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Abstract
Aim: To explore altered structural and functional connectivity and network organi-
zation in cerebral palsy (CP), by clinical CP subtype (unilateral spastic, bilateral spas-
tic, dyskinetic, and ataxic CP).
Method: PubMed and Embase databases were systematically searched. Extracted 
data included clinical characteristics, analyses, outcome measures, and results.
Results: Sixty-five studies were included, of which 50 investigated structural con-
nectivity, and 20 investigated functional connectivity using functional magnetic 
resonance imaging (14 studies) or electroencephalography (six studies). Five of the 
50 studies of structural connectivity and one of 14 of functional connectivity in-
vestigated whole-brain network organization. Most studies included patients with 
unilateral spastic CP; none included ataxic CP.
Interpretation: Differences in structural and functional connectivity were observed 
between investigated clinical CP subtypes and typically developing individuals on a 
wide variety of measures, including efferent, afferent, interhemispheric, and intra-
hemispheric connections. Directions for future research include extending knowl-
edge in underrepresented CP subtypes and methodologies, evaluating the prognostic 
potential of specific connectivity and network measures in neonates, and under-
standing therapeutic effects on brain connectivity.
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Cerebral palsy (CP) is an umbrella term encompassing im-
pairment in movement, posture, or muscle tone, caused by 
a heterogeneous group of underlying brain disorders occur-
ring in early development.1 With a prevalence of about 1 to 
2.5 per 1000 live births, CP is the most frequent motor disor-
der in children in the Western world.1 Depending on the lo-
calization of the brain abnormalities, three clinical subtypes 
of CP can be distinguished, of which spastic CP is the most 
common subtype (about 84%), followed by dyskinetic CP 
(about 13%) and ataxic (about 3%) CP.2 Within these groups, 
individual impairments are very diverse, for example with 
respect to type and severity of functional disabilities.

Diagnosing an individual with CP requires a multidisci-
plinary approach, including clinical observation, and usu-
ally radiological assessment of conventional structural brain 
magnetic resonance imaging (MRI), such as T1- and T2-
weighted images. These images are helpful in revealing the 
underlying cause of CP in the individual, such as periven-
tricular leukomalacia, damage to deep grey matter, or cor-
tical malformation,3,4 and may have implications for further 
diagnostic examinations, such as genetic testing. Early 
conventional MRI is also used to aid in prognostication. 
Accurate prognostication in neonates or young children is 
critical, not only to adequately inform parents at an early 
stage but also to facilitate early treatment interventions to 
enhance the functioning of patients. However, predictive use 
of conventional MRI has its limitations, mostly due to the 
widespread range in brain abnormalities and possible out-
comes, which do not always correspond with each other.5–7 
For instance, children with periventricular leukomalacia on 
conventional MRI do not necessarily develop motor prob-
lems, and thus will not all develop CP.8

Advanced neuroimaging modalities have the potential 
to improve our understanding of the relationship between 
brain (dys)function and clinical manifestations. Diffusion-
weighted MRI (DWI), functional MRI (fMRI), and elec-
troencephalography (EEG) can be used to examine brain 
connectivity and network organization. The term ‘connec-
tivity’ is used to describe how well specific brain regions 
are interconnected, and it encompasses ‘structural’ and 
‘functional’ connectivity. Structural connectivity refers to 
regional white matter arrangement and can be investigated 
using DWI. To extract features from DWI, various models 
can be applied, of which the diffusion tensor imaging (DTI) 
model is the most well-known. DTI enables calculation of 
the diffusion tensor within every voxel, from which a vari-
ety of measures can be extracted that are usually interpreted 
as reflecting white matter microstructure. A common DTI-
derived measure is fractional anisotropy, quantifying the 
directionality of diffusion. Fractional anisotropy reflects a 
complex relationship of both axial diffusivity, parallel to the 
main diffusion direction (‘along the white matter tracts’), 
and radial diffusivity, perpendicular to the main diffusion 
direction. When diffusion is isotropic (for instance in cere-
brospinal fluid), axial diffusivity and radial diffusivity have 
a similar magnitude and fractional anisotropy is close to 
0. In bundles with white matter tracts, radial diffusivity is 

lower than axial diffusivity, owing to the small spaces be-
tween axons, and fractional anisotropy approaches values of 
1, indicating highly anisotropic diffusion.9 Mean diffusivity 
(also called apparent diffusion coefficient, or trace) is a mea-
sure of overall diffusivity, and is a linear combination of axial 
diffusivity and radial diffusivity. Although all four measures 
can be derived from the tensor, fractional anisotropy is most 
often reported. During development, mean diffusivity and 
radial diffusivity typically decrease and fractional anisot-
ropy increases, whereas changes in axial diffusivity are more 
variable.10 Although there is no unique relationship between 
a single DTI measure and the underlying tissue microstruc-
ture, changes in radial diffusivity and fractional anisotropy 
are often interpreted in relation to myelination, while other 
developmental cellular changes, including axonal packing, 
also affect axial diffusivity and mean diffusivity.9,10 However, 
although higher fractional anisotropy values are generally 
interpreted as an indication of better white matter micro-
structure, this interpretation requires caution, also due to a 
multitude of fibre orientations within a single imaging voxel 
(crossing/kissing/fanning fibres).11 In general, DWI-derived 
measures (including DTI-derived measures) can be investi-
gated using several methods, including whole brain or white 
matter skeleton voxel-based analyses (e.g. tract-based spatial 
statistics), analyses based on region of interest to investigate 
specific white matter regions, and diffusion tractography 
analyses to examine specific white matter tracts.

