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ABSTRACT
Complex Event Recognition (CER) systems are a prominent tech-

nology for finding user-defined query patterns over large data

streams in real time. CER query evaluation is known to be compu-

tationally challenging, since it requires maintaining a set of partial

matches, and this set quickly grows super-linearly in the number

of processed events. We present CORE, a novel COmplex event

Recognition Engine that focuses on the efficient evaluation of a

large class of complex event queries, including time windows as

well as the partition-by event correlation operator. This engine uses

a novel automaton-based evaluation algorithm that circumvents

the super-linear partial match problem: under data complexity, it

takes constant time per input event to maintain a data structure

that compactly represents the set of partial matches and, once a

match is found, the query results may be enumerated from the data

structure with output-linear delay. We experimentally compare

CORE against state-of-the-art CER systems on real-world data. We

show that (1) CORE’s performance is stable with respect to both

query and time window size, and (2) CORE outperforms the other

systems by up to five orders of magnitude on different workloads.
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1 INTRODUCTION
Complex Event Recognition (CER for short), also called Complex

Event Processing, has emerged as a prominent technology for sup-

porting streaming applications like maritime monitoring [43], net-

work intrusion detection [41], industrial control systems [34] and

real-time analytics [49]. CER systems operate on high-velocity

streams of primitive events and evaluate expressive event queries

to detect complex events: collections of primitive events that satisfy

some pattern. In particular, CER queries match incoming events on
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the basis of their content; where they occur in the input stream;

and how this order relates to other events in the stream [10, 26, 30].

CER systems hence aim to detect situations of interest, in the

form of complex events, in order to give timely insights for im-

plementing reactive responses to them when necessary. As such,

they strive for low latency query evaluation. CER query evalu-

ation, however, is known to be computationally challenging [8,

25, 40, 54, 56, 57]. Indeed, conceptually, evaluating a CER query

requires maintaining or recomputing a set of partial matches, so

that when a new event arrives all partial matches that—together

with the newly arrived event–now form a complete answer can

be found. Unfortunately, even for simple CER patterns, the set of

partial matches quickly becomes polynomial in the number 𝑁 of

previously processed events (or, when time windows are used, the

number of events in the current window). Even worse, under the

so-called skip-till-any-match selection strategy [8], queries that

include the iteration operator may have sets of partial matches that

grow exponentially in 𝑁 [8]. As a result, the arrival of each new

event requires a computation that is super-linear in 𝑁 , which is

incompatible with the small latency requirement.

In recognition of the computational challenge of CER query eval-

uation, a plethora of research has proposed innovative evaluation

methods [16, 26, 30]. These methods range from proposing diverse

execution models [18, 28, 40, 53], including cost-based database-

style query optimizations to trade-off between materialization and

lazy computation [36, 37, 40]; to focusing on specific query frag-

ments (e.g., event selection policies [8]) that somewhat limit the

super-linear partial match explosion; to using load shedding [56] to

obtain low latency at the expense of potentially missing matches;

and to employing distributed computation [25, 39]. All of these

still suffer, however, from a processing overhead per event that is

super-linear in𝑁 . As such, their scalability is limited to CER queries

over a short time window, as we show in Section 5. Unfortunately,

for applications such as maritime monitoring [43], network intru-

sion [41] and fraud detection [15], long time windows are necessary

and a solution based on new principles hence seems desirable.

In recent work [31, 33], a subset of the authors have proposed

a theoretical algorithm for evaluating CER queries that circum-

vents the super-linear partial match problem in theory: under data

complexity the algorithm takes constant time per input event to

maintain a data structure that compactly represents the set of par-

tial and full matches in a size that is at most linear in 𝑁 . Once a

match is found, complex event(s) may be enumerated from the data

structure with output-linear delay, meaning that the time required

to output recognized complex event 𝐶 is linear in the size of 𝐶 .

This complexity is asymptotically optimal since any evaluation
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algorithm needs to at least inspect every input event and list the

query answers.

Briefly, the evaluation algorithm consists of translating a CER

query into a particular kind of automaton model, called a Complex

Event Automaton (CEA). Given a CEA and an input event stream,

the algorithm simulates the CEA on the stream, and records all CEA

runs by means of a graph data structure. Interestingly, this graph

succinctly encodes all the partial and complete matches. When a

new event arrives, the graph can be updated in constant time to

represent the new (partial) runs. Once a final state of the automaton

is reached, a traversal over the graph allows to enumerate the

complex events with output-linear delay.

