do not necessarily reflect the accurate details
of the algorithms, we find them helpful, in particular, to estimate the complexity of the
algorithms. For black-box algorithms, this complexity can be measured by means of their
worst-case expected running time (Doerr 2020). The running time (or optimization time
of an algorithm for a function f is defined as the number of function evaluations that the
algorithm performs until (and including) the evaluation of an optimal solution for f. For
HPO algorithms, the running time is largely proportional to the number of training and
validation steps performed, as these are the most expensive steps in the HPO procedure.
The training and validation steps need to be performed for each HPO configuration studied
by the HPO algorithm. Consequently, in what follows, we propose to use the (worst-case)
number of HPO configurations evaluated by the algorithm as a proxy for the algorithm’s
expected worst-case running time. The result is expressed as a function g(n, I, N), which
is influenced by three parameters: (1) the number of initial HP configurations » required to
start the optimization (e.g., the size of the initial population in evolutionary algorithms, or
the size of a Latin hypercube sample for Bayesian optimization), (2) the number of itera-
tions 7 allowed during the search, and (3) the number of new HPO configurations N gener-
ated per iteration. Table summarizes the results of our analysis.

Clearly, the number of costly function evaluations in a typical metamodell0-based
optimization is much lower than in a metaheuristic-based algorithm, as usually only
a single new solution is evaluated in each iteration. MADE, the metaheuristic-based
algorithm by Pathak et al. (2020), can be particularly expensive, as it performs a cha-
otic local search to generate N additional solutions for each solution present in the
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population of a given iteration. However, using a metamodel to reduce the number of
HP configurations that need to be evaluated does not ensure a lower execution time. For
instance, the hybrid algorithm GP + GA_Parsimony (Sanz-Garcia et al. 2015) tries to
optimize both hyperparameters and features used to train the ML model; the running
time remains high, however, as the feature selection is performed in a separate phase
after the HPO has been performed: this leads to a drastic increase in the number of HP
configurations evaluated, compared with other algorithms such as NSGA-II and GP-
based optimization.

The use of parallel computations may be considered to decrease the total execution
time of the optimization. For metaheuristic-based algorithms, this is usually imple-
mented by parallelizing the evaluation of novel configurations in each population gen-
eration (Durillo et al. 2008; Wang et al. 2018). Parallelization has been observed in
metaheuristic-based optimization algorithms such as CMA-ES (Tanaka et al. 2016; Qin
et al. 2017), CoDeepNeat (Liang et al. 2019), GA (Deighan et al. 2021), and NSGA-
IT (Kim et al. 2017); it has also been suggested in (Albelwi and Mah 2016; Baldeon
and Lai-Yuen 2020) for DNN optimization. Bayesian Optimization approaches, by con-
trast, are inherently serial as they use past observations to determine the next point(s)
to sample. Parallelization can be used to some extent, though, e.g. in the evaluation of
the initial set of configurations, or in batch BO (Richter et al. 2016; Binder et al. 2020;
Horn and Bischl 2016). Parallel computations can also be introduced during the training/
validation of the ML algorithm (by training/validating the model simultaneously on the
different data splits in the cross-validation protocol (Mostafa et al. 2020)), or during the
training of the metamodel [e.g., for Random Forests (Chen et al. 2016) and for Gaussian
Processes (Dai et al. 2014)].

The ability of an algorithm to handle mixed input spaces is not evident. For metaheuris-
tic-based optimization procedures, for instance, this requires a proper coding of the solu-
tions (e.g., the chromosomes in GAs or the particles in PSO), and consequently a reformu-
lation of the evolutionary operators. For algorithms such as ACO, NMA, and CMA-ES,
we expect that handling mixed search spaces is not straightforward, given that they were
originally designed for a specific type of variables (ACO for discrete variables that can
be easily structured in a graph, and NMA and CMA-ES for continuous variables). In
metamodel-based optimization approaches using GPs, a proper kernel needs to be used to
accommodate mixed input spaces. Metamodel-based approaches that rely on Random For-
ests or TPE, by contrast, can handle a mix of discrete, categorical, and numerical variables
quite straightforwardly.

To judge the ability of the algorithms to handle high dimensional search spaces, we
relied on the findings of other studies (see the references in Table 10). We categorize the
results into poor (meaning that the ability to handle high dimensional search spaces is
problematic), good, or unknown (meaning that no discussions on this aspect were found).

