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While serializability always guarantees application correctness, lower isolation levels can be chosen to improve
transaction throughput at the risk of introducing certain anomalies. A set of transactions is robust against a
given isolation level if every possible interleaving of the transactions under the specified isolation level is
serializable. Robustness therefore always guarantees application correctness with the performance benefit of
the lower isolation level. While the robustness problem has received considerable attention in the literature,
only sufficient conditions have been obtained. The most notable exception is the seminal work by Fekete
where he obtained a characterization for deciding robustness against SNAPSHOT ISOLATION. In this paper,
we address the robustness problem for the lower SQL isolation levels READ UNCOMMITTED and READ
COMMITTED which are defined in terms of the forbidden dirty write and dirty read patterns. The first main
contribution of this paper is that we characterize robustness against both isolation levels in terms of the
absence of counter example schedules of a specific form (split and multi-split schedules) and by the absence
of cycles in interference graphs that satisfy various properties. A critical difference with Fekete’s work, is
that the properties of cycles obtained in this paper have to take the relative ordering of operations within
transactions into account as READ UNCOMMITTED and READ COMMITTED do not satisfy the atomic
visibility requirement. A particular consequence is that the latter renders the robustness problem against
READ COMMITTED coNP-complete. The second main contribution of this paper is the coNP-hardness proof.
For READ UNCOMMITTED, we obtain LOGSPACE-completeness.

CCS Concepts: • Information systems → Database transaction processing; • Theory of computation
→ Database theory.

Additional Key Words and Phrases: Concurrency Control, SQL Isolation Levels

1 INTRODUCTION
To guarantee consistency during concurrent execution of transactions, most database management
systems offer a serializable isolation level. Serializability ensures that the effect of concurrent
execution of transactions is always equivalent to a serial execution where transactions are executed
in sequence one after another. The database system thereby guarantees perfect isolation for every
transaction. For application programmers perfect isolation is extremely important as it implies
that they only need to reason about correctness properties of individual transactions. Ensuring
serializability, however, comes at a non-trivial performance cost [24]. Database systems therefore
provide the ability to trade off isolation guarantees for improved performance by offering a variety
of isolation levels. Even though isolation levels lower than serializability are often configured
by default (see, e.g., [5]), executing transactions concurrently under such isolation levels is not
without risk as it can introduce certain anomalies. Sometimes, however, a set of transactions can
be executed at an isolation level lower than serializability without introducing any anomalies.
This is for instance the case for the TPC-C benchmark application [21] running under snapshot
isolation. In such a case, the set of transactions is said to be robust against a particular isolation
level. More formally, a set of transactions is robust against a given isolation level if every possible
interleaving of the transactions allowed under the specified isolation level is serializable. Detecting
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robustness is highly desirable as it allows to guarantee perfect isolation at the performance cost of
a lower isolation level.

Fekete et al [16] initiated the study of robustness in the context of snapshot isolation, referring
to it as the acceptability problem, and providing a sufficient condition in terms of the absence of
cycles with specific types of edges in the static dependency graph (what we and Fekete [15] call
interference graph). This result was extended by Bernardi and Gotsman [10] by providing sufficient
conditions for deciding robustness against the different isolation levels that can be defined in a
declarative framework as introduced by Cerone et al [11]. This framework provides a uniform
specification of various isolation levels (including snapshot isolation) that admit atomic visibility,
a condition requiring that either all or none of the updates of each transaction are visible to
other transactions. The atomic visibility assumption is key as it allows to specify isolation levels
by consistency axioms on the level of transactions rather than on the granularity of individual
operations within each transaction. The sufficient conditions are again based on the absence of
cycles with certain types of edges.
In a seminal paper, Fekete [15] obtained a characterization for deciding robustness against

snapshot isolation which should be contrasted with the work mentioned above that only provide
sufficient conditions. In this paper, we extend the former work by providing characterizations
for robustness against the lower SQL isolation levels read uncommitted and read committed
which are defined in terms of the forbidden dirty write and dirty read patterns [9]. Especially read
committed is a very relevant isolation level as it is the default isolation level in quite a number of
database systems [6] and also because it is one of the few isolation levels providing highly available
transactions [5]. Furthermore, as read committed and by extension read uncommitted, provide
a low performance penalty, establishing robustness against these isolation levels allows rapid
concurrent execution while guaranteeing perfect isolation. Alomari and Fekete [3] already studied
robustness against read committed and provide a sufficient condition that is not a necessary one.
To provide some insight into the technical challenges, we introduce some terminology by

example (formal definitions are given in Section 2). As usual, a transaction is a sequence of read
and write operations on objects followed by a commit. Consider for instance the set of transactions
T = {𝑇1,𝑇2} with 𝑇1 = W1 [x]R1 [z]W1 [y]C1 and 𝑇2 = W2 [z]R2 [y]W2 [x]C2. Here, Wi [x] and Ri [x]
denote a read and a write operation to object x by transaction𝑇𝑖 whereas Ci is the commit operation
of 𝑇𝑖 . A schedule for T then is an ordering of all operations occurring in transactions in T .
For instance, 𝑠1 and 𝑠2 as displayed in Figure 1 are schedules for T . A schedule is not allowed
under isolation level read uncommitted when it exhibits a dirty write: a pattern of the form
W1 [x] · · · W2 [x] · · · C1, that is, 𝑇2 writes to an object that has been modified by a transaction 𝑇1 that
has not yet committed. Both 𝑠1 and 𝑠2 are allowed under read uncommitted. The isolation level
read committed prohibits dirty writes as well as dirty reads. The latter is a pattern of the form
W2 [z] · · · R1 [z] · · · C2. That is,𝑇1 reads an object that has been modified by a transaction𝑇2 that has
not yet committed. The schedule 𝑠1 is not allowed under read committed. Notice that 𝑠1 and 𝑠2 are
not conflict serializable as their conflict graphs admit a cycle.1 Indeed, consider 𝑠1, W2 [z] occurring
before R1 [z] in 𝑠1 implies that in any conflict equivalent sequential schedule𝑇2 should occur before
𝑇1, while W1 [x] occurring before W2 [x] in 𝑠1 implies the converse.

We start by studying robustness against read uncommitted. This means that for a given set of
transactions, we need to check whether there is a counter example schedule that is allowed under
read uncommitted and which is not serializable, that is, contains a cycle in its conflict graph.
Notice that for T = {𝑇1,𝑇2} as defined above 𝑠1 constitutes such a counter example. Furthermore,
𝑠1 is of a very particular form. Indeed, 𝑠1 can be seen as the schedule constructed by splitting𝑇2 into

1See Section 2.2 for a definition of conflict graphs and how acyclity implies serializability.
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schedule 𝑠1 : W1 [x]R1 [z]W1 [y]C1 (𝑇1)
W2 [z] R2 [y]W2 [x]C2 (𝑇2)

schedule 𝑠2 : W1 [x]R1 [z] W1 [y]C1 (𝑇1)
W2 [z]R2 [y] W2 [x]C2 (𝑇2)

Fig. 1. Schedules 𝑠1 and 𝑠2 for T = {𝑇1,𝑇2}.

two parts (W2 [z] and R2 [y]W2 [x]C2) and placing the complete transaction 𝑇1 in between. We call
such schedules a split schedule. They can also be defined for sets of transactions consisting of more
than two transactions by splitting one transaction in two parts and placing all other transaction in
between (cf. Figure 2). We show that the existence of a counter example schedule that has the form
of a split schedule provides a necessary and sufficient condition for deciding robustness against
read uncommitted.

Fekete [15] introduced the notion of an interference graph for a set of transactions and obtained
a characterization for deciding robustness against snapshot isolation in terms of the absence of a
cycle with certain types of edges. We mimic his result by obtaining an additional characterization of
deciding robustness against read uncommitted in terms of the absence of cycles in the interference
graphs that are prefix-write-conflict-free.2 It is important to point out the main difference with
the work of Fekete: snapshot isolation admits atomic visibility implying that cycles in the
interference graph can refer to the global ordering of transactions and can ignore the ordering
of operations within transactions. For read uncommitted, we can not rely on atomic visibility
and need to take into account the specific conflicting operations that generate the edges in the
interference graph. In addition, the notion of prefix-write-conflict-free cycle requires to isolate a
single transaction (the one witnessing transferability, see Section 3, and the one that will be split in
the counter example schedule) and determine non-existence of write-conflicts with respect to a
prefix of this transaction (so the order of operations matters). That being said, the complexity of
testing robustness against read uncommitted can be done very efficiently as we show it to be
logspace-complete.

Next, we turn to robustness against read committed. Schedule 𝑠2 shown in Figure 1 is allowed
under read committed and is not serializable. It is hence a counter example showing that T is
not robust against read committed. Notice that 𝑠2 is not a split schedule. In fact, it can be argued
that there is no split schedule for T that is allowed under read committed. This means that the
existence of a counter example schedule in the form of a split schedule is not a necessary condition
for deciding robustness against read committed. We show that counter examples do not need
to take arbitrary forms either. We obtain a characterization for deciding robustness against read
committed in terms of counter example schedules that take the form of multi-split schedules as
illustrated in Figure 2. In contrast to a split schedule where one transaction is split open and all
other transactions are inserted, a multi-split schedule can open several such transactions but needs
to close them in the same order.

We obtain an equivalent characterization in terms of the absence of a multi-prefix-conflict-free
cycle in the interference graph. The latter is a rather involved property of cycles that much more
than the notion of prefix-write-conflict-free mentioned previously depends on the ordering of
operations within transactions. Using this notion, we show that deciding robustness against read

2See Section 4 for a formal definition.
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Split schedule for four transactions:
𝑇1
𝑇2
𝑇3
𝑇4

Multi-split schedule for six transactions:
𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6

opening phase sequential phase closing phase

Fig. 2. Abstract presentation of split and multi-split schedule. The drawing omits a possible trailing sequence
of non-interleaved transactions (cf. Definition 8 and Definitions 18).

committed is conp-complete. The lower bound proof is a rather involved reduction from 3SAT
that bears on ideas from the np-hardness proof for the ProperlyColoredCycle problem discussed
in Section 5.2. The latter should be contrasted with robustness against snapshot isolation for
which the algorithm in [15] implies a ptime upper bound.

Following the work of Fekete [15], we are the first to obtain a complete characterization for
robustness against the considered isolation levels. The main contributions of this paper can be
summarized as follows:

(1) providing characterizations for deciding robustness against read uncommitted and read
uncommitted in terms of the absence of (i) counter-example schedules of various shapes
and (ii) cycles in interference graphs of various forms; these characterizations provide direct
upper bounds on the complexity of deciding robustness; and.

(2) conp-hardness of deciding robustness against read committed.

Outline.We introduce the necessary definitions in Section 2. We introduce key notions in Section 3
in the context of robustness against no isolation level. We consider robustness against read
uncommitted and read committed in Section 4 and Section 5, respectively. We discuss related
work in Section 7 and conclude in Section 8.

Novelty Requirement. The present paper is the full version of [17] and supplies all proofs. In
particular, full proofs of the following non-trivial results are added: Theorem 12, Theorem 16,
Theorem 17, and Lemma 32. In addition, we added novel material on robustness for schedules with
missing and repeating transactions in Section 6 that was not present in the conference version.

2 DEFINITIONS
2.1 Transactions and Schedules
For natural numbers 𝑖 and 𝑗 with 𝑖 ≤ 𝑗 , denote by [𝑖, 𝑗] the set {𝑖, . . . , 𝑗}. We fix an infinite set of
objects Obj. For an object x ∈ Obj, we denote by R [x] a read operation on x and by W [x] a write
operation on x. We also assume a special commit operation denoted by C. A transaction 𝑇 over Obj
is a sequence of read and write operations on objects in Obj followed by a commit. In the sequel,
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we leave the set of objects Obj implicit when it is clear from the context and just say transaction
rather than transaction over Obj. We also sometimes just say reads and writes rather than read and
write operations.

We assume that a transaction performs at most one write and at most one read per object. The
latter is a common assumption (see, e.g. [15]) and is made to simplify exposition; all our results
carry over to the more general setting in which multiple writes and reads per object are allowed.

Formally, we model a transaction as a linear order (𝑇, ≤𝑇), where 𝑇 is the set of (read, write and
commit) operations occurring in the transaction and ≤𝑇 encodes the ordering of the operations. As
usual, we use <𝑇 to denote the strict ordering.
For an operation 𝑏 ∈ 𝑇, we denote by prefix𝑏 (𝑇) the restriction of 𝑇 to all operations that are

smaller than or equal to 𝑏 according to ≤𝑇 . Similarly, we denote by postfix𝑏 (𝑇) the restriction
of 𝑇 to all operations that are strictly larger than 𝑏 according to ≤𝑇 . Throughout the paper, we
interchangeably consider transactions both as linear orders as well as sequences. Therefore,𝑇 is then
equal to the sequence prefix𝑏 (𝑇) followed by postfix𝑏 (𝑇) which we denote by prefix𝑏 (𝑇) ·postfix𝑏 (𝑇)
for every 𝑏 ∈ 𝑇 .
When considering a set T of transactions, we assume that every transaction in the set has

a unique id 𝑖 and write 𝑇𝑖 to make this id explicit. Similarly, to distinguish the operations from
different transactions, we add this id as index to the operation. That is, we write Wi [x] and Ri [x] to
denote a write and read on object 𝑥 occurring in transaction 𝑇𝑖 ; similarly Ci denotes the commit
operation in transaction 𝑇𝑖 . Notice that this convention is consistent with the literature (see, e.g.
[9, 15]).

A schedule 𝑠 over a set T of transactions is a sequence of all the operations occurring in transac-
tions in T in which the order of operations from the different transactions is consistent with their
order in the respective transactions. Formally, we model a schedule as a linear order (𝑠, ≤𝑠 ) where
𝑠 is the set containing all operations of transactions in T and ≤𝑠 encodes the ordering of these
operations with the additional constraint that 𝑎 <𝑇 𝑏 implies 𝑎 <𝑠 𝑏 for every 𝑇 ∈ T and every
𝑎, 𝑏 ∈ 𝑇.

The absence of aborts in our definition of schedule is consistent with the common assumption [10,
15] that an underlying recovery mechanism will rollback transactions that interfere with aborted
transactions.

A schedule 𝑠 over a set of transactions T is sequential if its transactions are not interleaved with
operations from other transactions. That is, for every 𝑎, 𝑏, 𝑐 ∈ 𝑠 with 𝑎 <𝑠 𝑏 <𝑠 𝑐 and 𝑎, 𝑐 ∈ 𝑇 implies
𝑏 ∈ 𝑇 for every𝑇 ∈ T . Adopting the view of schedules as sequences, the schedule 𝑠1 = 𝑇1 ·𝑇2 · . . . ·𝑇𝑛 is
an example of a sequential schedule for the set of transactions {𝑇1,𝑇2, . . . ,𝑇𝑛} as is any permutation
of transactions in 𝑠1.

2.2 Conflict Serializability
We say that two operations 𝑎𝑖 and 𝑏 𝑗 from different transactions𝑇𝑖 and𝑇𝑗 are conflicting if both are
operations on the same object, and at least one of them is a write. That is, Ri [x] and Wj [x], and
Wi [x] and Wj [x] are conflicting operations while Ri [x] and Rj [x] are not. Furthermore, a commit
operation never conflicts with any other operation. Two schedules 𝑠 and 𝑠′ are conflict equivalent if
they are over the same set T of transactions and if any pair of conflicting operations 𝑎 and 𝑏 is
ordered the same in both, that is, 𝑎 ≤𝑠 𝑏 iff 𝑎 ≤𝑠′ 𝑏.

Definition 1. A schedule 𝑠 is conflict serializable if it is conflict equivalent to a sequential schedule.

A conflict graph 𝐶𝐺 (𝑠) for schedule 𝑠 over a set of transactions T is defined as usual [18]: it is
the graph whose nodes are the transactions in T and where there is an edge from 𝑇𝑖 to 𝑇𝑗 if 𝑇𝑖 has
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an operation 𝑏𝑖 that conflicts with an operation 𝑎 𝑗 in 𝑇𝑗 with 𝑏𝑖 <𝑠 𝑎 𝑗 .3 Since we are usually not
only interested in the existence of conflicting operations, but also in the operations themselves, we
assume the existence of a labeling function _ mapping each edge to a set of pairs of operations.
Formally, (𝑏𝑖 , 𝑎 𝑗 ) ∈ _(𝑇𝑖 ,𝑇𝑗 ) iff the operation 𝑏𝑖 ∈ 𝑇𝑖 conflicts with the operation 𝑎 𝑗 ∈ 𝑇𝑗 and
𝑏𝑖 <𝑠 𝑎 𝑗 . For ease of notation, we choose to represent 𝐶𝐺 (𝑠) as a set of quadruples (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 )
denoting all possible pairs of these transactions 𝑇𝑖 and 𝑇𝑗 with all possible choices of conflicting
operations 𝑏𝑖 and 𝑎 𝑗 . Henceforth, we refer to these quadruples simply as edges. Notice that edges
only contain read and write operations, no commit operations.

A cycle 𝐶 in 𝐶𝐺 (𝑠) is a non-empty sequence of edges

(𝑇1, 𝑏1, 𝑎2,𝑇2), (𝑇2, 𝑏2, 𝑎3,𝑇3), . . . , (𝑇𝑛, 𝑏𝑛, 𝑎1,𝑇1)
in 𝐶𝐺 (𝑠), in which every transaction is mentioned exactly twice. Note that cycles are by definition
simple. Here, transaction 𝑇1 starts and concludes the cycle. For a transaction 𝑇𝑖 in 𝐶 , we denote by
𝐶 [𝑇𝑖 ] the cycle obtained from𝐶 by letting𝑇𝑖 start and conclude the cycle while otherwise respecting
the order of transactions in 𝐶 . That is, 𝐶 [𝑇𝑖 ] is the sequence

(𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) · · · (𝑇𝑛, 𝑏𝑛, 𝑎1,𝑇1) (𝑇1, 𝑏1, 𝑎2,𝑇2) · · · (𝑇𝑖−1, 𝑏𝑖−1, 𝑎𝑖 ,𝑇𝑖 ).
We recall the following well-known result:

Theorem 2. [18] A schedule 𝑠 is conflict serializable iff the conflict graph for 𝑠 is acyclic.

2.3 Isolation Levels
We define isolation levels in terms of the concurrency phenomena that we want to exclude from
schedules [9].

Let 𝑠 be a schedule for a set T of transactions.
• Then, 𝑠 exhibits a dirty write iff there are two different transactions 𝑇𝑖 and 𝑇𝑗 in T and an
object x such that

Wi [x] <𝑠 Wj [x] <𝑠 Ci .

That is, transaction 𝑇𝑗 writes to an object that has been modified earlier by 𝑇𝑖 , but 𝑇𝑖 has
not yet issued a commit.

• Furthermore, 𝑠 exhibits a dirty read iff there are two different transactions 𝑇𝑖 and 𝑇𝑗 in T
and an object x such that

Wi [x] <𝑠 Rj [x] <𝑠 Ci .

That is, transaction 𝑇𝑗 reads an object that has been modified earlier by 𝑇𝑖 , but 𝑇𝑖 has not
yet issued a commit.

Definition 3. A schedule is allowed under isolation level read uncommitted if it exhibits no
dirty writes, and it is allowed under isolation level read committed if, in addition, it also exhibits
no dirty reads. For convenience, we use the term no isolation to refer to the isolation level that allows
all schedules.

Notice that every schedule is allowed under no isolation. Furthermore, every schedule allowed
under read committed is also allowed under read uncommitted. It is accustomed to view an
isolation level as a set of allowed schedules [18].
We say that an isolation level I is a restriction of an isolation level I′, denoted I ⊆ I′, if the

fact that a schedule 𝑠 is allowed under I implies that 𝑠 is allowed under I′ as well.

3Throughout the paper, we adopt the following convention: a 𝑏 operation can be understood as a ‘before’ while an 𝑎 can be
interpreted as an ‘after’.
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2.4 Robustness
Next, we define the robustness property [10] (also called acceptability in [15, 16]), which guarantees
serializability for all schedules of a given set of transactions for a given isolation level.
Definition 4 (Robustness). A set T of transactions is robust against an isolation level if every

schedule for T that is allowed under that isolation level is conflict serializable.

For an isolation level I, robustness(I) is the problem to decide if a given set of transactions T
is robust against I. The following is an immediate observation:
Lemma 5. Let T be a set of transactions. Let I and I′ be isolation levels with I ⊆ I′. Then T is

robust against I′ implies that T is robust against I.
Proof. Indeed, T is robust against I′ means that there is no schedule 𝑠 that is allowed under

I′ for which 𝐶𝐺 (𝑠) is acyclic. As I ⊆ I′, there is also no such schedule 𝑠 that is allowed under I
which in turn implies that T is robust against I. □

3 NO ISOLATION LEVEL
We start by studying the toy isolation level no isolation that admits all schedules. The present
section serves as a warm up for the remainder of the paper and allows to discuss key notions like
the interference graph, transferable cycle and split schedule in a simplified setting.

We use a variant of the interference graph, as introduced by Fekete [15], which essentially lifts
the notion of a conflict graph from schedules to sets of transactions. Consistent with our definition
of conflict graph, we expose conflicting operations via an explicit labeling of edges.

Definition 6. For a set of transactions T , the interference graph 𝐼𝐺 (T ) for T is the graph whose
nodes are the transactions in T and where there is an edge from 𝑇𝑖 to 𝑇𝑗 if there is an operation in 𝑇𝑖
that conflicts with some operation in𝑇𝑗 . Again, we assume a labeling function _ mapping each edge to
a set of pairs of conflicting operations. Formally, (𝑏𝑖 , 𝑎 𝑗 ) ∈ _(𝑇𝑖 ,𝑇𝑗 ) iff there is an operation 𝑏𝑖 ∈ 𝑇𝑖
that conflicts with an operation 𝑎 𝑗 ∈ 𝑇𝑗 .

For convenience, just like for conflict graphs, we choose to represent 𝐼𝐺 (T ) as a set of quadruples
of the form (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ). That is, (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) ∈ 𝐼𝐺 (T ) iff there is an edge (𝑇𝑖 ,𝑇𝑗 ) and (𝑏𝑖 , 𝑎 𝑗 ) ∈
_(𝑇𝑖 ,𝑇𝑗 ). Again, we then refer to these quadruples simply as edges.
Notice that (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) ∈ 𝐼𝐺 (T ) implies (𝑇𝑗 , 𝑎 𝑗 , 𝑏𝑖 ,𝑇𝑖 ) ∈ 𝐼𝐺 (T ). Furthermore, the conflict

graph 𝐶𝐺 (𝑠) for a schedule 𝑠 for T is always a subgraph of the interference graph 𝐼𝐺 (T ) for T .
Therefore, every cycle in 𝐶𝐺 (𝑠) is a cycle in 𝐼𝐺 (T ). However, the converse is not always true.
Sometimes a cycle in 𝐼𝐺 (T ) can be found that does not translate to a corresponding cycle in the
conflict graph for any schedule for T . We therefore introduce the notion of a transferable cycle in
an interference graph and show in Lemma 10 that whenever there is a transferable cycle in 𝐼𝐺 (T )
there is a schedule 𝑠 of a specific form called a split schedule (as defined in Definition 8) that admits
a cycle in 𝐶𝐺 (𝑠).
Definition 7. Let T be a set of transactions and 𝐶 a cycle in 𝐼𝐺 (T ). Then, 𝐶 is non-trivial if

for some pair of edges (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) and (𝑇𝑗 , 𝑏 𝑗 , 𝑎𝑘 ,𝑇𝑘 ) in 𝐶 the operations 𝑏 𝑗 and 𝑎 𝑗 are different.
Furthermore, 𝐶 is transferable if 𝑏 𝑗 <𝑇𝑗

𝑎 𝑗 for some pair of edges (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) and (𝑇𝑗 , 𝑏 𝑗 , 𝑎𝑘 ,𝑇𝑘 ) in
𝐶 . We then say that 𝐶 is transferable in 𝑇𝑗 on operations (𝑏 𝑗 , 𝑎 𝑗 ).

When a cycle is transferable in 𝑇 on (𝑏, 𝑎), we create a split schedule by splitting 𝑇 between 𝑏
and 𝑎, inserting all other transactions from the cycle in the created opening while maintaining their
ordering and appending at the end all other transactions not occurring in the cycle in an arbitrary
order. Notice that split schedules exhibit a cycle in their conflict graph. Split schedules are formally
defined as follows:
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𝑇1 :R1 [x]W1 [y]C1 𝑇2 :R2 [y]W2 [z]C2

𝑇3 :R3 [z]R3 [x]W3 [x]W3 [z]C3

Fig. 3. 𝐼𝐺 (T ) for T = {𝑇1,𝑇2,𝑇3} as defined in Example 9.

