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a b s t r a c t

In a univariate setting there is a near unanimous agreement on the notion of skewness.
Nevertheless, many more skewness measures, or also called asymmetry measures (or
indices) exist, each with their benefits. Extending the concept of skewness or asymmetry
to a multivariate setting is a much harder problem. Attempts have been made, but the
unanimity of the univariate setting is no longer present. Most asymmetry indices are
scalar or vector based measures, but this can lead to a loss of information concerning
asymmetry. To this end, we propose a novel functional asymmetry index which is based
on the natural idea of reflective symmetry around the mode. The proposed index is also
extended to the multivariate setting and a summarizing scalar (or vector based index in
multivariate setting) is derived from it.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Quantifying asymmetry (or skewness) is a well known problem. As early as the late 19th century, great mathematicians
s Pearson came up with nowadays widely known measures to capture asymmetry. Multivariate extensions came later
ith Mardia’s skewness [34] and subsequently many more measures have been proposed. The need for asymmetry
easures has grown with the rise of econometrics for risk calculation, but it also finds its use in normality testing and
ll fields which rely on this. Although the wording asymmetry ‘measure’ is of standard use for a quantity that indicates
he level of asymmetry of a distribution, we also utilize the word ‘index’ as the former might misleadingly be linked to a
robabilistic measure.
Denote with X a univariate random variable taking values in B ⊆ R, with density function fX (x), cumulative distribution

unction FX (x) and quantile function QX (p) = infx∈B{FX (x) ≥ p}. The earliest measures of skewness for a random variable
were based on measures of location for X . These mainly consisted in comparing the mean (µX = E[X]), median

(MX = QX (0.5)) and mode (MX = arg max
x∈B

fX (x)). It has been agreed upon by several authors (see e.g., [4]) that a measure

of asymmetry γ (X) should posses certain desirable properties. These are

(P1) γ (X) is location and scale (for positive scaling factors) invariant, i.e., ∀a > 0 and b ∈ R: γ (aX + b) = γ (X);
(P2) γ (X) = 0 for symmetric X;
(P3) γ (−X) = −γ (X);
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(P4) Let Y have cumulative distribution function G(y), if G−1(FX (x)) is a convex function, then γ (Y ) ≥ γ (X).

roperties (P1) to (P3) together can be expressed as γ (aX+b) = sign(a)γ (X), for any a, b ∈ R. The reason these properties
are separated is from a historical point of view. For the earliest notions of skewness, it was already a base criterion
that a measure of skewness should be unaffected by scaling or location shifts. Also the measure equaling zero under
symmetry was unanimously agreed upon. So what then with negative scaling? The most logical line of thought starting
from Properties (P1) and (P2) would be Property (P3) as a reflection of the distribution makes a left skewed distribution
right skewed and vice versa, without changing anything else. So the sign of the skewness changes, but not the magnitude.
Property (P4) saw life in [45] and is used to put an ordering based on a skewness measure, i.e., when the condition holds
for FX and G, then γ (FX ) ≤ γ (G) always. Over the course of time, many other conditions have been stated, depending on
the skewness measure. A nice review is given in [32]. The condition stated in Property (P4) is among the strongest, but is
arguably not a true necessity as other ad hoc ordering schemes can be devised. Examples of such can be found in [5,15].
In essence, this property can thus be replaced with any other condition which, if it holds for a class of distributions, puts
an ordering on the entire class based on its skewness.

One could argue that for an easier interpretation, γ (X) ∈ [−1, 1], which ensures boundedness of the measure. However,
as most basic measures of skewness do not satisfy this, we do not impose this boundedness, at a first stage.

The remainder of the paper is structured as follows. In Section 2 a small review on existing univariate and multivariate
asymmetry measures is given. In Section 3 we propose a new measure of asymmetry as well as a multivariate extension
of it. Section 4 calculates the newly proposed asymmetry measure for several examples. Section 5 studies methods for
estimating the measure and establishes some asymptotic properties of the estimators. In Section 6 we compare, for some
illustrative examples, our measure with the classical measure of asymmetry, and finally in Section 7 we provide some
concluding remarks. The paper comes with some Supplementary Material, containing additional information in the form
of tables and figures to accompany Sections 4 and 6.

2. Review on existing asymmetry measures

2.1. Univariate measures of asymmetry

Based on the three classical measures of location (mean, median and mode), at the end of the 19th century Pearson
proposed a few measures to express asymmetry. These were, as proposed in respectively [38,39],

µX − MX{
E[(X − µX )2]

}1/2 ,
3(µX − MX ){

E[(X − µX )2]
}1/2 . (1)

Later on, as more knowledge and insights in statistics and distributional theory became available, other measures of
asymmetry have been introduced. These extend the above two by taking into account extra information of the distribution.
The primary examples are the following ones.

• An asymmetry measure based on first and second order differences between quantiles (see [12,48]):
QX (0.25) − 2QX (0.5) + QX (0.75)

QX (0.75) − QX (0.25)
. (2)

This is known as the Bowley coefficient of skewness.
• Classical skewness (also known as Pearson’s moment coefficient of skewness):

SK(X) =
E[(X − µX )3]{

E[(X − µX )2]
}3/2 . (3)

• A skewness measure based on the difference between mean and median (see [21]):
µX − MX

E[|X − MX |]
. (4)

For a symmetric distribution, all three measures of location coincide and all of the above measures equal zero. But in
deciding which one is best, there is some debate. The most commonly used one however, is the classical skewness (3).

All measures meet the four desirable properties of a good skewness measure. However, they also have their downsides.
For measures (1), (3) and (4) the problem is that they are heavily influenced by outliers as they depend on the mean µX .
Measure (2) does not share this property, but it only takes into account the 50% most central data, thereby neglecting the
tails which might also contain useful information on skewness. A last issue with all these measures is interpretability,
which from an intrinsic idea viewpoint is clear, but given a value from the measure, it is not immediately clear what this
reflects.

Some other measures of skewness have been introduced, but these are more situational or do not fulfill most of the
desirable properties mentioned above. The idea of comparing certain quantiles of the distribution however, is a common
concept that can be applied to obtain new measures of asymmetry. For more general measures of asymmetry, some
2
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options have been proposed. First there are extensions on previous measures of asymmetry. A nice example of this is the
measure introduced by [16], see also in [22] among others, building upon the idea behind (2), i.e., considering

QX (1 − p) − 2QX (0.5) + QX (p)
QX (1 − p) − QX (p)

, 0 < p < 1. (5)

This circumvents to some extent the loss of information in the tails, but gives rise to the question which p one should
take. For p = 0.25, (2) is obtained, which is also dubbed the quartile skewness. For p = 0.125 one obtains the octile
skewness etc. A more detailed treatment on related skewness measures is given in [3]. For robustness reasons, considering
asymmetry around the mean is not an option.

A quantile function fully characterizes a distribution function. In that sense one could replace quantiles in (5) also by
expectiles, that also fully characterize a distribution function, and exist when X has a finite first moment. For given p, the
pth order expectile, denoted eX (p), satisfies p = E [ |X − eX (p)|I{X ≤ eX (p)} ] {E [ |X − eX (p)| ]}−1. In contrast to quantiles,
expectiles are sensitive to information in the tails (since expectation based) and in that sense circumvent that drawback
of a quantiles based measure of asymmetry. In [18] the authors introduce and study the expectile-based measure of
skewness obtained by replacing in (5) quantiles by expectiles. Multivariate extensions of (5), as well as of its expectile-
based alternative are however not straightforward, requiring defining quantiles and expectiles in a multivariate setting.
For a detailed study of this expectile-based measure of skewness in a univariate setting see [18].

In [37] the measure

η(X) =

{
−Corr(FX (X), fX (X)) if 0 < Var(fX (X)) < ∞,

0 if Var(fX (X)) = 0, (6)

is used as a tool to quantify asymmetry. The measure in expression (6) fulfills the first three requirements for a good
asymmetry measure, but not the fourth one. The advantage of this measure is that it also makes sense for a monotonically
increasing/decreasing density function. In [17] critique on this measure is posed as a tool to quantify asymmetry. The main
comment being that asymmetry for monotonical functions is very subjective with respect to the observer’s view and that
the asymmetry measure (6) is actually just a test for exponentiality, i.e., it yields 0 for the exponential distribution only.