6 Conclusions and future research

This paper has reviewed the literature on multi-objective HPO algorithms, categorizing rel-
evant papers into metaheuristic-based, metamodel-based, and hybrid approaches. The lit-
erature on MO HPO is not as abundant as on single-objective HPO; yet, MO HPO is highly
relevant in practice. Taking a multi-objective perspective on HPO not only allows the ana-
lyst to optimize trade-offs between different performance measures, but it may also even
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Table 11 Summary of research opportunities for multi-objective hyperparameter optimization

Type Recommendations

Methodological Use of hybrid algorithms

Use of ensembles (of metamodels, acquisition functions, etc.)

Multi-fidelity methods and/or bandit-based methods

Use of early stopping criteria

Use of algorithms that account for heterogeneous noise in performance objectives
General Use of individual performance metrics instead of aggregated metrics

Include a clear description of search space characteristics (type and range of con-
sidered HPs), algorithmic details (with pseudocode), performance objectives,
and final optimal solutions obtained (optimal configurations, a quality metric
for the Pareto front, etc.)

Benchmark novel algorithms w.r.t. existing algorithms

yield better solutions than the corresponding single-objective HPO problem. For instance,
it has been shown that including complexity as an objective in multi-objective HPO does
not necessarily compromise the loss-based performance of the ML algorithm w.r.t. the
task for which it is trained: particularly, the minimization of the number of features used
for training can improve the performance of the ML algorithm (Sopov and Ivanov 2015;
Binder et al. 2020; Bouraoui et al. 2018; Faris et al. 2020).

As the field of multi-objective HPO is gaining speed, it presents diverse opportuni-
ties for further research. We present recommendations here, distinguishing between (1)
methodological recommendations (focusing on the use of more advanced optimization
approaches), and (2) general recommendations (focusing on shortcomings or pitfalls that
currently occur in the literature, and that—in our opinion—hamper the reproducibility, usa-
bility, and interpretability of the results). The recommendations are outlined in Table 11.

In the current literature, metaheuristic-based HPO approaches are clearly the most pop-
ular. This is quite striking, as such approaches require the evaluation of a large amount
of HP configurations, and training/testing the target algorithm for any given HP configu-
ration is usually the most expensive step in the HPO algorithm (due to, e.g., the k-fold
cross-validation, the optimization steps required for the algorithm’s internal parameters,
the evaluation of potentially expensive performance measures such as energy consump-
tion or inference time, etc.). Further research on hybrid HPO algorithms appears promising
here. So far, research on these algorithms remains scarce; yet, one would expect that such
algorithms combine the best of two worlds, providing low computational cost (as the meta-
model provides inexpensive function evaluations) along with a heuristic search that avoids
the challenge of optimizing an acquisition function.

Current results have also demonstrated that using ensembles of optimal HP configura-
tions can yield improvements (Ekbal and Saha 2015; Sopov and Ivanov 2015; Ekbal and
Saha 2016; Zhang et al. 2016). Yet, this evidently increases the number of HP evaluations
required. In future research, it may be promising to look at ensembles of multiple meta-
models (Wistuba et al. 2018; Cho et al. 2020), multiple acquisition functions (Cowen-Riv-
ers et al. 2020), or even multiple optimization procedures (Liu et al. 2020).

Furthermore, multiple opportunities exist to extend recent advanced approaches for
single-objective HPO towards multi-objective HPO. Recent research has shown poten-
tial benefits in studying cheaply available (yet lower fidelity) information, obtained for
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instance by evaluating only a fraction of the training data or a small number of itera-
tions. Low fidelity methods such as bandit-based approaches (Li et al. 2017) have, to the
best of our knowledge, not yet been applied in multi-objective HPO. Also, early stop-
ping criteria (Dai et al. 2019) could be considered to ensure more intelligent use of the
available computational budget. This has already been applied in single-objective opti-
mization (Kohavi and John 1995; Provost et al. 1999), by considering the algorithm’s
learning curve: the training procedure for a given hyperparameter configuration is then
stopped when adding further resources (training instance, iterations, training time, etc)
is predicted to be futile. Early stopping criteria have also been used to reduce the over-
fitting level of the ML algorithm (Makarova et al. 2021). To the best of our knowledge,
none of these methodological approaches has been applied so far in multi-objective
HPO algorithms.