Functional connectivity can be estimated using various im-
aging modalities, including fMRI (by measuring the tempo-
rally correlated variation of the BOLD signal of anatomically 
separated brain regions) and EEG (by measuring temporally 
correlated electrical activity of brain regions). This connectiv-
ity can be investigated using model-based methods, such as 
seed-based analyses to investigate correlation coefficients or 
coherences between a-priori-defined ‘seed’ regions and other 
voxels, and data-driven methods, such as independent compo-
nent analysis and data complexity analysis.12

The term ‘brain network organization’ is used to describe 
structural or functional brain connectivity on a large scale, 

What this paper adds

•	 Structural and functional brain connectivity and 
network organization are altered in cerebral palsy 
(CP).

•	 Those alterations vary between clinical CP 
subtypes.

•	 Connectivity can be altered also in patients with 
CP with normal conventional magnetic reso-
nance imaging.

•	 Lower fractional anisotropy in CP typically coin-
cides with higher radial diffusivity in the corti-
cospinal tract.
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typically of the whole brain, although reconstruction of ex-
plicitly specified networks (such as a ‘motor network’) is also 
possible. Brain networks are usually reconstructed on the 
basis of the principles of graph theory, which implies that 
the connections (referred to as ‘edges’ in network studies) 
between brain regions (referred to as ‘nodes’) are investi-
gated in a pairwise manner.13–15 Exact definition of edges 
and nodes is critical for brain network analysis. Nodes are 
typically defined as a specific group of neurons or regions of 
interest of the brain that can be adequately localized. Edges 
represent connectivity between certain nodes, and may be 
unweighted (i.e. either absent or present) or weighted, tak-
ing into account the value (strength) of the connection, such 
as fractional anisotropy or streamline density in structural 
analyses, or BOLD correlation coefficients in functional 
analyses.16,17 Common metrics derived from graph theory to 
describe brain networks include efficiency, clustering coef-
ficient, and small-worldness (see, for example, van Straaten 
and Stam17).

In recent years, there has been increased awareness that 
brain connectivity and network organization are import-
ant for brain functioning, both in healthy and diseased 
brains.18–20 Multiple studies have investigated structural 
and functional brain connectivity and network organiza-
tion in CP. Assuming that brain connectivity and network 
organization may be disrupted in CP, this information 
would improve our understanding of CP-related brain al-
terations, beyond what is known from conventional MRI 
studies. Eventually, this knowledge could be used towards 
unravelling the relationship between altered brain con-
nectivity, network organization, and functional outcomes 
in CP. This could ultimately be used to improve prognos-
tication or as a marker to investigate therapeutic effects. 
Structural connectivity in CP has been reviewed previ-
ously by Scheck et al.,21 but many studies have investigated 
structural connectivity in CP since 2012. To the best of our 
knowledge, functional connectivity and network organi-
zation in CP have not been reviewed previously, indicat-
ing that the landscape of studies in this domain in CP is 
relatively unexplored. Therefore, the aim of this scoping 
review was to provide an overview of studies in this do-
main, and summarize and discuss what is known about 
structural and functional brain connectivity and network 
organization in CP. Subsequently, results of this review 
can be used as a handle for future (systematic) reviews and 
clinical trials.

M ETHOD

The methodology of the JBI handbook for scoping reviews 
was used as guidance for this review.22 Reporting was done 
in accordance with the PRISMA Extension for Scoping 
Reviews (PRISMA-ScR) guidelines.23 A protocol of this re-
view was previously registered at PROSPERO (registration 
number CRD42020124696), as a systematic review and later 
adjusted to meet the requirements of a scoping review.

Search methods

A comprehensive search was performed in the biblio-
graphic databases PubMed and Embase from inception to 
20th September 2021, in collaboration with a medical librar-
ian (LJS). Search terms included controlled terms (MeSH 
in PubMed, Emtree in Embase) as well as free-text terms. 
The following inclusion terms were used (including syno-
nyms and closely related words) as index terms or free-text 
words: ‘cerebral palsy’ AND (‘diffusion magnetic resonance 
imaging’ OR ‘functional near infrared imaging’ OR [‘brain 
connectivity’ AND ‘magnetic resonance imaging’/electroen-
cephalography/magnetoencephalography]). The search was 
performed without date or language restrictions. Duplicate 
articles were excluded. Full search strategies for both data-
bases can be found in Appendix S1.

Study inclusion

All titles and abstracts were carefully read by two independ-
ent researchers. The following inclusion criteria were ap-
plied: (1) a comparison was performed between individuals 
with CP and typically developing individuals or between 
both hemispheres in individuals with unilateral CP; (2) the 
analysis performed was a structural or resting-state func-
tional brain connectivity (or brain network) analysis, using 
one of the techniques of DWI, fMRI, EEG, magnetoenceph-
alography, or functional near-infrared spectroscopy; (3) 
corresponding outcome parameters were quantitative and 
statistically analysed; (4) written in English. The following 
exclusion criteria were applied: (1) unavailability of full text; 
(2) case studies, defined as three or fewer individuals with 
CP; (3) conference abstracts, reviews, commentaries, disser-
tations, or study protocols; (4) animal studies; (5) absence 
of a diagnosis of CP for one or more patients at the moment 
the data were collected. To include or exclude abstracts, the 
researchers made use of ‘Covidence’, an online systematic 
review platform (https://www.covid​ence.org). After abstract 
selection, the full texts of all included studies were read by 
two independent researchers (NPTJ and LAvdP) to ensure 
correct eligibility for inclusion in the review. In the case of 
disagreement between researchers, both re-read the corre-
sponding abstract or full text and, after discussion, reached 
consensus. Reference lists of all included articles were sys-
tematically assessed for relevant articles that were not in-
cluded through the search on PubMed and Embase.