Throughout the rest of the paper we assume densities, univariate or multivariate, to be unimodal. When the distribution
is known to be skewed but unimodal, intuitively it makes more sense to compare both sides of the density function around
its mode as we want to compare both halves of a distribution with respect to its peak. There are also more practical reasons
why the mode might be a better location measure in this context, as mentioned in [23]. A possible measure can thus be
the total probability mass on each side of the mode, but also distances between the mode and a pre-specified point. In [11]
the ‘‘odds-asymmetry’’ function is proposed. Assume that X is a continuous random variable with a unimodal density fX
which is rooted (i.e., a density with limiting values zero at both endpoints of its support). Then for each p ∈ (0, 1) there
exist two points xℓ(p) and xr (p), one to the left and one to the right of the mode, for which fX (xℓ(p)) = fX (xr (p)) = pfX (MX ).
he odds-asymmetry function is then constructed by comparing the distances of xℓ(p) and xr (p) to the mode. If we denote
hese with dℓ(p) = MX − xℓ(p) and dr (p) = xr (p) − MX , then the odds-asymmetry function is given by

ρ : (0, 1) → (0, ∞) : p → ρ(p) =
dr (p)
dℓ(p)

. (7)

If (7) equals one for each p ∈ (0, 1), then X is symmetric. This idea is further improved in [15] where the signed
proportionate difference function is defined as

γ : (0, 1) → (−1, 1) : p → γ (p) =
dr (p) − dℓ(p)
dr (p) + dℓ(p)

=
xr (p) − 2MX + xℓ(p)

xr (p) − xℓ(p)
. (8)

This provides an asymmetry function which is constant 0 in case of symmetry, negative for values of p for which the
function is left skewed and positive otherwise. The interesting part about this measure is that it allows for different
asymmetry on different parts of the density, which gives more detailed information compared to a single measure for the
entirety of X . If one still wants a single scalar asymmetry measure, an option is to integrate (8) over p which results in
the overall (integrated) measure γ ∗

= 1 − 2FX (MX ), which is the measure of asymmetry proposed in [4] (see also [15]
for details on this). The condition that fX needs to be rooted can also be dropped, but this limits the range of values p can
take.

In Fig. 1 we illustrate the idea and construction of the measures (7) and (8) for p = 0.55, on the plotted density. The
red horizontal line indicates the value of pfX (MX ).

2.2. Multivariate measures of asymmetry

Consider now a d-dimensional random variable X ∈ Rd with mean µX and covariance matrix Σ . Throughout the paper
all vectors are denoted as column vectors, with X⊤ denoting the transpose of a vector X (or matrix). Further, vectors and
matrices will be denoted with boldface notations. Some multivariate measures of skewness for X have been proposed.
The first notable attempt was made in [34], in which the author proposes a rather straightforward multivariate extension
3
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Fig. 1. Graphical illustration of ideas behind (7) and (8) for the plotted density and p = 0.55.

o the univariate skewness measure (3). With X1 and X2 being independent copies of X, Mardia’s skewness measure is
efined as

βd(X) = E
{[

(X1 − µX)
⊤Σ−1(X2 − µX)

]3}
. (9)

or standardized variables Y = Σ−1/2 (X − µX) ∈ Rd, this can be reduced to

βd(Y) =

d∑
j=1

d∑
k=1

d∑
ℓ=1

[
E(YjYkYℓ)

]2
.

his measure is by far the most well known and popular way to express multivariate skewness. Appealing properties are
hat βd is affine invariant and easy to compute numerically. However it has also received some criticism as no negative
alues are allowed. With Y1 and Y2 two independent copies of Y, the above measure equals E

[(
Y⊤

1 Y2
)3], as was noticed

y [25]. As stated in, for example, [25,44], βd(Y) is just the norm of the vector containing all third order cumulants of Y.
et κ3 denote this vector of cumulants.
Some extensions of Mardia’s skewness measure have subsequently been proposed. The first one is for the standardized

ariables Y proposed in [35], which is a vector valued measure expressing skewness for the different variables

s(Y) = E

⎡⎣⎛⎝ d∑
j=1

Y 2
j

⎞⎠Y

⎤⎦ .

his measure has then been further adapted in [29] to fill the gap created by not including all interactions between the
omponents of Y. In that paper Kollo’s measure of skewness is proposed, defined as

b(Y) = E

⎡⎣⎛⎝ d∑
j=1

d∑
k=1

YjYk

⎞⎠Y

⎤⎦ . (10)

his measure of multivariate skewness has recently gained popularity in the financial context to model skewness in
.g., asset returns. See further for example Section 6.1 in [44] for more discussion on these and other multivariate measures
f skewness.
The measure in (10) can be zero, even for asymmetric distributions, as mentioned in for example [25]. In that paper

t is further remarked that the measures s(Y) and b(Y) (among others) can also be expressed in terms of κ3, the vector of
hird order cumulants of Y. The authors in [25] then propose further improvements of the above measures of multivariate
kewness by considering only distinct elements of cumulant vectors (of third and other orders).
A second flow of multivariate skewness measures is obtained by projecting the data on a one-dimensional hyperplane

nd calculating the univariate skewness (mostly (3), but in general any other univariate skewness measure can be used) of
he projected data. The first such type of skewness measure was proposed in [33], and is defined as the maximal skewness
hat can be obtained by projecting the data on a vector u on the unit sphere Sd

= {u ∈ Rd
: ∥u∥ = 1}

β∗

d (Y) = sup
{
E
[(

u⊤Y
)3]}2

. (11)

u∈Sd

4
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A similar measure to this is obtained by taking for u the eigenvectors of the covariance matrix of X, scaled by the
corresponding eigenvalue. Denote by Λ the diagonal matrix of eigenvalues, and by Γ the orthogonal matrix consisting of
columns that are the associated eigenvectors of Σ , such that ΓΣΓ⊤

= Λ. The measure proposed in [43] is then given
by

β2
d (X) =

1
d

d∑
j=1

(
E
{
[Γ⊤

·,j(X − µX)]3
}

Λ
3/2
jj

)2

, (12)

ith Γ ·,j denoting the jth column of the matrix Γ , and Λjj the jth diagonal element of Λ. The interpretation of (12) is
he averaged squared skewness along the principal components of the covariance matrix, which is not affine invariant in
ontrast to (11). See for example [44].
A third group of measures proposed in the literature are often situation specifically viable or generalizations of other

nivariate skewness measures. We in particularly mention Isogai’s measure of skewness (see [24]). This is a multivariate
xtension of the measures in (1). The measure is given by

S = (µX − MX)⊤g−1(Σ )(µX − MX),

ith g(.) an appropriate function, which is more often than not taken to be the identity function. Another measure is
roposed in [42] and is based on Renyi’s entropy of a specific order. Formally stated in [9], the measure is given by

S(f ) = var(log(fX(X))) ≈ G′(µX)
⊤ΣG′(µX),

ith G′(·) the first derivative of log(fX(·)).
Of all these criteria, only those of Mardia and Kollo (provided in expressions (9) and (10) respectively) are frequently

sed in practice and one can create new criteria by combining third order cumulants relevant to the application at hand.
To conclude with, a multivariate extension of (8) is proposed in [1]. Let x0 ∈ Sd be given. Take the d-variate random

ector Xwith unimodal density function fX(x) and mode MX. Denote with a+(p, x0) and a−(p, x0) the positive, respectively
egative solution of fX(MX + ax0) = pfX(MX). The multivariate skewness measure proposed in [1] is then given by

γ (p, x0) =
a+(p, x0) + a−(p, x0)
a+(p, x0) − a−(p, x0)

. (13)

his measure depends on the choice of x0, which can be seen as a direction in which the skewness function is to be
valuated. A global measure for skewness, depending only on x0 can then again be taken by averaging or integrating (13)
ver p.

. Newly proposed asymmetry index

.1. A new distance based index of asymmetry in the univariate setting

The idea of using the mode as measure of location in deriving a univariate asymmetry measure is intriguing, although
omes with the burden of having to find the mode, which might not be an easy problem. Especially since for empirical
easures, the median is much easier to find. When looking at a multivariate situation, utilizing the mode might gain favor
gain as quantiles are not uniquely defined in a multivariate setting whereas (under the assumption of unimodality) the
ode is still uniquely defined, albeit harder to find. The measure we propose is related to (8), i.e., we opt for an asymmetry

unction instead of a single scalar (or vector in Rd).
Denote with X ∈ R a univariate random variable with density function fX (x), cumulative distribution function FX (x)

nd mode MX . We propose the measure

γX (s) =
fX (MX + s) − fX (MX − s)

fX (MX )
, (14)

ith s ∈ S , S ⊂ R compact and containing 0. Note that fX (MX − s) = f2MX−X (MX + s), where f2MX−X is the reflection of
fX around its mode MX .

The interpretation of (14) is best explained graphically; see therefore Fig. 2. In the top panel we depict the univariate
skew-normal density (in black solid line), defined as

fX (x; ξ, ω, α) = 2φ
(
x − ξ

ω

)
Φ

(
α

x − ξ

ω

)
, (15)

ith φ and Φ respectively the standard normal density and cumulative distribution function, and where ξ ∈ R is a
ocation parameter, ω > 0 is a scale parameter, and α ∈ R is a skewing parameter. Presented in the top panel of Fig. 2 is
lso the reflection f2MX−X (x) = fX (2MX − x) of fX around its mode (in red dashed line). If we take the difference between

fX (x+ s) and f2MX−X (x+ s) for each s > 0 and scale this by the maximal attainable difference, i.e., fX (MX ), we obtain the
ottom panel.
5
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Fig. 2. Illustration of (14) applied to the skew-normal density in (15) with parameters ξ = 0, ω = 2 and α = 3. The top panel shows fX (black solid
ine) and f2MX−X (in red dashed line). The bottom panel shows γX (s).