To date, this approach to CER query evaluation has only been the

subject of theoretical investigation. Because it is the only known

algorithm that provably circumvents the super-linear partial match

problem, however, the question is whether it can serve as the basis

of a practical CER system. In this paper, we answer this question

affirmatively by presenting CORE, a novel COmplex event Recog-

nition Engine based on the principles of [31–33].

A key limitation of [31, 33] that we need to resolve in designing

CORE is that time windows are not supported in [31, 33], neither

semantically at the query language level, nor at the evaluation

algorithm level. Indeed, the algorithm records all runs, no matter

how long ago the run occurred in the stream and no matter whether

the run still occurs in the current time window. As such, it also does

not prune the graph to clear space for further processing, which

quickly becomes a memory bottleneck. Another limitation is that

the algorithm cannot deal with simple equijoins, such as requiring

all matching events to have identical values in a particular attribute.

Such equijoins are typically expressed by means of the so-called

partition-by operator [30]. We lift both limitations in CORE.

Technically, to ensure that CER queries with time windows can

still be processed in constant update per event and output-linear

delay enumeration we need to be able to represent CEA runs in

a ranked order fashion: during enumeration, runs that start later

in the stream must be traversed before runs that start earlier, so

that once a run does not satisfy a time window restriction all runs

that succeed it in the ranked order will not satisfy the time window

either, and can therefore be pruned. The challenge is to encode

this ranking in the graph representation of runs while ensuring

that we continue to be able to update it in constant time per new

event. This requires a completely new kind of graph data structure

for encoding runs, and a correspondingly new CEA evaluation

algorithm. This new algorithm is compatible with the partition-by

operator, as we will see. We stress that, by this new algorithm,

the runtime of CORE’s complexity per event is independent of the

number of partial matches, as well as the length of the time window

being used. It therefore supports long time windows by design.

Contributions. Our contributions are as follows.
(1) To be precise about the query language features supported

by CORE’s evaluation algorithm, we formally introduce CEQL, a

functional query language that focuses on recognizing complex

events. It supports common event recognition operators including

sequencing, disjunction, filtering, iteration, and projection [31–

33], extended with partition-by, and time-windows. Other features

considered in the literature that focus on processing of complex

events, such as aggregation [46, 47], integration of non-event data

sources [57], and parallel or distributed [25, 42, 50] execution are

currently not supported by CEQL, and left for future work.

(2) We present an evaluation algorithm for CEQL that is based

on entirely new evaluation algorithm for CEA that deals with time

windows and partitioning, thereby lifting the limitations of [31–33].

(3) We show that the algorithm is practical. We implement it

inside of CORE, and experimentally compare CORE against state-of-

the-art CER engines on real-world data. Our experiments show that

CORE’s performance is stable: the throughput is not affected by the

size of the query or size of the time window. Furthermore, CORE

outperforms existing systems by one to five orders of magnitude in

throughput on different query workloads.

The structure of the paper is as follows. We finish this section

by discussing further related work not already mentioned above.

We continue by introducing CEQL in Section 2. We present the

CEA computation model in Section 3. The algorithm and its data

structures are described in Section 4, which also discusses imple-

mentation aspects of CORE. We dedicate Section 5 to experiments

and conclude in Section 6.

Because of space limitations, certain details, formal statements

and proofs are omitted. A full version of this paper, whose Appendix

contains those items, is available online [21].

Further Related Work. CER systems are usually divided into

three approaches: automata-based, tree-based, and logic-based, with

some systems (e.g., [4, 24, 56]) being hybrids. We refer to recent

surveys [10, 16, 26, 30] of the field for in-depth discussion of these

classes of systems. CORE falls within the class of automata-based

systems [8, 24, 27, 28, 37, 42, 44, 46, 47, 50, 53, 54, 57]. These sys-

tems use automata as their underlying execution model. As already

mentioned, these systems either materialize a super-linear number

of partial matches, or recompute them on the fly. Conceptually,

almost all of these works propose a method to reduce the mate-

rialization/recomputation cost by representing partial matches in

a more compact manner. CORE is the first system to propose a

representation of partial matches with formal, proven, and optimal

performance guarantees: linear in the number of seen events, with

constant update cost, and output-linear enumeration delay.