Data extraction and analysis

Data were extracted using a standardized form specifically 
developed for this review. Data extraction included the fol-
lowing headings: design, participants, measurement pro-
tocol, brain connectivity or network analysis, regions of 
interest, outcome measure(s), results, discussion, and other 
comments. Patients with CP were classified into one of five 
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subtypes: unilateral spastic CP, bilateral spastic CP, dyski-
netic CP, ataxic CP, and patients clinically diagnosed with 
CP but without abnormalities on conventional MRI. When 
a study investigated two CP groups within one study, both 
groups are described separately. When one CP group com-
prised multiple CP subtypes, results of that CP group were 
outlined towards the CP subtype that most of the patients 
belonged to. Type of CP was not always fully reported. In 
cases when only ‘hemiplegia’, ‘unilateral’, or ‘diplegia’ was 
reported, it was assumed that the spastic type was impli-
cated. For DWI studies that applied the DTI model, our 
focus on outcome measures was on fractional anisotropy, 
tract volume, and symmetry. Fractional anisotropy was most 
often reported. To also investigate the effect of the diffusiv-
ity measures mean diffusivity, axial diffusivity, and radial 
diffusivity, we included these measures for the corticospinal 
tract as secondary analysis. Volume and symmetry were in-
cluded because these measures do not reflect the diffusion 
tensor and might thus provide additional information. For 
DWI studies applying models other than DTI, and for func-
tional connectivity and network studies, expectations about 
outcome measures were less clear. Therefore, these analyses 
were more explorative and included all available outcome 
measures.

R E SU LTS

The literature search identified 946 abstracts from the 
PubMed and 1035 abstracts from Embase. Three studies 
were identified through reference screening. After removal 
of duplicates, a total of 1547 abstracts were included for ab-
stract selection. On the basis of the titles and abstracts, 1233 
studies were excluded. After reading the full text of 314 stud-
ies, a total of 65 met all criteria and were included. A flow 
chart of study selection, including reasons for exclusion after 
reading the full text, is given in Figure S1.

Patients' characteristics and reported data

Details of patients' characteristics and reported data, sum-
marized by study and organized by type of analysis (struc-
tural or functional connectivity or network study), are shown 
in Table S1. The number of included patients ranged from 4 
to 70 patients per CP group, with a median of 15 patients. 
Sixty-two of 65 studies also included a typically developing 
comparison group. If no comparison group was included, 
the studies compared hemispheres within the CP group. 
The median reported age of the CP groups was 11 years 
6 months (range 1 years 4 months–33 years 8 months), illus-
trating that most studies included children with CP, whereas 
a few studies included adolescents or adults with CP. Most 
studies included patients with unilateral spastic CP (consid-
ered a ‘main’ type in 32 studies), followed by bilateral spastic 
CP (24 studies), dyskinetic CP (eight studies), and patients 
clinically diagnosed with CP but without abnormalities on 

conventional MRI (four studies) (note that three studies 
included two main types in distinct analyses). None of the 
selected studies included patients with ataxic CP. Levels of 
Gross Motor Function Classification System (GMFCS)24 
were reported in 40 studies, and varied between GMFCS 
levels I and V, although the higher GMFCS levels (IV and 
V, indicating lower functional mobility) were slightly under-
represented (Table S1).

Forty-four studies investigated structural connectivity 
(not including network studies), of which 16 used deter-
ministic tractography, 14 used probabilistic tractography, 
13 used region of interest segmentation, and six used voxel-
based analyses (of which five used tract-based spatial statis-
tics). Forty studies applied the DTI model, one study also 
applied the NODDI model, and one study applied the q-
sampling imaging model. The most common DTI-derived 
measure was fractional anisotropy (40 studies), followed by 
mean diffusivity (29 studies), radial diffusivity (17 studies), 
axial diffusivity (16 studies), volume of DTI-derived white 
matter tracts or white matter regions (10 studies) (and area, 
one study), and symmetry (six studies). NODDI-derived 
measures were isotropic volume fraction, intracellular vol-
ume fraction, and orientation dispersion index. Q-sampling 
imaging-derived measures included quantitative anisotropy, 
generalized fractional anisotropy, number of fibres, and vol-
ume (Table S1).

Nineteen studies investigated functional connectivity 
(not including network studies), of which 10 used fMRI 
seed-based analysis, four used EEG coherence analysis, two 
used EEG complexity analysis, two used fMRI independent 
component analysis, and one used fMRI voxel-mirrored ho-
motopic connectivity analysis. Neither magnetoencephalog-
raphy nor functional near-infrared spectroscopy studies met 
the inclusion criteria. The correlation coefficient was used 
as the outcome measure in all fMRI seed-based and voxel-
mirrored homotopic analyses, of which one study also inves-
tigated the connectivity index. Interhemispheric coherence 
was used as outcome measure in all EEG coherence analyses, 
of which three studies also investigated intrahemispheric co-
herence. Fractal dimension and omega complexity were out-
comes of EEG complexity analyses (Table S1).

Five studies investigated structural network organiza-
tion, using measures of graph theory. Three studies used de-
terministic fibre tracking and two studies used probabilistic 
fibre tracking. Functional network organization was investi-
gated by one study, using fMRI-derived partial correlation. 
Outcome measures of brain network studies included effi-
ciency, clustering coefficient, degree, small-worldness, and 
characteristic path length (Table S1).

Structural connectivity

Fractional anisotropy results, organized by CP subtype, are 
shown in Table 1 and discussed below. Results of tract vol-
ume and symmetry can be seen in Appendix S2 and Tables S2 
and S3 respectively. Results of the (secondary) analysis on 
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mean diffusivity, axial diffusivity, and radial diffusivity, in 
relation to observations for fractional anisotropy within the 
corticospinal tract, are shown in Table S4.