It is obvious from (14) that γX (s) is an odd function, hence we get the value of γX (s) for s < 0 for free from these for
> 0. In the bottom panel of Fig. 2 two more quantities are indicated. These are

MγX = arg max
s∈S

(γX (s)),

.e., the mode of γX (·), and

Γ (X) = max
s∈S

fX (MX + s) − fX (MX − s)
fX (MX )

.

nder symmetry, γX (s) = 0 everywhere, while for any asymmetry present there exists a s ̸= 0 where γX (s) ̸= 0.
he interpretation of (14) is thus the difference between the density and its reflected counterpart around the point of
ymmetry (in this case the mode) relative to the maximal attainable difference (the density in the mode).
As this is a skewness function (in s), Property (P4) is somewhat difficult to obtain as we are no longer dealing with a

ingle scalar, but with a function that changes as s changes. With this we mean that for s1 the distribution might be right
kewed, but for some s2 ̸= s1 it might just as well be left skewed. But we can use an ordering as proposed in [15].

heorem 1. The skewness index as defined in (14) satisfies Properties (P2) and (P3), but not Property (P1). Moreover, a logical
rdering is that ‘‘X is more skewed to the right than Y i.f.f. γX (s) > γY (s), ∀s > 0’’.

roof. Take Y = aX + b, with a ∈ R \ {0} and b ∈ R. Then Y has density function fY (y) = sign(a)a−1fX ((y − b)/a) and
ode MY = aMX + b. Hence we obtain that

γY (s) =
fY (MY + s) − fY (MY − s)

fY (MY )
=

1
a fX (

aMX+b+s−b
a ) −

1
a fX (

aMX+b−s−b
a )

1
a fX (

aMX+b−b
a )

=
fX (MX +

s
a ) − fX (MX −

s
a )

fX (MX )
= γX

( s
a

)
.

From this, it immediately follows that γY (s) is a rescaled version of γX (s) and hence location invariant, but not scale
nvariant. Property (P1) is thus only partially satisfied. By taking a = −1 we also immediately obtain that γ−X (s) =

X (−s) = −γX (s), as γX (s) is an odd function in s. This makes that Property (P3) is satisfied. For Property (P2), note that
or symmetric X , fX (MX − s) = fX (MX + s), for all s. Since the mode is the point of symmetry for unimodal distributions,
from (14) it follows that γ (s) = 0 for symmetric X . □
X

6
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Fig. 3. Illustration of (16) applied to a skew-normal distribution (15) with parameters ξ = 0, ω = 2. The top panel shows MγX , the bottom panel
shows γ ∗(X) as function of α.

Furthermore the asymmetry function γX (s) satisfies some basic properties, which are summarized in Corollary 1.

Corollary 1. For the asymmetry function γX (s) the following holds.

(i) The function γX (s) is an odd function.
Consequently MγX may alternatively be obtained from arg max

s≥0
|γX (s)| multiplied with the sign of γX (·) at this argument.

(ii) Suppose that X is rooted at the two tails, i.e., with a < b the lower and upper endpoints of the support of X, it holds
that limx→a fx(x) = 0 = limx→b fx(x). Under this assumption it holds that lim

s→±∞
γX (s) = 0.

(iii) The function γX (s) is bounded: −1 ≤ γX (s) ≤ 1.
(iv) A scale invariant version can be obtained by, for example, defining sX :=

s
√var(X) and considering γX (sX ).

roof. Statements (i) and (ii) are immediate from the definition of γX (s).
For statement (iii) it suffices to recall that fX is unimodal with unique mode MX and hence it holds that for any s,

0 ≤ fX (MX − s) ≤ fX (MX ), 0 ≤ fx(MX + s) ≤ fX (MX ),

hich implies that

−fX (MX ) ≤ fx(MX + s) − fX (MX ) ≤ fx(MX + s) − fX (MX − s) ≤ fX (MX ),

rom which the statement follows.
Statement (iv) follows immediately from the proof of Theorem 1. □

As for a scalar summarizing measure of (14), we take into account both the location of γX (s) and its value. This is with
multivariate extension in mind as it gives the direction of asymmetry and the magnitude. The scalar (or vector in higher
imensions) summarizing measure of asymmetry we propose is

γ ∗(X) =

⎧⎪⎨⎪⎩
Γ (X) sign

(
MγX

)
if MγX ̸= 0,

0 if MγX = 0 or [γX (s) = 0, ∀s],
1 if X is a half-type distribution with decreasing density,
−1 if X is a half-type distribution with increasing density.

(16)

his measure applied to the same example as above yields Fig. 3, in which MγX and γ ∗(X) are given as a function of α

the skewing parameter) of a skew-normal distribution (15) with ξ = 0 and ω = 2. As we would expect, the skewness
s gradually increasing as α increases, passing through zero for α = 0. This is in line with the intrinsic purpose of the
arameter. For α → ∞, γ ∗(X) approaches one and the distribution turns into a half-normal distribution (defined on the
ositive halfline), with decreasing density.
7
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Proposition 1. The measure γ ∗(X) proposed in (16) satisfies the desirable Properties (P1)—(P3) mentioned above. For an
rdering based on (16) we use that X is more skewed to the right than Y i.f.f. γ ∗(X) > γ ∗(Y ).

roof. Location invariance still holds because both Γ (X) and MX are location invariant. However, scale invariance also
olds since for Y = aX , with a > 0

Γ (Y ) = max
s∈S

(γY (s)) = max
s∈S

(γY (as)) = max
s∈S

(γX (s)) = Γ (X),

MγX
|MγX |

always has unit length (or is zero) and the sign of Γ (X) does not change for a > 0. Hence Property (P1) is now

atisfied. If X is symmetric, it follows that Γ (X) = 0 and thus γ ∗(X) = 0 which shows Property (P2) also holds. For
Property (P3), it can easily be seen that Γ (X) = Γ (−X) and MγX = −MγX̄

, where we denoted X̄ = 2MX − X , because
γX (s) is an odd function. □

3.2. Multivariate extension

As we are reflecting a random variable around its mode, a natural extension to the multivariate setting is to apply the
same technique as used in (14). Consider a d-variate random vector X ∈ Rd, with unimodal density and mode MX. The
measure proposed in (14) then becomes

γX(s) =
fX(MX + s) − fX(MX − s)

fX(MX)
, (17)

here s ∈ S (⊂ Rd compact and containing 0) is a vector with origin in 0. Denoting the mode of this function by

MγX = arg max
s∈S

γX(s),

the multivariate extension of MγX . The multivariate analogue of (16) then becomes

γ∗(X) =

{
Γ (X)MγX
∥MγX∥

if MγX ̸= 0,
0 if MγX = 0 or [γX(s) = 0, ∀s] .

(18)

roposition 2. Both γX(s) and γ∗(X) are translation invariant, but not scale invariant. Γ (X) however, is affine invariant.

Proof. Let Y = AX + B with A ∈ Rd×d non-singular and B ∈ Rd. Denote by γX(s) and γY(s) the asymmetry
function for respectively X and Y. Also denote MγX = arg max

s∈S
(γX(s)), MγY = arg max

s∈S
(γY(s)), Γ (X) = max

s∈S
(γX(s)) and

(Y) = max
s∈S

(γY(s)). We have that the density of Y is given by

fY(y) =
1

|det(A)|
fX
(
A−1(y − B)

)
.

Consequently, it holds that MY = AMX + B. Therefore we get

γY(s) =

1
|det(A)| fX

(
A−1(MY − B + s)

)
−

1
|det(A)| fX

(
A−1(MY − B − s)

)
1

|det(A)| fX
(
A−1(MY − B)

)
=

fX
(
MX + A−1s

)
− fX

(
MX − A−1s

)
fX (MX)

= γX(A−1s).

From this the translation invariance of γX(s) follows, and also its scale non-invariance. Moreover we obtain that MγY =

AMγX , and Γ (Y) = Γ (X). Consequently it holds that γ∗(Y) =
Γ (Y)AMγX
∥AMγX∥

, and hence γ∗(X) is thus location, but not scale
nvariant. □

That γ∗(Y) is not scale invariant, unlike in the univariate case, is to be expected. In terms of scale it remains the same
i.e., in norm), but because the measure also takes into account the direction of asymmetry, it is to be expected that any
ort of rotation induces a change in the main direction of asymmetry.
Similar properties as these stated in Corollary 1 continue to hold for the multivariate extension γX. Statement (i) (first

art), and statements (ii) and (iii) are straightforward to see. Concerning the generalization of statement (iv), note from
he proof of Proposition 2 that for Y = AX, with A ∈ Rd×d a non-singular matrix, we have that γY(s) = γX

(
A−1s

)
.

herefore by defining, for X with variance–covariance matrix ΣX, the vector sX = Σ
−1/2
X s and considering γX(sX) we

btain a scale-free or scale invariant version of γX(·).
Our proposed asymmetry measure has as a benefit over (13) that there is no dependency on a chosen direction x0 and

ives a full overview of the asymmetry of the entire distribution instead of just one cross section. The downside however
s that when no closed form expression for the density is available it requires evaluation of the density on a grid. In lower
imensional settings however, this is still a feasible task.
8
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Fig. 4. Left: Plots of the density in (19) for various values of β . Right: The classical skewness measure SK(X), defined in (3), as a function of β .