Tree- and logic-based systems [4, 14, 17, 23, 36, 38, 40] typically

evaluate queries by constructing and evaluating a tree of CER op-

erators, much like relational database systems evaluate relational

algebra queries. Cost models can be used to identify efficient trees,

and stream characteristics monitored to re-optimize trees during

processing when necessary [36]. These evaluation trees do no have

the formal, optimal performance guarantees offered by CORE.

Query evaluation with bounded delay has been extensively stud-

ied for relational database queries [19, 20, 20, 22, 35, 51], where

it forms an attractive evaluation method, especially when query

output risks being much bigger than the size of the input. CORE

applies this methodology to the CER domain which differs from the

relational setting in the choice of query operators, in particular the

presence of operators like sequencing and Kleene star (iteration).

In this respect, CORE’s evaluation algorithm is closer the work on

query evaluation with bounded delay over words and trees [11–

13, 29]. Those works, however, do not consider enumeration with

time window constraints as we do here.



SELECT * FROM Stock
WHERE SELL as msft; SELL as intel; SELL as amzn
FILTER msft[name="MSFT"] AND msft[price > 100]

AND intel[name="INTC"]
AND amzn[name="AMZN"] AND amzn[price < 2000]

SELECT b FROM Stock
WHERE (BUY or SELL) as s;

(BUY or SELL) as b
PARTITION BY [name], [volume]
WITHIN 1 minute

SELECT MAX * FROM Stock
WHERE (BUY OR SELL) as l; (BUY OR SELL)+ as m; (BUY OR SELL) as h
FILTER l[price < 100] AND m[price >= 100]

AND m[price <= 2000] AND h[price > 2000]
PARTITION BY [name]

(𝑄1) (𝑄2) (𝑄3)

Figure 1: CEQL queries on a Stock stream.

2 CEQL SYNTAX AND SEMANTICS
CORE’s query language is similar in spirit to existing languages

for expressing CER queries (see, e.g., [10, 26, 30] for a language

survey). In particular, CORE shares with these languages a common

set of operators for expressing CER patterns, including, for exam-

ple sequencing, disjunction, iteration (a.k.a. Kleene closure), and

filtering, among others [10, 30]. While hence conceptually similar,

it is important to note that existing system implementations and

their evaluation algorithms differ in (1) the exact set of operators

supported, (2) how these operators can be composed, and (3) even

in the semantics ascribed to operators. Given these sometimes sub-

tle (semantic) differences, we wish to be unambiguous about the

class of queries supported by CORE’s evaluation algorithm. In this

section, we therefore formally define the syntax and semantics of

CEQL, the query language that is fully implemented by CORE.

CEQL is based on Complex Event Logic (CEL for short)—a formal

logic that is built from the above-mentioned common operators

without restrictions on composability, and whose expressiveness

and complexity have been studied in [31–33]. CEQL extends CEL

by adding support for time windows as well as the partition-by

event correlation operator. We first introduce CEQL by means of

examples, and then proceed with the formal syntax and semantics.

2.1 CEQL by Example
Consider that we have a stream Stock that is emitting BUY and SELL
events of particular stocks. The events carry the stock name, the

volume bought or sold, the price, and a timestamp. Suppose that we

are interested in all triples of SELL events where the first is a sale of
Microsoft over 100 USD, the second is a sale of Intel (of any price),

and the third is a sale of Amazon below 2000 USD. Query 𝑄1 in

Figure 1 expresses this in CEQL. In 𝑄1, the FROM clause indicates

the streams to read events from, while theWHERE clause indicates

the pattern of atomic events that need to be matched in the stream.

This can be any unary Complex Event Logic (CEL) expression [33].

In 𝑄1, the CEL expression

SELL as msft; SELL as intel; SELL as amzn

indicates that we wish to see three SELL events and that we will

refer to the first, second and third events by means of the variables

msft, intel and amzn, respectively. In particular, the semicolon

operator (;) indicates sequencing among events. Sequencing in

CORE is non-contiguous. As such, the msft event needs not be

followed immediately by the intel event—there may be other events

in between, and similarly for amzn. The FILTER clause requires the

msft event to haveMSFT in its name attribute, and a price above

100. It makes similar requirements on the intel and amzn events.

The conditions in a CEQL FILTER clause can only express pred-

icates on single events. Correlation among events, in the form of

equi-joins, is supported in CEQL by the PARTITION BY clause.