In unilateral spastic CP, 22 studies investigated fractional 
anisotropy (Table 1), seven investigated volume (Table S2), 
and five investigated symmetry (Table  S3). For unilateral 
spastic CP, the term ‘ipsilesional’ is used to refer to the hemi-
sphere where the lesion occurred, so contralateral to the 
participant's affected body side. The term ‘contralesional’ is 
used to refer to the hemisphere ipsilateral to the participant's 
affected body side. Fractional anisotropy of efferent projec-
tion fibres (corticospinal tract and corticobulbar tract) of 
the ipsilesional hemisphere of individuals with unilateral 
spastic CP was usually lower than both the contralesional 
hemisphere (8 out of 10 evaluations) and typically develop-
ing individuals (16 out of 18 evaluations). Volume of the cor-
ticospinal tract of the ipsilesional hemisphere of individuals 
with CP was also reduced, compared with both the contrale-
sional hemisphere (four out of four studies) and typically de-
veloping individuals (three out of three studies). Fractional 
anisotropy and volume of the corticospinal tract of the con-
tralesional hemisphere were usually unaltered compared 
with typically developing individuals (14 out of 17 and three 
out of three evaluations respectively). Three studies reported 
increased asymmetry in fractional anisotropy or volume 
of the corticospinal tract between hemispheres in CP com-
pared with typically developing individuals. For the afferent 
projection fibres, fractional anisotropy of the ipsilesional 
hemisphere of the CP group was mostly unaltered, com-
pared with both the contralesional hemisphere (8 out of 10 
evaluations) and typically developing individuals (10 out of 
13 evaluations). Results of volume of the afferent projection 
fibres of the ipsilesional hemisphere were more variable, as 
reduced volume was observed in three out of six evaluations 
compared with both the contralesional hemisphere and typ-
ically developing individuals. For commissural fibres, frac-
tional anisotropy of the body of the corpus callosum was 
typically reduced in CP compared with typically develop-
ing individuals (four out of five evaluations), whereas frac-
tional anisotropy of the genu and the splenium of the corpus 
callosum were mostly unaltered (four out of five and three 
out of four evaluations respectively). Volume of the body of 
corpus callosum was reduced in CP in one out of two stud-
ies. For the association fibres, we observed no reduction in 
fractional anisotropy of the cingulum of the ipsilesional 
hemisphere compared with the contralesional hemisphere 
of the CP group (two out of two studies), but results were 
inconsistent compared with typically developing individuals 
(Table 1). Results of fractional anisotropy of the superior lon-
gitudinal fasciculus of the ipsilesional hemisphere compared 
with typically developing individuals were inconsistent as 
well (Table 1). Volumes of the superior longitudinal fascic-
ulus and the cingulum of the ipsilesional hemisphere of the 
CP group were unaltered compared with the contralesional 
hemisphere (three out of three evaluations) and typically 
developing individuals (three out of three evaluations). Few 

studies investigated fractional anisotropy of specific white 
matter regions, with inconsistent results (Table  1). Finally, 
Nemanich et al.25 applied the NODDI model beside the DTI 
model, and found lower intracellular volume fraction and 
orientation dispersion index in the ipsilesional corticospinal 
tract compared with the contralesional corticospinal tract, 
while no differences were observed for isotropic volume 
fraction. Using the connectome approach, Pannek et al.26 
investigated fractional anisotropy of tracts in unilateral CP 
compared with typically developing individuals, and found 
various differences, including lower fractional anisotropy in 
ipsilesional corticospinal connections, motor thalamocor-
tical connections, and association connections, compared 
with typically developing individuals.

In bilateral spastic CP, 15 studies investigated fractional 
anisotropy (Table 1), of which three also investigated volume 
(Table  S2). No studies investigated symmetry. Results of 
fractional anisotropy in the corticospinal tract of individu-
als with bilateral spastic CP were inconsistent: seven studies 
indicated reduced fractional anisotropy compared with typ-
ically developing individuals in both hemispheres, and five 
found no differences between those with CP and typically 
developing individuals in both hemispheres. One study, as-
sessing both hemispheres in bilateral spastic CP, found re-
duced fractional anisotropy only in the left hemisphere.27 
Another study studied only one hemisphere, corresponding 
to the side of the leg that interfered most with function and 
found reduced fractional anisotropy in the contralateral 
hemisphere28 (Table 1). The volume of the corticospinal tract 
was reduced in both hemispheres compared with typically 
developing individuals (two out of two studies). Fractional 
anisotropy of posterior thalamic radiation was typically re-
duced compared with typically developing individuals, at 
least in one hemisphere (five out of five evaluations). For the 
commissural fibres, a reduction in fractional anisotropy of 
genu, body, and splenium of the corpus callosum in the CP 
group was reported in three out of six, one out of one, and six 
out of six studies respectively. For the association fibres, frac-
tional anisotropy of the superior longitudinal fasciculus was 
reduced (four out of four studies) and fractional anisotropy 
of inferior longitudinal fasciculus was unaltered (two out of 
two studies). Fractional anisotropy of the cingulum was re-
duced in two out of four studies. For white matter regions, 
fractional anisotropy of the corona radiata and the posterior 
limb of the internal capsule were usually reduced (six out of 
six and seven out of nine evaluations respectively). Results of 
fractional anisotropy in the cerebellar peduncles were am-
biguous (Table 1). Lastly, Bauer and Papadelis,29 applying the 
q-sampling imaging model, found increased mean general-
ized fractional anisotropy for the left superior longitudinal 
fasciculus and left frontal aslant tract, and reduced volume 
for the bilateral superior longitudinal fasciculus, in CP com-
pared with typically developing individuals.

In dyskinetic CP, four studies investigated fractional an-
isotropy (Table  1), of which two also investigated volume 
(Table S2). No studies investigated symmetry in dyskinetic 
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CP. Compared with typically developing individuals, frac-
tional anisotropy and volume of the corticospinal tract of 
individuals with dyskinetic CP was lower in two out of four 
studies and one out of two studies respectively. Fractional 
anisotropy of the genu of the corpus callosum was lower in 
two out of two studies. Lower fractional anisotropy of the 
superior longitudinal fasciculus was reported in three out of 
three studies. Fractional anisotropy of the arcuate fasciculus 
was similar between those with CP and typically develop-
ing individuals, but the volume of the arcuate fasciculus was 
decreased in CP (one out of one study). Furthermore, wide-
spread lower fractional anisotropy values were reported, in-
cluding posterior thalamic radiation, splenium of the corpus 
callosum, inferior longitudinal fasciculus, anterior and pos-
terior limb of the internal capsule, cingulum, and cerebellar 
peduncles (Table 1).