4. Examples

4.1. Simple illustrative example

We start with a simple example, originating from [46], which is often used as a counterexample on the rule of thumb for
checking right-skewness which states: ‘‘For a right-skewed distribution MX < MX < µX ’’. Consider the density function

fX (x; β) =

⎧⎨⎩
0 if x < −

2β
1−β

,

(1 − β)(1 +
1−β

2β x) if −
2β
1−β

≤ x < 0,
(1 − β)e−x if x ≥ 0.

(19)

he parameter β ∈ (0, 1) determines the amount of mass in the triangular region. Fig. 4 (left panel) depicts the density
or several values of β . Note that the density is asymmetric, for any value of β . The classical skewness measure SK(X) in
3) can be calculated, noting that the kth moment of the density in (19), for k ∈ N exists and equals

E(Xk) = (1 − β)ck+1
β

[
1

k + 1
(−1)k+2

+
1

k + 2
(−1)k+3

]
+ (1 − β)k!, (20)

here the constant cβ = 2β/(1−β). Since SK(X) =
[
E(X3) − 3µXVar(X) − µ3

X

]
[Var(X)]−3/2, an expression for the classical

skewness measure is easily obtained using (20) for k = 1, 2 and 3, and is given by

SK(X) =

6 −
1
20 c

4
β − 3(1 − β)

[
1 −

c2
β

6

][
2 +

c3
β

12

]
+ 2(1 − β)2

[
1 −

c2
β

6

]3
(1 − β)1/2

{[
2 +

c3
β

12

]
− (1 − β)

[
1 −

c2
β

6

]2}3/2 . (21)

his classical skewness measure, as a function of the parameter β , is depicted in the right panel of Fig. 4.
From (21) it is easily seen that when β tends to zero, then SK(X) tends to the value 2, whereas for β tending to one,

K(X) tends to −23/5 ≈ −0.565. For β = 0.75, the measure SK(X) is approximately 0.023, which would be interpreted
s a density that is slightly skewed to the right. However in this example, skewness is hard to express via a single scalar.
or values of β between, say, 0.5 and 0.75, it seems that the density is left skewed. The finite left and infinite right tail
owever counteract this in the classical skewness, resulting in a positive skewness.
By considering our functional measure, a more detailed picture can be obtained. Obviously the mode of the density

19) is zero and fX (0; β) = 1 − β . It is further easy to calculate that

γX (s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−es if s < −

2β
1−β

,

−es + 1 +
1−β

2β s if −
2β
1−β

≤ s < 0,
e−s

− 1 +
1−β

2β s if 0 ≤ s ≤
2β
1−β

,
−s 2β

MγX =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2β
1−β

if 0 < β ≤ 1/3,
2β
1−β

if 1/3 < β < 1, [ h1(β) ≥ h2(β) ],

ln
(

2β
)

if 1/3 < β < 1, [ h1(β) < h2(β) ],
e if s > 1−β
, 1−β

9
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Fig. 5. Density (19) with β = 0.50, together with the density for 2MX − X (dashed red line) and γX (s).

Fig. 6. The function γ ∗(X) for the density in Eq. (19).

where h1(β) = exp
{
−

2β
1−β

}
and h2(β) = −

1−β

2β + 1 +
1−β

2β ln
(

1−β

2β

)
. Noting that the two functions h1 and h2 cross at the

alue β ≈ 0.4927, and h1(β) ≥ h2(β) (respectively h1(β) < h2(β)) for values of β ≤ 0.4927 (respectively β > 0.4927) we
then get

MγX =

⎧⎨⎩
2β
1−β

if 0 < β ≤ 0.4927,

ln
(

2β
1−β

)
if 0.4927 < β < 1,

Γ (X) = γX
(
MγX

)
=

{
h1(β) if 0 < β ≤ 0.4927,

h2(β) if 0.4927 < β < 1,

nd γ ∗(X) = sign(MγX )Γ (X).
The function γX (s) is presented in the bottom panel of Fig. 5, for β = 0.50. The mode MγX is positive for β ≤ 0.4927

nd negative for β > 0.4927. The same holds then of course for the overall measure γ ∗(X), which is plotted in Fig. 6 as
function of β . It can be seen that the measure γ ∗(X) can reach maximal asymmetry (i.e., half distributions). Indeed this
appens for β tending to zero: density (19) gives in this limit the standard exponential density. The overall measure is
ever equal to zero. This is in a way natural as this type of distribution can never be symmetric. In that light there is a
lear advantage over e.g., moment based skewness as this can give a skewness of 0, indicating symmetry.

.2. Elliptical distributions

The general formulation of a multivariate elliptical distribution based on a univariate density generator f̃ is (according
o [7])

fX(x; µ,Σ ) =
Γ
( d
2

)
d 1 f̃

(
(x − µ)⊤Σ−1(x − µ)

)
. (22)
2π 2 det(Σ ) 2 kd
10
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In this, µ ∈ Rd is a location parameter vector, Σ ∈ Rd×d a positive definite matrix, and f̃ such that it has mean zero, unit
standard deviation and

kd =

∫
∞

0
td−1̃f (t2)dt < ∞.

For almost all popular densities, f̃ is a unimodal symmetric density function. Location and scale shifts are introduced by
respectively µ and Σ . We then have the following proposition.

Proposition 3. Let X ∈ Rd with density function fX(x; µ,Σ ) be an elliptical distribution as in (22), generated by a symmetric,
unimodal, standardized density generator f̃ . Then it holds that ∀s ∈ S , γX(s) = 0 and subsequently γ∗(X) = 0.

Proof. The proof is simple. Since f̃ is symmetric, unimodal with mode 0, and standardized, we have from (22) that
MX = µ. Hence

fX(MX − s; µ,Σ ) =
Γ
( d
2

)
2π

d
2 det(Σ )

1
2 kd

f̃
(
(MX − s − µ)⊤Σ−1(MX − s − µ)

)
=

Γ
( d
2

)
2π

d
2 det(Σ )

1
2 kd

f̃
(
(−s)⊤Σ−1(−s)

)
=

Γ
( d
2

)
2π

d
2 det(Σ )

1
2 kd

f̃
(
s⊤Σ−1s

)
=

Γ
( d
2

)
2π

d
2 det(Σ )

1
2 kd

f̃
(
(MX + s − µ)⊤Σ−1(MX + s − µ)

)
= fX(MX + s; µ,Σ ).

Thus γX(s) is zero, ∀s ∈ S , and so is γ∗(X). □

This implies that for any multivariate unimodal elliptical distribution (22), the measures γX(s) and γ∗(X) are zero. This
is what one would expect.

4.3. Skew-normal and skew-elliptical distributions

We next consider the skew-normal distribution. Proposed in [6], the density function of a univariate skew-normal
random variable is given by

φ(x; α) = 2φ(x)Φ(αx) x ∈ R,

with α ∈ R a skewing parameter. Introducing a location parameter ξ ∈ R and a scale parameter ω > 0 leads to the
density in (15).

A multivariate extension to the skew-normal, and in fact a whole family of skew-symmetric distributions, has emerged
the years afters. These are dubbed skew-elliptical distributions and have as density function

hX(x) = 2fd(x)G(w(x)), x ∈ Rd, (23)

with fd an elliptical density as in (22) of a random variable Y, G the cumulative distribution function of an absolutely
continuous random variable T , symmetric around 0 and independent of Y, and w a real-valued function antisymmetric
around zero (i.e., w(−x) = −w(x), for all x), called the skewing function. A particular choice of odd function is w(x) = α⊤x,
with α = (α1, . . . , αd)⊤ ∈ Rd, the vector of skewing parameters.