Finally, apart from the work of Koch et al. (2015) and Horn et al. (2017), the uncer-
tainty in the performance measures is commonly ignored in HPO optimization. These
two algorithms have mainly explored the impact of different noise handling strategies
on the results of existing algorithms, while it may be more beneficial to account for the
noise by adjusting the metamodels used, and/or the algorithmic approach. Furthermore,
they assume homogenous noise, which is likely not the case in practice. Stochastic algo-
rithms (such as Binois et al. 2019; Gonzalez et al. 2020) can potentially be useful to
determine the number of (extra)replications dynamically during HPO optimization, thus
ensuring that computational budget is spent in (re-)evaluating the configuration that
yields most information.

Apart from these methodological recommendations, we also outline some general rec-
ommendations. To improve the interpretability of the results, we recommend using indi-
vidual performance measures as objectives in HPO settings, rather than an aggregate
measure such as the F-measure (combining recall and precision for classification problems
Ekbal and Saha 2015, 2016) or the Area Under the Curve measure (AUC), which combines
the False Positive rate and the True Positive rate. Such aggregated measures reflect a fixed
relationship between the individual measures, which may result in solutions that perform
really well on the aggregated measure (for instance, the F-measure), but are suboptimal for
the individual measures (recall and precision). Moreover, the aggregation of multiple per-
formance measures into a single objective by means of scalarization should be done care-
fully, as not all scalarization methods (e.g., weighted sum) allow the detection of all parts
of the Pareto front. The Augmented Tchebycheff function (Miettinen 2012), for instance,
is recommended when the front contains non-convex areas. The nonlinear term in the sca-
larization function ensures that these areas can be detected, while the linear term ensures
that weak Pareto optimal solutions are less rewarded (see Miettinen and Mékeld 2002 for a
further discussion on scalarization functions).

Furthermore, we noticed a surprising lack of detail in the current HPO papers (i.e., in
the description of the methodological approaches, the experimental designs, and the cor-
responding results). To improve the reproducibility of the research, and facilitate compari-
sons among different HPO algorithms, we recommend a clear description and analysis of
four basic elements in each future HPO research paper: (1) search space characteristics
(type and range of the considered HPs), (2) algorithmic details (accompanied by pseudoc-
ode), (3) description/definition of performance objectives, (4) details on the final optimal
solutions obtained for the test problems (optimal HPO configurations, quality metrics for
the Pareto front, etc.).

Finally, we noticed that only about half of the papers studied benchmark the algo-
rithm under study w.r.t. other existing algorithms. Such experimental comparisons have
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substantial added value for the research community. We therefore clearly advocate their
inclusion in future multi-objective HPO research.

Appendix: Pseudocodes of MO-HPO algorithms

The details of the optimization algorithms are provided as a pseudocode. This was obtained
from the description included in the papers surveyed and the paper where the algorithm
was proposed initially. The function indicating the number of HP configurations evaluated
during the optimization is included as part of the heading of the pseudocode.

Pseudocode 1 Metamodel-based optimization g(n,I,N =1) =n+1

Require: n : initial design, I: number of iterations
1 P+ {}
2: fori=1 tondo > Sample initial HP configurations
3 hp < Generate HP configuration
4 fnp + Evaluate performance of hp
5 P« PU{hp, fnp}
6: end for
7. fori=1 to I do
8 M < Train metamodel using P
9 newpy < Obtain a new HP configuration by optimizing an acquisition
function using the metamodel predictions

10: fnp + Evaluate performance of newp,
11 P < P U {newnp, fnp}
12: end for

return HP configurations in the Pareto front
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Pseudocode 2 NSGA-II, OMOPSO, PSO, SPEA-II, MO-RACACO,
CoDeepNEAT, ENS-MOEA /D, MOEA /D, GA with scalarized objectives, and
the hybrid algorithm (MLP/CART/RBF/GP) + NSGA-Il g(n,I, N) = n+IN

Require: n : population size, I: number of iterations, N: number of new

oW

© 2 x>

configurations per iteration

P {}
for i =1 ton do > Create initial population
hp < Generate HP configuration
frp < Evaluate performance of hp
P+ PU {hpa fhp}
end for
fori=1 tol do
forg=1 to N do > Generate new HP configurations
newpy < Generate HP configuration
fnew,, < Evaluate performance of newp,
P < PU{newnp, frnew,, }
end for
if NSGA-II or CoDeepNeat or GA or hybrid algorithm then
P < Select HP configurations considering non-dominated and

crowding distance sorting
end if
if MOEA/D or ENS-MOEA/D then
P <+ Select HP configurations considering non-dominated sorting
end if
if OMOPSO or PSO then
Update velocity and particle position
end if
if MO-RACACO then
Update pheromone paths
end if