In individuals with spastic bilateral CP whose conven-
tional MRI showed no abnormalities, Mu et al.30 found 
reduced fractional anisotropy compared with typically de-
veloping individuals in the prefrontal lobe, temporal lobe, 
internal capsule, external capsule, corpus callosum, cingu-
lum, thalamus, brain stem, and cerebellum, making use of 
tract-based spatial statistics. In individuals with spastic uni-
lateral CP whose conventional MRI showed no abnormal-
ities, Son et al.31 found increased asymmetry in fractional 
anisotropy of the corticospinal tracts above the level of the 
lesion of corona radiata, compared with typically developing 
individuals.

For all evaluations within the corticospinal tract, we an-
alysed whether changes in fractional anisotropy were re-
lated to changes in mean diffusivity, axial diffusivity, and/
or radial diffusivity (Table S4). Radial diffusivity results, re-
ported in 21 out of 44 evaluations, were highly concordant 
with fractional anisotropy: 18 out of 21 evaluations were 
consistent, namely a lower fractional anisotropy in one or 
two corticospinal tract sides coincided with a higher radial 
diffusivity (16 evaluations) in these side(s), or the absence of 
any change in fractional anisotropy coincided with the ab-
sence of any change in radial diffusivity (two evaluations). 
Partial consistency (consistency in only one of the hemi-
spheres) in individuals with unilateral CP was observed in 
two evaluations, while only one study showed no consistency 
(i.e. higher radial diffusivity, while no change in fractional 
anisotropy was detected). Mean diffusivity (or apparent 
diffusion coefficient, or trace) was reported in 34 out of 44 
evaluations, of which 20 evaluations had a result consistent 
with fractional anisotropy (17 with a lower fractional anisot-
ropy and corresponding higher mean diffusivity, and three 
without changes in either fractional anisotropy or mean dif-
fusivity); nine evaluations were partly consistent, and five 
evaluations were inconsistent: three showing a lower frac-
tional anisotropy, but no difference in mean diffusivity, and 
two showed a higher mean diffusivity, without a difference 
in fractional anisotropy. Axial diffusivity was reported in 19 
out of 44 evaluations, and these data were more ambivalent: 
lower fractional anisotropy coincided with higher, lower, 
and absence of differences in axial diffusivity (Table S4).

Functional connectivity

Results of functional connectivity, organized by type of CP, 
are summarized in Table 2 (fMRI) and Table 3 (EEG).

In unilateral spastic CP, eight studies investigated func-
tional connectivity, using fMRI (six studies) or EEG (two 
studies). fMRI studies indicated reduced connectivity when 
seeding from various brain regions, including motor, tha-
lamic, and language-associated regions.32–36 Increased con-
nectivity was found in the default mode network posterior 
component in children with CP due to arterial ischemic 
stroke, but not in CP due to perinatal venous infarction, 
compared with typically developing children.37 Using EEG, 
widespread increases and decreases in inter- and intrahemi-
spheric connectivity were reported, in various frequency 
bands.38,39

In bilateral spastic CP, eight studies investigated func-
tional connectivity, using fMRI (five studies) or EEG (three 
studies). Using fMRI, regions with both increased and re-
duced connectivity were reported, when seeding from motor 
and thalamic regions.8 Connectivity between somatosensory 
parts of the parietal cortex was increased.40 Independent 
component analysis indicated reduced connectivity in the 
cerebellum network, sensorimotor network, and left lateral 
fronto-parietal network in CP.41 Also, reduced connectivity 
was observed in some areas between the visual network and 
sensorimotor and auditory regions,42 while differences in 
connectivity within the visuomotor network were not sig-
nificant in another study.29 Using EEG, both increases and 
decreases in inter- and intrahemispheric connectivity in CP 
were reported.43 EEG complexity analysis indicated reduced 
connectivity in multiple brain regions and frequency bands 
in CP.44,45

In dyskinetic CP, four studies investigated functional 
connectivity, using fMRI (three studies) or EEG (one study). 
Reduced interhemispheric connectivity was observed in 
motor, sensorimotor, and premotor-related areas, and parts 
of frontal and calcarine areas.46,47 Independent component 
analysis of fMRI data revealed reduced connectivity in the 
cerebellum network, sensorimotor network, and left lateral 
fronto-parietal network in CP.41

In children with spastic bilateral CP whose conventional 
MRI showed no abnormalities, Mu et al.48 used fMRI to in-
vestigate functional connectivity compared with typically 
developing individuals. Results indicated both regions of 
increased connectivity and regions of reduced connectivity 
when seeding from anterior central gyrus and thalamus, 
compared with typically developing individuals.

Network organization

In unilateral spastic CP, whole-brain structural network 
organization was investigated by Craig et al.49 who studied 
whole-brain structural connectivity, weighted by the num-
ber of streamlines, in children with unilateral CP due to ar-
terial ischemic stroke and periventricular venous infarction 
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T A B L E  2   Functional connectivity derived using functional magnetic resonance imaging

Reference CP subtype
Seed regions of interest/
investigated regions Main findings

Carlson et al.33 Unilateral spastic Bilateral inferior frontal gyrus
Bilateral posterior superior temporal 

gyrus
Bilateral frontal pole

Reduced interhemispheric connectivity between inferior frontal 
gyri in right hemispheric stroke, but not left hemispheric stroke, 
compared with TDI

Reduced intrahemispheric connectivity in ipsilesional hemisphere 
compared with contralesional hemisphere in left hemispheric 
stroke, but not right hemispheric stroke

Carlson et al.32 Unilateral spastic Bilateral primary motor (M1)
Bilateral primary sensory (S1)
Bilateral SMA
Bilateral thalamus
Bilateral caudate
Bilateral pallidum
Bilateral putamen

For cortical regions, lower functional connectivity mainly between 
lesioned and non-lesioned M1, S1, and SMA in CP AIS group 
compared with TDI and CP PVI