Here we focus primarily on the skew-normal case, obtained from (23) by taking fd a multivariate normal density
with zero mean vector and with variance–covariance matrix Ω̄ , and taking w(x) = α⊤x. Denote by X0 a random
vector with this skew-normal density. Location and scale parameters, denoted by respectively ξ and a diagonal matrix
ω = diag(ω1, . . . , ωd) ∈ Rd×d, are then introduced by considering the random vector X = ωX0 + ξ (see [8]). Note that the
mean vector of the random vector X equals ξ and its variance–covariance matrix is Ω = ω⊤Ω̄ω, the rescaled version of
the original variance–covariance matrix of X0. In this specific setting, (23) becomes

fX(x) = 2φd(x − ξ;Ω )Φ(α⊤ω−1(x − ξ)), x ∈ Rd, (24)

a d-variate skew-normal distribution with mean vector ξ and variance–covariance matrix Ω , referred to as SNd(ξ,Ω, α).
In [7], Chapter 5, it is stated that the SNd(ξ,Ω, α) has a unique mode at

MX = ξ +
m0

∗

α∗
ωΩ̄α, (25)

ith α∗
= (α⊤Ω̄α)1/2 and m∗

0 is the mode of a univariate SN1(0, 1, α∗) distribution for which unfortunately no explicit
xpression is available. It simplifies however the problem of finding a multivariate mode to that of finding a univariate
ode.
11
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For obtaining γX(s) and in extension γ∗(X), we need to find fX(MX + s)− fX(MX − s) and fX(MX). Using (24) and (25)
we find

fX(MX) = 2c exp
{
−

1
2
(
m0

∗

α∗
ωΩ̄α)⊤ω−1Ω̄

−1
ω−1(

m∗

0

α∗
ωΩ̄α)

}
Φ(α⊤ω−1m

∗

0

α∗
ωΩ̄α)

= 2c exp
{
−

1
2
(
m∗

0

α∗
)2αΩ̄α

}
Φ(α∗m∗

0) = 2c exp
{
−

1
2
(m∗

0)
2
}

Φ(α∗m∗

0),

where c is the normalizing constant of the normal density. Further we get

fX(MX + s) − fX(MX − s) = 2c exp
{
−

1
2
(
m∗

0

α∗
ωΩ̄α + s)⊤ω−1Ω̄

−1
ω−1(

m∗

0

α∗
ωΩ̄α + s)

}
Φ(α⊤

m∗

0

α∗
Ω̄α + α⊤ω−1s)

−2c exp
{
−

1
2
(
m∗

0

α∗
ωΩ̄α − s)⊤ω−1Ω̄

−1
ω−1(

m∗

0

α∗
ωΩ̄α − s)

}
Φ(α⊤

m∗

0

α∗
Ω̄α − α⊤ω−1s)

= 2c exp
{
−

1
2
(
m∗

0

α∗
α⊤ω−1

+ s⊤ω−1Ω̄
−1

ω−1)(
m∗

0

α∗
ωΩ̄α + s)

}
Φ(m∗

0α
∗
+ α⊤ω−1s)

−2c exp
{
−

1
2
(
m∗

0

α∗
α⊤ω−1

− s⊤ω−1Ω̄
−1

ω−1)(
m∗

0

α∗
ωΩ̄α − s)

}
Φ(m∗

0α
∗
− α⊤ω−1s)

= 2c exp
{
−

1
2
[(
m∗

0

α∗
)2α⊤Ω̄α + 2

m∗

0

α∗
α⊤ω−1s + s⊤ω−1Ω̄

−1
ω−1s]

}
Φ(m∗

0α
∗
+ α⊤ω−1s)

−2c exp
{
−

1
2
[(
m∗

0

α∗
)2α⊤Ω̄α − 2

m∗

0

α∗
α⊤ω−1s + s⊤ω−1Ω̄

−1
ω−1s]

}
Φ(m∗

0α
∗
− α⊤ω−1s)

= 2c exp
{
−

1
2
(m∗

0)
2
−

1
2
s⊤ω−1Ω̄

−1
ω−1s

}[
exp

{
−

m∗

0

α∗
α⊤ω−1s

}
Φ(m∗

0α
∗
+ α⊤ω−1s)

− exp
{
m∗

0

α∗
α⊤ω−1s

}
Φ(m∗

0α
∗
− α⊤ω−1s)

]
.

ombining these two results, we obtain

γX(s) =

exp
{
−

m∗
0

α∗ α⊤ω−1s
}

Φ(m∗

0α
∗
+ α⊤ω−1s) − exp

{
m∗

0
α∗ α⊤ω−1s

}
Φ(m∗

0α
∗
− α⊤ω−1s)

exp
{

1
2 s

⊤ω−1Ω̄
−1

ω−1s
}

Φ(m∗

0α
∗)

. (26)

rom (26), a few interesting results can be derived. First of all, when α⊤ω−1s = 0, γX(s) = 0. Since this is linear in s, the
ero-level contour of (26) is thus a straight line. Related to this, when α = 0, m∗

0 = 0 and consequently (26) will be zero
∀s ∈ S .

A general formula for skew-elliptical distributions (23), with skewing function w(x) = α⊤x, is given by

γX(s) =
fd(ω−1(MX + s − ξ))G(αTω−1(MX + s − ξ)) − fd(ω−1(MX + s − ξ))G(αTω−1(MX − s − ξ))

fd(ω−1(MX − ξ))G(αTω−1(MX − ξ))
.

xplicit formulae for the mode of skew-elliptical distributions are only available in selective cases, e.g., for skew-normal
nd skew-t distributions. Even in those cases, the modes depend on an equation that needs numerical solving. Also
inding an explicit maximizer of this equation is not analytically possible, hence no additional extra information can
e given on Γ (X) and γ∗(X). Fig. 7 contains the contourplot of a bivariate skew-normal distribution with parameters

= (1.25, −2.6)⊤, Ω =

[
3.5 −0.9

−0.9 5.8

]
and α = (6, −6)⊤ together with its reflected version. In Fig. 8 the measure (17)

f this distribution is shown. Note that the contours of the asymmetry measure are always odd functions in s with respect
o the origin (in the s plane) or the mode (in the data-plane). The proof of this is easily derived from (17). For this model

γX = (0.6653; −0.8554)⊤, Γ (X) = 0.7837 and γ∗(X) = (0.4812; −0.6186)⊤.

.4. Two piece asymmetric distributions

We first introduce a specific family of univariate two piece asymmetric distributions, called quantile based asymmetric
istributions (QBA-distributions) in the literature. The density of a QBA-distributed random variable X is given by

fX (x; η) =
2α(1 − α)

φ

⎧⎨⎩ f
(
−(1 − α) x−µ

φ
; κ
)

if x ≤ µ,

f
(
α

x−µ

φ
; κ
)

if x > µ.
(27)

n this f is the symmetric reference density, which is assumed to be unimodal and standardized, and possibly coming
ith some parameter(s), collected in the parameter vector κ. The two piece asymmetric distribution in (27) depends on
12
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Fig. 7. Contour plots of the skew-normal distribution (black) with its mode (red) and reflected contours (blue). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Proposed asymmetry measure Eq. (17) applied to the skew-normal distribution.

he parameter vector η = (α, µ, φ, κ⊤)⊤. Skewness is governed by the parameter α ∈ (0, 1), and µ ∈ R and φ ∈ (0, ∞)
are respectively a location and scale parameter. More information on the QBA-family, and statistical inference for it can
be found in [20]. We make a distinction between α ≤ 0.5 (right skewness) and α > 0.5 (left skewness). The mode of (27)
is MX = µ (the location parameter), and it easily seen that

γX (s) =

⎧⎨⎩ 2
[
f
(
(1 − α) s

φ

)
− f

(
α s

φ

)]
if s ≤ 0,

2
[
f
(
α s

φ

)
− f

(
(1 − α) s

φ

)]
if s > 0.

he equation we need to solve in order to find MγX is given by

f ′

(
αs
φ

)
f ′

(
(1−α)s

) =
1 − α

α
. (28)
φ

13
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Fig. 9. Contourplots of the linear combination distribution (black) with its mode (red) and reflected contours (blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

If α > 0.5 (respectively α ≤ 0.5) then (1−α)/α < 1 (respectively more than or equal to 1), and hence in the former case
MγX < 0 whereas in the latter case MγX ≥ 0.

The solution to (28) for the QBA-normal, -Laplace, -logistic and -Student’s t distribution can be found in the third
column of Table S1 in the Supplementary Material. The last column of Table S1 provides information on Γ (X) for these
four univariate QBA-distributions.

For the multivariate setting we consider a linear combination of QBA-distributed random variables. Let X = A⊤Z+ µa
(A ∈ Rd×d and µa ∈ Rd), in which the random vector Z consists of independent components Zj, for j = 1, . . . , d, with the
density of Zj denoted by fZj . The random vector X then has density function

fX(x;A, µa, η) = |det(A)|−1
d∏

j=1

fZj ((x − µa)
T (A−1)

·,j ; ηj),

where
(
A−1

)
·,j denotes the jth column of the matrix A−1, and in which η = (η⊤

1 , . . . , η⊤

d )
⊤. We assume that each of

the Zj follows a QBA-distribution given by (27). For identifiability reason we assume µj = 0 and φj = 1. It then
immediately follows that the parameter µa represents the location of the mode. From this, we have that fX (MX) =

|det(A)|−1∏d
j=1 fZj (0), where for notational simplicity we avoid to write the dependence on the parameters. In order to

find γX(s) (and subsequently γ ∗(X)), an expression for fX(µa+s;A, µa, η)−fX(µa−s;A, µa, η) is still required. One obtains

γX(s) =

∏d
j=1 fZj (s

⊤
(
A−1

)
·,j) −

∏d
j=1 fZj (−s⊤

(
A−1

)
·,j)∏d

j=1 fZj (0)
,

and

γ∗(X) =

(∏d
j=1 fZj (M

⊤
γX

(
A−1

)
·,j) −

∏d
j=1 fZj (−M⊤

γX

(
A−1

)
·,j)
)
MγXMγX

 ∏d
j=1 fZj (0)

,

with MγX = arg max
s∈S

γX(s). No closed form expression exist for Γ (X) and γ∗(X), hence numerical methods are required

o arrive at the desired quantities. By the elegance and computational simplicity of the proposed asymmetry measure,
his is easily achieved.