This feature is illustrated by query 𝑄2 in Figure 1, which detects

all pairs of BUY or SELL events of the same stock and the same

volume. In particular, there, the PARTITION BY clause requests that

all matched events have the same values in the name and volume
attributes. TheWITHIN clause specifies that the matched pattern

must be detected within 1 minute. In CORE, each event is assigned

the time at which it arrives to the system, so we do not assume

that events include a special attribute representing time, as some

other systems do. Finally, the SELECT clause ensures that, from the

matched pair of events, only the event in variable b is returned.

In general, the pattern specified in the WHERE clause in a

CEQL query may include other operators such as disjunction (de-

noted OR ) and iteration (also known as Kleene closure, denoted

+). These may be freely nested in the WHERE clause. Query 𝑄2

illustrates the use of disjunction. Query 𝑄3 illustrates the use of

iteration. In 𝑄3, 100 and 2000 are two values representing a lower

and upper limit price, respectively. 𝑄3 looks for an upward trend:

a sequence of BUY or SELL events pertaining to the same stock

symbol where the sale price is initially below 100 (captured by the

l variable), then between 100 and 2000 (captured by m), then above

2000 (h). Importantly, because of the Kleene closure iteration opera-

tor, variablem captures all sales of the stock in the [100, 2000] price
range in such a trend. TheMAX operator in the SELECT clause is an
example of a selection strategy [8, 30, 33]: it ensures that within a

trendm is bound to a maximal sequence of events in the [100, 2000]
price range. If this policy were not specified, CEQL would adopt

the skip-till-any-match policy [8, 30] by default, which also returns

complex events with m containing only subsets of this maximal

sequences.

2.2 CEQL Syntax and Semantics
We start by defining CORE’s event model.

Events, Complex Events, and Valuations. We assume given a

set of event types T (consisting, e.g., of the event types BUY and

SELL in our running example), a set of attribute names A (e.g., name,
price, etc) and a set of data values D (e.g. integers, strings, etc.). A

data-tuple 𝑡 is a partial mapping that maps attribute names from A
to data values in D. Each data-tuple is associated to an event type.

We denote by 𝑡 (𝑎) ∈ D the value of the attribute 𝑎 ∈ A assigned

by 𝑡 , and by 𝑡 (type) ∈ T the event type of 𝑡 . If 𝑡 is not defined on

attribute 𝑎, then we write 𝑡 (𝑎) = NULL.
A stream is a possibly infinite sequence 𝑆 = 𝑡0𝑡1𝑡2 . . . of data-

tuples. Given a set 𝐷 ⊆ N, we define the set of data tuples 𝑆 [𝐷] =
{𝑡𝑖 | 𝑖 ∈ 𝐷}. A complex event is a pair 𝐶 = ( [𝑖, 𝑗], 𝐷) where 𝑖 ≤
𝑗 ∈ N and 𝐷 is a subset of {𝑖, . . . , 𝑗}. Intuitively, given a stream 𝑆 =

𝑡0𝑡1 . . . the interval [𝑖, 𝑗] of𝐶 represents the subsequence 𝑡𝑖𝑡𝑖+1 . . . 𝑡 𝑗



of 𝑆 where the complex event 𝐶 happens and 𝑆 [𝐷] represents the
data-tuples from 𝑆 that are relevant for 𝐶 . We write 𝐶 (time) to
denote the time-interval [𝑖, 𝑗], and 𝐶 (start) and 𝐶 (end) for 𝑖 and 𝑗 ,

respectively. Furthermore, we write 𝐶 (data) to denote the set 𝐷 .

To define the semantics of CEQL, we will also need the following

notion. Let X be a set of variables, which includes all event types,

T ⊆ X. A valuation is a pair𝑉 = ( [𝑖, 𝑗], `) with [𝑖, 𝑗] a time interval

as above and ` a mapping that assigns subsets of {𝑖, . . . , 𝑗} to vari-

ables in X. Similar to complex events, we write 𝑉 (time), 𝑉 (start),
and𝑉 (end) for [𝑖, 𝑗], 𝑖 , and 𝑗 , respectively, and𝑉 (𝑋 ) for the subset
of {𝑖, . . . , 𝑗} assigned to 𝑋 ∈ X by `.

We write 𝐶𝑉 for the complex event that is obtained from val-

uation 𝑉 by forgetting the variables in 𝑉 , and retaining only its

positions: 𝐶𝑉 (time) = 𝑉 (time) and 𝐶𝑉 (data) = ⋃
𝑋 ∈X𝑉 (𝑋 ). The

semantics of CEQL will be defined in terms of valuations, which

are subsequently transformed into complex events in this manner.