For subcortical regions, lower functional connectivity mainly 
in AIS compared with TDI and CP PVI for interhemispheric 
connectivity, but not for intrahemispheric connectivity

Lower functional connectivity between cortical and subcortical 
regions for lesioned putamen and M1, S1, and SMA for CP AIS 
compared with TDI and CP PVI

Overall for CP PVI, resting-state connectivity was largely similar 
compared with TDI

Ilves et al.37 Unilateral spastic 13 independent components 
(probabilistic ICA-derived)

Increased connectivity in default mode network posterior 
component in left periventricular area in CP due to AIS, but not 
CP due to PVI, compared with TDI

Park et al.34 Unilateral spastic Ipsilesional primary motor cortex Reduced connectivity between specific regions of the ipsilesional 
paracentral gyrus, and ipsilesional cingulate motor area 
and supplementary motor area, bilateral thalamus, and 
contralesional motor areas, compared with TDI

Saunders 
et al.35

Unilateral spastic Bilateral primary motor cortex Reduced connectivity between primary motor cortex and 
contralateral supplementary motor area, both when seeding 
from the lesioned and non-lesioned primary motor cortex, 
compared with TDI

Woodward 
et al.36

Unilateral spastic Bilateral precentral gyrus
Bilateral postcentral gyrus
Bilateral supplementary motor cortex
Bilateral thalamus

Reduced interhemispheric connectivity between thalami, compared 
with TDI

Bauer and 
Papadelis29

Bilateral spastic Bilateral primary visual (V1)
Bilateral lingual gyrus (V2)
Bilateral primary motor (M1)
Bilateral superior parietal lobe
Bilateral pars opercularis and pars 

triangularis of inferior frontal 
gyrus

No significant differences in connectivity between regions in the 
visuomotor network in CP compared with TDI

Burton et al.40 Bilateral spastic Bilateral postcentral sulcus
Bilateral postcentral gyrus
Bilateral posterior postcentral gyrus
Left parietal operculum
Left medial postcentral gyrus
Bilateral inferior intraparietal sulcus
Bilateral superior intraparietal sulcus

Increased connectivity between somatosensory parts of the parietal 
cortex compared with TDI

Doucet et al.42 Bilateral spastic 
(most)

Left precentral cortex
Left lingual gyrus
Left Heschl gyrus

Reduced connectivity between the visual network and regions 
both within the sensorimotor and auditory networks in CP 
compared with TDI

Lee et al.8 Bilateral spastic Bilateral motor cortex
Bilateral thalamus

Increased connectivity between motor cortex and adjacent parietal 
area, but decreased connectivity with bilateral somatosensory 
cortex, paracentral lobule, pre-supplementary motor area, 
cingulate motor area, visual cortex, superior, and inferior 
parietal lobules, compared with TDI

Increased connectivity between thalamus and parietal, occipital, 
prefrontal, and posterior cingulate, but decreased connectivity 
with caudate nucleus, anterior and posterior cingulate cortex, 
and cerebellum, compared with TDI
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compared with typically developing individuals. Global and 
local efficiency, assortativity, hierarchical coefficient of re-
gression, and small-worldness ratio were all higher in arte-
rial ischemic stroke and periventricular venous infarction 
than in typically developing individuals. Also, values in the 
arterial ischemic stroke group were usually higher than in 
the group with periventricular venous infarction.

In bilateral spastic CP, whole-brain structural and func-
tional network organization was investigated by Lee et al.50 
who found lower global and local efficiency compared with 
typically developing individuals in structural networks of 
the whole brain (weighted by the number of streamlines), but 
not for the functional networks. Similar observations were 
done for the dorsal and ventral visual stream subnetworks, 
but in the motor subnetwork the functional connections 
were more deviant than the structural ones.

In dyskinetic CP, whole-brain structural network or-
ganization was investigated by Ballester-Plané et al.51 who 
concluded a globally reduced number of streamlines in CP, 
widespread throughout the brain, and most prominently in 
temporal and occipital lobes. Reductions of fractional an-
isotropy were more restricted to bilateral precentral, post-
central, superior parietal, and middle temporal cortices; 
right paracentral cortex, posterior cingulate, and superior 
temporal cortex; and left hippocampus, while prefrontal re-
gions were relatively preserved.

Duan et al.52 investigated whole-brain structural network 
organization in individuals with spastic bilateral CP with-
out abnormalities on conventional MRI. The authors found 
that global efficiency was decreased and normalized char-
acteristic path length was increased, which was interpreted 
as decreased efficiency of information transfer compared 
with typically developing individuals. Zhang et al.53 also 
investigated structural network organization in individuals 
diagnosed with bilateral spastic CP without abnormalities 
on conventional MRI, and found multiple changes in whole-
brain network measures, including a lower nodal clustering 
coefficient and higher nodal path lengths in various brain 
regions. Overall, the results were interpreted by the authors 
as indicating a more inefficient information exchange than 
in typically developing individuals.

DISCUSSION

This scoping review summarizes studies investigating differ-
ences in structural and functional connectivity and network 
organization in CP compared with typically developing in-
dividuals, or between hemispheres in the case of unilateral 
CP. Most studies focused on structural connectivity, fol-
lowed by functional connectivity and network organization. 
Between studies, large variation in patients' characteristics 

Reference CP subtype
Seed regions of interest/
investigated regions Main findings

Qin et al.41 Bilateral spastic 14 independent components 
(ICA-derived)

Reduced connectivity within the cerebellum network, sensorimotor 
network, and left lateral fronto-parietal network, compared 
with TDI

Increased and reduced connectivity in the salience network 
compared with TDI

Four disconnections between network components, compared with 
TDI

Qin et al.41 Dyskinetic 14 independent components 
(ICA-derived)

Reduced connectivity within the cerebellum network, sensorimotor 
network, and left lateral fronto-parietal network, compared 
with TDI