Definition 8 (Split schedule). Let T be a set of transactions and𝐶 a transferable cycle in 𝐼𝐺 (T ).
A split schedule for T based on 𝐶 has the form

prefix𝑏 (𝑇1) ·𝑇2 · . . . ·𝑇𝑚 · postfix𝑏 (𝑇1) ·𝑇𝑚+1 · . . . ·𝑇𝑛,

where

• (𝑇𝑚, 𝑏𝑚, 𝑎,𝑇1) and (𝑇1, 𝑏, 𝑎2,𝑇2) is a pair of edges in 𝐶 and 𝐶 is transferable in 𝑇 on (𝑏, 𝑎);
• 𝑇1, . . . ,𝑇𝑚 are the transactions in 𝐶 [𝑇1] in the order as they occur; and,
• 𝑇𝑚+1, . . . ,𝑇𝑛 are the remaining transactions in T in an arbitrary order.

More specifically, we say that the above schedule is a split schedule for T based on 𝐶 , 𝑇1 and 𝑏.

We say that a schedule 𝑠 is a split schedule for T if there is a transferable cycle 𝐶 in 𝐼𝐺 (T ) such
that 𝑠 is a split schedule for T based on 𝐶 . Figure 2 provides an abstract view of a split schedule
omitting the trailing sequence 𝑇𝑚+1 · · ·𝑇𝑛 .

Example 9. Consider T = {𝑇1,𝑇2,𝑇3} with 𝑇1 = R1 [x]W1 [y]C1, 𝑇2 = R2 [y]W2 [z]C2 and 𝑇3 =

R3 [z]R3 [x]W3 [x]W3 [z]C3. Then 𝐼𝐺 (T ) is depicted in Figure 3. The cycle 𝐶1 consisting of the following
edges

(𝑇1, W1 [y], R2 [y],𝑇2), (𝑇2, W2 [z], W3 [z],𝑇3), (𝑇3, W3 [x], R1 [x],𝑇1)
is transferable in 𝑇3 on (W3 [x], W3 [z]) as W3 [x] <𝑇3 W3 [z]. The cycle 𝐶2 consisting of the following
edges

(𝑇1, W1 [y], R2 [y],𝑇2), (𝑇2, W2 [z], R3 [z],𝑇3), (𝑇3, W3 [x], R1 [x],𝑇1)
is not transferable in 𝑇3 on (W3 [x], R3 [z]) as W3 [x] ≮𝑇3 R3 [z]. The split schedule 𝑠1 for T based on 𝐶1,
𝑇3, and W3 [x] is as follows:

R3 [z]R3 [x]W3 [x]︸               ︷︷               ︸
prefix𝑏 (𝑇3 )

R1 [x]W1 [y]C1︸          ︷︷          ︸
𝑇1

R2 [y]W2 [z]C2︸          ︷︷          ︸
𝑇2

W3 [z]C3︸   ︷︷   ︸
postfix𝑏 (𝑇3 )

,

with 𝑏 = W3 [x]. □

The following lemma collects some interesting properties of transactions.

Lemma 10. Let T be a set of transactions.

(1) If a schedule 𝑠 for T has a cycle𝐶 in its conflict graph, then𝐶 is a transferable cycle in 𝐼𝐺 (T ).
(2) If there is a non-trivial cycle 𝐶 in 𝐼𝐺 (T ) then there is a transferable cycle 𝐶′ in 𝐼𝐺 (T ).
(3) Let 𝑠 be a split schedule for T based on a transferable cycle 𝐶 in 𝐼𝐺 (T ). Then 𝐶 is a cycle in

𝐶𝐺 (𝑠).
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Proof. (1) It follows that 𝐶 is a cycle in 𝐼𝐺 (T ). Now assume towards a contradiction that 𝐶
is not transferable, thus that for every pair of edges (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ), (𝑇𝑗 , 𝑏 𝑗 , 𝑎𝑘 ,𝑇𝑘 ) in 𝐶 operation 𝑎 𝑗
precedes or equals operation 𝑏 𝑗 . But then, as 𝐶 is a cycle and by the definition of a conflict graph,
we have that 𝑎 𝑗 ≤𝑇𝑗

𝑏 𝑗 <𝑠 𝑎𝑘 ≤𝑇𝑘 𝑏𝑘 <𝑠 · · · <𝑠 𝑎 𝑗 which implies 𝑎 𝑗 <𝑠 𝑎 𝑗 leading to the desired
contradiction.
(2) Let (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) and (𝑇𝑗 , 𝑏 𝑗 , 𝑎𝑘 ,𝑇𝑘 ) be edges in 𝐶 with 𝑏 𝑗 ≠ 𝑎 𝑗 . If 𝑏 𝑗 <𝑇𝑗

𝑎 𝑗 , then 𝐶 is
transferable itself and take 𝐶′ as 𝐶 . If 𝑏 𝑗 >𝑇𝑗

𝑎 𝑗 then recall that 𝐼𝐺 (T ) is bidirectional and define
𝐶′ as the cycle obtained from 𝐶 by starting in transaction 𝑇𝑗 and walking through 𝐶 against the
orientation of its edges. Clearly, 𝐶′ is transferable.
(3) Follows immediately from the definition of a split schedule. □

We are now ready to formulate a theorem that provides a characterization for deciding robustness
against no isolation:

Theorem 11. Let T be a set of transactions. The following are equivalent:
(1) T is not robust against isolation level no isolation;
(2) 𝐼𝐺 (T ) contains a non-trivial cycle; and,
(3) there is split schedule 𝑠 for T .

Proof. (1→ 2) Let 𝑠 be a schedule for T that is not conflict serializable. Then there is a cycle𝐶 in
its conflict graph𝐶𝐺 (T ) (by Theorem 2) which is a transferable cycle in 𝐼𝐺 (T ) due to Lemma 10(1).
Furthermore, a transferable cycle is non-trivial by definition.
(2 → 3) By Lemma 10(2) there is a transferable cycle 𝐶 in 𝐼𝐺 (T ). This cycle can be used to

construct a split schedule for T .
(3→ 1) Immediate by Lemma 10(3). □

Next, we discuss the complexity of deciding robustness. Because the interference graph 𝐼𝐺 (T )
of a set T of transactions is bidirectional, it has a natural undirected interpretation, which we
denote by 𝐼𝐺𝑢 (T ). Formally, the undirected edge {𝑇𝑖 ,𝑇𝑗 } occurs in 𝐼𝐺𝑢 (T ) iff there is an edge
(𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) ∈ 𝐼𝐺 (T ). In the next theorem, the upper bound is based on the result that undirected
reachability is in logspace [19]. The lower-bound is by an fo-reduction from the logspace-complete
undirected acyclicity problem [14].

Theorem 12. robustness(no isolation) is logspace-complete.

Proof. Given a set of transactions T , the algorithm works as follows. We check for every pair of
incident edges {𝑇𝑖 ,𝑇𝑗 } and {𝑇𝑗 ,𝑇𝑘 } in 𝐼𝐺𝑢 (T ), that the shared end-point𝑇𝑗 witnesses non-triviality
and that either, 𝑇𝑖 and 𝑇𝑘 are the same transaction, or that 𝑇𝑖 and 𝑇𝑘 are reachable through a path
that omits 𝑇𝑗 . The latter can be rephrased as a reachability test for 𝑇𝑖 and 𝑇𝑘 in the subgraph 𝐺𝑇𝑗

of
𝐼𝐺𝑢 (T ) containing all edges of 𝐺 except those with 𝑇𝑗 as an end-point. If all these checks fail then
T is robust, otherwise it is not robust (due to Theorem 11).
The enumeration and the first part of the check can be done straightforwardly in logspace. For

the reachability check, we rely on the famous result by Reingold [19] that undirected reachability is
logspace-complete. Of course we do not materialize𝐺𝑇𝑗

(as its materialization would require more
than logarithmic space). Instead, we apply Reingold’s algorithm and every time this algorithm
accesses an edge in𝐺𝑇𝑗

, we test whether this edge exists based on T and𝑇𝑗 . Note in particular that,
given T and 𝑇𝑗 , it is possible to enumerate the nodes and edges of 𝐺𝑇𝑗

using logarithmic working
space (in other words, we redo the transformation – and reuse its memory – every time an edge in
𝐺𝑇𝑗

is accessed [4]).
The lower-bound is by an fo-reduction from the logspace-complete undirected acyclicity

problem [14] to transaction robustness against no isolation.



10 Bas Ketsman, Christoph Koch, Frank Neven, and Brecht Vandevoort

For the construction, let 𝐺 be an undirected graph given as input to the acyclicity problem. To
formulate an fo-reduction, we assume that graph 𝐺 is encoded as a predicate E that expresses the
edge relation. We assume also an ordering <𝐺 over the nodes in 𝐺 (which is for example derived
from G’s encoding on the input tape). The goal of our reduction is to transform predicate E into a
predicate Opp that encodes a set T of transactions given as input to the robustness problem.

More precisely, Opp defines the operations in transactions in T encoded as triples Opp(𝑛, 𝑎, 𝑏),
representing a write (if 𝑛 = 𝑎) or a read (if 𝑛 = 𝑏) by transaction 𝑇𝑛 to object 𝑥𝑎,𝑏 . In other words,
the edges in graph 𝐺 have become objects and its nodes have become transactions.

Formally, we have the following transformation:

Opp := {(𝑎, 𝑎, 𝑏) | E(𝑎, 𝑏) ∧ 𝑎 <𝐺 𝑏} ∪ {(𝑏, 𝑎, 𝑏) | E(𝑏, 𝑎) ∧ 𝑎 <𝐺 𝑏}.
Inequality 𝑎 <𝐺 𝑏 ensures that transactions occuring as adjacent nodes in 𝐺 write to/read from
exactly one common object. We assume that operations within a transaction occur in the order
as defined by the lexicographical order based on <𝐺 over the pairs (𝑏, 𝑎) representing the object
that they write to. Notice that by construction, each schedule 𝑠 over T is allowed not only under
no isolation, but also under read uncommitted because no object occurs in two writes (and
therefore 𝑠 cannot exhibit a dirty write). This observation will be useful in the following section.

It remains to argue that 𝐺 is acyclic if and only if T is robust. For this, we observe that 𝐺 equals
𝐼𝐺𝑢 (T ).
Thus, if 𝐺 is acyclic, then 𝐼𝐺𝑢 (T ) is acyclic, which, due to bidirectionality of 𝐼𝐺 (T ) indicates

that every simple cycle in 𝐼𝐺 (T ) is a two-node cycle. By construction, these are all trivial (thus not
transferable), hence T must be robust.
If T is robust, then 𝐼𝐺 (T ) contains no transferable cycles. By construction, the latter implies

that all simple cycles in 𝐼𝐺 (T ) are two-node cycles and thus that 𝐼𝐺𝑢 (T ) is acyclic. Hence, 𝐺 is
acyclic. □

4 READ UNCOMMITTED
In this section, we discuss robustness against read uncommitted. This means that counter example
schedules can no longer take arbitrary forms but must adhere to the read uncommitted isolation
level. We therefore need additional requirements beyond non-triviality for cycles in interference
graphs.
The work by Fekete et al. [15, 16] approaches the robustness problem by reasoning on cy-

cles in interference graphs based on the types of conflicts occurring in them without taking
the specific operations responsible for these conflicts into account. Types of conflicts are, for in-
stance, write-write, write-read, and read-write dependencies between transactions. In this view,
it might be tempting to think that a characterization for robustness against read uncommit-
ted can be found in terms of transferable cycles in 𝐼𝐺 (T ) without write-write conflicts. How-
ever, consider T = {W1 [x]R1 [y]W1 [z]C1, W2 [x]R2 [z]W2 [y]C2}. Then, there is a transferable cycle
(𝑇1, R1 [y], W2 [y],𝑇2), (𝑇2, R2 [z], W1 [z],𝑇1) without write-write conflicts but no counter example
schedule can be found that is allowed under read uncommitted due to the presence of the leading
write to x in both 𝑇1 and 𝑇2. Furthermore, a cycle of a schedule allowed under read uncommit-
ted can still have write-write conflicts. Indeed, the schedule 𝑠1 = R1 [x]W2 [x]W2 [y]C2W1 [y]C1 is
allowed under read uncommitted since there is no dirty write but the (only) cycle in 𝐶𝐺 (𝑠1) has
a write-write conflict on y.
The higher level explanation why it is necessary to reason about operations instead of transac-

tions is that the isolation level read uncommitted (and read committed) does not guarantee
atomic visibility requiring that either all or none of the updates of each transaction are visible
to other transactions. More formally, a schedule 𝑠 over a set of transactions T guarantees atomic
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visibility when Wi [x] <𝑠 Rj [x] iff Wi [y] <𝑠 Rj [y] for all 𝑇𝑖 ,𝑇𝑗 ∈ T . For instance, the schedule
𝑠2 = R1 [x]R2 [y]W2 [x]W2 [y]C2R1 [y]C1 is allowed under read uncommitted but does not guarantee
atomic visibility as R1 [x] <𝑠2 W2 [x] but W2 [y] <𝑠2 R1 [y]. When an isolation level guarantees atomic
visibility it suffices to reason on the level of transactions rather than on the order of operations
occurring in them [11]. For read uncommitted (and read committed), we do need to take the
ordering of operations in individual transactions into account as will become apparent in the notion
of prefix-write-conflict-free cycle as defined next.

Definition 13. Let T be a set of transactions and let𝐶 be a cycle in 𝐼𝐺 (T ). Let𝑇 ∈ T and 𝑏, 𝑎 ∈ 𝑇 .
Then, 𝐶 is prefix-write-conflict-free in 𝑇 on operations (𝑏, 𝑎) if 𝐶 is transferable in 𝑇 on operations
(𝑏, 𝑎) and there is no write operation in prefix𝑏 (𝑇) that conflicts with a write operation in a transaction
in 𝐶 \ {𝑇}.4

Furthermore, 𝐶 is prefix-write-conflict-free if it is prefix-write-conflict-free in 𝑇 on (𝑏, 𝑎) for some
𝑇 ∈ T and some operations 𝑏, 𝑎 ∈ 𝑇 .

Example 14. Cycle 𝐶1 of Example 9 is prefix-write-conflict-free in 𝑇3 on operations (W3 [x], W3 [z]).
Indeed, there is no write operation in 𝑇2 or 𝑇1 to object x. Notice that the split schedule 𝑠1 of Example 9
is allowed under read uncommitted. The next lemma shows that this is always the case. □

Lemma 15. Let T be a set of transactions. Let𝐶 be a prefix-write-conflict-free cycle in 𝐼𝐺 (T ). Then,
there is a split schedule for T based on 𝐶 that is allowed under isolation level read uncommitted.

Proof. Let 𝑇 ∈ T and 𝑏, 𝑎 ∈ 𝑇 such that 𝐶 is prefix-write-conflict-free in 𝑇 on (𝑏, 𝑎). Let 𝑠 be
the split schedule based on𝐶 , 𝑇 and 𝑏 as defined in Definition 8. As 𝑇 is the only transaction whose
operations are not consecutive in 𝑠 , the only possibility for a dirty write is when there is a write
operation in prefix𝑏 (𝑇) and a write operation in another transaction in𝐶 different from𝑇 that both
refer to the same object. As 𝐶 is prefix-write-conflict-free in 𝑇 on (𝑏, 𝑎), this can not be the case.
Therefore 𝑠 is allowed under read uncommitted. □

We are now ready to formulate a theorem that provides a characterization for deciding robustness
against read uncommitted in terms of the existence of prefix-write-conflict-free cycles. It readily
follows from Lemma 15 and Lemma 10(3) that the existence of a prefix-write-conflict-free cycle is a
sufficient condition for the existence of a counter example schedule. The next theorem establishes
that it is also a necessary condition and in addition that always a counter example in the form of a
split schedule can be found.

Theorem 16. Let T be a set of transactions. The following are equivalent:
(1) T is not robust against isolation level read uncommitted;
(2) 𝐼𝐺 (T ) contains a prefix-write-conflict-free cycle; and,
(3) there is a split schedule 𝑠 for T that is allowed under read uncommitted.

Proof. (3→1) Immediate by Lemma 10(3).
(2→3) Follows from Lemma 15.
(1→2) Let T be a set of transactions that is not robust against isolation level read uncommitted.

Towards a contradiction, suppose that 𝐼𝐺 (T ) contains no prefix-write-conflict-free cycle. The
following is then implied by Definition 13:

(†) for every cycle𝐶 in 𝐼𝐺 (T ) that is transferable in some𝑇𝑖 ∈ 𝐶 and on some pair of operations
(𝑏, 𝑎), there is a write Wi [x] ∈ 𝑇𝑖 , with Wi [x] ≤𝑇𝑖 𝑏, and a transaction 𝑇𝑘 ∈ 𝐶 different from
𝑇𝑖 with a write Wk [x] ∈ 𝑇𝑘 .

4We abuse notation here and denote the set of transactions occurring in𝐶 also by𝐶 .
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By Theorem 2 and the definition of robustness (Definition 4) there is a schedule 𝑠 for T allowed
under read uncommitted that admits a cycle 𝐶 in 𝐶𝐺 (𝑠). W.l.o.g., we can assume that 𝐶 is a
minimal cycle, that is, there is no cycle in 𝐶𝐺 (𝑠) consisting of a strict subset of the transactions
occurring in 𝐶 . By Lemma 10(1), 𝐶 is a transferable cycle in 𝐼𝐺 (T ). Furthermore, assumption (†)
applies to 𝐶 .

When𝐶 is transferable in𝑇 on some operation (𝑏, 𝑎), we also say that𝑇 is a breakable transaction.
The name comes from the fact that𝐶 can be split on𝑇 to create a split schedule. That is,𝑇 needs to
be broken to create the split schedule.

The assumption (†) allows to derive the existence of conflicting write operations for neighboring
transactions (of which at least one is breakable) in a transferable cycle. As the schedule 𝑠 can not
exhibit dirty writes, the ordering of these writes in 𝑠 determines the ordering of the commits of
the respective transactions in 𝑠 as well. The general idea is now to order neighboring transactions
(w.r.t. <𝑠 ) for all breakable transactions and extend this partial order to a complete order for all
other transactions in 𝐶 . But as 𝐶 is cyclic this means that there will be a transaction that is smaller
than itself (w.r.t. <𝑠 ) which leads to the desired contradiction.
We distinguish two cases: 𝐶 consists of only two edges and 𝐶 contains strictly more than two

edges. In the former case the simple structure allows for a more direct argument. In the latter case,
we are sure that nodes have two different neighbors in the cycle but more care needs to be taken to
compute the contradicting ordering in an iterative manner depending on the structure of breakable
transactions.

Case 1: 𝐶 contains precisely two edges. Let 𝐶 be the cycle consisting of the sequence of edges
(𝑇1, 𝑏1, 𝑎2,𝑇2), (𝑇2, 𝑏2, 𝑎1,𝑇1). By definition of the conflict graph, we have that 𝑏1 <𝑠 𝑎2 and 𝑏2 <𝑠 𝑎1.
By assumption,𝐶 is a transferable cycle in 𝐼𝐺 (T ). Then,𝐶 is either transferable in𝑇1 on (𝑏1, 𝑎1) or
𝐶 is transferable in 𝑇2 on (𝑏2, 𝑎2). We assume w.l.o.g. that 𝐶 is transferable on (𝑏1, 𝑎1) (otherwise,
reorder the sequence of two edges in 𝐶), and consequently, that 𝑏1 <𝑠 𝑎1.

From (†) it follows that there is a write W1 [x] ≤𝑇1 𝑏1 in𝑇1 and a write W2 [x] in𝑇2. Since 𝑎2 occurs
before the commit C2 of 𝑇2, the order W1 [x] ≤𝑇1 𝑏1 <𝑠 𝑎2 <𝑇2 C2 implies W1 [x] <𝑇1 C1 <𝑠 W2 [x], due
to the absence of dirty-writes in 𝑠 (recall that 𝑠 is allowed under read uncommitted).

We now consider the alternative cycle 𝐶′ in 𝐼𝐺 (T ), consisting of edges (𝑇1, W1 [x], W2 [x],𝑇2) and
(𝑇2, 𝑏2, 𝑎1,𝑇1), that is transferable in 𝑇2 on (𝑏2, W2 [x]), since 𝑏2 <𝑠 𝑎1 <𝑇1 C1 <𝑠 W2 [x]. Again due to
(†), there is a write W2 [y] ≤𝑇2 𝑏2 in 𝑇2 and W1 [y] in 𝑇1.
Turning back to schedule 𝑠 , we observe that W2 [y] ≤𝑇2 𝑏2 <𝑠 𝑎1 <𝑇1 C1 implies, due the absence

of dirty-writes in 𝑠 , that W2 [y] <𝑇2 C2 <𝑠 W1 [y]. The latter provides the desired contradiction, as
W1 [x] <𝑠 C1 <𝑠 W2 [x] <𝑠 C2 <𝑠 W1 [y] cannot occur in 𝑠 . Indeed, the commit is always the last
operation in a transaction, thus C1 <𝑠 W1 [y] is not allowed.

Case 2: 𝐶 contains more than two edges.
Based on 𝐶 , we construct a special cycle 𝐷 in 𝐶𝐺 (𝑠) that is of the same length as 𝐶 and contains

precisely the same transactions as 𝐶 . In addition, we construct a partial function 𝜖 mapping each
transaction in 𝐷 to one of its operations such that the following properties are true. For every edge
(𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) in 𝐷 :

(i) if 𝜖 is not defined for 𝑇𝑖 but is defined for 𝑇𝑗 then 𝜖 (𝑇𝑗 ) = Cj;
(ii) if 𝜖 is defined for 𝑇𝑖 and for 𝑇𝑗 then 𝜖 (𝑇𝑖 ) <𝑠 𝜖 (𝑇𝑗 ); and,
(iii) if 𝜖 is defined for 𝑇𝑖 but not for 𝑇𝑗 then 𝜖 (𝑇𝑖 ) <𝑠 𝑎 𝑗 .

If a total labeling 𝜖 with the above conditions can be found, we have obtained the desired
contradiction. Indeed, then 𝜖 is defined for every transaction and it follows that 𝜖 (𝑇𝑖 ) <𝑠 𝜖 (𝑇𝑖 ).
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Next, we describe how to construct 𝐷 and 𝜖 . Initially, we take 𝐷 equal to 𝐶 and 𝜖 as the partial
mapping that labels no transaction (that is, the mapping with an empty domain). Clearly, these
satisfy properties (i-iii).
The construction then proceeds in two phases. In the first phase, we iteratively adapt 𝐷 and 𝜖

preserving properties (i-iii) and ensuring the next property:
(iv) labeling 𝜖 is defined for all breakable transactions 𝑇𝑖 in 𝐷 .

In the second phase, we show how to expand 𝜖 to the desired total labeling.
Phase 1: (Towards property (iv)) Before describing the procedure, we make a couple of observations.
To this end, for a transaction 𝑇𝑖 , we denote by 𝑇𝑖−1 and 𝑇𝑖+1 the previous and next transaction in 𝐷 .
That is, we assume the edges (𝑇𝑖−1, 𝑏𝑖−1, 𝑎𝑖 ,𝑇𝑖 ) and (𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1).

First, when 𝑇𝑖 is transferable on (𝑏𝑖 , 𝑎𝑖 ), (†) implies that some write Wi [x] ≤ 𝑏𝑖 in 𝑇𝑖 conflicts
with a write Wk [x] in one of the other transactions 𝑇𝑘 of 𝐷 . Since 𝐷 is minimal and has at least
three transactions, 𝑇𝑘 is either 𝑇𝑖−1 or 𝑇𝑖+1. Indeed, assume 𝑘 ≠ 𝑖 − 1 and 𝑘 ≠ 𝑖 + 1, then we can
always construct a counter example to the minimality of 𝐶 (recall that 𝐶 and 𝐷 consist of the same
set of transactions). If Wi [x] <𝑠 Wk [x], then the sequence obtained from 𝐷 by replacing

(𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1), . . . , (𝑇𝑘−1, 𝑏𝑘−1, 𝑎𝑘 ,𝑇𝑘 )

by the edge (𝑇𝑖 , Wi [x], Wk [x],𝑇𝑘 ) serves as a counter example. Otherwise, if Wk [x] <𝑠 Wi [x], then
the sequence obtained from 𝐷 by replacing

(𝑇𝑘 , 𝑏𝑘 , 𝑎𝑘+1,𝑇𝑘+1), . . . , (𝑇𝑖−1, 𝑏𝑖−1, 𝑎𝑖 ,𝑇𝑖 )

by the edge (𝑇𝑘 , Wk [x], Wi [x],𝑇𝑖 ) is a counter example to the minimality of 𝐶 .
For ease of exposition, we say that a breakable transaction 𝑇𝑖 in 𝐷 is left-breakable if there is a

write Wi [x] ≤ 𝑏𝑖 in𝑇𝑖 that conflicts with a write Wi−1 [x] in𝑇𝑖−1, and that𝑇𝑖 is right-breakable when
it is not left-breakable. Note that if 𝑇𝑖 is right-breakable, then there is a write Wi [x] ≤ 𝑏𝑖 in 𝑇𝑖 that
conflicts with a write Wi+1 [x] in 𝑇𝑖+1.