Predicates. A (unary) predicate is a possibly infinite set 𝑃 of data-

tuples. For example, 𝑃 could be the set of all tuples 𝑡 such that

𝑡 (price) ≥ 100. A data-tuple 𝑡 satisfies predicate 𝑃 , denoted 𝑡 |= 𝑃 ,

if, and only if, 𝑡 ∈ 𝑃 . We generalize this definition from data-tuples

to sets by taking a “for all” extension: a set of data-tuples𝑇 satisfies

𝑃 , denoted by 𝑇 |= 𝑃 , if, and only if, 𝑡 |= 𝑃 for all 𝑡 ∈ 𝑇 .
CEQL. Syntactically, a CEQL query has the form:

SELECT [selection-strategy] < list-of-variables >

FROM < list-of-streams >

WHERE < CEL-formula >

[PARTITION BY < list-of-attributes >]
[WITHIN < time-value >]

Specifically, theWHERE clause consists of a formula in Complex

Event Logic (CEL) [33], whose abstract syntax is given by the fol-

lowing grammar:

𝜑 := 𝑅 | 𝜑 AS 𝑋 | 𝜑 FILTER 𝑋[𝑃] | 𝜑 OR 𝜑 | 𝜑 ; 𝜑 | 𝜑+ | 𝜋𝐿 (𝜑).
In this grammar, 𝑅 is a event type in T, 𝑋 is a variable in X, 𝑃 is a

predicate, and 𝐿 is a subset of variables in X.1

The semantics of CEQL is now as follows. Conceptually, a CEQL

query first evaluates its FROM clause, then its PARTITION BY
clause, and subsequently itsWHERE, SELECT, andWITHIN clauses

(in that order). The FROM clause merely specifies the list of streams

registered to the system from which events should be inspected.

All these streams are logically merged into a single stream 𝑆 that is

processed by the subsequent clauses. The PARTITION BY clause, if

present, logically partitions this stream into multiple substreams

𝑆1, 𝑆2, . . . , and executes theWHERE-SELECT-WITHIN clauses on

each substream separately. The union of the outputs generated for

each substream constitute the final output. Concretely, every 𝑆𝑖 is

a maximal subsequence of 𝑆 such that for every pair of tuples 𝑡

and 𝑡 ′ occurring in 𝑆𝑖 , and for every attribute 𝑎 mentioned in the

PARTITION BY clause, it holds that 𝑡 (𝑎) ≠ NULL, 𝑡 ′(𝑎) ≠ NULL, and
𝑡 (𝑎) = 𝑡 ′(𝑎). As such, all tuples in 𝑆𝑖 share the same value in every

attribute of the PARTITION BY clause.

The semantics of the WHERE-SELECT-WITHIN clauses is as

follows. CEQL’s WHERE clause is derived from the semantics of

1
Observe that CEL includes FILTER, there is hence no separate FILTER clause in CEQL.

For convenience, in CEQL queries we use 𝜑 FILTER \1AND \2 in the WHERE clause

as a shorthand for (𝜑 FILTER \1) FILTER \2 , and 𝜑 FILTER \1 OR \2 as shorthand

for (𝜑 FILTER \1) OR (𝜑 FILTER \2) .

V𝑅U(𝑆) = {𝑉 | 𝑉 (time) = [𝑖, 𝑖 ] ∧ 𝑡𝑖 (type) = 𝑅

∧ 𝑉 (𝑅) = {𝑖 } ∧ ∀𝑋 ≠ 𝑅. 𝑉 (𝑋 ) = ∅ }
V𝜑 AS 𝑋U(𝑆) = {𝑉 | ∃ 𝑉 ′ ∈ V𝜑U(𝑆) . 𝑉 (time) = 𝑉 ′ (time)

∧ 𝑉 (𝑋 ) = ∪𝑌𝑉 ′ (𝑌 )
∧ ∀𝑍 ≠ 𝑋 . 𝑉 (𝑍 ) = 𝑉 ′ (𝑍 ) }

V𝜑 FILTER 𝑋[𝑃]U(𝑆) = {𝑉 | 𝑉 ∈ V𝜑U(𝑆) ∧𝑉 (𝑋 ) |= 𝑃 }
V𝜑1 OR 𝜑2U(𝑆) = V𝜑1U(𝑆) ∪ V𝜑2U(𝑆)