Increased and reduced connectivity in the salience network 
compared with TDI

Six disconnections between network components, compared with 
TDI

Qin et al.47 Dyskinetic Each pair of symmetric 
interhemispheric voxels

Reduced interhemispheric connectivity mainly in motor and 
premotor-related areas, including cerebellum, precentral, 
supplementary motor area, anterior cingulate, middle cingulate, 
and bits of frontal and calcarine areas, compared with TDI

Mu et al.48 Bilateral spastic, 
without 
abnormalities 
on 
conventional 
magnetic 
resonance 
imaging

Bilateral anterior central gyrus
Bilateral thalamus

Increased connectivity between anterior central gyri and 
contralateral precentral gyrus, postcentral gyrus, 
supplementary motor area, and ipsilateral postcentral gyrus, 
but reduced connectivity with bilateral fusiform gyrus and 
lingual gyrus, compared with TDI

Increased connectivity between thalami and bilateral precentral 
gyrus, contralateral cerebellum, and inferior temporal gyrus, 
but reduced connectivity with bilateral basal ganglia, cingulate, 
and prefrontal cortex, compared with TDI

Abbreviations: AIS, arterial ischemic stroke; CP, cerebral palsy; ICA, independent component analysis; PVI, periventricular venous infarction; SMA, supplementary motor 
areas; TDI, typically developing individuals.

T A B L E  2   (Continued)
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and methodology was observed. With regard to patients' 
characteristics, differences were observed between CP sub-
types (unilateral or bilateral spastic CP, dyskinetic CP), se-
verity of CP (GMFCS level), and underlying aetiologies (e.g. 
periventricular leukomalacia, arterial ischemic stroke, or 
damage to deep grey matter), reflecting that CP is an um-
brella term comprising a diverse population. With regard to 
methodology, substantial variability was observed in choice 
of brain imaging modalities, type of analyses, investigated 
regions of interest, and outcome measures. Still, widespread 
alterations in connectivity and network organization were 
described in CP.

The results of our scoping review are in line with most of 
the findings of the earlier systematic review by Scheck et al.21 
for children with spastic CP. Scheck et al.21 previously stated 
the involvement of the descending corticospinal tract in CP, 
in their review addressing structural connectivity in CP, as 
assessed by DTI. In addition, they mentioned a probable role 
for the ascending sensorimotor tracts in CP as well, although 
these tracts were studied in a more limited number of stud-
ies. Results of the current review are also in line with the typ-
ical occurrence of lower fractional anisotropy (and smaller 
volume and higher asymmetry indices) of the corticospinal 
tract (including posterior limb of internal capsule and/or 
corona radiata) in spastic CP, indicating that the architec-
ture of the corticospinal tract is typically altered in these in-
dividuals. In addition, the secondary analysis showed that 
lower fractional anisotropy in the corticospinal tract almost 
exclusively coincided with a finding of increased radial dif-
fusivity and mean diffusivity, while changes in axial diffu-
sivity were ambivalent. Furthermore, the earlier hypothesis 
of lower fractional anisotropy in afferent projection fibres 
is also confirmed by the current review, suggesting that the 
microstructure of these fibres can be altered in spastic CP, 
possibly relating to deficits in sensory organization that are 
common in these patients (see, for example, Lagunju et al.;54 
Nashner et al.;55 Pavão and Rocha;56 Sanger and Kukke57). 
For example, Hoon Jr et al.58 found that the amount of in-
jury to the posterior thalamic radiation was related to lower 
touch threshold and diminished proprioception in individ-
uals with CP. Interestingly, we observed that the lower frac-
tional anisotropy of afferent projection fibres may be more 
pronounced in bilateral spastic CP than in unilateral spastic 
CP (Table 1). Sensory deficits may be clearer in individuals 
with bilateral CP compared with unilateral CP because of 
differences in underlying pathology, although differences 
in severity of CP between included groups could also play 
a role. Finally, according to Scheck et al.,21 the role of com-
missural and association fibres in the pathogenesis of CP 
still remains to be elucidated. On the basis of the common 
occurrence of lower fractional anisotropy in commissural fi-
bres in the current review, it is likely that the architecture of 
these fibres is altered in spastic CP, for example in the body 
of the corpus callosum (especially in unilateral spastic CP) 
and the splenium of the corpus callosum (especially in bilat-
eral spastic CP), suggesting alterations in interhemispheric 
communication. Interestingly, in bilateral spastic CP, lower 

fractional anisotropy was observed in all five studies inves-
tigating posterior thalamic radiation and in all six studies 
investigating splenium of the corpus callosum, compared 
with one in three evaluations and one in four evaluations re-
spectively in unilateral spastic CP. These white matter tracts 
connect occipital brain regions with ipsilateral thalamus 
(posterior thalamic radiation) and contralateral occipital 
brain regions (the splenium of the corpus callosum). Altered 
microstructure of these fibres might therefore be associated 
with cerebral visual impairment, which is common in bilat-
eral spastic CP.59

Differences in spastic CP compared with typically devel-
oping individuals were also observed for functional connec-
tivity and network analyses. Regions with altered functional 
connectivity include those associated with motor control, 
sensory integration, and interhemispheric communication, 
in line with the results of the structural connectivity studies 
described above. The observation that alterations in white 
matter structure may result in functional disturbances as 
well is interesting as it may indicate that even focal lesions, 
which are common in unilateral spastic CP, could affect 
whole-brain functioning. Still, it remains to be investigated 
whether the observed alterations in functional connectivity 
and network organization reflect a compensatory mecha-
nism, or whether early brain damage does actually result in 
such widespread alterations in functional connectivity and 
network organization, especially because not only decreases 
but also increases in functional connectivity were observed 
in CP compared with typically developing individuals.