Next, we normalize cycle 𝐷 by replacing for every right-breakable transaction 𝑇𝑖 in 𝐷 the edge
(𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) by the edge

(𝑇𝑖 , Wi [xi], Wi+1 [xi],𝑇𝑖+1),
for some choice of object x𝑖 ∈ Obj with Wi [xi] ≤ 𝑏𝑖 in 𝑇𝑖 and Wi+1 [xi] in 𝑇𝑖+1. Recall that
(𝑇𝑖 , Wi [xi], Wi+1 [xi],𝑇𝑖+1) is indeed an edge in CG(s), thus with Wi [xi] <𝑠 Wi+1 [xi], because 𝐷
is minimal in 𝐶𝐺 (𝑠) and with more than two transactions, thus 𝐶𝐺 (𝑠) contains (possibly multiple)
edges from 𝑇𝑖 to 𝑇𝑖+1 and none from 𝑇𝑖+1 to 𝑇𝑖 .

Since 𝐷 is transferable, it contains at least one breakable transaction. Therefore every transaction
𝑇𝑖 in 𝐷 is either: not breakable; left-breakable; or right-breakable with (𝑇𝑖 , Wi [xi], Wi+1 [xi],𝑇𝑖+1) in
𝐷 . Moreover, for at least one breakable transaction 𝑇𝑖 in 𝐷 it holds that

(‡) 𝑇𝑖 is either left-breakable or has a non-breakable right neighbor 𝑇𝑖+1.
Indeed, if all transactions in 𝐷 are right-breakable, we have a contradiction, since the edges
(𝑇𝑖 , Wi [xi], Wi+1 [xi],𝑇𝑖+1) imply Ci <𝑠 Ci+1, from which it follows that Ci <𝑠 Ci+1 <𝑠 · · · <𝑠

Ci−1 <𝑠 Ci.
To define 𝜖 for the breakable transactions in 𝐷 , we first fix a transaction 𝑇 ∗ in 𝐷 with property

(‡), then iteratively pick the last breakable transaction occurring before and including 𝑇 ∗ in 𝐷 for
which 𝜖 is not yet defined, and define 𝜖 for this transaction. For each transaction 𝑇𝑖 that we pick,
we distinguish two possible cases:𝑇𝑖 is left-breakable and𝑇𝑖 is right-breakable. In the latter case we
have that some (𝑇𝑖 , Wi [xi], Wi+1 [xi],𝑇𝑖+1) ∈ 𝐷 . Furthermore, to simplify presentation, we use 𝜖′ for
the new 𝜖 .
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(Case: 𝑇𝑖 is left-breakable) This means that there is a write Wi [x] ≤𝑇𝑖 𝑏𝑖 in 𝑇𝑖 that conflicts with
a write Wi−1 [x] in 𝑇𝑖−1. Recall that 𝐷 is minimal in 𝐶𝐺 (𝑠) and has more than two transactions.
Therefore, 𝐶𝐺 (𝑠) contains (possibly multiple) edges from 𝑇𝑖−1 to 𝑇𝑖 and none from 𝑇𝑖 to 𝑇𝑖−1. From
this observation, we derive that Wi−1 [x] <𝑠 Wi [x] and (since 𝑠 is allowed under read uncommitted)
that Wi−1 [x] <𝑠 Ci−1 <𝑠 Wi [x]. Let 𝜖′ be the labeling 𝜖 extended with 𝜖′ (𝑇𝑖−1) := Ci−1 and
𝜖′ (𝑇𝑖 ) := 𝑏𝑖 . If 𝜖 (𝑇𝑖−1) was already defined, we ignore its old value.

We conclude the case by showing for the affected edges that Properties (i-iii) remain true for 𝐷
and 𝜖′:

• (𝑇𝑖−2, 𝑏𝑖−2, 𝑎𝑖−1,𝑇𝑖−1): Properties (i) and (iii) follow directly from the fact that 𝜖′ is defined
for 𝑇𝑖−1 with 𝜖′ (𝑇𝑖−1) = Ci−1. It remains to show Property (ii), particularly that 𝜖′ (𝑇𝑖−2) <𝑠

𝜖′ (𝑇𝑖−1) if 𝜖′ is defined for 𝑇𝑖−2. The latter would imply 𝜖′ (𝑇𝑖−2) = 𝜖 (𝑇𝑖−2). If 𝜖 is not
defined for 𝑇𝑖−1, then 𝜖 (𝑇𝑖−2) <𝑠 𝑎𝑖−1 <𝑇𝑖−1 Ci−1 (by (iii) for 𝜖 on 𝑇𝑖−2 and 𝑇𝑖−1), and
otherwise 𝜖 (𝑇𝑖−2) <𝑠 𝜖 (𝑇𝑖−1) ≤𝑇𝑖−1 Ci−1 (by (ii) for 𝜖 on 𝑇𝑖−2 and 𝑇𝑖−1). In both cases:
𝜖′ (𝑇𝑖−2) <𝑠 Ci−1 = 𝜖′ (𝑇𝑖−1).

• (𝑇𝑖−1, 𝑏𝑖−1, 𝑎𝑖 ,𝑇𝑖 ): Properties (i) and (iii) are trivial, since 𝜖′ is defined for 𝑇𝑖−1 and 𝑇𝑖 . To see
that Property (ii) is true, recall that Ci−1 <𝑠 Wi [x] ≤𝑇𝑖 𝑏𝑖 .

• (𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1): Property (i) is trivial, since 𝜖′ is defined for𝑇𝑖 . Property (ii) is true, because
if 𝜖′ is defined for 𝑇𝑖+1, then 𝜖′ (𝑇𝑖+1) = 𝜖 (𝑇𝑖+1) = Ci+1, due to Property (i). The edge
(𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) then implies 𝜖′ (𝑇𝑖 ) = 𝑏𝑖 <𝑠 𝑎𝑖+1 <𝑇𝑖+1 Ci+1 = 𝜖

′ (𝑇𝑖+1). Property (iii) is true,
because, if 𝜖′ is not defined for𝑇𝑖+1, it follows from edge (𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) that 𝜖′ (𝑇𝑖 ) = 𝑏𝑖 <𝑠

𝑎𝑖+1.

(Case:𝑇𝑖 is right-breakable and (𝑇𝑖 , Wi [xi], Wi+1 [xi],𝑇𝑖+1) ∈ 𝐷) As node labeling, we take 𝜖′ obtained
from 𝜖 by setting 𝜖′ (𝑇𝑖 ) := Ci and 𝜖′ (𝑇𝑖+1) := Wi+1 [xi]. The analysis is analogous to the previous
case:

• (𝑇𝑖−1, 𝑏𝑖−1, 𝑎𝑖 ,𝑇𝑖 ): Property (i) and (iii) are trivial, since 𝜖′ is defined for 𝑇𝑖 , with 𝜖′ (𝑇𝑖 ) = Ci.
Property (ii) is true, because if 𝜖′ is defined for 𝑇𝑖−1, then 𝜖′ (𝑇𝑖−1) = 𝜖 (𝑇𝑖−1) < 𝑎𝑖 due to
Property (iii), thus 𝜖′ (𝑇𝑖−1) <𝑠 Ci = 𝜖

′ (𝑇𝑖 ).
• (𝑇𝑖 , Wi [xi], Wi+1 [xi],𝑇𝑖+1): Property (i) and (iii) are trivial, because 𝜖′ is defined for both
𝑇𝑖 and 𝑇𝑖+1. Property (ii) follows from the observation Wi [xi] <𝑠 Wi+1 [xi], which implies
Wi [xi] <𝑇𝑖 Ci <𝑠 Wi+1 [xi] (due to read uncommitted). Thus, 𝜖′ (𝑇𝑖 ) = Ci <𝑠 Wi+1 [xi] =
𝜖′ (𝑇𝑖+1).

• (𝑇𝑖+1, 𝑏𝑖+1, 𝑎𝑖+2,𝑇𝑖+2): Property (i) is trivial, since 𝜖′ is defined for𝑇𝑖+1. To see that Property (ii)
is true, assume that 𝜖′ is defined for 𝑇𝑖+2. Then, 𝜖 (𝑇𝑖+2) = 𝜖′ (𝑇𝑖+2), since 𝜖′ (𝑇𝑖+2) was not
set in this step. We distinguish two cases: If 𝜖 was defined for 𝑇𝑖+1, then Ci+1 = 𝜖 (𝑇𝑖+1) <𝑠

𝜖 (𝑇𝑖+2) due to Property (i) and (ii) on 𝜖 . Thus, 𝜖′ (𝑇𝑖+1) ≤𝑇𝑖+1 Ci+1 <𝑠 𝜖 (𝑇𝑖+2) = 𝜖′ (𝑇𝑖+2).
Otherwise, if 𝜖 was not defined for𝑇𝑖+1, then, due to our selection procedure,𝑇𝑖+1 cannot be
breakable, implying 𝜖′ (𝑇𝑖+1) = Wi+1 [xi] ≤𝑇𝑖+1 𝑏𝑖+1, and due to edge (𝑇𝑖+1, 𝑏𝑖+1, 𝑎𝑖+2,𝑇𝑖+2) that
𝑏𝑖+1 <𝑠 𝑎𝑖+2 <𝑇𝑖+2 Ci+2 = 𝜖 (𝑇𝑖+2) = 𝜖′ (𝑇𝑖+2).
To see that Property (iii) is true we assume that 𝜖′ is not defined for 𝑇𝑖+2. Note that if 𝜖
was defined for 𝑇𝑖+1, then it was also defined for 𝑇𝑖+2 (due to the order in which we pick
transactions and define 𝜖 for them), making the case trivial. Thus, 𝜖 was not defined for
𝑇𝑖+1, which implies due to our selection procedure that 𝑇𝑖+1 is not breakable and 𝜖′ (𝑇𝑖+1) =
Wi+1 [xi] ≤𝑇𝑖+1 𝑏𝑖+1 <𝑠 𝑎𝑖+2.

Phase 2: (Total 𝜖). Phase 1 of the construction clearly leads to a labeling 𝜖 that has Properties (i-iv).
Moreover, since the resulting cycle 𝐷 has at least one transferable transaction, labeling 𝜖 must be
defined for at least one transaction. To make 𝜖 total, we repeatably pick a transaction𝑇𝑖 such that 𝜖 is
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defined for the previous transaction𝑇𝑖−1 but not for𝑇𝑖 . Furthermore, let (𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) be an edge
in 𝐷 . Then set 𝜖′ (𝑇𝑖 ) := 𝑏𝑖 . Clearly, if 𝜖′ is defined for 𝑇𝑖−1 then 𝜖′ (𝑇𝑖−1) <𝑠 𝑎𝑖 , due to Property (iii),
and 𝑎𝑖 ≤𝑠 𝑏𝑖 (because otherwise 𝜖 should have been defined already for 𝑇𝑖 in the previous phase),
thus 𝜖′ (𝑇𝑖−1) <𝑠 𝜖

′ (𝑇𝑖 ). Furthermore, if 𝜖 (𝑇𝑖+1) is defined, then it equals Ci+1 (due to Property (i)).
Thus, edge (𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) implies 𝜖′ (𝑇𝑖 ) = 𝑏𝑖 <𝑠 𝑎𝑖+1 <𝑇𝑖+1 Ci+1 = 𝜖 (𝑇𝑖+1) = 𝜖′ (𝑇𝑖+1). We conclude
that repeatably applying this argument indeed leads to the desired contradicting labeling 𝜖 , which
concludes the proof. □

The following theorem establishes the complexity of deciding robustness against read uncom-
mitted.

Theorem 17. robustness(read uncommitted) is logspace-complete.

Proof. The proof showing the upper-bound is analogous to the proof of Theorem 12, but now
we check for every pair of incident edges {𝑇𝑖 ,𝑇𝑗 } and {𝑇𝑗 ,𝑇𝑘 } in 𝐼𝐺 (T ), and every tuple (𝑏 𝑗 , 𝑎 𝑗 ) of
different operations 𝑏 𝑗 and 𝑎 𝑗 in𝑇𝑗 with 𝑏 𝑗 <𝑇𝑗

𝑎 𝑗 (thus witnessing transferability) that either𝑇𝑖 and
𝑇𝑘 are the same transaction and none of the operations in 𝑇𝑖 is conflicting with an operation in
prefix𝑏 𝑗

(𝑇𝑗 ) or 𝑇𝑖 and 𝑇𝑘 are reachable through a path that omits 𝑇𝑗 and all transactions having a
write that is conflicting with a write operation in prefix𝑏 𝑗

(𝑇𝑗 ). The proof proceeds as in the proof
of Theorem 12
The lower-bound is by an fo-reduction from the logspace-complete undirected acyclicity

problem [14] to transaction robustness against read uncommitted. The construction of T for a
given undirected graph 𝐺 is identical to the construction presented in the proof of Theorem 12.
Recall in particular that every schedule over T is allowed under read uncommitted.
It remains to argue that 𝐺 is acyclic if and only if T is robust against isolation level read

uncommitted. For this, we observe that 𝐺 equals 𝐼𝐺𝑢 (T ).
Thus, if 𝐺 is acyclic, then 𝐼𝐺𝑢 (T ) is acyclic, which, due to bidirectionality of 𝐼𝐺 (T ) indicates

that every simple cycle in 𝐼𝐺 (T ) is a two-node cycle. By construction, these are all trivial (thus not
transferable), hence T must be robust.
If T is robust against read uncommitted, then 𝐼𝐺 (T ) contains no prefix-write-conflict-free

cycles. Since every schedule for T is allowed under read uncommitted, because every pair of
conflicting operations involves precisely one write and one read (and is thus free of dirty-writes)
“no prefix-write-conflict-free cycles” here implies “no cycles”. By construction, the latter implies
that all simple cycles in 𝐼𝐺 (T ) are two-node cycles and thus that 𝐼𝐺𝑢 (T ) is acyclic. Hence, 𝐺 is
acyclic. □

5 READ COMMITTED
Next, we discuss robustness against read committedwhich means that counter example schedules
must adhere to the read committed isolation level. This section contains two main results: (i)
a characterization of robustness against read committed in terms of multi-split schedules and
multi-prefix-conflict-free cycles (Theorem 25); and, (ii) conp-hardness of the associated decision
problem (Theorem 29).

5.1 Multi-split schedules
We start by showing that when a counter example schedule exists, it can always take the form of a
multi-split schedule based on a transferable cycle as defined below. In contrast to a split schedule
where one transaction is split open and all other transactions are inserted in between in the order as
they occur in the cycle, a multi-split schedule can open several transactions appearing consecutively
in the cycle but needs to close them in the same order. Figure 2 provides an abstract view of a
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split schedule omitting the possible trailing sequence of non-interleaved transactions. To facilitate
the definition of multi-split schedules, we assume that the first transaction in the cycle that the
schedule is based on, is the first transaction that is opened.

Definition 18. Let T be a set of transactions and 𝐶 a cycle in 𝐼𝐺 (T ) that is transferable in its
first transaction 𝑇1 on operations (𝑏1, 𝑎1). A multi-split schedule for T based on 𝐶 is any schedule of
the form

prefix𝜖 (𝑇1 ) (𝑇1) · prefix𝜖 (𝑇2 ) (𝑇2) · . . . · prefix𝜖 (𝑇𝑚 ) (𝑇𝑚) ·
postfix𝜖 (𝑇1 ) (𝑇1) · postfix𝜖 (𝑇2 ) (𝑇2) · . . . · postfix𝜖 (𝑇𝑚 ) (𝑇𝑚) ·

𝑇𝑚+1 ·𝑇𝑚+2 · . . . ·𝑇𝑛,

with𝑇1, . . . ,𝑇𝑚 denoting the transactions in𝐶 in the order as they occur, and with𝑇𝑚+1, . . . ,𝑇𝑛 denoting
the remaining transactions in T in an arbitrary order. Here, 𝜖 is a function that maps each transaction
occurring in 𝐶 to one of its operations and that satisfies the following conditions: for every 𝑖 > 1,

(1) 𝜖 (𝑇1) = 𝑏1;
(2) if 𝜖 (𝑇𝑖−1) = Ci−1 then 𝜖 (𝑇𝑖 ) = Ci; and,
(3) if 𝜖 (𝑇𝑖−1) ≠ Ci−1 then 𝜖 (𝑇𝑖 ) = 𝑏𝑖 or 𝜖 (𝑇𝑖 ) = Ci with the edge (𝑇𝑖 , 𝑏𝑖 , 𝑎 𝑗 ,𝑇𝑗 ) in𝐶 where 𝑗 = 𝑖 + 1

if 𝑖 < 𝑚 and 𝑗 = 1 otherwise.
The transaction 𝑇𝑖 is called open when 𝜖 (𝑇𝑖 ) ≠ Ci and is closed otherwise. Notice that for a closed
transaction 𝑇𝑖 , prefix𝜖 (𝑇𝑖 ) (𝑇𝑖 ) = 𝑇𝑖 and postfix𝜖 (𝑇𝑖 ) (𝑇𝑖 ) is empty. A multi-split schedule is fully split
when all transactions are open, that is, 𝜖 (𝑇𝑖 ) ≠ Ci for all 𝑖 ∈ [1,𝑚].

We say that 𝑠 is a multi-split schedule for T if it is a multi-split schedule for T based on some
cycle𝐶 . Notice that there is always a number 𝑘 > 0 such that the first 𝑘 transactions occurring in𝐶
are open and the others (if any) are closed. In a fully split schedule there are no closed transactions.

The next lemma establishes that a multi-split schedule gives rise to a cycle in the corresponding
conflict graph.

Lemma 19. Let 𝑠 be a multi-split schedule for a set of transactions T based on a cycle 𝐶 in 𝐼𝐺 (T ).
Then 𝐶 is also a cycle in 𝐶𝐺 (𝑠).

Proof. Let 𝐶 consist of the edges (𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) for 𝑖 ∈ [1, 𝑛] with 𝑎𝑛+1 = 𝑎1 and 𝑇𝑛+1 = 𝑇1.
Assume𝑇1 is the first transaction in𝐶 . Assume𝐶 is transferable in𝑇1 on (𝑏1, 𝑎1). To argue that𝐶 is
a cycle in 𝐶𝐺 (𝑠) as well, it suffices to show that every edge in 𝐶 is an edge in 𝐶𝐺 (𝑠). To this end,
consider the edge (𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) in 𝐶 with 𝑖 ∈ [1, 𝑛]. Then, 𝑏𝑖 ∈ prefix𝜖 (𝑇𝑖 ) (𝑇𝑖 ). Let 𝑖 < 𝑛. Then,
since, 𝑎𝑖+1 ∈ 𝑇𝑖+1 and both prefix𝜖 (𝑇𝑖+1 ) (𝑇𝑖+1) as well as postfix𝜖 (𝑇𝑖+1 ) (𝑇𝑖+1) occur after prefix𝜖 (𝑇𝑖 ) (𝑇𝑖 )
it follows that 𝑏𝑖 <𝑠 𝑎𝑖+1. So, (𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) is an edge in 𝐶𝐺 (𝑠) as well. For 𝑖 = 𝑛, we have the
edge (𝑇𝑛, 𝑏𝑛, 𝑎1,𝑇1). As 𝐶 is transferable in 𝑇1 on (𝑏1, 𝑎1), it follows that 𝑎1 ∈ postfix𝑏1 (𝑇1) while
𝑏𝑛 ∈ prefix𝜖 (𝑇𝑛 ) (𝑇𝑛). So, (𝑇𝑛, 𝑏𝑛, 𝑎1,𝑇1) is an edge in 𝐶𝐺 (𝑠) as well. □

The previous lemma does not imply that 𝑠 is allowed under read committed. To this end, we
introduce the definition of a multi-prefix-conflict-free cycle. First, we define the following notions.
Let T be a set of transactions, 𝐶 a cycle in the interference graph 𝐼𝐺 (T ), and 𝑇 a transaction in T .
Then there is precisely one edge of the form (𝑇,𝑏, 𝑎,𝑇 ′) in 𝐶 for some 𝑏 ∈ 𝑇 , 𝑇 ′ ∈ T , and 𝑎 ∈ 𝑇 ′.
For ease of notation, we write 𝑏𝐶 (𝑇 ) to denote 𝑏 and 𝑎𝐶 (𝑇 ) to denote 𝑎. When 𝐶 is clear from the
context, we also write 𝑎(𝑇 ) and 𝑏 (𝑇 ) for 𝑎𝐶 (𝑇 ) and 𝑏𝐶 (𝑇 ), respectively.

In the following definition, 𝑇 and 𝑇 ′ intuitively refer to the first open and last open transaction
in the multi-split schedule that can be constructed from a multi-prefix-conflict-free cycle.
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Definition 20. Let T be a set of transactions and let𝐶 be a cycle in 𝐼𝐺 (T ) containing transactions
𝑇 and 𝑇 ′. Then 𝐶 is multi-prefix-conflict-free in 𝑇 and 𝑇 ′ if 𝐶 is transferable in 𝑇 and for every
transaction𝑇𝑖 that is equal to𝑇 ′ or occurs before𝑇 ′ in𝐶 [𝑇 ] there is no write operation in prefix𝑏 (𝑇𝑖 ) (𝑇𝑖 )
that

• conflicts with a read or write operation in prefix𝑏 (𝑇𝑗 ) (𝑇𝑗 ) of some transaction𝑇𝑗 occurring after
𝑇𝑖 but before or equal to 𝑇 ′ in 𝐶 [𝑇 ]; or,

• conflicts with a read or write operation in some transaction 𝑇𝑗 occurring after 𝑇 ′ in 𝐶 [𝑇 ]; or,
• conflicts with a read or write operation in postfix𝑏 (𝑇𝑗 ) (𝑇𝑗 ) of some transaction 𝑇𝑗 occurring
strictly before 𝑇𝑖 in 𝐶 [𝑇 ].

The next lemma says that when a multi-prefix-conflict-free cycle can be found, a corresponding
counter example multi-split schedule witnessing non-robustness against read committed can be
constructed. In Theorem 25, we show that the latter is also a necessary condition.

Lemma 21. Let T be a set of transactions. Let𝐶 be a cycle in 𝐼𝐺 (T ) that is multi-prefix-conflict-free
in 𝑇 and 𝑇 ′. Then, there is a multi-split schedule for T based on𝐶 that is allowed under isolation level
read committed.

Proof. Let𝐶 be a multi-prefix-conflict-free cycle in 𝐼𝐺 (T ) in𝑇 and𝑇 ′. Let𝐶 consist of the edges
(𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) for 𝑖 ∈ [1, 𝑛] with 𝑎𝑛+1 = 𝑎1 and 𝑇𝑛+1 = 𝑇1. Assume 𝑇 = 𝑇1 is the first transaction
in 𝐶 otherwise take 𝐶 as 𝐶 [𝑇 ]. Assume 𝐶 is transferable in 𝑇 on (𝑏1, 𝑎1). Let 𝑠 be the multi-split
schedule based on 𝐶 where 𝜖 is defined as follows: let 𝜖 (𝑇𝑖 ) = 𝑏𝑖 for every transaction equal to 𝑇 ′

or occurring before 𝑇 ′ in 𝐶 . Furthermore, define 𝜖 (𝑇𝑖 ) = Ci for every other transaction in 𝐶 . The
trailing transactions in 𝑠 that are not in 𝐶 are arbitrarily ordered.

It remains to argue that 𝑠 is allowed under read committed. For this let 𝑎 be a write operation
in some transaction 𝑇𝑖 and 𝑏 a read or write operation in some transaction 𝑇𝑗 with 𝑎 <𝑠 𝑏. We next
argue that it always follows that 𝑎 <𝑠 Ci <𝑠 𝑏. So, no dirty read or write occurs in 𝑠 . If 𝑇𝑗 is not in
𝐶 , then it follows from the construction of 𝑠 that 𝑎 <𝑠 Ci <𝑠 𝑏. Furthermore, if𝑇𝑖 is not in𝐶 , then it
follows that 𝑇𝑗 is also not in 𝐶 and the previous case applies. Therefore, assume 𝑇𝑖 and 𝑇𝑗 are in 𝐶 .
We distinguish two cases:

• Assume 𝑇𝑖 occurs before 𝑇𝑗 in 𝐶 .
– Let 𝑎 ∈ prefix𝜖 (𝑇𝑖 ) (𝑇𝑖 ). It follows from the second condition in Definition 20 that 𝑇𝑗

occurs before 𝑇 ′ or is equal to 𝑇 ′. Then the first condition in Definition 20 prohibits
that 𝑏 ∈ prefix𝜖 (𝑇𝑗 ) (𝑇𝑗 ). So, 𝑏 ∈ postfix𝜖 (𝑇𝑗 ) (𝑇𝑗 ) and 𝑇𝑗 must be open. But as 𝑇𝑖 occurs
before 𝑇𝑗 in 𝐶 this means that by construction Ci <𝑠 𝑏.