In Fig. 9 a linear combination model of QBA-distributions with parameters α = (0.25, 0.75)⊤, µa = (1.25, −2.6)⊤ and

A =

[
2 0.5

−1.5 1.5

]
is shown. The univariate components are (in order) a QBA-normal and QBA-logistic distribution. Fig. 10

represents the proposed asymmetry measure applied to this distribution. In this case, the zero-level contour of (17) no
longer is a straight line, but is curved. Also the contour lines are more irregularly shaped compared to these in Fig. 8.
Here we have M = (5.9580; 1.4557)⊤, Γ (X) = 0.6754, and γ∗(X) = (0.6561; 0.1603)⊤.
γX

14
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Fig. 10. Proposed asymmetry measure Eq. (17) applied to the linear combination distribution.

4.5. Transformation of scale distributions

In [1] another popular skewing mechanism is used to illustrate their asymmetry index. The distributions they consider
are Transformation of Scale (ToS) distributions, which are described in, among others, [19,26,27,31]. ToS distributions
introduce asymmetry by starting from a symmetric unimodal reference density g (with mode at zero) and rescaling its
rgument by a function r(x). Usually the scaling function depends on a certain parameter λ to control the asymmetry
ntroduced. The density of a ToS distributed r.v. is then given by f (x; λ) = g(r(x; λ)).

If ∂
∂x r(x; λ) > 0 then also f (·) is unimodal with mode at zero. We assume this holds from hereon. For such ToS

istributions, the asymmetry index γX (s) equals

γX (s) =
g(r(s; λ)) − g(r(−s; λ))

g(r(0; λ))
.

Finding MγX , the mode of this function, is not straightforward, since it involves evaluating the derivative of both the
functions g(·) and r(·; λ).

In [19] some other assumptions for ToS distributions are put in place. Denote by r−1(y; λ), the inverse function of
(·; λ). If ∂

∂y r
−1(y; λ)+ ∂

∂y r
−1(−y; λ) = 2 and a function H(y; λ) is taken such that H(0, λ) = 0 and r−1(y; λ) = y+H(y; λ),

hen mode invariance is obtained for any combination of g(·) and r(·; λ).
The specific example we use to illustrate our asymmetry index is a specific ToS distribution from [19], which is

ode-invariant for any f (·) and H(·). Therein, r−1(y; λ) is chosen as

r−1(y; λ) = y + aλ

√
1 + λ2y2 − 1

λ
, (29)

ith aλ = 1 − exp(−λ2). From (29) one is able to find an explicit expression for r(x; λ), given by

r(x; λ) =

⎧⎨⎩ λx+aλ−aλ

√
(λx+aλ)2+1−a2

λ

λ(1−a2
λ
)

if λ ̸= 0,

x if λ = 0.
(30)

or g(·) we take the standard logistic distribution. In Fig. 11, the density and γX (s)-function are plotted for λ = 0.75 and
= −2.
In analogy with the QBA-distributions, a way to extend these univariate ToS distributions to the multivariate setting

s by taking affine combinations as is also done in [1]. For a random vector Z = (Z1, . . . , Zd)⊤, denote the density of the
th component by fj(zj; λj) = gj(rj(zj; λj)), for j ∈ {1, . . . , d}. The density of X = A⊤Z + µa is then given by

fX(x; λ) = |det(A)|−1
d∏

gj
(
rj
(
(x − µa)

⊤(A−1).,j; λj
))
j=1

15
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Fig. 11. Left column: Density fX (x; λ) = g(r(x; λ)) of a mode-invariant ToS-distribution with g(·) a standard logistic density and r(x; λ) as in (30),
for λ = 0.75 (top panel left), and λ = −2 (bottom panel left). The reflected density, i.e., f2MX−X (x; λ) is plotted as a dashed line. Right column:
corresponding asymmetry function γX (s).

and subsequently

γX(s) =

∏d
j=1 gj

(
rj(s⊤

(
A−1

)
·,j ; λj)

)
−
∏d

j=1 gj
(
rj(−s⊤

(
A−1

)
·,j ; λj)

)
∏d

j=1 gj
(
rj(0; λj)

) .

From the latter expression, the summarizing indices can be derived.
As a bivariate example, we apply the same affine combination as in Section 4.4 to the context of ToS distributions, by

taking g1 a standard normal and g2 a logistic distribution and both r1 and r2 as in (30) with λ1 = 0.75 and λ2 = −2. For
this example Figs. 12 and 13 are obtained.

5. Estimation of the asymmetry measure

Given an i.i.d. sample X̃n = (X(1), . . . ,X(n))⊤ from X, we need to estimate the asymmetry measure (14) or (17). When an
estimator of the density function of X is available, its mode can be determined so the problem of estimating the asymmetry
function can be converted into a problem of estimating a multivariate density and its mode. We discuss parametric and
nonparametric estimation methods.

5.1. Parametric estimation

Assume that the random vector X has a unimodal density function fX(x; θ), depending on a parameter vector θ ∈

Θ ⊂ Rq, with the parameter space Θ a compact subset of Rq. The mode of the density, denoted by MX(θ), depends
on the unknown parameter vector. Denote the true parameter vector by θ0. Based on the i.i.d. sample X̃n we obtain an
estimator θ̂n for the parameter vector θ. The true density fX(x; θ0) is then approximated by the fitted density fX(x; θ̂n),
and an estimator for the mode MX(θ0) is then the mode of the estimated density. We introduce the following notations:

M̂X,n = arg max
x∈Rd

fX(x; θ̂n), γ̂X,n(s) =
fX(M̂X,n + s; θ̂n) − fX(M̂X,n − s; θ̂n)

fX(M̂X,n; θ̂n)
,

M̂γX,n = arg max
s∈S

γ̂X,n(s), Γ̂n(X) = max
s∈S

γ̂X,n(s), γ̂∗

n(X) = Γ̂n(X)
M̂γX,nM̂γX,n

 , (31)

where s takes values in a certain compact set S ⊂ Rd containing 0.
16
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t

c

Fig. 12. Contourplots of the linear combination of ToS distributions (black) with its mode (red) and reflected contours (blue). (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Proposed asymmetry measure Eq. (17) applied to the linear combination of ToS distributions.

To show consistency of γ̂∗

n(X), we need the concept of uniform consistency in probability. A random quantity gn(x),
onsidered as a function of x, is uniformly consistent in probability to g(x) if

for all ϵ > 0 lim
n→∞

Pr
(
sup
x∈R

|gn(x) − g(x)| > ϵ

)
= 0.

We denote this uniform in probability consistency as g (x)
unif. P
→ g(x), as n → ∞.
n

17
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The following theorem states that under some mild conditions on the density and the parameter vector estimator,
he estimator γ̂X,n(s) of γX(s) is consistent in probability, uniformly; and that the estimators Γ̂n(X), M̂γX,n and γ̂∗

n(X) are
onsistent estimators of respectively Γ (X), MγX and γ∗(X). The proof of the theorem is provided in Appendix A.

heorem 2. Let X̃n = (X(1), . . . ,X(n))⊤ be an i.i.d. sample from a random vector X ∈ Rd with continuous unimodal density
unction fX(x; θ0). Also let θ̂n be a consistent estimator of θ0, i.e., θ̂n

P
→ θ0, as n → ∞. If fX(x; θ) is uniformly continuous in

oth x and θ, as well as uniformly bounded ∀x, and ∀θ ∈ Θ , and M̂X,n(θ) is uniformly continuous in θ, then

(i) ∀ε > 0 it holds that lim
n→∞

Pr
(
sup
s∈S

⏐⏐γ̂X,n(s) − γX(s)
⏐⏐ > ε

)
= 0, i.e., γ̂X,n(s)

unif. P
→ γX(s), as n → ∞;

(ii) Γ̂n(X)
P

→ Γ (X), as n → ∞;
(iii) M̂γX,n

P
→ MγX , as n → ∞;

(iv) γ̂∗

n(X)
P

→ γ∗(X), as n → ∞.