Dyskinetic CP is much less prevalent than spastic CP, and 
has been investigated in connectivity and network studies 
less often. Three recent studies were identified that have in-
vestigated structural connectivity in dyskinetic CP since the 
review by Scheck et al.21 In dyskinetic CP, choreoathetosis 
and/or dystonia are the key symptoms. Damage to the basal 
ganglia and/or thalamus is a typical pattern on conventional 
MRI, and can be limited to these structures.60 Still, the le-
sion extent in these structures does not always explain the 
severity of choreoathetosis and/or dystonia in dyskinetic 
CP,61 suggesting that other pathways or structures may be 
involved as well. Interestingly, three out of three studies 
found lower fractional anisotropy in the superior longitudi-
nal fasciculus, indicating that this tract, probably involved 
in auditory processing, speech, and/or language,62,63 is af-
fected in dyskinetic CP. Involvement of this tract might be 
related to problems with speech, which are very common 
especially in the dyskinetic CP subtype.64 Evidence of in-
volvement of the corticospinal tract, as assessed by DTI, is 
conflicting, possibly reflecting the heterogeneity of patients 
with dyskinetic CP in conventional MRI results. In a part 
of the patients, the motor cortex is involved in the initial 
hypoxic–ischemic damage, in addition to involvement of the 
basal ganglia and/or thalamus. Furthermore, some of these 
patients may clinically have a more mixed type of CP with a 
pyramidal syndrome in addition to choreoathetosis and/or 
dystonia.65 Differences between those with CP and typically 
developing individuals may occur in other brain regions as 
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well. For example, Ballester-Plané et al.51 specifically men-
tioned altered structural connectivity of the hippocampus 
in dyskinetic CP. Hippocampal damage can typically be ob-
served on conventional MRI when basal ganglia and thala-
mus lesions are severe.60 Ballester-Plané et al.,51 however, did 
not describe hippocampal lesions in the conventional MRI 
results. This is interesting as it indicates that connectivity 
of the hippocampus may be reduced in dyskinetic CP, even 
when hippocampal damage could not be readily observed on 
conventional MRI. Finally, various regions of altered func-
tional connectivity were observed in dyskinetic CP (Tables 2 
and 3), including reduced interhemispheric connectivity by 
fMRI and EEG.46,47

At least 19 studies included individuals with normal 
conventional MRI results. In about 14% of the individuals 
clinically diagnosed with CP, no abnormalities on conven-
tional MRI were found.4 Interestingly, in the five studies in 
which, specifically, individuals diagnosed with CP without 
abnormalities on conventional MRI were compared with 
typically developing individuals, differences in structural 
and functional connectivity and network organization were 
observed.30,31,48,52,53 However, in these individuals it often 
remains questionable whether the cause of the motor disor-
der is indeed CP, defined as a non-progressive disturbance 
that occurred in the developing brain, or rather another un-
derlying (yet unidentified) metabolic or genetic disorder.66 
Inclusion of these children, probably reflecting a group with 
heterogeneous underlying pathology, in neuroimaging stud-
ies investigating CP may therefore introduce bias. No study 
was found in which connectivity or network organization 
of patients with a diagnosis of CP without abnormalities 
on structural MRI was compared with patients with MRI-
confirmed CP.

This review identified gaps in current knowledge, trans-
lating to recommendations for future research in this do-
main. First, structural connectivity was investigated far 
more often than functional connectivity. To unravel func-
tional connectivity and network organization in CP, it is im-
portant that these are addressed in the future. Furthermore, 
no studies included participants with ataxic CP, and only a 
limited number of studies included participants with dys-
kinetic CP. For future research it is important to include all 
clinical types of CP to represent the full spectrum of CP. 
Also, detailed reporting of clinical characteristics to facili-
tate interpretation and generalization of the results is cru-
cial in a heterogenous condition such as CP. Therefore, the 
clinical subtype, severity (GMFCS levels), and conventional 
MRI results should be reported in every study addressing 
connectivity in CP.

For future studies, we suggest being careful with includ-
ing individuals with (apparently) normal conventional MRI 
results in brain imaging studies addressing CP, as this could 
be a potential source of bias. It would, however, be of interest 
to focus future research on comparing connectivity or net-
work organization of patients without abnormalities on con-
ventional MRI with MRI-confirmed CP, to gain knowledge 
about the differences between these populations. From a 

clinical perspective, interesting future directions of research 
also include the prognostic potential of connectivity and 
network measures in neonates, and the effects of therapies 
on connectivity and network organization. Studies includ-
ing long-term clinical follow-up, and well-designed pre–post 
studies with relevant outcome measures, will be needed to 
achieve these goals. To compare studies, and to make data-
pooling possible, it would be helpful to harmonize outcome 
measures.

A limitation of this review is the summarization of frac-
tional anisotropy, volume, and symmetry data in a quali-
tative way. Because of the high number of included DTI 
studies and concomitant substantial variability in analy-
sis methods, we considered it was not sensible to combine 
outcome measures in a more quantitative way. Also, we did 
not include diffusivity measures such as mean diffusivity, 
axial diffusivity, and radial diffusivity for all tracts, owing 
to the large number of studies and our aim of writing a 
readable overview. Still, the demonstration of these diffu-
sivities for the studies describing the corticospinal tract 
convincingly showed the relationship between fractional 
anisotropy on the one hand and mean diffusivity and 
radial diffusivity on the other. Finally, in this review we 
used the statistical significance values that were applied 
in the individual studies. Hence, some of the differences 
between studies, in combination with differences in statis-
tical power because of differences in group size, may have 
been a result of the use of stricter or less strict significance 
requirements.

In conclusion, this review provides an overview of studies 
investigating differences in structural and functional con-
nectivity and network organization between individuals 
with CP and typically developing individuals. Also, it pro-
vides insights into the involvement of specific brain regions, 
tracts, and networks in the different CP subtypes. These re-
sults can be used as a handle for future research. Eventually, 
interesting applications would include evaluating the prog-
nostic potential of specific brain connectivity and network 
measures, and monitoring therapeutic effects on connectiv-
ity and network organization.
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