– Let 𝑎 ∈ postfix𝜖 (𝑇𝑖 ) (𝑇𝑖 ) and𝑇𝑖 be open. Then 𝑏 ∈ postfix𝜖 (𝑇𝑗 ) (𝑇𝑗 ) and𝑇𝑗 is open and by
construction Ci <𝑠 𝑏.

• We next argue that 𝑇𝑗 can not occur before 𝑇𝑖 in 𝐶 . Towards a contradiction, assume 𝑇𝑗
occurs before 𝑇𝑖 in 𝐶 . It can not be the case that 𝑎 ∈ prefix𝜖 (𝑇𝑖 ) (𝑇𝑖 ). Indeed, as 𝑎 <𝑠 𝑏, it
follows that 𝑏 ∈ postfix𝜖 (𝑇𝑗 ) (𝑇𝑗 ) but this can not be the case due to the third condition of
Definition 20. It can also not be the case that 𝑎 ∈ postfix𝜖 (𝑇𝑖 ) (𝑇𝑖 ) as this would imply that
𝑏 <𝑠 𝑎. Therefore, 𝑇𝑗 can not occur before 𝑇𝑖 in 𝐶 .

We conclude that 𝑠 is indeed allowed under read committed. □

Example 22. Consider T = {𝑇1,𝑇2,𝑇3} with 𝑇1 = W1 [x]W1 [y]C1, 𝑇2 = R2 [v]R2 [z]W2 [v]W2 [x]C2
and 𝑇3 = R3 [y]W3 [z]C3. Then 𝐼𝐺 (T ) is depicted in in Figure 4. The cycle 𝐶 consisting of the following
edges

(𝑇1, W1 [x], W2 [x],𝑇2), (𝑇2, R2 [z], W3 [z],𝑇3), (𝑇3, R3 [y], W1 [y],𝑇1)
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𝑇1 :W1 [x]W1 [y]C1 𝑇2 :R2 [v]R2 [z]W2 [v]W2 [x]C2

𝑇3 :R3 [y] W3 [z]C3

Fig. 4. 𝐼𝐺 (T ) for T = {𝑇1,𝑇2,𝑇3} as defined in Example 22.

is multi-prefix-conflict-free in 𝑇1 and 𝑇2. The multi-split schedule 𝑠 for T based on 𝐶 where 𝑇1 and 𝑇2
are open and 𝑇3 is closed is as follows:

W1 [x]︸︷︷︸
prefix𝑏1 (𝑇1 )

R2 [v]R2 [z]︸       ︷︷       ︸
prefix𝑏2 (𝑇2 )

R3 [y]W3 [z]C3︸          ︷︷          ︸
𝑇3

W1 [y]C1︸   ︷︷   ︸
postfix𝑏1 (𝑇1 )

W2 [v]W2 [x]C2︸          ︷︷          ︸
postfix𝑏2 (𝑇2 )

,

with 𝑏1 = W1 [x] and 𝑏2 = R2 [z]. Notice that 𝑠 is allowed under read committed. □

In the proof of Theorem 25, we show that any counter example schedule witnessing non-
robustness against read committed can be transformed into one that is a multi-split schedule.
Basically, in a multi-split schedule every transaction is represented by one or two blocks of consecu-
tive operations. Indeed, an open transaction is represented by two blocks while closed transactions
as well as trailing transactions are represented by one block. We refer to such blocks of consecutive
operations within a transaction as a chunk. Formally, in a schedule 𝑠 for T , we call a maximal
sequence of consecutive operations from the same transaction 𝑇 a chunk of 𝑇 in 𝑠 . For instance, in
Figure 1, 𝑇1 is represented in 𝑠1 by one chunk (W1 [x]R1 [z]W1 [y]C1) while 𝑇2 is represented by two
chunks (W2 [z] and R2 [y]W2 [x]C2).

Let 𝑇 be a transaction. A subsequence 𝐵 of 𝑇 is a sequence of consecutive operations in 𝑇 . If 𝑎 is
the next operation in 𝑇 following the last operation in 𝐵 then 𝐵 · 𝑎 is the subsequence 𝐵 extended
with 𝑎. Let T be a set of transactions and 𝑠 be a schedule for T . Let 𝑇 ∈ T and let 𝐵 · 𝑎 be a
subsequence of 𝑇 . Then we denote by 𝑠 (𝐵;𝑎) the schedule obtained from 𝑠 by first removing all
operations in 𝐵 in 𝑠 and then inserting them just before 𝑎 in 𝑠 . More formally, let 𝑠 = 𝑠1 · 𝑎 · 𝑠2.
Then, 𝑠 (𝐵;𝑎) is the schedule 𝑠′1 · 𝐵 · 𝑎 · 𝑠2 where 𝑠′1 is obtained from 𝑠1 by deleting every operation
in 𝐵. Such actions will be performed to merge chunks in a schedule in the proof of the following
theorem.

Lemma 23. Let T be a set of transactions and 𝑠 a schedule for T allowed under isolation level
I ∈ {no isolation, read uncommitted, read committed}. Let 𝐵 · 𝑎 be a subsequence of some
transaction 𝑇𝑖 ∈ T . The schedule 𝑠 (𝐵;𝑎) for T is allowed under I if at least one of the following
conditions is true:

(1) For every operation 𝑐 that conflicts with an operation 𝑑 in 𝐵 we have 𝑐 <𝑠 𝑑 or Ck <𝑠 𝑎, with
Ck the commit of the transaction that 𝑐 is in.

(2) Operation 𝑎 equals Ci and 𝑇𝑖 is the transaction whose commit occurs last in 𝑠 .
(3) For every operation 𝑐 that conflicts with an operation 𝑑 in 𝐵 we have 𝑐 <𝑠 𝑑 or 𝑎 <𝑠 𝑐 .

Proof. Observe that Condition (2) implies Condition (1), since Ck <𝑠 Ci = 𝑎 follows from the
assumption that 𝑇𝑖 is the transaction whose commit occurs last in 𝑠 . In the remainder of the proof
we show Property (1) and Property (3). Let 𝑠′ = 𝑠 (𝐵;𝑎).
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(1) For this, let 𝑐ℎ ∈ 𝑇ℎ and 𝑑 𝑗 ∈ 𝑇𝑗 be two arbitrary conflicting operations with 𝑐ℎ <𝑠′ 𝑑 𝑗 . Towards
a contradiction, suppose that 𝑐ℎ and 𝑑 𝑗 witness a forbidden phenomenon in 𝑠′ for isolation level
I (i.e., 𝑐ℎ <𝑠′ 𝑑 𝑗 <𝑠′ Ch). That is, a dirty-write if I = read uncommitted, and a dirty-write or
dirty-read if I = read committed. The proof is by case distinction:

• If 𝑐ℎ ∉ 𝐵 and 𝑑 𝑗 ∉ 𝐵, then the proof is straightforward. Indeed, the relative order between
𝑐ℎ , 𝑑 𝑗 and Ch is identical in 𝑠 and 𝑠′. Therefore, either 𝑐ℎ and 𝑑 𝑗 do not witness a forbidden
phenomenon in 𝑠′ or the phenomenon is already present in 𝑠 . Both contradict with our
assumptions.

• If 𝑐ℎ ∈ 𝐵, then 𝑇ℎ = 𝑇𝑖 and 𝑐ℎ <𝑇ℎ 𝑎. By Condition (1), 𝑑 𝑗 <𝑠 𝑐ℎ or Cj <𝑠 𝑎. Note that, since
𝑠′ is constructed from 𝑠 by moving operations in 𝐵 to the right, 𝑐ℎ <𝑠′ 𝑑 𝑗 implies 𝑐ℎ <𝑠 𝑑 𝑗 .
We conclude that 𝑑 𝑗 <𝑠 Cj <𝑠 𝑎, and hence 𝑑 𝑗 <𝑠′ Cj <𝑠′ 𝑐ℎ , contradicting our assumption
that 𝑐ℎ <𝑠′ 𝑑 𝑗 .

• If 𝑑 𝑗 ∈ 𝐵, then 𝑇𝑗 = 𝑇𝑖 and 𝑑 𝑗 <𝑇𝑗
𝑎. By Condition (1), 𝑐ℎ <𝑠 𝑑 𝑗 or Ch <𝑠 𝑎. Note that, since

𝑠′ is constructed from 𝑠 by moving operations in 𝐵 to the right, 𝑑 𝑗 <𝑠′ Ch implies 𝑑 𝑗 <𝑠 Ch.
If 𝑐ℎ <𝑠 𝑑 𝑗 , the relative order between 𝑐ℎ , 𝑑 𝑗 and Ch is identical in 𝑠 and 𝑠′, again leading to
a contradiction. We conclude that 𝑑 𝑗 <𝑠 Ch <𝑠 𝑎. But then 𝑐ℎ <𝑠′ Ch <𝑠′ 𝑑 𝑗 , contradicting
our assumption that 𝑐ℎ and 𝑑 𝑗 witness a forbidden phenomenon.

We conclude that 𝑠′ is indeed allowed under I.
(3) The proof is analogous to the proof for Condition (1). Let 𝑐ℎ and 𝑑 𝑗 be again two arbitrary
conflicting operations with 𝑐ℎ <𝑠′ 𝑑 𝑗 that we assume to witness a forbidden phenomenon for
isolation level I. If 𝑐ℎ ∉ 𝐵 and 𝑑 𝑗 ∉ 𝐵, the proof argument is the same as in the proof for Property (1).
The other two cases are as follows:

• If 𝑐ℎ ∈ 𝐵, then 𝑇ℎ = 𝑇𝑖 and 𝑐ℎ <𝑇ℎ 𝑎. By Condition (3), 𝑑 𝑗 <𝑠 𝑐ℎ or 𝑎 <𝑠 𝑑 𝑗 . Analogous to
the proof for Condition (1), the former cannot happen, and hence 𝑐ℎ <𝑠 𝑎 <𝑠 𝑑 𝑗 , implying
that the relative order between 𝑐ℎ , 𝑑 𝑗 and Ch is identical in 𝑠 and 𝑠′, again leading to a
contradiction.

• If 𝑑 𝑗 ∈ 𝐵, then𝑇𝑗 = 𝑇𝑖 and 𝑑 𝑗 <𝑇𝑗
𝑎. By Condition (3), 𝑐ℎ <𝑠 𝑑 𝑗 or 𝑎 <𝑠 𝑐ℎ . The former case is

analogous to the proof for Condition (1), implying that the relative order between 𝑐ℎ , 𝑑 𝑗 and
Ch is identical in 𝑠 and 𝑠′. The latter case cannot occur, as 𝑑 𝑗 <𝑠 𝑎 <𝑠 𝑐ℎ implies 𝑑 𝑗 <𝑠′ 𝑐ℎ by
construction of 𝑠′ from 𝑠 , contradicting our assumption that 𝑐ℎ <𝑠′ 𝑑 𝑗 .

□

The following lemma deals with the case where T contains precisely two transactions.

Lemma 24. Let T be a set containing precisely two transactions. If T is not robust against isolation
level read committed, then there is a multi-split schedule 𝑠 for T that is allowed under read
committed.

Proof. Let 𝑠 be a schedule for T that is allowed under read committed and contains a cycle.
We call the transaction whose commit occurs first in 𝑠 transaction 𝑇1, and the other transaction
𝑇2. Let 𝑐 be the first operation from 𝑇2 that conflicts with an operation 𝑑 from 𝑇1 such that 𝑐 <𝑠 𝑑 .
(Notice that 𝑐 and 𝑑 exist, due to existence of a cycle 𝐶 in 𝐶𝐺 (𝑠).) Next, we distinguish two cases:
(Case: There is an operation 𝑎 from 𝑇1 that occurs before 𝑐 in 𝑠 and conflicts with an operation 𝑏
from 𝑇2.) Let 𝑎 be the last such operation in 𝑠 . Let 𝑠′ be the schedule obtained from 𝑠 by moving all
operations from𝑇2 occurring after 𝑐 to the chunk with C2; all operations from𝑇2 occurring before 𝑐
to the chunk with 𝑐; all operations from 𝑇1 occurring after 𝑎 and before 𝑐 to the chunk with C1.
That 𝑠′ is allowed under read committed is straightforward by application of Lemma 23 on the

three steps of the construction. Indeed, due to C1 <𝑠 C2, the first step of the construction satisfies
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Condition (2); since 𝑐 is the first operation from 𝑇2 in 𝑠 that conflicts with an operation on its right,
the second step satisfies Condition (1); by choice of 𝑎, the operations between 𝑎 (inclusive) and
𝑐 (exclusive) are not conflicting with operations from 𝑇2 and are inserted right before the first
operation of 𝑇1 that occurs after 𝑐 , hence Condition (1) applies.
We conclude the case by observing that 𝑠′ is indeed a multi-split schedule for T based on cycle

(𝑇1, 𝑎, 𝑏,𝑇2), (𝑇2, 𝑐, 𝑑,𝑇1) and function 𝜖 with 𝜖 (𝑇1) := 𝑎 and 𝜖 (𝑇2) := 𝑐 .
(Case: Otherwise) We assume that none of the operations from 𝑇1 occurring before 𝑐 in 𝑠 conflicts
with an operation from 𝑇2. Let 𝑠′ be the schedule obtained from 𝑠 by moving all operations from 𝑇2
occurring after 𝑐 to the chunk with C2; all operations from 𝑇1 to the chunk with C1.
To see that 𝑠′ is allowed under read committed we make the following observations: The first

step of the construction satisfies Lemma 23(2), since 𝑇2 commits last in 𝑠; The second step of the
construction satisfies Lemma 23(1) by the assumption of the case.
Recall that there is an edge (𝑇1, 𝑎, 𝑏,𝑇2) in 𝐶 , for some operations 𝑎 from 𝑇1 and 𝑏 from 𝑇2 with

𝑎 <𝑠 𝑏. By assumption of the case, we have 𝑐 <𝑠 𝑎 thus 𝑎 <𝑠′ 𝑏 (by construction of 𝑠′).
Now it is straightforward to see that 𝑠′ is a multi-split schedule for T based on the cycle

(𝑇2, 𝑐, 𝑑,𝑇1), (𝑇1, 𝑎, 𝑏,𝑇2) and function 𝜖 with 𝜖 (𝑇2) := 𝑐 and 𝜖 (𝑇1) := C1. □

We are now ready to prove the main theorem of this section.

Theorem 25. Let T be a set of transactions. The following are equivalent:

(1) T is not robust against isolation level read committed;
(2) 𝐼𝐺 (T ) contains a multi-prefix-conflict-free cycle; and
(3) there is a multi-split schedule 𝑠 for T that is allowed under read committed.

Proof. (3) → (2) Let 𝑠 be the assumed multi-split schedule for T based on a cycle 𝐶 that is
allowed under read committed. Then,𝐶 is in𝐶𝐺 (𝑠) by Lemma 19. Let𝑇 ∈ 𝐶 be the first transaction
that appears in 𝑠 . Let 𝑇 ′ denote the last transaction in 𝐶 that appears with two chunks in 𝑠 . Then,
𝐶 is multi-prefix-conflict-free in 𝑇 and 𝑇 ′. Indeed, every transaction 𝑇𝑖 equal to 𝑇 ′ or occurring
before𝑇 ′ in𝐶 has exactly two chunks in 𝑠 . Assume there is a write operation 𝑎 in prefix𝑏𝑖 (𝑇𝑖 ) (with
(𝑇𝑖 , 𝑏𝑖 , 𝑎𝑖+1,𝑇𝑖+1) in 𝐶) and a conflicting read or write operation 𝑏 in prefix𝑏 𝑗

(𝑇𝑗 ) for transaction
𝑇𝑗 occurring after 𝑇𝑖 in 𝐶 (with (𝑇𝑗 , 𝑏 𝑗 , 𝑎 𝑗+1,𝑇𝑗+1) in 𝐶). Then, we have by definition of multi-split
schedule that 𝑎 <𝑠 𝑏 <𝑠 Ci, which contradicts with 𝑠 being allowed under read committed. The
case 𝑏 in postfix𝑏 𝑗

(𝑇𝑗 ) with 𝑇𝑗 occurring before 𝑇𝑖 in 𝐶 implies 𝑎 <𝑠 𝑏 <𝑠 Ci as well.

(2)→ (1) Follows immediately, as by Lemma 21 and Lemma 19 there is a schedule 𝑠 for T that is
allowed under read committed and that has a cycle in 𝐶𝐺 (𝑠).

(1)→ (3) By Theorem 2 there is a schedule 𝑠0 for T allowed under read committed with a cycle
𝐶 in its conflict graph.

Let U ⊆ T denote the transactions occurring in 𝐶 and let 𝑠 be the schedule obtained from 𝑠0 by
removing all operations from transactions not occurring in𝐶 . Notice that𝐶 is a cycle in the conflict
graph of 𝑠 and that 𝑠 is a schedule forU allowed under read committed. Moreover, if a multi-split
schedule 𝑠′ exists for U that is allowed under read committed, we can easily obtain a multi-split
schedule for T allowed under read committed by appending to 𝑠′ all missing transactions (those
in T \ U) in a serial fashion.
The case where U contains precisely two transactions is treated in Lemma 24. Henceforth,

we assume that U contains at least three transactions. Moreover, we assume that the following
property applies to 𝑠 and 𝐶:
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(i) 𝐶 is minimal in 𝐶𝐺 (𝑠) and contains at least three transactions; no schedule forU allowed
under read committed exists with a cycle in its conflict graph mentioning a strict subset
of the transactions in 𝐶 . Furthermore, 𝑠 is allowed under read committed.

If Property (i) holds for a schedule 𝑠 , then the following property is immediate:

(†) Let 𝑐 and 𝑑 be two conflicting operations from two different transactions 𝑇𝑖 and 𝑇𝑗 in 𝐶 .
𝑐 <𝑠 𝑑 iff 𝑇𝑗 is the transaction occurring directly before 𝑇𝑖 in 𝐶 , and 𝑑 <𝑠 𝑐 iff 𝑇𝑖 is the
transaction occurring directly before 𝑇𝑗 in 𝐶 .

Indeed, any other conflict would introduce an additional edge between two transactions in 𝐶 ,
thereby contradicting the assumption that 𝐶 is a minimal cycle in 𝐶𝐺 (𝑠).

The construction requires four phases. In each phase, we transform schedule 𝑠 one step closer to
the desired form. Eventually, we obtain a schedule 𝑠′ forU satisfying Properties (i-v):

(ii) Every transaction 𝑇𝑖 consists either of only one chunk or exactly two chunks in 𝑠′. In
the latter case, the last operation of the first chunk of 𝑇𝑖 conflicts with an operation from
transaction 𝑇𝑖+1 occurring after 𝑇𝑖 in 𝐶 .

(iii) In the following, let 𝑇1 be the transaction whose first operation occurs first in 𝑠′. Then 𝑇1
consists of two chunks in 𝑠′. Furthermore, all pairs of chunks in 𝑠′ between the first and last
chunk of 𝑇1 and all pairs of chunks in 𝑠′ after the last chunk of 𝑇1 appear in the same order
as their corresponding transactions appear in 𝐶 [𝑇1]. That is, for each such pair of chunks
𝐵𝑖 and 𝐵 𝑗 belonging to respectively transactions 𝑇𝑖 and 𝑇𝑗 , chunk 𝐵𝑖 occurs before 𝐵 𝑗 in 𝑠′
iff 𝑇𝑖 is situated before 𝑇𝑗 in 𝐶 [𝑇1].

(iv) Every transaction (except 𝑇1) has a chunk between the first and last chunk of 𝑇1.
(v) If𝑇𝑖 consists of only one chunk, then the transaction𝑇𝑖+1 occurring after𝑇𝑖 in𝐶 (unless it is

𝑇1) consists of only one chunk.

Notice that a schedule 𝑠 and cycle 𝐶 having Properties (i-v) indeed represent a multi-split schedule
based on 𝐶 that is allowed under read committed, with as 𝜖 the mapping that maps 𝑇𝑖 on the last
operation of its first chunk in 𝑠 , which is either some read or write operation from 𝑇𝑖 (if 𝑇𝑖 has two
chunks) or Ci (if 𝑇𝑖 has only one chunk).

Each of the four phases is detailed below. For convenience of notation, we refer in each phase by
𝑠′ to the new version of 𝑠 .

Phase 1: From a schedule 𝑠 forU allowed under read committed with a cycle𝐶 in its conflict graph
and with Property (i) we construct a schedule 𝑠′ for U allowed under read committed with cycle
𝐶′ ∈ 𝐶𝐺 (𝑠) and Properties (i-ii). For the construction, we iterate over the transactions inU in the
opposite order as defined by 𝐶 , starting from the transaction whose commit occurs last in 𝑠 . For
each visited transaction, we verify that it does not contradict Property (ii). If it does, then we rewrite
𝑠 to a new schedule 𝑠′ in which the property is made true for 𝑇𝑖 and remains true for all earlier
visited transactions. We continue the iterative process on the new schedule 𝑠′ until Property (ii) is
true.
The above procedure terminates as we never split chunks from other transactions than the

selected one. Hence, the only possible side effect on a transaction with Property (ii) in 𝑠 is that its
two chunks may become a single chunk in 𝑠′.
Notice that our picking order has the following implications: The first transaction 𝑇𝑖 that we

pick has property Ci+1 <𝑠 Ci, with 𝑇𝑖+1 the transaction following 𝑇𝑖 in 𝐶 . Indeed, we start with the
transaction that commits last in 𝑠 . For every next transaction𝑇𝑖 , we can assume that Property (ii) is
already true for 𝑇𝑖+1.
For the rewriting step, we distinguish three cases:
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(Case: Ci+1 <𝑠 Ci) Let 𝑏 be the first operation of 𝑇𝑖 in 𝑠 that conflicts with an operation from 𝑇𝑖+1.
Then let 𝑠′ be the schedule obtained by (I) removing in 𝑠 all operations in prefix𝑏 (𝑇𝑖 ) except 𝑏 and
inserting them in front of 𝑏; (II) removing all operations in postfix𝑏 (𝑇𝑖 ) except Ci and inserting
them in front of Ci.

The resulting schedule 𝑠′ is allowed under read committed, because both steps (I) and (II) satisfy
the assumptions of Lemma 23(1). Indeed, for (I) it follows from the choice of 𝑏 that all operations 𝑐
conflicting with an operation 𝑑 in prefix𝑏 (𝑇𝑖 ) (except operation b) are from transactions different
from 𝑇𝑖+1. Due to Property (i) and (†) these operations 𝑐 are from transaction 𝑇𝑖−1 and thus occur
before 𝑑 in 𝑠 . For (II), let 𝑐 be an operation conflicting with an operation 𝑑 in postfix𝑏 (𝑇𝑖 ). Towards
Lemma 23(1), we need to show that 𝑐 <𝑠 𝑑 or Ck <𝑠 Ci, with Ck the commit of the transaction that
𝑐 is in. If 𝑐 <𝑠 𝑑 , the argument is immediate. Otherwise, if 𝑑 <𝑠 𝑐 , then by Property (i) and (†) on
𝑠 we conclude that 𝑐 is an operation in 𝑇𝑖+1. The desired Ci+1 <𝑠 Ci is now immediate from the
condition of the case.

Replacing the edge between 𝑇𝑖 and 𝑇𝑖+1 in 𝐶 by (𝑇𝑖 , 𝑏, 𝑐,𝑇𝑖+1), with 𝑐 an operation from 𝑇𝑖+1 that
𝑏 conflicts with, results in a cycle that is in 𝐶𝐺 (𝑠′). Since 𝐶′ mentions the same transactions as
𝐶 , Property (i) straightforwardly transfers from 𝑠 and 𝐶 to 𝑠′ and 𝐶′. Notice also that 𝑏 (which is
conflicting by assumption) is the last operation of the first chunk of𝑇𝑖 in 𝑠′, thus 𝑠′ has Property (ii)
for transaction 𝑇𝑖 .

(Case: Ci <𝑠 Ci+1 and there is an operation 𝑏 in 𝑇𝑖 that conflicts with an operation 𝑒 from 𝑇𝑖+1 with
𝑏 <𝑠 𝑒 <𝑠 Ci) Let 𝑏 denote the last operation in 𝑠 with this property.

Let 𝑠′ be the schedule obtained by (I) removing in 𝑠 all operations from prefix𝑏 (𝑇𝑖 ) except 𝑏 and
inserting them in front of 𝑏; and (II) removing all operations in postfix𝑏 (𝑇𝑖 ) except Ci and inserting
them in front of Ci.