. end for

return HP configurations in the Pareto front
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Pseudocode 3 Random Forest + ES g(n,I,N) =n+ IN

Require: n : initial solutions, I: number of iterations, N: number of new
configurations per iteration

1: P+ {}

2. STP « {} > Set of observed HP configurations to train the
metamodel

3: fori=1 ton do > Create initial Population

4: hp < Generate an HP configuration

5: fnp + Evaluate performance of hp

6: P <« PU{hp, fnp}

7. end for

8 STP «+ STPUP

9- fori=1 to é do © Perform Evolutionary Strategy without the

metamodel during the first half of the iterations
10: for =1 to N do

11: newyp, < Generate new HP configuration by applying genetic
operators

12: Jnewy,, < Evaluate performance of newp,,

13: P < PU{hp, fncw,, }

14: STP < STP U{hp, frnew,, }

15: end for

16: P « Select HP configurations considering non-dominated and crowd-

ing distance sorting

17: end for

18: fori=1 to % do > Perform Evolutionary Strategy using the
metamodel during the second half of the iterations

19: for =1 to N do

20: Train a metamodel (Random Forest) using ST P

21: hp < Generate a HP configuration using genetic operators and the
metamodel prediction

22: fnp < Evaluate performance of hp

23: P« PU{hp, fup}

24: STP < STP U {hp, fnp}

25: end for

26: P + Select HP configurations considering non-dominated and crowd-
ing distance sorting

27: end for

return HP configurations in the Pareto front
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Pseudocode 4 MODE for scalarized objectives g(n, [, N =1)=n+1

Require: n : initial design, I: number of iterations

1: P+ {}

2: fori=1 tondo > Sample initial HP configurations

3: hp + Generate HP configuration

4: fnp < Evaluate performance of hp

5: P« PU{hp, frp}

6: end for

7. fori=1 to I do

8: challenger < Select a random configuration from P

9: a, b, c < Select three random configurations from P

10: newpy, < Obtain a new HP configuration as a linear combination of
a,b,c

11: Jnew,, < Evaluate performance of newp,

12: if frew,, is better than fepaienger then

13: replace challenger with newp, in P

14: end if

15: end for
return HP configurations in the Pareto front
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Pseudocode 5 ANN + DSE g(n,I,N=1)=n+1

Require: n : initial design, I: number of iterations

— =
= o

12:
13:
14:

15:
16:
17:
18:
19:
20:
21:
22:

© ® N> T w

:fori=1 ton do > Sample initial HP configurations
hp < Generate HP configuration
frp < Evaluate performance of hp
P+ PU {hpa fhp}
end for
previous < null
i=1
while { < I do
M <+ Train a metamodel (ANN) using P
newp, < Sample the next HP configuration from a Gaussian distribu-
tion centered around the previously explored solution (or sample a random
configuration if previous = null)
ﬁLe’whp < Predict the performance of newy, using the metamodel
if newy, is predicted to be Pareto dominated then
Select with certain probability « the configuration {newp,} to add
to P
end if
if newy,), is accepted in P then
previous = {newnp, frew,, }
frp < Evaluate performance of hp
P PU {hp. fup)
i+ =1
end if
end while
return HP configurations in the Pareto front
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Pseudocode 6 GP + GA Parsimony g(n,I,N) =n+1+n+IN = 2n +
I(N+1)

Require: n : initial design for BO, I: number of iterations, N: number of new
configurations per iteration
> HPO using BO and training the ML with all the features
:fori=1 tondo > Sample initial HP configurations
hp + Generate HP configuration
fnp < Evaluate performance of hp
P+« PU {hp, fhill}
end for
fori=1 toI do
M <+ Train a metamodel (GP) using P
newpy < Obtain a new HP configuration by optimizing an acquisition
function using the metamodel predictions
10: Jnew,, < Evaluate performance of newp,
11: P < PU{newnp, frew,,
12: end for

© X2 NPT e e

> Feature selection using the best model HPs using a
Genetic Algorithm

13: T+ {}

14: for i =1 ton do > Create initial population

15: hpf < Select HP configuration from P and select a set of features of
the ML problem