.2. Nonparametric estimation

There are various kinds of nonparametric density estimators available. We focus here on kernel density estimation
see among others [14]). Denote with K (x) a d-variate density function called the kernel. Following [41], we will require
hat the kernel satisfies the following 3 conditions

(K1)
∫
Rd K (u)du = 1;

(K2)
∫
Rd uK (u)dx = 0 element-wise;

(K3)
∫
Rd uu⊤K (u)du = m2(K )Id < ∞, with m2(K ) =

∫
R
u2
j K (u)duj (for all j ∈ {. . . , d}).

Further consider H a d×d symmetric positive definite matrix, and denote its (positive) determinant by |H| (shorthand
otation for the notation det(H) used before). The matrix H is called the bandwidth matrix. The multivariate kernel density
stimator for fX(x) is then given by

f̂X(x;H) =
1

n |H|
1/2

n∑
i=1

K (H−1/2(x − X(i))) =
1
n

n∑
i=1

KH(x − X(i)), (32)

where we denoted the rescaled kernel KH(x) = |H|
−1/2 K

(
H−1/2x

)
. Expression (32) involves two important ingredients.

The first is the kernel function. Examples of univariate kernel function include the normal kernel, Epanechnikov kernel
and uniform kernel. In a multivariate setting, one often uses the standard multivariate normal kernel, i.e.,

K (x) = φd(x) =
1

(2π )d/2
e−

1
2 x

⊤x, with rescaled version KH(x) =
1

(2π )d/2 |H|
1/2 e

−
1
2 x

⊤H−1x.

Wewill show a consistency result similar to that in Section 5.1 for the univariate case. Extending this to the multivariate
case is straightforward, and therefore not elaborated on in detail. For estimation of γX (s) both the density estimate and
he estimated mode are used. Given X1, . . . , Xn is an i.i.d. sample from X , the univariate kernel density estimator is

f̂n(x; h) =
1
nh

n∑
i=1

K
(
x − Xi

h

)
, (33)

here h > 0 in a bandwidth parameter. The mode estimation is performed on the estimated density. Some notations are
hen:

M̂X,n = arg max
x∈R

f̂n(x; h), γ̂X,n(s) =
f̂n(M̂X,n + s; h) − f̂n(M̂X,n − s; h)

f̂n(M̂X,n; h)
,

nd subsequently, based on these, the estimators as in (31).
Proposition 4 states the conditions under which a kernel density estimator, in the univariate case (d = 1), converges

in probability (and uniformly), to the true density, and under which the mode estimator M̂X,n consistently estimates the
mode MX . For a proof see Theorem 3 A in [36].

Proposition 4. Suppose X1, . . . , Xn is an i.i.d. sample from X with density fX (x) (on R). Let f̂n(x; h) be the kernel density
estimator in (33), with h = hn a bandwidth sequence, and the kernel K (u) is uniformly continuous. Assume also that the
following conditions hold

(C1) fX (x) is uniform continuous and uniformly bounded on R;
(C2) fX (x) has a unique mode MX ;
(C3) h → 0 and nh2

→ ∞, as n → ∞.
18
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Then we have that

∀ε > 0 lim
n→∞

Pr
(
sup
x∈R

⏐⏐̂fn(x; h) − fX (x)
⏐⏐ > ε

)
= 0, M̂X,n

P
→ MX , as n → ∞. (34)

The above results allow to establish uniform in probability results for the estimator γ̂X,n(s) of the proposed asymmetry
measure γX (s). This is established in Theorem 3, the proof of which is deferred to Appendix A.

Theorem 3. Under (K1)-(K3) for a uniformly bounded kernel function, (C1)-(C3) and with s ∈ S ⊂ R compact, it holds that,
as n → ∞,

fn(M̂X,n + s; h)
P

→ fX (MX + s) uniformly in s, (35)

and

γ̂X,n(s)
P

→ γX (s) uniformly in s.

From Theorem 3 it immediately follows that Γ̂n(X)
P

→ Γ (X), as n → ∞, since⏐⏐Γ̂n(X) − Γ (X)
⏐⏐ =

⏐⏐⏐⏐sup
s∈S

γ̂X,n(s) − sup
s∈S

γX (s)
⏐⏐⏐⏐ ≤ sup

s∈S

⏐⏐γ̂X,n(s) − γX (s)
⏐⏐ P
→ 0, as n → ∞.

Combining this with the fact that γX (s) is uniformly continuous in s as this is only appearing in the numerator of its
definition and fX (x) is uniformly continuous, a similar proof as that of Theorem 3 A in [36] provides the result that

M̂γX ,n
P

→ MγX , as n → ∞.

Hence we also have

γ̂ ∗

n (X)
P

→ γ ∗(X), as n → ∞.

Multivariate extensions of the results obtained in [36] (and recalled in Proposition 4), are given in, among others, [13,
30,40,47], and [14]. For a matrix A denote by Vec(A) the column vector obtained by stacking all columns of A into one
long column vector. The conditions necessary for Proposition 4 become

C1) fX(x) is uniform continuous on Rd, and uniformly bounded;
C2) fX(x) has a unique mode MX, i.e., ∀s ∈ R\{0} : fX (MX) > fX (MX + s);
C3) The kernel function K is bounded, Hölder continuous and lim∥x∥→∞ ∥x∥K(x) = 0;
C4) Vec(H) → 0, and n |detH| → ∞, and n → ∞.

6. Comparison to classical skewness in the univariate case

We want to investigate how our measure of skewness (16) behaves in comparison to (3), the classical measure of
skewness. For this, we consider three distributions:

• the Gamma distribution

Γ (x; α, β) =
βα

Γ (α)
xα−1e−βx, α, β, x > 0,

• the beta distribution

B(x; α, β) =
Γ (α + β)
Γ (α)Γ (β)

xα−1(1 − x)β−1, α, β > 0; x ∈ [0, 1],

• the univariate quantile-based asymmetric normal distribution (see (27), with f the standard normal density), for
µ ∈ R, α ∈ (0, 1), φ > 0,

AND(x; α, µ, φ) = α(1 − α)

√
2

πφ2

⎧⎨⎩ e−
α2
2 ( x−µ

φ
)2 for x > µ,

e−
(1−α)2

2 ( x−µ
φ

)2 for x ≤ µ.

n Table S2 of the Supplementary Material we list for these three distributions the following quantities: the mode MX ,
he classical measure of skewness SK(X), and the discussed quantities MγX and γ ∗(X) (the new summarizing measure of
symmetry).
As can be seen from Table S2, for the Γ (α, β) distribution, classical skewness only depends on the parameter α. For

he B(α, β) distribution this is both α and β and for the AND(α, µ, φ) this is again only α. To compare the asymmetry
easure SK(X) in (3) with the measure γ ∗(X) defined in (16), visual tools are used. We refer to Figures S1–S5 in the
upplementary Material. Both measures, SK(X) and γ ∗(X), as a function of the parameter α are given in Figures S1 to S3
19
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in the Supplementary Material. Our proposed measure behaves the same as the classical skewness in all three situations
with the sole difference that for the Gamma- and beta-distribution it has a flat area corresponding to parameter values
where the density is unimodal with mode in 0. Hence, by definition, γ ∗(X) equals 1 as the distribution can be regarded
s being of the half-distribution type. These two distributions also highlight the positive aspect that γ ∗(X) is bounded,
hereas classical skewness approaches infinity as α → 0. For the AND(α, µ, φ) distribution, both SK(X) and γ ∗(X) are

very similar, with only minor differences in value. The trained eye might also notice some noise in the curves of γ ∗(X). This
happens mostly for more extreme levels of skewness and is completely due to numerical instabilities of the optimization
algorithm used in finding MγX for the distributions in which no closed form formula is available.

As no explicit expression of (16) is available for the Gamma-distribution, there might be dependence on β . In order
to check this, a range of values for β is considered in Fig. S4 in the Supplementary Material. As can be seen, all curves
coincide so (16) only depends on α as is also the case for classical skewness. There is again some numerical instability
going on for higher levels of skewness. Fig. S2, on the beta-distribution, shows only the behavior in α for fixed β . This
behavior is completely symmetric in both parameters, but for completeness, Fig. S5 in the Supplementary Material is
added. This figure shows the contour lines of both the classical skewness and our proposed asymmetry measure for both
α and β larger than one. Both resemble each other except the aforementioned boundedness of our proposed measure.

7. Discussion

In this paper we proposed a novel measure of asymmetry, which in contrast to most common measures, provides
a function of asymmetry. From this function, a global scalar measure can be derived. A multivariate extension is also
introduced with the main advantage that any deviations from symmetry with respect to the mode can be detected.
By doing this, a more detailed picture of asymmetry is provided and regions of interest can be better investigated. The
latter multivariate asymmetry function can also be summarized in a vectorial measure which gives an indication of the
magnitude of the asymmetry as well as its direction.