To see that 𝑠′ is allowed under read committed, we argue that both steps (I) and (II) satisfy the
assumptions of Lemma 23(3). For step (I), this follows from the observation that 𝑇𝑖+1 already has
Property (ii) due to the order in which we select transactions. Existence of 𝑏 thus implies that the
first chunk of 𝑇𝑖+1 is located between 𝑏 and Ci in 𝑠 . From this, we infer that for every operation 𝑐
that conflicts with an operation 𝑑 in prefix𝑏 (𝑇𝑖 ), we either have that 𝑐 <𝑠 𝑑 or, if 𝑑 <𝑠 𝑐 , that 𝑐 is
from𝑇𝑖+1, due to Property (i) and (†) on 𝑠 , and thus that 𝑏 <𝑠 𝑐 . For step (II), Lemma 23(3) applies if
for every operation 𝑐 that conflicts with an operation 𝑑 in postfix𝑏 (𝑇𝑖 ) we have 𝑐 <𝑠 𝑑 or Ci <𝑠 𝑐 .
To this end, if 𝑑 <𝑠 𝑐 , then 𝑐 is an operation in𝑇𝑖+1 by Property (i) and (†) on 𝑠 . The desired Ci <𝑠 𝑐

then follows from our choice of 𝑏. Indeed, since 𝑏 <𝑇𝑖 𝑑 , the property 𝑑 <𝑠 𝑐 <𝑠 Ci would contradict
our choice of 𝑏.

Due to the above observations and the fact that 𝑏 is the last operation of the first chunk of 𝑇𝑖 in
𝑠′, Property (ii) is indeed true for transaction 𝑇𝑖 in 𝑠′.

Notice that the above analysis implies that cycle𝐶 remains a cycle in𝐶𝐺 (𝑠′). Hence, let𝐶′ equal
𝐶 . Now it follows straightforwardly from Property (i) on 𝑠 and 𝐶 that Property (i) is true for 𝑠′ and
𝐶′.

(Case: Ci <𝑠 Ci+1 and there is no operation 𝑏 in 𝑇𝑖 that conflicts with an operation 𝑒 from 𝑇𝑖+1 with
𝑏 <𝑠 𝑒 <𝑠 Ci) Let 𝑠′ be the schedule obtained by removing all operations from 𝑇𝑖 except Ci from 𝑠

and inserting them in front of Ci.
To see that 𝑠′ is allowed under read committed, we apply Lemma 23(3) by showing that for

every operation 𝑐 that conflicts with an operation 𝑑 in𝑇𝑖 we have 𝑐 <𝑠 𝑑 or Ci <𝑠 𝑐 . More precisely,
we show that if 𝑑 <𝑠 𝑐 , then Ci <𝑠 𝑐 . Since 𝑑 <𝑠 𝑐 , we derive from Property (i) and (†) that 𝑐 is an
operation in 𝑇𝑖+1. Then, Ci <𝑠 𝑐 follows from the assumption on this case. Indeed, 𝑑 <𝑠 𝑐 <𝑠 Ci
contradicts our assumption that no such operation 𝑑 in 𝑇𝑖 exists.
We conclude that Property (ii) is indeed true for 𝑇𝑖 in 𝑠′ since 𝑇𝑖 now has only one chunk.
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Here, again, we let𝐶′ equal𝐶 , as it is indeed a cycle in𝐶𝐺 (𝑠′) (inferred from the earlier analysis
on 𝑠′). That Property (i) is true for 𝑠′ and 𝐶′ follows immediately from Property (i) on 𝑠 , the fact
that 𝑠′ is allowed under read committed and because 𝐶′ mentions the same transactions as 𝐶 .

Phase 2: From a schedule 𝑠 forU allowed under read committed with a cycle𝐶 in its conflict graph
and with Properties (i-ii) we construct a schedule 𝑠′ for U allowed under read committed with cycle
𝐶′ ∈ 𝐶𝐺 (𝑠) and Properties (i-iii).

In the following, let 𝑇1 be the transaction whose first operation occurs first in 𝑠 . By Property (ii),
𝑇1 consists of two chunks in 𝑠 . Indeed, if 𝑇1 would consist of only one chunk, then by our choice
of 𝑇1 every operation in 𝑇𝑛 (the operation immediately before 𝑇1 in 𝐶) would occur after C1 in 𝑠 ,
thereby contradicting the edge from 𝑇𝑛 to 𝑇1 in 𝐶 .

Let 𝑠′ be the schedule obtained by sorting in 𝑠 all chunks between the first chunk of 𝑇1 and last
chunk of 𝑇1 based on the order of the transaction that they are part of in 𝐶 [𝑇1] and by sorting all
chunks occurring after C1 according to the same order. Let 𝐶′ equal 𝐶 .

That 𝑠′ is allowed under read committed follows straightforwardly from the following observa-
tion: due to Property (i) and (†), an operation in a chunk from some transaction𝑇𝑖 can only conflict
with an operation in chunks from transactions 𝑇𝑖−1 and 𝑇𝑖+1. Due to minimality of 𝐶 in 𝐶𝐺 (𝑠)
and the fact thatU (thus also 𝐶) has three or more transactions, it follows that for chunks from
transactions 𝑇𝑖 and 𝑇𝑖+1, either they are already in the correct order, or they contain no conflicting
operations and thus can be swapped safely. Since we do not swap chunks containing conflicts,
cycle 𝐶′ is indeed a cycle in 𝐶𝐺 (𝑠′).

Property (i) on 𝑠′ and 𝐶′ follows from the fact that Property (i) is true on 𝑠 and 𝐶 and because 𝐶′

equals 𝐶 . Property (ii) follows from the fact that Property (ii) is true on 𝑠 and because we don’t
split chunks to obtain 𝑠′.

Phase 3: From a schedule 𝑠 forU allowed under read committed with a cycle𝐶 in its conflict graph
and with Properties (i-iii) we construct a schedule 𝑠′ forU allowed under read committed with cycle
𝐶′ ∈ 𝐶𝐺 (𝑠) and Properties (i-iv).

Recall that we have chosen 𝑇1 such that its first operation is the first operation in 𝑠 . Let 𝑇𝑖 be the
last transaction (w.r.t. the order defined in 𝐶 [𝑇1]) without chunk between the first and last chunk
of 𝑇1 in 𝑠 . Notice that 𝑖 < 𝑛, because 𝑖 = 𝑛 would imply that every operation in 𝑇𝑛 (the transaction
immediately preceding 𝑇1 in 𝐶) occurs after C1 in 𝑠 , thereby contradicting the edge from 𝑇𝑛 to 𝑇1 in
𝐶 . Furthermore, transaction 𝑇𝑖+1 must have two chunks in 𝑠: one before C1 and one after C1. The
former is immediate by our choice of 𝑇𝑖 , whereas the latter follows from the observation that 𝑇𝑖+1
must have a chunk that occurs after one of the chunks of𝑇𝑖 (which all occur after C1) to witness the
edge from 𝑇𝑖 to 𝑇𝑖+1 in 𝐶 . We will denote the last operation occurring in the first chunk of 𝑇𝑖+1 by 𝑎.

Let 𝑠′ be the schedule obtained by moving all chunks occurring before the first chunk of𝑇𝑖+1 in 𝑠
to their corresponding chunk after 𝑎 (thereby closing these transactions) or inserting on the right
place after C1 w.r.t. the order defined by 𝐶 [𝑇1] (if the transaction has only one chunk in 𝑠). Let 𝐶′

equal𝐶 . We emphasize in particular that𝑇𝑖+1 is now the transaction whose first operation is first in
the constructed 𝑠′.
That schedule 𝑠′ is allowed under read committed follows from Lemma 23; particularly the

fact that Lemma 23(3) applies to each individual swap. Property (i) follows from the assumption
that Property (i) is true on 𝑠 and𝐶 and by construction of𝐶′ (which equals𝐶). Property (ii) follows
from the assumption that Property (ii) is true on 𝑠 and because we don’t split chunks to obtain 𝑠′.
Property (iii) and (iv) follow directly from the construction, taking𝑇𝑖+1 as𝑇1. Indeed, we do not split
chunks and all repositionings are w.r.t. the order of transactions in𝐶 . By choice of𝑇𝑖 all transactions
occurring between𝑇𝑖+1 and𝑇1 in𝐶 already had a chunk between the first chunk of𝑇𝑖+1 and the last
chunk of 𝑇1 (and possibly a second chunk occurring after the second chunk of 𝑇𝑖+1). Transactions
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𝑇1 till 𝑇𝑖 on the other hand are always closed in 𝑠′, and their only chunk appears between the first
and last chunk of 𝑇𝑖+1 in the order specified by 𝐶 [𝑇1]. Indeed, each of these transactions either
already appeared closed before the first chunk of 𝑇𝑖+1 in the schedule 𝑠 , or they are closed by the
construction of 𝑠′. In the former case, they are moved to their correct position (relative to 𝐶 [𝑇1])
after the second chunk of 𝑇1, but before the second chunk of 𝑇𝑖+1. In the latter case, the chunk
representing the first part of the transaction is moved towards the chunk representing the second
part, which by Property (iii) on 𝑠 was already positioned on the correct position (relative to 𝐶 [𝑇1])
after the second chunk of 𝑇1, but before the second chunk of 𝑇𝑖+1.
Phase 4: From a schedule 𝑠 forU allowed under read committed with a cycle𝐶 in its conflict graph
and with Properties (i-iv) we construct a schedule 𝑠′ forU allowed under read committed with cycle
𝐶′ ∈ 𝐶𝐺 (𝑠) and Properties (i-v).

Let 𝑠′ be the schedule obtained from 𝑠 by iteratively picking a transaction 𝑇𝑖 having two chunks
in 𝑠 , with 𝑖 ≠ 1, and with 𝑇𝑖−1 having only one chunk, then removing the second chunk of 𝑇𝑖 and
inserting it immediately after its first chunk.
This procedure clearly leads to a schedule with Property (v). The resulting schedule 𝑠′ is also

allowed under read committed. Indeed, suppose towards a contradiction that a pair of conflicting
operations 𝑐 and 𝑑 exist witnessing a forbidden phenomenon for read committed. Then either 𝑐 or
𝑑 must be from 𝑇𝑖 (as otherwise the phenomenon already occurred in 𝑠). Without loss of generality,
we furthermore assume that 𝑐 <𝑠 𝑑 (notice that we can always swap 𝑐 and 𝑑 if this is not the case).
If 𝑐 is from 𝑇𝑖 , then it follows from the construction that 𝑐 <𝑠′ Ci <𝑠′ 𝑑 , which contradicts with our
assumption that 𝑐 and 𝑑 witness a forbidden phenomenon. Similarly, if 𝑑 is from 𝑇𝑖 , then 𝑐 must be
from 𝑇𝑖−1 (due to Property (i) on 𝑠 and 𝐶). By our choice of 𝑇𝑖 , the transaction 𝑇𝑖−1 has only one
chunk in 𝑠 (and therefore in 𝑠′ as well), which implies 𝑐 <𝑠′ Ci−1 <𝑠′ 𝑑 .
Properties (ii-iv) transfer from 𝑠 to 𝑠′, because we do not split chunks and because we do not

remove chunks located between the first and second chunk of 𝑇1. □

5.2 Intermezzo: Properly colored cycles
In this section, we study the complexity of a decision problem over colored graphs. Even though
the problem is not directly related to deciding robustness, the reduction we present provides the
no-frills intuition that will be central in the more complex reduction presented next in Section 5.3.

A (vertex-)colored graph is a tuple 𝐺 = (𝑉 , 𝐸, 𝐾, 𝑓 ) where 𝑉 is a finite set of nodes, 𝐸 ⊆ 𝑉 ×𝑉 is
the set of edges, 𝐾 is a finite set of colors, and 𝑓 maps each vertex in 𝑉 to a color in 𝐾 . As before,
a cycle 𝐶 is a non-empty sequence of edges (𝑣1, 𝑣2), (𝑣2, 𝑣3), . . . , (𝑣𝑛, 𝑣1) such that every vertex in
𝑉 does not occur in 𝐶 or occurs precisely twice. The latter in particular means that 𝐶 is simple.
We say that 𝐶 is properly colored if for each two vertices 𝑣1 and 𝑣2 occurring in 𝐶 (not necessarily
adjacent in 𝐶), (𝑣1, 𝑣2) ∈ 𝐸 implies 𝑓 (𝑣1) ≠ 𝑓 (𝑣2). So, the induced subgraph of𝐺 determined by the
vertices occurring in 𝐶 should color adjacent vertices differently.

Let ProperlyColoredCycle be the problem to decide if a given colored graph contains a properly
colored cycle. In this section, we show the following result:

Proposition 26. ProperlyColoredCycle is np-complete.

As the upper-bound is straightforward, it remains to argue that ProperlyColoredCycle is also
np-hard. The proof is by a reduction from 3SAT. To this end, let 𝜑 be a propositional logic formula
in 3CNF and let Vars(𝜑) be the set of variables occurring in 𝜑 . We recall that 𝜑 is a conjunction of
clauses𝐶 𝑗 of the form 𝐿 𝑗,1 ∨ 𝐿 𝑗,2 ∨ 𝐿 𝑗,3 and each literal 𝐿 𝑗,ℓ equals 𝑥 or 𝑥 , with 𝑥 ∈ Vars(𝜑). For ease
of notation, we assume Vars(𝜑) = {𝑥1, . . . , 𝑥𝑚} and we refer to the clauses in 𝜑 by 𝐶𝑚+1, . . . ,𝐶𝑛 ,
thus with the variables and clauses having indices over disjoint intervals.
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(a) Variable gadget
𝐺 (𝑥𝑖 ) .
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(b) Clause gadget𝐺 (𝐶 𝑗 ) .

Fig. 5. Gadgets for the construction of 𝐺 (𝜑).

Next, we construct a vertex-colored graph𝐺 (𝜑) and show that𝐺 (𝜑) contains a properly colored
cycle iff 𝜑 is satisfiable.

For the construction, we distinguish the following gadgets, which are disjoint subgraphs of𝐺 (𝜑):
• A variable gadget 𝐺 (𝑥𝑖 ) = (𝑉𝑖 , 𝐸𝑖 ) for every variable 𝑥𝑖 in 𝜑 with vertices and edges as
depicted in Figure 5(a); the intuition is that 𝑣𝑖,1 encodes the choice to make 𝑥𝑖 true and 𝑣𝑖,2
encodes the choice to make 𝑥𝑖 false. A path from 𝑣𝑖,in to 𝑣𝑖,out then encodes the inverse truth
assignment for 𝑥𝑖 : 𝑥𝑖 is assigned true iff the path visits vertex 𝑣𝑖,2.

• A clause gadget 𝐺 (𝐶 𝑗 ) = (𝑉𝑗 , 𝐸 𝑗 ) for every clause𝐶 𝑗 in 𝜑 with vertices and edges as depicted
in Figure 5(b); the intuition is that vertices 𝑣 𝑗,ℓ encode the literals 𝐿 𝑗,ℓ in clause 𝐶 𝑗 . A path
from 𝑣 𝑗,in to 𝑣 𝑗,out then encodes the choice of which literal in clause 𝐶 𝑗 is true.

Now, define 𝐺 (𝜑) = (𝑉𝜑 , 𝐸𝜑 , 𝐾𝜑 , 𝑓𝜑 ) as the following vertex-colored graph:
• 𝑉𝜑 = {𝑣0} ∪𝑉1 ∪ · · · ∪𝑉𝑛 contains a special start vertex 𝑣0 and the vertices necessary to
describe gadgets 𝐺 (𝑥𝑖 ) and 𝐺 (𝐶 𝑗 ) for every variable 𝑥𝑖 and clause 𝐶 𝑗 in 𝜑 ;

• 𝐸𝜑 consists of the following edges:
– edges 𝐸𝑖 and 𝐸 𝑗 from gadgets𝐺 (𝑥𝑖 ) and𝐺 (𝐶 𝑗 ) for every variable 𝑥𝑖 and clause𝐶 𝑗 in 𝜑 ;
– edges from 𝑣𝑖,out to 𝑣𝑖+1,in, for 𝑖 ∈ [1, 𝑛 − 1], to chain all variable gadgets and clause

gadgets after one other;
– edges (𝑣0, 𝑣1,in) and (𝑣𝑚,out, 𝑣0) to connect the chain with start node 𝑣0 creating a cycle;
– edges between variables in variable gadgets and their occurrence in clause gadgets:

∗ an edge from each vertex 𝑣𝑖,1 in a variable gadget to each vertex 𝑣 𝑗,ℓ in clause
gadgets with 𝑣 𝑗,ℓ representing a literal 𝐿 𝑗,ℓ = 𝑥𝑖 (recall that 𝑣𝑖,1 encodes true for
𝑥𝑖 );

∗ an edge from each vertex 𝑣𝑖,2 in variable gadgets to each vertex 𝑣 𝑗,ℓ in clause
gadgets where 𝑣 𝑗,ℓ represents a literal 𝐿 𝑗,ℓ = 𝑥𝑖 (recall that 𝑣𝑖,2 encodes false for
𝑥𝑖 );

We refer to these types of edges as consistency edges as appropriate coloring will ensure
a consistent interpretation of the truth assignment.

• 𝐾𝜑 = 𝐾variable ∪ 𝐾other with
– 𝐾variable = {𝑥𝑖 , 𝑥𝑖 | 𝑥𝑖 ∈ Vars(𝜑)}; and,
– 𝐾other a set of |𝑉𝜑 |−3𝑛 +𝑚 colors distinct from 𝐾variable.

• 𝑓𝜑 is defined as follows:
– 𝑓𝜑 (𝑣𝑖,1) = 𝑥𝑖 and 𝑓𝜑 (𝑣𝑖,2) = 𝑥𝑖 for every 𝑥𝑖 ∈ Vars(𝜑);
– 𝑓𝜑 (𝑣 𝑗,ℓ ) = 𝐿 𝑗,ℓ for 𝑗 ∈ [𝑚 + 1, 𝑛] and ℓ ∈ {1, 2, 3}.
– for all other vertices 𝑣 ∈ 𝑉𝜑 , 𝑓 (𝑣) is assigned a different color in 𝐾other.
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Fig. 6. 𝐺 (𝜑1) for 𝜑1 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3). For ease of exposition, vertices assigned with a unique
color from 𝐾other are left blank.

Example 27. Consider 𝜑1 = (𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3). Then 𝐺 (𝜑1) is given in Figure 6. □

The following lemma then implies np-hardness.

Lemma 28. Let 𝜑 be a propositional logic formula in 3CNF. Then, 𝜑 is satisfiable iff 𝐺 (𝜑) has a
properly colored cycle.

Proof. (if) Assume 𝐶 is a properly colored cycle. By construction of 𝐺 (𝜑), a properly colored
cycle always needs to go through each variable and clause gadget exactly once. Indeed, no cycle can
use one of the shortcut consistency edges as the adjacent vertices carry the same color. Therefore,
𝐶 picks for every variable 𝑥𝑖 either the vertex 𝑣𝑖,1 enoding true or vertex 𝑣𝑖,2 encoding false in
the variable gadget 𝐺 (𝑥). Furthermore, in every clause gadget 𝐺 (𝐶 𝑗 ), 𝐶 picks a single vertex 𝑣 𝑗,ℓ
encoding literal 𝐿 𝑗,ℓ in 𝐶 𝑗 . Let b be the truth assignment that maps every variable 𝑥𝑖 to false when
𝑣𝑖,1 is picked by 𝐶 and to true when 𝑣𝑖,2 is picked. So, the choices of 𝐶 represent the complement of
the truth assignment. Notice, that under b every clause 𝐶 𝑗 evaluates to true. Indeed, let 𝐿 𝑗,ℓ be the
literal picked by 𝐶 . When 𝐿 𝑗,ℓ = 𝑥𝑖 for some 𝑥𝑖 ∈ Vars(𝜑), then the vertices 𝑣 𝑗,ℓ and 𝑣𝑥,1 in 𝐺 (𝜑)
are connected with a consistency edge and are both labeled with the same color. As 𝐶 is properly
colored, this means that 𝐶 must have picked the vertex 𝑣𝑖,2 and b (𝑥𝑖 ) = b (𝐿 𝑗,ℓ ) = true. The same
reasoning holds when 𝐿 𝑗,ℓ = 𝑥𝑖 . It thus follows that 𝜑 evaluates to true under b .

(only if) Let b be a satisfying truth assignment for 𝜑 . Then, let 𝐶 be the path through 𝐺 (𝜑) that
starts and ends in 𝑣0 and that picks in every variable gadget𝐺 (𝑥𝑖 ), the vertex 𝑣𝑖,1 when b (𝑥𝑖 ) is false
and 𝑣𝑖,2 otherwise. Furthermore,𝐶 picks in every clause gadget𝐺 (𝐶 𝑗 ) a literal 𝐿 𝑗,ℓ such that b (𝐿 𝑗,ℓ )
is true. The only possibility to violate properly coloring is through the consistency edges as these
are the only edges where endpoints carry the same color. Assume two vertices 𝑣𝑖,1 (with 𝑖 ∈ [1,𝑚])
and 𝑣 𝑗,ℓ (with 𝑗 ∈ [𝑚 + 1, 𝑛]) are picked by 𝐶 that carry the same color. By construction, this color
then is 𝑥𝑖 meaning that b (𝑥𝑖 ) = false by assumption on the choice of 𝐶 on variables. Furthermore,
b (𝐶 𝑗,ℓ ) = b (𝑥𝑖 ) = true by assumption on the choice of 𝐶 in clause gadgets. This leads to the desired
contradiction. A similar argument can be made when 𝑣𝑖,2 and 𝑣 𝑗,ℓ are picked by 𝐶 . This concludes
the proof. □

5.3 conp-completeness
Next, we turn to the main result of this section showing that robustness(read committed) is
conp-complete. The remainder of this section is devoted to the proof of the following theorem:

Theorem 29. robustness(read committed) is conp-complete.

Obviously, robustness(read committed) is in conp. Indeed, for a set of transactions T , just
guess a counter example schedule 𝑠 over T ; then check that 𝑠 is allowed under read committed
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and that 𝐶𝐺 (𝑠) has a cycle. As the size of the guessed schedule is linear in the size of T , and the
checking step is in polynomial time, the latter procedure is in np.

The remainder of this section is devoted to a reduction from the np-complete 3SAT problem to
the complement of robustness(read committed), from which Theorem 29 then follows. For this,
let 𝜑 be a boolean formula in 3CNF given as input to 3SAT. Thus, 𝜑 is a conjunction of clauses𝐶 𝑗 of
the form 𝐿 𝑗,1 ∨ 𝐿 𝑗,2 ∨ 𝐿 𝑗,3 with literals 𝐿 𝑗,ℓ that either equal a variable 𝑥 or a variable’s complement
𝑥 , with 𝑥 ∈ Vars(𝜑). Analogous to Section 5.2, we assume Vars(𝜑) = {𝑥1, . . . , 𝑥𝑚} and refer to the
clauses in 𝜑 by 𝐶𝑚+1, . . . ,𝐶𝑛 .

Next, we define a set T (𝜑) of transactions that (we will later show) is not robust under isolation
level read committed iff 𝜑 is satisfiable. The construction is similar to the construction of𝐺 (𝜑)
in the previous section. In fact, we construct T (𝜑) so to have exactly one transaction for every
vertex in 𝐺 (𝜑). All transactions corresponding to vertices in (variable and clause) gadgets follow
the following template (★):

• write to a distinguished object that identifies the vertex under consideration;
• read the objects that identify the successor vertices; and,
• read all objects that identify the predecessor vertices.