16: fnps < Evaluate performance of hpf

17: T < T U{hpf, frpr}
18: end for
19: for i =1 to I do

20: NeWpp1, NeWhp2 — Generate two HP configurations by applying genetic
operators in two random HP configurations Apl, hp2 selected from T

21: fhp1s frp2 < Evaluate performance of newpp1, newpp2

22: T+TuU {{newhplv fhpl}v {newhp27 fhpQ}}

23: Reduce T to keep the same population size on each iteration

24: end for

return HP configurations in the Pareto front
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Pseudocode 7 CMA-ES for MOO g(n=0,1,N)=IN

Require: I: number of iterations, N: number of new configurations per

AN

iteration
Create a multivariate normal distribution A(.) of & hyperparameters
configurations
fori=1 to [ do
{hp1,-- ,hpn} < N () > Sample N candidates from N(.)
{frp1s 5 frpn } < Evaluate performance of each HP configuration

Keep only the [ highest/lowest from {hp1,---,hpy} configurations
using their non-dominating sort
Update the multivariate normal distribution N(.) using the selected
HP configurations
end for
return HP configurations in the Pareto front

Pseudocode 8 Multi-objective SA g(n =0,1,N) = IN

Require: I: number of iterations, N: number of new configurations per

i

iteration
. fori=1 to I do
forg=1 to N do

3: hp < Generate a new HP configuration from the neighborhood of
the current best HP configuration X. A random configuration is used at
the beginning of the optimization

4: fnp <+ Evaluate performance of hp

5 Determine if Ap can be considered as the current best solution X
(acceptance rule defined to consider the dominance of hp over X and the
configurations in an external archive of non-dominated solutions)

6: Update, if needed, the external archive of non-dominated solutions

7: Update the “temperature” of the system

8: end for

9: end for

return HP configurations in the Pareto front
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Pseudocode 9 Nelder Mead algorithm with scalarized objectives g(n, I, N) =
n+1+I(N+1)

Require: n : initial solutions, I: number of iterations, N: number of new
configurations per iteration

1: S {}

2: fori=1 ton+1do > Create initial Simplex

3: hp < Generate an HP configuration

4: fhp < Evaluate performance of hp

5: S« SU{hp, fup}

6: end for

7. fori=1 to I do

8: Sort vertices in S in descending order

9: Sc + Compute centroid vertex without the worst vertex

10 Sr < Compute reflection of Sc

11: fsr <+ Evaluate performance of Sr

12: if fs, is between the best and worst solution (excluding them) then

13: Replace the worst solution in S with {S7, f,,}

14: else if fg, is better than the best solution then

15: Se <+ Expand using Sr and Sc

16: fse + Evaluate performance of Se

17: Replace the worst solution with Se if this is better than Sr.
Otherwise, use Sr

18: else if fg, is worst than the current worst solution then

19: Ser < Contract using St and Sec

20: fser + Evaluate performance of Scr

21: if fg.r is better than fg, then

22: Replace the worst solution with Ser

23: else > Shrink toward the best solution

24: for j =2 ton+1do

25: St < shrink vertex ¢

26: fsi < Evaluate performance of Si

27: end for

28: end if

29: end if

30: end for

return HP configurations in the Pareto front
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Pseudocode 10 MADE g(n,I,N) =n+2IN

Require: n : initial solutions, I: number of iterations, N: number of new
configurations per iteration

1: P+ {}
2: fori=1 tondo > Create initial Population
3: hp < Generate an HP configuration
4: fnp + Evaluate performance of hp
5: P <« PU{hp, fap}
6: end for
7. fori=1 to I do
8: forg=1 to N do > Generate new HP configurations
9: newpy, < Generate a new HP configuration by applying mutation
and crossover operators, using a random configuration Rc selected from P
10: Jnew,, < Evaluate performance of newp,
11: Replace Rc with newy,, if newy, dominates Rc
12: end for
S < select non-dominated HP configurations
13: forg=1 to|S|do » Perform a chaotic local search around
the solutions in the Pareto front
14: hpeis < Generate a new HP configuration around S,
15: fhpa, < Evaluate performance of hp.s
16: P+ PU {hpcl37 fhpuls}
17: end for
18: P + Select HP configurations considering non-dominated and crowd-

ing distance sorting
19: end for
return HP configurations in the Pareto front
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