We also presented methods for estimating the asymmetry function and show consistency of both a parametric
and nonparametric estimator under some mild conditions. The downside of the asymmetry measure is that it is
computationally heavy to obtain over the entire domain of the function, even in moderately high dimensions. This is
entirely due to it being a function over the domain, which requires evaluation over a grid to obtain the full picture. This
downside is however inherent to any kind of asymmetry measure that looks in detail into asymmetry and goes beyond
moment expressions.
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Appendix A. Proofs

Proof of Theorem 2. First, we will show that

fX(M̂X,n + s; θ̂n)
P

→ fX(MX + s; θ0) uniformly over s, as n → ∞. (A.1)

In showing this, the uniform continuous mapping theorem (UCMT, [10,28]) is used. By uniform continuity in x of fX(x; θ),
combined with the UCMT and

lim
n→∞

Pr
(
sup
s∈S

⏐⏐M̂X,n + s − (MX + s)
⏐⏐ > ε

)
= 0,

statement (A.1) follows.

Proof of statement (i). As we are dealing with bounded density functions, there exists some U < ∞ such that fX(x; θ) < U
∀θ ∈ Θ . It is also safe to assume that ∃0 < L < U < ∞ : L < fX(MX; θ0). Consider now Bδ = {θ : ∥θ − θ0∥ < δ}. By
consistency of θ̂ to θ , uniform continuity of M̂ (θ) in θ, and uniform continuity of f (x; θ) in both x and θ we also have
n 0 X,n X
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(
(
(

B

s

that for any θ̂n ∈ Bδ it holds that, if we take δ appropriately small,
⏐⏐fX(M̂X,n; θ̂n) − fX(MX; θ0)

⏐⏐ < L
2 . In this way, we have

hen θ̂n ∈ Bδ and for ε > 0

Pr
(
sup
s∈S

⏐⏐γ̂X,n(s) − γX(s)
⏐⏐ > ε

)
(A.2)

= Pr
(
sup
s∈S

⏐⏐⏐⏐ fX(M̂X,n + s; θ̂n) − fX(M̂X,n − s; θ̂n)
fX(M̂X,n; θ̂n)

−
fX(MX + s; θ0) − fX(MX − s; θ0)

fX(MX; θ0)

⏐⏐⏐⏐ > ε

)
≤ Pr

(
sup
s∈S

⏐⏐⏐⏐fX(MX; θ0)(fX(M̂X,n + s; θ̂n) − fX(M̂X,n − s; θ̂n))

−fX(M̂X,n; θ̂n)(fX(MX + s; θ0) − fX(MX − s; θ0))
⏐⏐⏐⏐ >

εL2

2

)
= Pr

(
sup
s∈S

⏐⏐⏐⏐fX(MX; θ0)fX(M̂X,n + s; θ̂n) − fX(M̂X,n; θ̂n)fX(M̂X,n + s; θ̂n)

+fX(M̂X,n; θ̂n)fX(M̂X,n + s; θ̂n) − fX(M̂X,n; θ̂n)fX(MX + s; θ0)
⏐⏐⏐⏐ >

εL2

4

)
+ Pr

(
sup
s∈S

⏐⏐⏐⏐fX(MX; θ0)fX(M̂X,n − s; θ̂n) − fX(M̂X,n; θ̂n)fX(M̂X,n − s; θ̂n)

+fX(M̂X,n; θ̂n)fX(M̂X,n − s; θ̂n) − fX(M̂X,n; θ̂n)fX(MX − s; θ0)
⏐⏐⏐⏐ >

εL2

4

)
≤ Pr

(
sup
s∈S

⏐⏐fX(M̂X,n; θ̂n) − fX(MX; θ0)
⏐⏐ >

εL2

8U

)
+ Pr

(
sup
s∈S

⏐⏐fX(M̂X,n + s; θ̂n) − fX(MX + s; θ0)
⏐⏐ >

εL2

8U

)
+ Pr

(
sup
s∈S

⏐⏐fX(M̂X,n; θ̂n) − fX(MX; θ0)
⏐⏐ >

εL2

8U

)
+ Pr

(
sup
s∈S

⏐⏐fX(M̂X,n − s; θ̂n) − fX(MX − s; θ0)
⏐⏐ >

εL2

8U

)
. (A.3)

Denote the event in (A.2) by E, and note that

P (E) = P
(
E ∩

{̂
θn ∈ Bδ

})
+ P

(
E ∩

{̂
θn ∈ BC

δ

})
.

The first term herein tends to zero by (A.3), and the last term is bounded by P
(̂
θn ∈ BC

δ

)
which tends to zero as n tends

to infinity. This concludes the proof of statement (i).

Proofs of statements (ii)—(iv). In showing consistency of M̂γX,n and Γ̂n(X), we rely on Theorem 4.1.1 of [2] that states
conditions under which the maximum and, in case the objective function is uniquely maximized, also the maximizer is
consistent. These conditions are

M1) s ∈ S compact;
M2) γ̂X,n(s) is a continuous, measurable function of s for all s ∈ S;
M3) γ̂X,n(s) is a uniformly consistent (in probability) estimator of γX(s).

The former two conditions are (easily) met. The third condition is (i) of this theorem. Applying Theorem 4.1.1 of [2]
concludes parts (ii) and (iii). Part (iv) then automatically follows from (ii) and (iii), completing the proof. □

Proof of Theorem 3. We have

sup
s∈S

⏐⏐fn(M̂X,n + s; h) − fX (MX + s)
⏐⏐ ≤ sup

s∈S

⏐⏐fn(M̂X,n + s; h) − fn(MX + s; h)
⏐⏐+ sup

s∈S
|fn(MX + s; h) − fX (MX + s)| .

y Proposition 4, for all ε > 0 the second term is smaller than ε
2 when n → ∞. For the first term, we use (34) together

with Assumption (C1) to fall back on the UCMT applied to fn(.; h) to obtain that sup
s∈S

⏐⏐fn(M̂X,n + s; h) − fn(MX + s; h)
⏐⏐ is

trictly smaller than ε
2 . We have

Pr
(
sup

⏐⏐fn(M̂X,n + s; h) − fX (MX + s)
⏐⏐ > ε

)
P

→ 0 n → ∞.

s∈S
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The rest of the proof is similar to that of Theorem 2. We can assume that fX (x) and fn(x; h) (n ∈ N) are bounded above

y a constant U . Also, ∃L > 0 : fX (MX ) > L. For n large enough, and when
⏐⏐fn(M̂X,n) − fX (MX )

⏐⏐ < L
2 , we get

sup
s∈S

⏐⏐γ̂X,n(s) − γX (s)
⏐⏐ = sup

s∈S

⏐⏐⏐⏐ fn(M̂X,n + s; h) − fn(M̂X,n − s; h)
fn(M̂X,n; h)

−
fX (MX + s) − fX (MX − s)

fX (MX )

⏐⏐⏐⏐
≤

2
L2

sup
s∈S

⏐⏐⏐⏐fX (MX )(fn(M̂X,n + s; h) − fn(M̂X,n − s; h)) − fn(M̂X,n; h)(fX (MX + s) − fX (MX − s))
⏐⏐⏐⏐

=
2
L2

sup
s∈S

⏐⏐⏐⏐fX (MX )fn(M̂X,n + s; h) − fn(M̂X,n; h)fn(M̂X,n + s; h)

+fn(M̂X,n; h)fn(M̂X,n + s; h) − fn(M̂X,n; h)fX (MX + s)
⏐⏐⏐⏐

+
2
L2

sup
s∈S

⏐⏐⏐⏐fX (MX )fn(M̂X,n − s; h) − fn(M̂X,n; h)fn(M̂X,n − s; h)

+fn(M̂X,n; h)fn(M̂X,n − s; h) − fn(M̂X,n; h)fX (MX − s)
⏐⏐⏐⏐

≤
2
L2

[⏐⏐fn(M̂X,n; h) − fX (MX )
⏐⏐ sup
s∈S

fn(M̂X,n + s; h) + fn(M̂X,n; h)sup
s∈S

⏐⏐fn(M̂X,n + s; h) − fX (MX + s)
⏐⏐

+
⏐⏐fn(M̂X,n; h) − fX (MX )

⏐⏐ sup
s∈S

fn(M̂X,n − s; h) + fn(M̂X,n; h)sup
s∈S

⏐⏐fn(M̂X,n − s; h) − fX (MX − s)
⏐⏐]

≤
2U
L2

[
2
⏐⏐fn(M̂X,n; h) − fX (MX )

⏐⏐+ sup
s∈S

⏐⏐fn(M̂X,n + s; h) − fX (MX + s)
⏐⏐

+sup
s∈S

⏐⏐fn(M̂X,n − s; h) − fX (MX − s)
⏐⏐] ≤

8εU
L2

,

∀ε > 0 when n → ∞. The final step holds with probability 1 by (34) and (35) combined with the UCMT. Hence, as
n → ∞,

γ̂X,n(s)
P

→ γX (s) uniform in s. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2022.105118.
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