When the transaction corresponds to an inner vertex of a gadget (a vertex of the form 𝑣 𝑗,ℓ with
ℓ ∈ [1, 3]), the above template is preceded by writes to objects Uℓ𝑗 to deal with consistency edges.
A formal construction of T (𝜑) is given below. We omit defining Obj explicitly, as the neces-

sary objects can be derived straightforwardly from the below transaction definitions. For ease of
exposition we also omit Ci at the end of every transaction 𝑇𝑖 .
For every variable 𝑥𝑖 in 𝜑 , T (𝜑) contains a variable gadget T (𝜑, 𝑖) consisting of the following four
transactions:

𝑇𝑖,𝑖𝑛 : Wi,in [Xi], Ri,in [Y1i], Ri,in [Y2i], Ri,in [Zi−1],
𝑇𝑖,1 : conflict-set𝑖,1, Wi,1 [Y1i], Ri,1 [Zi], Ri,1 [Xi],
𝑇𝑖,2 : conflict-set𝑖,2, Wi,2 [Y2i], Ri,2 [Zi], Ri,2 [Xi],

𝑇𝑖,𝑜𝑢𝑡 : Wi,out [Zi], Ri,out [Xi+1], Ri,out [Y1i], Ri,out [Y2i] .

with conflict-set𝑖,1 and conflict-set𝑖,2 a sequence of write operations that will be specified later.
In this construction, 𝑇𝑖,𝑖𝑛 and 𝑇𝑖,𝑜𝑢𝑡 , respectively, represent the 𝑖𝑛- and 𝑜𝑢𝑡-vertex of the variable

gadget 𝐺 (𝑥𝑖 ), that is, vertices 𝑣𝑖,in and 𝑣𝑖,out, respectively. In addition, the transactions 𝑇𝑖,1 and 𝑇𝑖,2
represent the remaining two inner vertices 𝑣𝑖,1 and 𝑣𝑖,2, respectively. Notice, that these transactions
correspond to the template (★). Indeed, consider for instance the transaction 𝑇𝑖,in corresponding to
vertex 𝑣𝑖,in which is identified by object X𝑖 and who has successors 𝑣𝑖,1 and 𝑣𝑖,2 in 𝐺 (𝜑) represented
by objects 𝑌 1

𝑖 and 𝑌 2
𝑖 , respectively. Furthermore, 𝑣𝑖,in has exactly one predecessor 𝑣𝑖−1,out identified

by Z𝑖−1 when 𝑖 > 1, and otherwise has 𝑣0 as predecessor which in turn is identified by object Z0.
For every clause 𝐶 𝑗 in 𝜑 , we have a gadgetU(𝜑, 𝑗) consisting of the following five transactions:

𝑇𝑗,𝑖𝑛 : Wj,in [Xj], Rj,in [Y1j], Rj,in [Y2j], Rj,in [Y3j], Rj,in [Zj−1],
𝑇𝑗,1 : Wj,1 [U1j], Wj,1 [Y1j], Rj,1 [Zj], Rj,1 [Xj],
𝑇𝑗,2 : Wj,2 [U2j], Wj,2 [Y2j], Rj,2 [Zj], Rj,2 [Xj],
𝑇𝑗,3 : Wj,3 [U3j], Wj,3 [Y

3
j], Rj,3 [Zj], Rj,3 [Xj],

𝑇𝑗,𝑜𝑢𝑡 : Wj,out [Zj], Rj,out [Xj+1], Rj,out [Y1j], Rj,out [Y2j], Rj,out [Y3j] .
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In this construction, 𝑇𝑗,𝑖𝑛 and 𝑇𝑗,𝑜𝑢𝑡 represent the 𝑖𝑛- and 𝑜𝑢𝑡-vertex of the clause gadget 𝐺 (𝐶 𝑗 ).
The transactions 𝑇𝑗,1, 𝑇𝑗,2 and 𝑇𝑗,3 represent the remaining three inner vertices of the clause gadget.
Notice that the above transactions follow template (★) as well. Furthermore, every ℓ-th inner vertex
has the additional identifier Uℓ𝑗 that its corresponding transaction writes to.
Finally, T (𝜑) contains also the next transaction, corresponding to vertex 𝑣0 in 𝐺 (𝜑):

𝑇0 : W0 [Z0], R0 [X1], W0 [Xn+1] .

It remains to specify the conflict sets, whose purpose it is to represent the consistency edges in
𝐺 (𝜑). For 𝑖 ∈ [1,𝑚], conflict-set𝑖,1 consists of all Wi,1 [Uℓj] such that 𝐿 𝑗,ℓ = 𝑥𝑖 in clause 𝐶 𝑗 for some
𝑗 ∈ [𝑚 + 1, 𝑛] and ℓ ∈ {1, 2, 3}. Similarly, conflict-set𝑖,2 consists of all Wi,2 [Uℓj] such that 𝐿 𝑗,ℓ = 𝑥𝑖
in clause 𝐶 𝑗 for some 𝑗 ∈ [𝑚 + 1, 𝑛] and ℓ ∈ {1, 2, 3}. That is, every occurrence of variable 𝑥𝑖
(respectively, 𝑥𝑖 ) in the ℓ-th position of a clause𝐶 𝑗 is witnessed by a write to Uℓ𝑗 in𝑇𝑖,1 (respectively,
𝑇𝑖,2).

Let 𝛽 : 𝑉𝜑 ↔ T (𝜑) be the bijection that associates the vertices in𝐺 (𝜑) with their corresponding
transaction in T (𝜑). The following lemma details the correspondence between 𝑇 (𝜑) and 𝐺 (𝜑):

Lemma 30. For every 𝑣, 𝑣 ′ ∈ 𝑉𝜑 :
(1) (𝑣, 𝑣 ′) ∈ 𝐸𝜑 implies there is an edge from 𝛽 (𝑣) to 𝛽 (𝑣 ′) in the interference graph of T (𝜑); and,
(2) an edge from 𝛽 (𝑣) to 𝛽 (𝑣 ′) in the interference graph of T (𝜑) implies either (𝑣, 𝑣 ′) ∈ 𝐸𝜑 or

(𝑣 ′, 𝑣) ∈ 𝐸𝜑 .

Proof. (1) For every edge (𝑣, 𝑣 ′) transactions 𝛽 (𝑣) and 𝛽 (𝑣 ′) share an object, that one writes to
and the other reads from (or both write to, in the case that (𝑣, 𝑣 ′) represents a consistency edge,
but this case is analogous). For example, for 𝑣 = 𝑣𝑖,in and 𝑣 ′ = 𝑣𝑖,ℓ the corresponding transaction
𝑇𝑖,in has operation Wi,in [Xi] and 𝑇𝑖,ℓ has conflicting operation Ri,ℓ [Xi]. The latter implies two edges
in the interference graph, one from 𝑇𝑖,in to 𝑇𝑖,ℓ and one from 𝑇𝑖,ℓ to 𝑇𝑖,in. It is easy to verify from the
construction of T (𝜑) and bijection 𝛽 that this observation is true for every edge (𝑣, 𝑣 ′) and thus
that there is indeed an edge from 𝛽 (𝑣) to 𝛽 (𝑣 ′) (and vice-versa) in 𝐼𝐺 (T (𝜑)).
(2) In the construction of T (𝜑), for every object, either no two transactions write to this object, or
exactly two transactions write to this object, but no other transaction reads this object. Thus for
transactions 𝑇 and 𝑇 ′ adjacent in 𝐼𝐺 (T (𝜑)) one contains a write and the other a read or write to a
common object. It is easy to verify from the construction that the only transactions 𝑇 and 𝑇 ′ with
this property are transactions whose associated vertices 𝛽−1 (𝑇 ) and 𝛽−1 (𝑇 ′) are indeed adjacent
in 𝐺 (𝜑). Notice that, if 𝑇 and 𝑇 ′ both contain a write to a common object, then the edge between
𝛽−1 (𝑇 ) and 𝛽−1 (𝑇 ′) in 𝐺 (𝜑) is a consistency edge. □

As𝑇 (𝜑) can be constructed in logspace, Theorem 29 then follows from Lemma 31 and Lemma 32.

Lemma 31. If there is a properly colored cycle in 𝐺 (𝜑) then T (𝜑) is not robust against read
committed.

Proof. Let 𝐶𝜑 be a properly colored cycle in 𝐺 (𝜑). As argued in the proof of Lemma 28, 𝐶𝜑

passes through the special vertex 𝑣0 as well as through each variable and clause gadget in 𝐺 (𝜑).
Let the following sequence be the result of applying 𝛽 on the vertices in 𝐶𝜑 in the order as they
appear in 𝐶𝜑 starting with 𝑣0:

𝑇0,𝑇1,𝑖𝑛,𝑇1,𝑘1 ,𝑇1,𝑜𝑢𝑡 , . . . ,𝑇𝑛,𝑖𝑛,𝑇𝑛,𝑘𝑛 ,𝑇𝑛,𝑜𝑢𝑡 .

Denote the set consisting of all transactions in this sequence by T ′. By Lemma 30, there is a cycle𝐶T
in 𝐼𝐺 (T (𝜑)) that corresponds to𝐶𝜑 . Then,𝐶T is transferable in𝑇0 on operations (R0 [X1], W0 [Xn+1]).
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Next, we construct a multi-split schedule for T ′. To this end, we introduce the following notation.
Let 𝑏0 = R0 [X1] and let

𝑏𝑖,𝛼 =


Ri,in [Yℓi], if 𝛼 = in and 𝑇𝑖,ℓ follows 𝑇𝑖,in in 𝐶T
Ri,𝛼 [Zi], if 𝛼 ∈ {1, 2, 3}
Ri,out [Xi+1], if 𝛼 = out

for every 𝑖 ∈ [1, 𝑛]. Clearly, 𝑏0 ∈ 𝑇0 and notice further that every 𝑏𝑖,𝛼 occurs in 𝑇𝑖,𝛼 . For 𝑖 ∈ [1, 𝑛],
denote by prefix𝑖 the sequence

prefix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), prefix𝑏𝑖,𝑘𝑖 (𝑇𝑖,𝑘𝑖 ), prefix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ),

and by postfix𝑖 the sequence

postfix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), postfix𝑏𝑖,𝑘𝑖 (𝑇𝑖,𝑘𝑖 ), postfix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 )

Now, let 𝑠′ be the schedule over T ′ of the following form:

prefix𝑏0 (𝑇0) · prefix1 · · · prefix𝑛 · postfix𝑏0 (𝑇0) · postfix1 · · · postfix𝑛 .
Notice that 𝑠′ is indeed a multi-split schedule based on 𝐶T on operations (R0 [X1], W0 [Xn+1]) (c.f.,

Definition 18).
We argue that 𝑠′ is allowed under read committed. Recall from Definition 3 that 𝑠′ is allowed

under read committed if it does not exhibit any dirty writes or dirty reads.
(𝑠′ exhibits no dirty writes) Note that by construction ofT (𝜑), the only possible write-write conflicts
in 𝑠′ are between operations Wi,1 [Uℓj] (or Wi,2 [U

ℓ
j]) in𝑇𝑖,1 (or𝑇𝑖,2) and Wj,l [U

ℓ
j] in𝑇𝑗,ℓ , with 𝑖 ∈ [1,𝑚],

𝑗 ∈ [𝑚 + 1, 𝑛], and ℓ ∈ {1, 2, 3}, since all other objects occurring in T (𝜑) are written to by exactly
one transaction.

Let 𝑣𝑖,𝑘 and 𝑣 𝑗,ℓ be the vertices in 𝐺 (𝜑) corresponding to these two transactions 𝑇𝑖,1 (or 𝑇𝑖,2) and
𝑇𝑗,ℓ . By construction of T (𝜑), a write-write conflict between these two transactions implies that
𝑣𝑖,𝑘 and 𝑣 𝑗,ℓ are assigned the same color by 𝑓𝜑 , and (𝑣𝑖,𝑘 , 𝑣 𝑗,ℓ ) ∈ 𝐸𝜑 . Because of this, the properly
colored cycle 𝐶𝜑 cannot contain both 𝑣𝑖 and 𝑣 𝑗 , and hence 𝐶T cannot contain both 𝑇𝑖,1 (or 𝑇𝑖,2) and
𝑇𝑗,ℓ . We conclude that 𝑠′ has no write-write conflicts, and therefore exhibits no dirty writes.
(𝑠′ exhibits no dirty reads) We show that for every object x ∈ ⋃{X𝑖 , Yℓ𝑖 , Z𝑖 | 𝑖 ∈ [0, 𝑛+1], ℓ ∈ {1, 2, 3}}
occurring in 𝑠′ that if both Wi [x] ∈ 𝑇𝑖 and Rj [x] ∈ 𝑇𝑗 are in 𝑠′ for some pair of transactions 𝑇𝑖
and 𝑇𝑗 , then Wi [x] <𝑠′ Ci <𝑠′ Rj [x] or Rj [x] <𝑠′ Wi [x]. To this end, let x = X𝑖 for some 𝑖 ∈ [1, 𝑛]
(the reasoning is analogous for Yℓ𝑖 and Z𝑖 ). By construction of T (𝜑) and 𝐶T , the only transaction
with a write operation on X𝑖 is 𝑇𝑖,𝑖𝑛 , and the only transactions in 𝑠′ reading this object are 𝑇𝑖−1,𝑜𝑢𝑡
(or 𝑇0 if 𝑖 = 1, but this case is analogous) and 𝑇𝑖,ℓ , for some ℓ ∈ {1, 2, 3}. By construction of 𝑠′ we
have Ri−1,out [Xi] <𝑠′ Wi,in [Xi] in the former case and Wi,in [Xi] <𝑠′ Ci,in <𝑠′ Ri,ℓ [Xi] in the latter
case. Lastly, we consider the two write operations in 𝑇0, namely W0 [Z0] and W0 [Xn+1]. The only
transactions in 𝑠′ with a conflicting read operation on these objects are 𝑇1,𝑖𝑛 and 𝑇𝑛,out, respectively.
By construction, W0 [Z0] <𝑠′ C0 <𝑠′ R1,in [Z0] and Rn,out [Xn+1] <𝑠′ W0 [Xn+1].
To conclude the proof, it suffices to remark that the transactions occurring in T (𝜑) \ T ′ can

be appended to 𝑠′ in a serial fashion and in arbitrary order to obtain the required schedule 𝑠
for T (𝜑) that is allowed under read committed. Indeed, 𝑠 is clearly still allowed under read
committed and has cycle 𝐶T in its conflict graph. By Theorem 2, T (𝜑) is thus not robust against
read committed. □

Lemma 30(1) provides a direct way to obtain a set of transactions from a properly colored cycle
thereby facilitating the proof of Lemma 31. The main difficulty in the proof of the next lemma stating
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the converse direction is that the interference graph for 𝑇 (𝜑) is bidirectional and can therefore
contain cycles not corresponding to a cycle in 𝐺 (𝜑) which is problematic for the reduction.

Lemma 32. If T (𝜑) is not robust against read committed then there is a properly colored cycle in
𝐺 (𝜑).

Proof. Assume T (𝜑) is not robust for read committed. According to Theorem 25, there exists a
multi-split schedule 𝑠 for T (𝜑) based on some transferable cycle 𝐶T that is allowed under read
committed. We argue that 𝐶T corresponds to a properly colored cycle in 𝐺 (𝜑). To this end, we
introduce some notation. For 𝑖 ∈ [1, 𝑛]}, let

𝜔 in
𝑖 := (𝑇𝑖,𝑖𝑛, 𝑏𝑖,𝑖𝑛, 𝑎𝑖,𝑘𝑖 ,𝑇𝑖,𝑘𝑖 );

𝜔out
𝑖 := (𝑇𝑖,𝑘𝑖 , 𝑏𝑖,𝑘𝑖 , 𝑎𝑖,𝑜𝑢𝑡 ,𝑇𝑖,𝑜𝑢𝑡 ); and,

𝜔∼
𝑖 := (𝑇𝑖,𝑜𝑢𝑡 , 𝑏𝑖,𝑜𝑢𝑡 , 𝑎𝑖+1,𝑖𝑛,𝑇𝑖+1,𝑖𝑛);

where

𝑏𝑖,𝛼 =


Ri,in [Yℓi], if 𝛼 = in and 𝑇𝑖,ℓ follows 𝑇𝑖,𝑖𝑛 in 𝐶T
Ri,𝛼 [Zi], if 𝛼 ∈ {1, 2, 3}
Ri,out [Xi+1], if 𝛼 = out

and

𝑎𝑖,𝛼 =


Wi,in [Xi], if 𝛼 = in
Wi,𝛼 [Y𝛼i ], if 𝛼 ∈ {1, 2, 3}
Wi,out [Zi], if 𝛼 = out.

Furthermore, let 𝑎0 = W0 [Xn+1], 𝑏0 = R0 [X1].
We prove the following two claims to be true below:

(C1) The cycle 𝐶T is transferable in 𝑇0 on (𝑏0, 𝑎0) and has the following form:

(𝑇0, 𝑏0, 𝑎1,𝑖𝑛,𝑇1,𝑖𝑛), 𝜔 in
1 , 𝜔

out
1 , 𝜔∼

1 , 𝜔
in
2 , 𝜔

out
2 , 𝜔∼

2 ,

. . . , 𝜔∼
𝑛−1, 𝜔

in
𝑛 , 𝜔

out
𝑛 , (𝑇𝑛,𝑜𝑢𝑡 , 𝑏𝑛,𝑜𝑢𝑡 , 𝑎0,𝑇0).

(C2) The schedule 𝑠 is fully split.

It follows immediately from Claim (C1) that 𝐶T directly corresponds to a valid cycle 𝐶 through
each gadget in𝐺 (𝜑), that is, edges are followed in the correct direction. Towards a contradiction,
assume that 𝐶 is not a properly colored cycle in 𝐺 (𝜑). Then, by construction, as similarly colored
nodes are only connected through consistency edges, there are two transactions 𝑇𝑖,𝑘 and 𝑇𝑗,ℓ with
𝑖 ∈ [1,𝑚], 𝑗 ∈ [𝑚 + 1, 𝑛], 𝑘 ∈ {1, 2} and ℓ ∈ {1, 2, 3}, corresponding to the two vertices with the
same color in respectively a variable gadget𝐺 (𝑥𝑖 ) and a clause gadget𝐺 (𝐶 𝑗 ). In this case, both 𝑇𝑖,𝑘
and 𝑇𝑗,ℓ contain a write operation on object 𝑈 ℓ

𝑗 in respectively prefix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ) and prefix𝑏 𝑗,ℓ
(𝑇𝑗,ℓ ).

However, by Condition (C2) postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ) is not empty, implying that the conflicting write of 𝑇𝑗,ℓ
happens after the write of 𝑇𝑖,𝑘 , but before the commit of 𝑇𝑖,𝑘 . As a result, 𝑠 cannot be allowed under
read committed, leading to the desired contradiction.
It remains to show that Claim (C1) and Claim (C2) hold. To this end, we prove the correctness

of some auxiliary conditions first. Henceforth, we often refer to gadgets by their index. We say
that 𝑖 ∈ [1, 𝑛] corresponds to a variable gadget if 𝑖 ≤ 𝑚 and that 𝑖 corresponds to a clause gadget if
𝑖 > 𝑚. Let 𝜖 be the function for 𝑠 as defined in Definition 18.
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(C32.3) For any variable gadget T (𝜑, 𝑖) with 𝑖 ∈ [1,𝑚] and any 𝑘 ∈ {1, 2}, if the cycle
𝐶T contains an edge (𝑇𝑖,𝑘 , 𝑏𝑖,𝑘 , 𝑎ℎ,𝑇ℎ) with 𝑏𝑖,𝑘 ∈ conflict-set𝑖,𝑘 and 𝑎ℎ an arbitrary
operation in some transaction𝑇ℎ conflicting with𝑏𝑖,𝑘 , then postfix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ) is empty
in 𝑠 (that is, 𝑇𝑖,𝑘 consists of one chunk in 𝑠).

Assume towards a contradiction that Condition (C32.3) does not hold, i.e., 𝑏𝑖,𝑘 = Wi,k [Uℓj] and the
postfix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ) contains at least one operation in 𝑠 (i.e., 𝜖 (𝑇𝑖,𝑘 ) = 𝑏𝑖,𝑘 ). It immediately follows that
the next transaction in 𝐶T (mentioned 𝑇ℎ in the condition) is 𝑇𝑗,ℓ , since this is the only transaction
containing an operation conflicting with 𝑏𝑖,𝑘 , namely 𝑎 𝑗,ℓ = Wj,ℓ [Uℓj]. If𝑇𝑗,ℓ is not the first transaction
in 𝐶T , then 𝑠 looks as follows:

. . . , prefix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), prefix𝜖 (𝑇𝑗,ℓ ) (𝑇𝑗,ℓ ), . . . , postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), postfix𝜖 (𝑇𝑗,ℓ ) (𝑇𝑗,ℓ ), . . . ,

with 𝜖 (𝑇𝑗,ℓ ) = Cj,ℓ or 𝜖 (𝑇𝑗,ℓ ) = 𝑏 𝑗,ℓ for some operation 𝑏 𝑗,ℓ in𝑇𝑗,ℓ . If instead𝑇𝑗,ℓ is the first transaction
in 𝐶T , then 𝑠 looks as follows:

prefix𝜖 (𝑇𝑗,ℓ ) (𝑇𝑗,ℓ ), . . . , prefix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), postfix𝜖 (𝑇𝑗,ℓ ) (𝑇𝑗,ℓ ), . . . , postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), . . . ,

with 𝜖 (𝑇𝑗,ℓ ) = 𝑏 𝑗,ℓ for some operation 𝑏 𝑗,ℓ in 𝑇𝑗,ℓ . Since Wj,ℓ [Uℓj] is the first operation in 𝑇𝑗,ℓ , it
immediately follows that in both cases Wj,ℓ [Uℓj] ∈ prefix𝜖 (𝑇𝑗,ℓ ) (𝑇𝑗,ℓ ), independent of our choice of
𝜖 (𝑇𝑗,ℓ ). In the former case, we therefore have Wi,k [Uℓj] <𝑠 Wj,ℓ [Uℓj] <𝑠 Ci,k. In the latter case, we
have Wj,ℓ [Uℓj] <𝑠 Wi,k [Uℓj] <𝑠 Cj,ℓ instead. As a result, in both cases 𝑠 cannot be allowed under read
committed, leading to the desired contradiction.

(C32.4) For any clause gadget T (𝜑, 𝑗) with 𝑗 ∈ [𝑚+1, 𝑛] and any 𝑘 ∈ {1, 2, 3}, if the cycle𝐶T
contains an edge (𝑇𝑗,𝑘 , 𝑏 𝑗,𝑘 , 𝑎ℎ,𝑇ℎ) with 𝑏 𝑗,𝑘 = Wj,k [Ukj] and 𝑎ℎ an arbitrary operation
in some transaction 𝑇ℎ conflicting with 𝑏 𝑗,𝑘 , then postfix𝜖 (𝑇𝑗,𝑘 ) (𝑇𝑗,𝑘 ) is empty in 𝑠 ,
(that is, 𝑇𝑗,𝑘 consists of one chunk in 𝑠).

Assume towards a contradiction that Condition (C32.4) does not hold, i.e., 𝑏 𝑗,𝑘 = Wj,k [Ukj] and
postfix𝜖 (𝑇𝑗,𝑘 ) (𝑇𝑗,𝑘 ) contains at least one operation in 𝑠 , (i.e., 𝜖 (𝑇𝑗,𝑘 ) = 𝑏 𝑗,𝑘 ). It immediately follows
that the next transaction in𝐶T (mentioned𝑇ℎ in the condition) is the transaction𝑇𝑖,ℓ corresponding
to a variable gadget T (𝜑, 𝑖) with 𝑖 ∈ [1,𝑚] and with 𝑎𝑖,ℓ = Wi,ℓ [Ukj] ∈ conflict-set𝑖,ℓ , since this
operation 𝑎𝑖,ℓ is the only other operation in T conflicting with 𝑏 𝑗,𝑘 . If 𝑇𝑖,ℓ is the first transaction in
𝐶T , then 𝑠 looks as follows:

prefix𝑏𝑖,ℓ (𝑇𝑖,ℓ ), . . . , prefix𝑏 𝑗,𝑘
(𝑇𝑗,𝑘 ), postfix𝑏𝑖,ℓ (𝑇𝑖,ℓ ), . . . , postfix𝑏 𝑗,𝑘

(𝑇𝑗,𝑘 ),

with 𝑏𝑖,ℓ an arbitrary operation before 𝑎𝑖,ℓ in 𝑇𝑖,ℓ . As a result, we have Wj,k [Ukj] <𝑠 Wi,ℓ [Ukj] <𝑠 Cj,k,
implying that 𝑠 cannot be allowed under read committed. If 𝑇𝑖,ℓ is not the first transaction in 𝐶T ,
then 𝑠 looks as follows:

. . . , prefix𝑏 𝑗,𝑘
(𝑇𝑗,𝑘 ), prefix𝜖 (𝑇𝑖,ℓ ) (𝑇𝑖,ℓ ), . . . , postfix𝑏 𝑗,𝑘

(𝑇𝑗,𝑘 ), postfix𝜖 (𝑇𝑖,ℓ ) (𝑇𝑖,ℓ ), . . . ,

with 𝜖 (𝑇𝑖,ℓ ) = Ci,ℓ or 𝜖 (𝑇𝑖,ℓ ) = 𝑏𝑖,ℓ for some arbitrary operation 𝑏𝑖,ℓ in 𝑇𝑖,ℓ . However, if 𝑎𝑖,ℓ ∈
prefix𝜖 (𝑇𝑖,ℓ ) (𝑇𝑖,ℓ ), we have Wi,ℓ [U

k
j] <𝑠 Wj,k [Ukj] <𝑠 Ci,ℓ . We therefore conclude that 𝑠 can only be

allowed under read committed if 𝜖 (𝑇𝑖,ℓ ) = 𝑏𝑖,ℓ with 𝑏𝑖,ℓ <𝑇𝑖,ℓ 𝑎𝑖,ℓ in 𝑇𝑖,ℓ . By construction of 𝑇𝑖,ℓ , we
have 𝑏𝑖,ℓ ∈ conflict-set𝑖,ℓ . This observation contradicts with Condition (C32.3), since postfix𝑏𝑖,ℓ (𝑇𝑖,ℓ )
is not empty, leading to the desired contradiction.

(C32.5) For any 𝑖 ∈ [1, 𝑛], transaction 𝑇𝑖,𝑖𝑛 cannot be the first transaction in 𝐶T .
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Assume towards a contradiction that Condition (C32.5) does not hold, i.e., 𝑇𝑖,𝑖𝑛 is the first
transaction in 𝐶T , implying that 𝐶T is transferable in 𝑇𝑖,𝑖𝑛 on (𝑏𝑖,𝑖𝑛, 𝑎𝑖,𝑖𝑛) for some choice of
operations 𝑏𝑖,𝑖𝑛 and 𝑎𝑖,𝑖𝑛 in 𝑇𝑖,𝑖𝑛 . Recall that the latter particulary means that 𝜖 (𝑇𝑖,𝑖𝑛) = 𝑏𝑖,𝑖𝑛 . If
𝑏𝑖,𝑖𝑛 = Wi,in [Xi], then the transaction following 𝑇𝑖,𝑖𝑛 in 𝐶T is either 𝑇𝑖,𝑘 for some 𝑘 ∈ {1, 2, 3},
or 𝑇𝑖−1,𝑜𝑢𝑡 (or 𝑇0, in the special case that 𝑖 = 0, but this case is analogous to 𝑇𝑖−1,𝑜𝑢𝑡 ) since these
transactions are the only ones containing a conflicting operation on object 𝑋𝑖 . In the former case,
the schedule 𝑠 would look as follows:

prefix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), prefix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ), . . . , postfix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), postfix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ), . . . ,
with 𝜖 (𝑇𝑖,𝑘 ) = 𝑏𝑖,𝑘 for some operation 𝑏𝑖,𝑘 before Ri,k [Xi] in 𝑇𝑖,𝑘 , as otherwise we would have
Wi,in [Xi] <𝑠 Ri,k [Xi] <𝑠 Ci,in. Consequently, Wi,k [Yki] ∈ postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), as otherwise Wi,k [Y

k
i] <𝑠

Ri,in [Yki] <𝑠 Ci,k. This implies however that 𝑏𝑖,𝑘 ∈ conflict-set𝑖,𝑘 or 𝑏𝑖,𝑘 = Wi,k [Uki], depending on
whether𝑇𝑖,𝑖𝑛 is in a variable or clause gadget, thereby contradicting respectively Condition (C32.3) or
(C32.4). If on the other hand the next transaction in𝐶T is𝑇𝑖−1,𝑜𝑢𝑡 , we obtain by analogous reasoning
that Wi−1,out [Zi−1] ∈ postfix𝑏𝑖−1,𝑜𝑢𝑡 (𝑇𝑖−1,𝑜𝑢𝑡 ). This is however impossible, since Wi−1,out [Zi−1] is the
first operation in 𝑇𝑖−1,𝑜𝑢𝑡 .
If 𝑏𝑖,𝑖𝑛 = Ri,in [Yki], for some 𝑘 ∈ {1, 2, 3}, then 𝑎𝑖,𝑖𝑛 = Ri,in [Yℓi], for some ℓ ∈ 1, 2, 3 with 𝑘 < ℓ ,

or 𝑎𝑖,𝑖𝑛 = Ri,in [Zi−1]. If 𝑎𝑖,𝑖𝑛 = Ri,in [Yℓi], the transaction preceding 𝑇𝑖,𝑖𝑛 in 𝐶T is 𝑇𝑖,ℓ , since this is
the only transaction containing an operation conflicting with 𝑎𝑖,𝑖𝑛 , namely 𝑏𝑖,ℓ = Wi,ℓ [Yℓi]. Hence, 𝑠
looks as follows:

prefix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), . . . , prefix𝜖 (𝑇𝑖,ℓ ) (𝑇𝑖,ℓ ), postfix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), . . . , postfix𝜖 (𝑇𝑖,ℓ ) (𝑇𝑖,ℓ ),

with 𝜖 (𝑇𝑖,ℓ ) = 𝑏𝑖,ℓ or 𝜖 (𝑇𝑖,ℓ ) = Ci,ℓ . In the former case, we have Wi,ℓ [Yℓi] <𝑠 Ri,in [Yℓi] <𝑠 Ci,ℓ . In
the later case, we have Wi,in [Xi] <𝑠 Ri,ℓ [Xi] <𝑠 Ci,in. We conclude that in both cases, 𝑠 cannot be
allowed under read committed. If 𝑎𝑖,𝑖𝑛 = Ri,in [Zi−1], we analogously obtain that the transaction
preceding 𝑇𝑖,𝑖𝑛 in 𝐶T is 𝑇𝑖−1,𝑜𝑢𝑡 , with conflicting operation 𝑏𝑖−1,𝑜𝑢𝑡 = Wi−1,out [Zi−1], and hence 𝑠 is
as follows:

prefix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), . . . , prefix𝜖 (𝑇𝑖−1,𝑜𝑢𝑡 ) (𝑇𝑖−1,𝑜𝑢𝑡 ), postfix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), . . . , postfix𝜖 (𝑇𝑖−1,𝑜𝑢𝑡 ) (𝑇𝑖−1,𝑜𝑢𝑡 ),
with 𝜖 (𝑇𝑖−1,𝑜𝑢𝑡 ) = 𝑏𝑖−1,𝑜𝑢𝑡 or 𝜖 (𝑇𝑖−1,𝑜𝑢𝑡 ) = Ci−1,out. Analogously, we have Wi−1,out [Zi−1] <𝑠

Ri,in [Zi−1] <𝑠 Ci−1,out in the former case, and Wi,in [Xi] <𝑠 Ri−1,out [Xi] <𝑠 Ci,in in the latter
case. As a result, we cannot take 𝑏𝑖,𝑖𝑛 = Ri,in [Yki] for some 𝑘 ∈ {1, 2, 3} if𝑇𝑖,𝑖𝑛 is the first transaction
in 𝐶T .
Since 𝑏𝑖,𝑖𝑛 <𝑇𝑖,𝑖𝑛 𝑎𝑖,𝑖𝑛 , this operation 𝑏𝑖,𝑖𝑛 cannot be the last operation in 𝑇𝑖,𝑖𝑛 . We conclude that

no suitable 𝑏𝑖,𝑖𝑛 exists in 𝑇𝑖,𝑖𝑛 , leading to the desired contradiction.

(C32.6) For any 𝑖 ∈ [1, 𝑛] and any 𝑘 ∈ {1, 2} (if 𝑖 corresponds to a variable gadget in 𝐺) or
𝑘 ∈ {1, 2, 3} (if 𝑖 corresponds to a clause gadget in 𝐺), transaction 𝑇𝑖,𝑘 cannot be the
first transaction in 𝐶T .

Assume towards a contradiction that Condition (C32.6) does not hold, i.e., 𝑇𝑖,𝑘 is the first transac-
tion in 𝐶T , implying that 𝐶T is transferable in 𝑇𝑖,𝑘 on (𝑏𝑖,𝑘 , 𝑎𝑖,𝑘 ) for some choice of operations 𝑏𝑖,𝑘
and 𝑎𝑖,𝑘 in𝑇𝑖,𝑘 . Note that 𝑏𝑖,𝑘 cannot be in conflict-set𝑖,𝑘 (if 𝑖 corresponds to a variable gadget in𝐺) or
equal to Wi,k [Uki] (if 𝑖 corresponds to a clause gadget in𝐺), as this would contradict Condition (C32.3)
or (C32.4), respectively.
If 𝑏𝑖,𝑘 = Wi,k [Yki], then the transaction following 𝑇𝑖,𝑘 in 𝐶T is either 𝑇𝑖,𝑖𝑛 or 𝑇𝑖,𝑜𝑢𝑡 , since these

transactions are the only ones containing a conflicting operation on object 𝑌𝑘
𝑖 . In the former case,

the schedule 𝑠 would look as follows:
prefix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), prefix𝜖 (𝑇𝑖,𝑖𝑛 ) (𝑇𝑖,𝑖𝑛), . . . , postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), postfix𝜖 (𝑇𝑖,𝑖𝑛 ) (𝑇𝑖,𝑖𝑛), . . . ,
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with 𝜖 (𝑇𝑖,𝑖𝑛) = 𝑏𝑖,𝑖𝑛 for some operation 𝑏𝑖,𝑖𝑛 before Ri,in [Yki] in 𝑇𝑖,𝑖𝑛 , as otherwise we would have
Wi,k [Yki] <𝑠 Ri,in [Yki] <𝑠 Ci,k. Consequently, Wi,in [Xi] <𝑠 Ri,k [Xi] <𝑠 Ci,in, unless Wi,in [Xi] ∈
postfix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛). Since Wi,in [Xi] is the first operation of 𝑇𝑖,𝑖𝑛 , this is impossible. If on the other
hand the next transaction in 𝐶T is 𝑇𝑖,𝑜𝑢𝑡 , we obtain by analogous reasoning that Wi,out [Zi] ∈
postfix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ). This is however impossible as well, since Wi,out [Zi] is the first operation in
𝑇𝑖,𝑜𝑢𝑡 .

If 𝑏𝑖,𝑘 = Ri,k [Zi], then 𝑎𝑖,𝑘 = Ri,k [Xi]. Then, the transaction preceding 𝑇𝑖,𝑘 in 𝐶T is 𝑇𝑖,𝑖𝑛 , since
this is the only transaction containing an operation conflicting with 𝑎𝑖,𝑘 , namely 𝑏𝑖,𝑖𝑛 = Wi,in [Xi].
Hence, 𝑠 looks as follows:

prefix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), . . . , prefix𝜖 (𝑇𝑖,𝑖𝑛 ) (𝑇𝑖,𝑖𝑛), postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), . . . , postfix𝜖 (𝑇𝑖,𝑖𝑛 ) (𝑇𝑖,𝑖𝑛),

with 𝜖 (𝑇𝑖,𝑖𝑛) = 𝑏𝑖,𝑖𝑛 or 𝜖 (𝑇𝑖,𝑖𝑛) = Ci,in. In the former case, we have Wi,in [Xi] <𝑠 Ri,k [Xi] <𝑠 Ci,in. In
the latter case, we have Wi,k [Yki] <𝑠 Ri,in [Yki] <𝑠 Ci,k. As a result, we cannot take 𝑏𝑖,𝑘 = Ri,k [Zi] if
𝑇𝑖,𝑘 is the first transaction in 𝐶T .

Since 𝑏𝑖,𝑘 <𝑇𝑖,𝑘 𝑎𝑖,𝑘 , this operation 𝑏𝑖,𝑘 cannot be the last operation in 𝑇𝑖,𝑘 . We conclude that no
suitable 𝑏𝑖,𝑘 exists in 𝑇𝑖,𝑘 , leading to the desired contradiction.

(C32.7) For any 𝑖 ∈ [1, 𝑛], transaction 𝑇𝑖,𝑜𝑢𝑡 cannot be the first transaction in 𝐶T .
Assume towards a contradiction that Condition (C32.7) does not hold, i.e., 𝑇𝑖,𝑜𝑢𝑡 is the first

transaction in 𝐶T , implying that 𝐶T is transferable in 𝑇𝑖,𝑜𝑢𝑡 on (𝑏𝑖,𝑜𝑢𝑡 , 𝑎𝑖,𝑜𝑢𝑡 ) for some choice of
operations 𝑏𝑖,𝑜𝑢𝑡 and 𝑎𝑖,𝑜𝑢𝑡 in 𝑇𝑖,𝑜𝑢𝑡 .

If 𝑏𝑖,𝑜𝑢𝑡 = Wi,out [Zi], then the transaction following𝑇𝑖,𝑜𝑢𝑡 in𝐶T is either𝑇𝑖,𝑘 for some 𝑘 ∈ {1, 2, 3}
or 𝑇𝑖+1,𝑖𝑛 , since these transactions are the only ones containing a conflicting operation on object 𝑍𝑖 .
In the former case, the schedule 𝑠 would look as follows:

prefix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ), prefix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ), . . . , postfix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ), postfix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ), . . . ,

with 𝜖 (𝑇𝑖,𝑘 ) = 𝑏𝑖,𝑘 for some operation 𝑏𝑖,𝑘 before Ri,k [Zi] in 𝑇𝑖,𝑘 , as otherwise we would have
Wi,out [Zi] <𝑠 Ri,k [Zi] <𝑠 Ci,out. Consequently, Wi,k [Yki] <𝑠 Ri,out [Yki] <𝑠 Ci,k, unless Wi,in [Xi] ∈
postfix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛). This implies that 𝑏𝑖,𝑘 ∈ conflict-set𝑖,𝑘 (if 𝑖 corresponds to a variable gadget in
𝐺), or 𝑏𝑖,𝑘 = Wi,k [Uki] (if 𝑖 corresponds to a clause gadget), thereby contradicting respectively
Condition (C32.3) or (C32.4). If on the other hand the next transaction in 𝐶T is 𝑇𝑖+1,𝑖𝑛 , we obtain
by analogous reasoning that Wi+1,in [Xi+1] ∈ postfix𝑏𝑖+1,𝑖𝑛 (𝑇𝑖+1,𝑖𝑛). This is however impossible, since
Wi+1,in [Xi+1] is the first operation in 𝑇𝑖+1,𝑖𝑛 .

If 𝑏𝑖,𝑜𝑢𝑡 = Ri,out [Xi+1] or 𝑏𝑖,𝑜𝑢𝑡 = Ri,out [Yki] for some 𝑘 ∈ {1, 2, 3}, then 𝑎𝑖,𝑜𝑢𝑡 = Ri,out [Yℓi] for
some ℓ ∈ {1, 2, 3}, with 𝑏𝑖,𝑜𝑢𝑡 <𝑇𝑖,𝑜𝑢𝑡 𝑎𝑖,𝑜𝑢𝑡 . Then, the transaction preceding 𝑇𝑖,𝑜𝑢𝑡 in 𝐶T is 𝑇𝑖,ℓ , since
this is the only transaction containing an operation conflicting with 𝑎𝑖,𝑜𝑢𝑡 , namely 𝑏𝑖,ℓ = Wi,ℓ [Yℓi].
Hence, 𝑠 looks as follows:

prefix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ), . . . , prefix𝜖 (𝑇𝑖,ℓ ) (𝑇𝑖,ℓ ), postfix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ), . . . , postfix𝜖 (𝑇𝑖,ℓ ) (𝑇𝑖,ℓ ),

with 𝜖 (𝑇𝑖,ℓ ) = 𝑏𝑖,ℓ or 𝜖 (𝑇𝑖,ℓ ) = Ci,ℓ . In the former case, we have Wi,ℓ [Yℓi] <𝑠 Ri,out [Yℓi] <𝑠 Ci,ℓ . In the
latter case, we have Wi,out [Zi] <𝑠 Ri,ℓ [Zi] <𝑠 Ci,out. As a result, we cannot find a suitable 𝑏𝑖,𝑜𝑢𝑡 if
𝑇𝑖,𝑜𝑢𝑡 is the first transaction in 𝐶T , leading to the desired contradiction.

(C32.8) Transaction𝑇0 is the first transaction in𝐶T and𝐶T is transferable in𝑇0 on operations
(𝑏0, 𝑎0) with 𝑏0 = R0 [X1] and 𝑎0 = W0 [Xn+1].

Assume towards a contradiction that Condition (C32.8) does not hold. It then follows from
Conditions (C32.5)-(C32.7) that 𝑇0 is the first transaction, but 𝑎0 and/or 𝑏0 are chosen differently.
Since 𝑏0 <𝑇0 𝑎0, there are two remaining options for 𝑎0 and 𝑏0:
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• 𝑏0 = W0 [Z0] and 𝑎0 = R0 [X1], or
• 𝑏0 = W0 [Z0] and 𝑎0 = W0 [Xn+1].

In both cases, there is only one operation conflicting with 𝑏0 = W0 [Z0] in𝑇0, namely 𝑎1,𝑖𝑛 = R1,in [Z0]
in 𝑇1,𝑖𝑛 . The multi-split schedule 𝑠 based on this cycle hence looks as follows:

prefix𝑏0 (𝑇0), prefix𝜖 (𝑇1,𝑖𝑛 ) (𝑇1,𝑖𝑛), . . . , postfix𝑏0 (𝑇0), postfix𝜖 (𝑇1,𝑖𝑛 ) (𝑇1,𝑖𝑛), . . . ,
with 𝜖 (𝑇1,𝑖𝑛) = C1,in or 𝜖 (𝑇1,𝑖𝑛) = 𝑏1,𝑖𝑛 for some operation 𝑏1,𝑖𝑛 in 𝑇1,𝑖𝑛 . Note in particular that
W1,in [X1] is always in prefix𝜖 (𝑇1,𝑖𝑛 ) (𝑇1,𝑖𝑛), as otherwise prefix𝜖 (𝑇1,𝑖𝑛 ) (𝑇1,𝑖𝑛) would be empty. However,
if 𝜖 (𝑇1,𝑖𝑛) = C1,in, then W0 [Z0] <𝑠 R1,in [Z0] <𝑠 C0, and if 𝜖 (𝑇1,𝑖𝑛) = 𝑏1,𝑖𝑛 , then W1,in [X1] <𝑠 R0 [X0] <𝑠

C1,in, contradicting in both cases our assumption that 𝑠 is allowed under read committed.
Henceforth, by Condition (C32.8), we will implicitly assume that 𝑇0 is the first transaction in 𝐶T .

(C32.9) For every 𝑖 ∈ [2, 𝑛], if 𝐶T contains the edge (𝑇𝑖−1,𝑜𝑢𝑡 , Ri−1,out [Xi], Wi,in [Xi],𝑇𝑖,𝑖𝑛)
and postfix𝜖 (𝑇𝑖,𝑖𝑛 ) (𝑇𝑖,𝑖𝑛) is nonempty, then the next edge in 𝐶T is
(𝑇𝑖,𝑖𝑛, Ri,in [Yki], Wi,k [Yki],𝑇𝑖,𝑘 ) for some 𝑘 ∈ {1, 2, 3} and postfix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ) is
nonempty as well.

By definition of 𝐶T , the edge following (𝑇𝑖−1,𝑜𝑢𝑡 , Ri−1,out [Xi], Wi,in [Xi],𝑇𝑖,𝑖𝑛) is of the form
(𝑇𝑖,𝑖𝑛, 𝑏𝑖,𝑖𝑛, 𝑎 𝑗 ,𝑇𝑗 ), for some operation 𝑏𝑖,𝑖𝑛 in 𝑇𝑖,𝑖𝑛 , and some operation 𝑎 𝑗 in 𝑇𝑗 conflicting with
𝑏𝑖,𝑖𝑛 . Since postfix𝜖 (𝑇𝑖,𝑖𝑛 ) (𝑇𝑖,𝑖𝑛) is nonempty, the schedule 𝑠 looks as follows:

. . . , prefix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), prefix𝜖 (𝑇𝑗 ) (𝑇𝑗 ), . . . , postfix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛), postfix𝜖 (𝑇𝑗 ) (𝑇𝑗 ), . . . ,
with 𝜖 (𝑇𝑗 ) = Cj or 𝜖 (𝑇𝑗 ) = 𝑏 𝑗 for some operation 𝑏 𝑗 in 𝑇𝑗 .

If 𝑏𝑖,𝑖𝑛 = Wi,in [Xi], then 𝑇𝑗 = 𝑇𝑖,𝑘 for some 𝑘 ∈ {1, 2, 3}, since these transactions are the only
transactions conflicting with 𝑏𝑖,𝑖𝑛 (except of course𝑇𝑖−1,𝑜𝑢𝑡 , but we cannot use the same transaction
multiple times in𝐶T ). Note that Ri,k [Xi] needs to be in postfix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ), as otherwise 𝑠 would not
be allowed under read committed. However, in this case, Wi,k [Yki] needs to be in postfix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 )
as well, as otherwise we have Wi,k [Yki] <𝑠 Ri,in [Yki] <𝑠 Ci,k. But then 𝜖 (𝑇𝑖,𝑘 ) = 𝑏𝑖,𝑘 with 𝑏𝑖,𝑘 either
in conflict-set𝑖,𝑘 (if 𝑖 corresponds to a variable gadget in 𝐺) or equal to Wi,k [Uki] (if 𝑖 corresponds to
a clause gadget in 𝐺), thereby contradicting Condition (C32.3) or (C32.4), respectively.
Since postfix𝑏𝑖,𝑖𝑛 (𝑇𝑖,𝑖𝑛) is not empty, 𝑏𝑖,𝑖𝑛 cannot be the last operation in 𝑇𝑖,𝑖𝑛 . We conclude that

𝑏𝑖,𝑖𝑛 = Ri,in [Yki] for some 𝑘 ∈ {1, 2, 3}. It now follows immediately that the next edge is indeed
(𝑇𝑖,𝑖𝑛, Ri,in [Yki], Wi,k [Yki],𝑇𝑖,𝑘 ), since Wi,k [Yki] is the only operation conflicting with 𝑏𝑖,𝑖𝑛 . Furthermore,
if 𝑠 is allowed under read committed, then Ri,k [Xi] is in postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), independent of our choice
of 𝑏𝑖,𝑘 , as otherwise Wi,in [Xi] <𝑠 Ri,k [Xi] <𝑠 Ci,in.

(C32.10) For every 𝑖 ∈ [1, 𝑛] and every 𝑘 ∈ {1, 2, 3}, if 𝐶T contains the edge
(𝑇𝑖,𝑖𝑛, Ri,in [Yki], Wi,k [Yki],𝑇𝑖,𝑘 ) and postfix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ) is nonempty, then the next edge
in𝐶T is (𝑇𝑖,𝑘 , Ri,k [Zi], Wi,out [Zi],𝑇𝑖,𝑜𝑢𝑡 ) and postfix𝜖 (𝑇𝑖,𝑜𝑢𝑡 ) (𝑇𝑖,𝑜𝑢𝑡 ) is nonempty as well.

By definition of 𝐶T , the edge following (𝑇𝑖,𝑖𝑛, Ri,in [Yki], Wi,k [Yki],𝑇𝑖,𝑘 ) is of the form (𝑇𝑖,𝑘 , 𝑏𝑖,𝑘 , 𝑎 𝑗 ,
𝑇𝑗 ), for some operation 𝑏𝑖,𝑘 in𝑇𝑖,𝑘 , and some operation 𝑎 𝑗 in𝑇𝑗 conflicting with 𝑏𝑖,𝑘 . Since the chunk
postfix𝜖 (𝑇𝑖,𝑘 ) (𝑇𝑖,𝑘 ) is nonempty, the schedule 𝑠 looks as follows:

. . . , prefix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), prefix𝜖 (𝑇𝑗 ) (𝑇𝑗 ), . . . , postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), postfix𝜖 (𝑇𝑗 ) (𝑇𝑗 ), . . . ,
with 𝜖 (𝑇𝑗 ) = Cj or 𝜖 (𝑇𝑗 ) = 𝑏 𝑗 for some operation 𝑏 𝑗 in 𝑇𝑗 .

If 𝑖 represents a variable gadget, we cannot pick 𝑏𝑖,𝑘 ∈ conflict-set𝑖,𝑘 , as this would contradict
Condition (C32.3). Analogously, by Condition (C32.4), we cannot have 𝑏𝑖,𝑘 = Wi,k [Uki] if 𝑖 represents
a clause gadget.
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If 𝑏𝑖,𝑘 = Wi,k [Yki], then 𝑇𝑗 = 𝑇𝑖,𝑜𝑢𝑡 , since this transaction is the only transaction conflicting with
𝑏𝑖,𝑘 (except of course 𝑇𝑖,𝑖𝑛 , but we cannot use the same transaction multiple times in 𝐶T ). Note
that Ri,out [Yki] needs to be in postfix𝜖 (𝑇𝑖,𝑜𝑢𝑡 ) (𝑇𝑖,𝑜𝑢𝑡 ), as otherwise 𝑠 would not be allowed under
read committed. However, in this case, Wi,out [Zi] needs to be in postfix𝜖 (𝑇𝑖,𝑜𝑢𝑡 ) (𝑇𝑖,𝑜𝑢𝑡 ) as well, as
otherwise we have Wi,out [Zi] <𝑠 Ri,k [Zi] <𝑠 Ci,out. Since Wi,out [Zi] is the first operation in 𝑇𝑖,𝑜𝑢𝑡 ,
this cannot hold.
Since postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ) is not empty, 𝑏𝑖,𝑘 cannot be the last operation in 𝑇𝑖,𝑘 . So our only re-

maining option is 𝑏𝑖,𝑘 = Ri,k [Zi]. It now follows immediately that the next edge is indeed
(𝑇𝑖,𝑘 , Ri,k [Zi], Wi,out [Zi],𝑇𝑖,𝑜𝑢𝑡 ), since Wi,out [Zi] is the only operation conflicting with 𝑏𝑖,𝑘 . Further-
more, if 𝑠 is allowed under read committed, then Ri,out [Yki] is in postfix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ), independent
of our choice of 𝑏𝑖,𝑜𝑢𝑡 , as otherwise Wi,k [Yki] <𝑠 Ri,out [Yki] <𝑠 Ci,k.

(C32.11) For every 𝑖 ∈ [1, 𝑛 − 1] and every 𝑘 ∈ {1, 2, 3}, if 𝐶T contains the edge
(𝑇𝑖,𝑘 , Ri,k [Zi], Wi,out [Zi],𝑇𝑖,𝑜𝑢𝑡 ) and postfix𝜖 (𝑇𝑖,𝑜𝑢𝑡 ) (𝑇𝑖,𝑜𝑢𝑡 ) is nonempty, then the next
edge in 𝐶T is (𝑇𝑖,𝑜𝑢𝑡 , Ri,out [Xi+1], Wi+1,in [Xi+1],𝑇𝑖+1,𝑖𝑛) and postfix𝜖 (𝑇𝑖+1,𝑖𝑛 ) (𝑇𝑖+1,𝑖𝑛) is
nonempty as well.

From the definition of 𝐶T , the edge following (𝑇𝑖,𝑘 , Ri,k [Zi], Wi,out [Zi],𝑇𝑖,𝑜𝑢𝑡 ) is of the form
(𝑇𝑖,𝑜𝑢𝑡 , 𝑏𝑖,𝑜𝑢𝑡 , 𝑎 𝑗 ,𝑇𝑗 ), for some operation 𝑏𝑖,𝑜𝑢𝑡 in 𝑇𝑖,𝑜𝑢𝑡 , and some operation 𝑎 𝑗 in 𝑇𝑗 conflicting with
𝑏𝑖,𝑜𝑢𝑡 . Since postfix𝜖 (𝑇𝑖,𝑜𝑢𝑡 ) (𝑇𝑖,𝑜𝑢𝑡 ) is nonempty, the schedule 𝑠 looks as follows:

. . . , prefix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ), prefix𝜖 (𝑇𝑗 ) (𝑇𝑗 ), . . . , postfix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ), postfix𝜖 (𝑇𝑗 ) (𝑇𝑗 ), . . . ,

with 𝜖 (𝑇𝑗 ) = Cj or 𝜖 (𝑇𝑗 ) = 𝑏 𝑗 for some operation 𝑏 𝑗 in 𝑇𝑗 .
If 𝑏𝑖,𝑜𝑢𝑡 = Wi,out [Zi], then 𝑇𝑗 is either 𝑇𝑖+1,𝑖𝑛 or 𝑇𝑖,ℓ for some ℓ𝑖𝑛{1, 2, 3}, since these transac-

tions are the only transactions conflicting with 𝑏𝑖,𝑜𝑢𝑡 . If 𝑇𝑗 = 𝑇𝑖+1,𝑖𝑛 ,then Ri+1,in [Zi] needs to be
in postfix𝜖 (𝑇𝑖+1,𝑖𝑛 ) (𝑇𝑖+1,𝑖𝑛), as otherwise 𝑠 would not be allowed under read committed. How-
ever, in this case, Wi+1,in [Xi+1] needs to be in postfix𝜖 (𝑇𝑖+1,𝑖𝑛 ) (𝑇𝑖+1,𝑖𝑛) as well, as otherwise we have
Wi+1,in [Xi+1] <𝑠 Ri,out [Xi+1] <𝑠 Ci+1,in. Since Wi+1,in [Xi] is the first operation in 𝑇𝑖+1,𝑖𝑛 , this can-
not hold. Analogously, if instead 𝑇𝑗 = 𝑇𝑖,ℓ , then Ri,ℓ [Zi] and consequently Wi,ℓ [Yℓi] need to be in
postfix𝜖 (𝑇𝑖,ℓ ) (𝑇𝑖,ℓ ). Our only remaining option in this case is to pick 𝑏𝑖,ℓ ∈ conflict-set𝑖,ℓ (if 𝑖 cor-
responds to a variable gadget in 𝐺), or 𝑏𝑖,ℓ = Wi,ℓ [Uℓi] (if 𝑖 corresponds to a clause gadget in 𝐺),
Thereby contradicting Condition (C32.3) or Condition (C32.4), respectively. Hence, we conclude
that we cannot have 𝑏𝑖,𝑜𝑢𝑡 = Wi,out [Zi].
If 𝑏𝑖,𝑜𝑢𝑡 = Ri,out [Yℓi] for some ℓ ∈ {1, 2, 3} different from 𝑘 , then 𝑇𝑗 = 𝑇𝑖,ℓ , and 𝑠 looks as follows:

. . . , prefix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), prefix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ), prefix𝑏𝑖,ℓ (𝑇𝑖,ℓ ), . . . ,
postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ), postfix𝑏𝑖,𝑜𝑢𝑡 (𝑇𝑖,𝑜𝑢𝑡 ), postfix𝑏𝑖,ℓ (𝑇𝑖,ℓ ), . . . ,

with 𝑏𝑖,𝑘 = Ri,k [Zi] and 𝑏𝑖,ℓ an operation in 𝑇𝑖,ℓ before Ri,ℓ [Zi]. Indeed, otherwise we would have
Wi,out [Zi] <𝑠 Ri,ℓ [Zi] <𝑠 Ci,out. Once again, by Condition (C32.3) and Condition (C32.4), our only
option for 𝑏𝑖,ℓ is Wi,ℓ [Yℓi]. This operation only conflicts with the operations Ri,out [Yℓi] and Ri,in [Y

ℓ
i]

in respectively 𝑇𝑖,𝑜𝑢𝑡 and 𝑇𝑖,𝑖𝑛 . since 𝑇𝑖,𝑜𝑢𝑡 cannot appear multiple times in 𝐶T , our only choice now
is 𝑇𝑖,𝑖𝑛 to continue the cycle. However, since Ri,k [Xi] ∈ postfix𝑏𝑖,𝑘 (𝑇𝑖,𝑘 ) and since Wi,in [Xi] is the
first operation in 𝑇𝑖,𝑖𝑛 , we have Wi,in [Xi] <𝑠 Ri,k [Xi] <𝑠 Ci,in, leading to a contradiction.
We conclude that our our only remaining option is 𝑏𝑖,𝑜𝑢𝑡 = Ri,out [Xi+1]. It now follows im-

mediately that the next edge is indeed (𝑇𝑖,𝑜𝑢𝑡 , Ri,out [Xi+1], Wi+1,in [Xi+1],𝑇𝑖+1,𝑖𝑛), since Wi+1,in [Xi+1]
is the only operation conflicting with 𝑏𝑖,𝑜𝑢𝑡 . Furthermore, if 𝑠 is allowed under read commit-
ted, then Ri+1,in [Zi] is in postfix𝑏𝑖+1,𝑖𝑛 (𝑇𝑖+1,𝑖𝑛), independent of our choice of 𝑏𝑖+1,𝑖𝑛 , as otherwise
Wi,out [Zi] <𝑠 Ri+1,in [Zi] <𝑠 Ci,out.
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(C32.12) The cycle 𝐶T consecutively contains the edges (𝑇0, R0 [X1], W1,in [X1],𝑇1,𝑖𝑛)
and (𝑇1,𝑖𝑛, R1,in [Yk1], W1,k [Yk1],𝑇1,𝑘 ) for some 𝑘 ∈ {1, 2, 3}. Furthermore, both
postfix𝜖 (𝑇1,𝑖𝑛 ) (𝑇1,𝑖𝑛) and postfix𝜖 (𝑇1,𝑘 ) (𝑇1,𝑘 ) are nonempty.

According to Condition (C32.8), 𝑇0 is the first transaction in 𝐶T and 𝐶T is transferable in 𝑇0 on
(R0 [X1], W0 [Xn+1]). The operation W1,in [X1] in 𝑇1,𝑖𝑛 is the only operation conflicting with R0 [X1].
Because of this, the edge (𝑇0, R0 [X1], W1,in [X1],𝑇1,𝑖𝑛) needs to be in𝐶T . Since𝑇0 is the first transaction,
the schedule 𝑠 looks as follows:

prefix𝑏0 (𝑇0), prefix𝜖 (𝑇1,𝑖𝑛 ) (𝑇1,𝑖𝑛), . . . , postfix𝑏0 (𝑇0), postfix𝜖 (𝑇1,𝑖𝑛 ) (𝑇1,𝑖𝑛), . . . ,

with 𝑏0 = R0 [X1] and 𝜖 (𝑇1,𝑖𝑛) = C1,in or 𝜖 (𝑇1,𝑖𝑛) = 𝑏1,𝑖𝑛 for some operation 𝑏1,𝑖𝑛 in 𝑇1,𝑖𝑛 . Note that
R1,in [Z0] is in postfix𝜖 (𝑇1,𝑖𝑛 ) (𝑇1,𝑖𝑛), since W0 [Z0] is in prefix𝑏0 (𝑇0). Hence, 𝜖 (𝑇1,𝑖𝑛) = 𝑏1,𝑖𝑛 for some
operation 𝑏1,𝑖𝑛 in 𝑇1,𝑖𝑛 before R1,in [Z0].

Analogous to our argumentation for Condition (C32.9), we can now argue that our only option
for 𝑏1,𝑖𝑛 is R1,in [Yk1] for some 𝑘 ∈ {1, 2, 3}. We therefore conclude that the next edge in 𝐶T is
(𝑇1,𝑖𝑛, R1,in [Yk1], W1,k [Yk1],𝑇1,𝑘 ), and that postfix𝜖 (𝑇1,𝑘 ) (𝑇1,𝑘 ) is nonempty as well.

(C32.13) For every 𝑘 ∈ {1, 2, 3}, if 𝐶T contains the edge (𝑇𝑛,𝑘 , Rn,k [Zn], Wn,out [Zn],𝑇𝑛,𝑜𝑢𝑡 )
and postfix𝜖 (𝑇𝑛,𝑜𝑢𝑡 ) (𝑇𝑛,𝑜𝑢𝑡 ) is nonempty, then the next edge in 𝐶T is
(𝑇𝑛,𝑜𝑢𝑡 , Rn,out [Xn+1], W0 [Xn+1],𝑇0).

The argumentation is analogous to Condition (C32.11). Note in particular that, since 𝑇0 is the
first transaction in 𝐶T (Condition (C32.8)), the order of 𝑇𝑛,𝑜𝑢𝑡 and 𝑇0 is swapped in 𝑠:

prefix𝑏0 (𝑇0), . . . , prefix𝑏𝑛,𝑜𝑢𝑡 (𝑇𝑛,𝑜𝑢𝑡 ), postfix𝑏0 (𝑇0), . . . , postfix𝑏𝑛,𝑜𝑢𝑡 (𝑇𝑛,𝑜𝑢𝑡 ), . . . ,

with 𝑏0 = R0 [X1] and 𝑏𝑛,𝑜𝑢𝑡 = Rn,out [Xn+1].

The correctness of Condition (C1) and Condition (C2) now follow immediately from Condi-
tions (C32.8)–(C32.13). □

6 SCHEDULES WITH MISSING AND REPEATING TRANSACTIONS
All the above results concern schedules in which transaction occurrences are entirely defined by
set T . That is, every transaction in T must occur precisely once in the schedule, and no further
transactions are allowed. In this section, we explore robustness for a slightly different definition of
schedules w.r.t. T , where not every transaction must occur in the schedule and transactions can
repeat.

For a formal definition, we need some additional terminology:Wewill say that two transactions𝑇𝑖
and𝑇𝑗 are equivalent if they are identical up to their associated id. For an example, the transactions
R1 [x]R1 [y]W1 [x]C1 and R2 [x]R2 [y]W2 [x]C2 are equivalent. Notice that a set T of transactions is
already allowed to contain multiple different, equivalent transactions. We say that set T is an
instantiation of a another set T ′ of transactions if every transaction in T has an equivalent in T ′.
Set T is equivalent to T ′ if, in addition, T ′ is also an instantiation of T .

Definition 33. Let T be a set of transactions. A schedule 𝑠 is consistent with T if it is a schedule
over an instantiation of T .

For an example, schedules R1 [x]R2 [x]R3 [x]W4 [z]R1 [y]W1 [x]C1R3 [y]R2 [y]W4 [x]W2 [x]C2C4W3 [x]C3
and R1 [x]W2 [z]W2 [x]C2R1 [y]W1 [x]C1 are both consistentwithT = {R1 [x]R1 [y]W1 [x]C1, W2 [z]W2 [x]C2}.

We now explore robustness under this new definition, taking every schedule into account that is
consistent with (instead of over) a given reference set of transactions T .
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The next theorem is the main result of this section. It shows that, for all considered isolation
levels, the new variant of robustness is in the same complexity class as its original formulation.
Notice that this is not a straightforward result: for every non-empty set T of transactions there are
only a finite number of schedules over T , but there are infinitely many schedules consistent with
T .
In Theorem 34 we write T ⊎ T ′ to denote the (disjoint) union of T with an isomorphic copy of

T ′ in which transaction ids are disjoint to those in T .

Theorem 34. Let T be a set of transactions. All schedules consistent with T allowed under a given
isolation level are conflict serializable if and only if T ⊎ T is robust under the given isolation level.

In the remainder of the section, we prove Theorem 34. For this, we first show that robustness is
anti-monotone, thus that a set of transactions not robust under a given isolation level cannot be
made robust under that isolation level by adding more transaction.

Lemma 35. Let T be a set of transactions and 𝑇𝑖 a transaction. Then, a schedule 𝑠 is a multi-split
schedule for T if and only if 𝑠 ·𝑇𝑖 is a multi-split schedule for T ⊎ {𝑇𝑖 }. Moreover, they are both based
on the same transferable cycle and allowed under the same isolation levels.

Proof. (If) By definition of multi-split schedule 𝑠 · 𝑇𝑖 , set T must be non-empty and the first
transaction 𝑇1 in its transferable cycle 𝐶 must be different from 𝑇𝑖 . It then follows straightfor-
ward from Definition 18 that 𝑠 is indeed a multi-split schedule for T . Furthermore, by removing
transactions from a schedule, no anomalies can be introduced.
(Only If) That 𝑠 ·𝑇𝑖 is a multi-split schedule for T ⊎ {𝑇𝑖 } follows immediately from Definition 18.
Since T is appended and closed, no anomalies can be introduced. □

Finally, we complete the proof by showing that a set of transactions not robust under a given
isolation level must have a subset in which no three different equivalent transactions occur, and
that by itself is already non-robust.

Proposition 36. Let T be a set of transactions and 𝑋 ∈ {no isolation, read uncommitted,
read committed}. The following two statements are equivalent:

(1) There is a multi-split schedule for T allowed under 𝑋 ; and
(2) There is a multi-split schedule for a subset of T allowed under 𝑋 in which every transaction

has at most one different equivalent transaction.

Proof. The direction (2) ⇒ (1) is straightforward, hence we focus on (1) ⇒ (2). For this, let
T be a set of transactions and 𝑠 a multi-split schedule for T based on some transferable cycle 𝐶 .
Let 𝑇1 be the first transaction mentioned in this cycle. From Lemma 35, it follows that removing
all transactions not in 𝐶 from 𝑠 leads to a multi-split schedule 𝑠′, still based on 𝐶 , for the subset
T𝐶 ⊆ T of transactions that are mentioned in 𝐶 .
If 𝐶 contains no three equivalent transactions, the result of the proposition is immediate. There-

fore, we proceed with the assumption that two different, equivalent transactions 𝑇𝑖 and 𝑇𝑗 exist in
𝑠′ that are both different from𝑇1. (Notice that𝑇1 may be equivalent to𝑇𝑖 and𝑇𝑗 . This is why 𝑠′ must
contain at least three such transactions for the construction to work.) Without loss of generality,
we assume that prefix𝜖 (𝑇𝑖 ) (𝑇𝑖 ) occurs before prefix𝜖 (𝑇𝑗 ) (𝑇𝑗 ) in 𝑠

′.
In the remainder of the proof, we show that a strict subset T ′ of T exists, in which𝑇𝑖 is eliminated,

but which still admits a multi-split schedule that is allowed under isolation level X. Repeating this
strategy leads to the desired subset of T in which every transaction has at most two different
equivalent transactions.
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Let 𝑇𝑘 be the transaction occurring immediately before 𝑇𝑖 in 𝐶 , thus with an edge (𝑇𝑘 , 𝑏𝑘 , 𝑎𝑖 ,𝑇𝑖 )
in 𝐶 . (Notice that 𝑘 may equal 1.) Then we know, due to the equivalence of 𝑇𝑖 to 𝑇𝑗 , that there is an
edge (𝑇𝑘 , 𝑏𝑘 , 𝑎′𝑖 ,𝑇𝑗 ) in the interference graph of T𝐶 , with 𝑎′𝑖 the equivalent of operation 𝑎𝑖 in 𝑇𝑖 for
𝑇𝑗 . By definition of multi-split schedule, prefix𝜖 (𝑇𝑘 ) (𝑇𝑘 ) occurs before prefix𝜖 (𝑇𝑗 ) (𝑇𝑗 ) in 𝑠

′ and 𝑏𝑘
must occur in prefix𝜖 (𝑇𝑘 ) (𝑇𝑘 ). Indeed, by definition, 𝜖 (𝑇𝑘 ) is either 𝑏𝑘 or Ck.
It follows that 𝑏𝑘 <𝑠′ 𝑎

′
𝑖 and, as a result, that 𝑠′ admits also the conflict cycle 𝐶′ with edge

(𝑇𝑘 , 𝑏𝑘 , 𝑎′𝑖 ,𝑇𝑗 ) and paths𝑇1 to𝑇𝑘 and𝑇𝑗 to𝑇1 as in𝐶 . It is now immediate that the schedule obtained
by removing from 𝑠′ all operations from transactions that are not in 𝐶′, is a schedule for the set
T𝐶′ ⊆ T𝐶 of transactions in 𝐶′. Notice in particular that this schedule is allowed under the same
isolation level as 𝑠′ for T𝐶 . We have thus shown that T𝐶′ is not robust and thus that a multi-split
schedule for T𝐶′ ⊆ T exists in which 𝑇𝑖 is no longer present. □

7 RELATEDWORK
In this section, we discuss the papers that considered (variants of) the robustness problem.
Sufficient conditions. Fekete et al. [16] studied the robustness problem for snapshot isolation
by extending traditional conflict graphs with extra information w.r.t. the type of each conflict. In
contrast to our interference graphs, these static dependency graphs only capture the possible types
of conflicts between transactions but not the specific operations responsible for these conflicts. Based
on these graphs, a sufficient condition for robustness against snapshot isolation is presented,
as well as possible approaches on how to modify transactions when robustness is not guaranteed.
The performance of these approaches is studied by Alomari et al. [2]. Alomari and Fekete [3]
provide a sufficient condition for robustness against read committed, both under a lock based
and multiversion semantics. This work uses the same graph approach as in [16]. The provided
condition, however, is not a necessary condition and can therefore not be used to characterize
robustness against read committed.
Cerone et al. [11] provide a framework for uniformly specifying different isolation levels in a

declarative way. A key assumption in their framework is atomic visibility, requiring that either all or
none of the updates of each transaction are visible to other transactions. This assumption facilitates
reasoning over isolation levels, since these isolation levels can be specified by consistency axioms
on the level of transactions instead of individual operations within each transaction. Bernardi
and Gotsman [10] extended the work of Fekete et al. [16] by providing sufficient conditions for
robustness against the different isolation levels that can be defined by this framework. Continuing
on this line of work, Cerone, Gotsman and Yang [13] examined the relationship between consistency
axioms restricting the allowed schedules over a set of transactions and the resulting properties
of possible cycles in the static dependency graph for this set of transactions. In particular, they
provide a more direct approach to derive robustness criteria based on static dependency graphs
from arbitrary isolation levels specified by consistency axioms. Cerone and Gotsman [12] later
refined the sufficient condition for robustness against snapshot isolation first obtained by Fekete
et al. [16]. They furthermore obtained a sufficient condition for robustness against parallel
snapshot isolation towards snapshot isolation (i.e., whether for a given workload every
schedule allowed under parallel snapshot isolation is allowed under snapshot isolation).
However, the declarative framework by Cerone et al. [11] providing the foundation on which the
above work is built, cannot be used to study read committed (and hence read uncommitted) as
it does not admit the atomic visibility condition.
Characterizations. As mentioned before Fekete [15] is the first work that provides a necessary
and sufficient condition for deciding robustness against snapshot isolation. In particular, that
work provides a characterization for acceptable allocations when every transaction runs under
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either snapshot isolation or strict two-phase locking (S2PL). The allocation then is acceptable
when every possible execution respecting the allocated isolation levels is serializable. As a side
result, this work indirectly provides a necessary and sufficient condition for robustness against
snapshot isolation, since robustness against snapshot isolation holds iff the allocation where
each transaction is allocated to snapshot isolation is acceptable.

Beillahi et al. use an algorithmic approach to decide robustness against causal consistency [8]
and snapshot isolation [7] by providing a polynomial time reduction from these problems to
the reachability problem in transactional programs over a sequentially consistent shared memory.
Their setting is slightly different from our setting, as they allow a nondeterministic execution of
transactions. They furthermore group transactions under different processes. During execution,
each process then runs its transactions sequentially but concurrently with other processes. Due
to this different setting, they obtain complexity bounds that are considerably higher than our
complexity results. In particular, they show that deciding robustness against causal consistency
and snapshot isolation are expspace-complete in general, and pspace-complete if respectively
the number of sites or the number of processes is fixed.

Transaction chopping. Instead of weakening the isolation level, transactions can also be split in
smaller pieces to obtain performance benefits. However, this approach poses a new challenge, as
not every serializable execution of these chopped transactions is necessarily equivalent to some
serializable execution over the original transactions. A chopping of a set of transactions is correct
if for every serializable execution of the chopping there exists an equivalent serializable execution
of the original transactions. Shasha et al. [20] provide a graph based characterization for this
correctness problem. It is interesting to note that robustness against no isolation corresponds
to the correctness of fully chopped transactions. Indeed, if we chop each transaction into pieces
consisting of single operations, then every serializable schedule of this chopping would clearly
correspond to a schedule over the original transactions allowed under no isolation and vice versa.
However, this relation is no longer trivial when considering robustness against read uncommitted
and read committed. In particular, a correspondence between transaction chopping correctness
and robustness against read committed is not to be expected, as the former is decidable in
polynomial time [20], whereas we showed that the latter to be conp-complete.

8 CONCLUSIONS
In this paper, we provided characterizations for robustness against the isolation levels read uncom-
mitted and read committed, and used these to establish upper bounds on the complexity of the
associated decision problem. We also obtained matching lower bounds. The obtained characteriza-
tions provide insight into what robustness means in these settings and under which circumstances
it can occur.

While the characterizations in this paper are not restricted to the traditional lock-based semantics
of the SQL isolation levels as they are defined in terms of forbidden patterns [9], it would be
interesting to see what kind of characterizations for robustness can be found in terms of a multi-
version definition of the isolation levels [1]. We provide a characterization for robustness against
multiversion read committed in [22]. Surprisingly, robustness against multiversion read
committed is decidable in polynomial time, which should be contrasted with the conp-hardness
for robustness against read committed obtained in this paper. A second immediate question
pertains the conp-hardness result: are there natural restrictions that make the problem tractable.
In an online context with millions of transactions, testing robustness against read committed
is obviously not feasible and tractable restrictions or approximations would be desirable. On the
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other hand, in an offline context, where the set of transactions is generated through a finite (and
small) set of transaction programs, as discussed next, intractability is not necessarily problematic.

The initial motivation for the study of robustness lies in the performance improvement gained by
executing transactions at a weaker isolation level without the danger of introducing anomalies [16].
It is important to point out that robustness makes the most sense in settings where transactions
can be grouped together or where the set of possible transactions is known beforehand. A nat-
ural occurrence of the latter is when transactions are generated by a finite set of parameterized
transaction programs as for example in a banking application where customers can do a fixed
number of financial transactions. Consider the parameterized transaction 𝜏 = R [𝑣]W [𝑣]R [𝑤]R [𝑤]
that represents a transfer from an account 𝑣 to an account𝑤 and where 𝑣 and𝑤 are variables. Any
transactions 𝑇 = R [x]W [x]R [y]R [y] with x, y ∈ Obj then is an instance of 𝜏 . For this example, it
could even make sense to interpret 𝑣 and𝑤 with the same object x. However, in some scenarios it
makes sense to disallow different variables to be interpreted by the same object. In [22], we study
the robustness problem w.r.t. a formalization of parameterized transactions. In such a setting the
same characterizations continue to hold but the interference graphs become infinitely large. This
formalization is further extended in [23] by including functional constraints, which are useful for
capturing data dependencies like foreign keys.

Robustness is a binary property: a set of transactions is robust against a given isolation level or
it is not. When robustness does not hold, one can devise methods to make a set of transactions
robust or one can split up transactions into maximally robust subsets. These questions have been
considered for snapshot isolation [12, 16] and it would make sense to consider them w.r.t. the
different isolation levels occurring in database systems [5]. An orthogonal, and undoubtedly more
challenging, setting, is to depart from the requirement that every transaction has to be executed at
the same isolation level. That is, for a given set of transaction programs, allocate every transaction
to the optimal isolation level for suitable notions of optimality. An immediate interpretation of
optimality could be the weakest possible isolation level for every transaction that guarantees overall
robustness for the whole set. Fekete [15] studied, and solved, the allocation problem w.r.t. snapshot
isolation and strict two-phase locking, but no results of this flavor have been obtained for other
isolation levels.
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