V𝜑1 ; 𝜑2U(𝑆) = {𝑉 | ∃ 𝑉1 ∈ V𝜑1U(𝑆),𝑉2 ∈ V𝜑2U(𝑆) .
𝑉1 (end) < 𝑉2 (start)
∧ 𝑉 (time) = [𝑉1 (start),𝑉2 (end) ]
∧ ∀𝑋 . 𝑉 (𝑋 ) = 𝑉1 (𝑋 ) ∪𝑉2 (𝑋 ) }

V𝜑+U(𝑆) = V𝜑U(𝑆) ∪ V𝜑 ; 𝜑+U(𝑆)
V 𝜋𝐿 (𝜑)U(𝑆) = {𝑉 | ∃ 𝑉 ′ ∈ V𝜑U(𝑆) . 𝑉 (time) = 𝑉 ′ (time)

∧ ∀𝑋 ∈ 𝐿. 𝑉 (𝑋 ) = 𝑉 ′ (𝑋 )
∧ ∀𝑋 ∉ 𝐿. 𝑉 (𝑋 ) = ∅}

Figure 2: The semantics of a CEL formulas.

CEL
2
, which is inductively defined in Table 2. Concretely, given

a stream 𝑆 = 𝑡0𝑡1𝑡2 . . . (or one of the substreams 𝑆𝑖 if the query

has a PARTITION BY clause), a CEL formula 𝜑 evaluates to a set of

valuations, denoted V𝜑U(𝑆). The base case is when 𝜑 is an event

type 𝑅. In that case V𝜑U(𝑆) contains all valuations whose time-

interval is a single position 𝑖 , such that the data-tuple 𝑡𝑖 at position

𝑖 in 𝑆 is of type 𝑅. Furthermore, the valuation is such that variable 𝑅

(recall that T ⊆ X) stores only position 𝑖 and all other variables are

empty. The AS clause is a variable assignment that takes an existing

valuation 𝑉 ∈ V𝜑U(𝑆) and extends it by gathering all positions

∪𝑌𝑉 (𝑌 ) in variable 𝑋 , keeping all other variables as in 𝑉 . The

filter clause FILTER 𝑋[𝑃] retains only those valuations for which

the content of variable 𝑋 satisfies predicate 𝑃 , and the OR clause

takes the union of two sets of valuations. The sequencing operator

uses the time-interval for capturing all pairs of valuations in which

the first is chronologically followed by the second. Specifically,

V𝜑1 ; 𝜑2U(𝑆) takes 𝑉1 ∈ V𝜑1U(𝑆) and 𝑉2 ∈ V𝜑2U(𝑆) such that 𝑉2 is

after𝑉1 (i.e.,𝑉1 (end) < 𝑉2 (start)) and joins them into one valuation

𝑉 , where the time interval is given by the start of 𝑉1 and the end

of 𝑉2. The semantics of iteration 𝜑+ is defined as the application

of sequencing (;) one or more times over the same formula. The

projection 𝜋𝐿 modifies valuations by setting all variables that are

not in 𝐿 to empty.

The WHERE part of a CEQL query hence returns a set of valua-

tions when evaluated over a stream. The SELECT clause, if it does

not mention a selection strategy, corresponds to a projection in

CEL, and hence operates on this set accordingly. If it does specify

a selection strategy, then a CEL projection is applied, followed by

removing certain valuations from the set. We refer the interested

reader to [33] for a definition and discussion of selection strategies.

Finally, if 𝜖 is a time-interval, then the WITHIN clause operate on

the resulting set of valuations as follows:

V𝜑 WITHIN 𝜖U(𝑆) = {𝑉 ∈ V𝜑U(𝑆) | 𝑉 (end) −𝑉 (start) ≤ 𝜖}.
Complex Event Semantics. The semantics defined above is one

where CEL and CEQL queries return valuations. In CER systems,

it is customary, however, to return complex events instead. The

2
Note that the semantics used in this paper is an extension of the semantics of CEL

in [33] since we also consider the time interval as part of the complex event.



complex event semantics of CEL and CEQL is obtained by first

evaluating the query under the valuation semantics, and then

removing variables altogether. That is, if 𝜑 is a CEL formula or

CEQL query, its complex event semantics J𝜑K(𝑆) is defined by

J𝜑K(𝑆) := {𝐶𝑉 | 𝑉 ∈ V𝜑U(𝑆)}. For the rest of this paper, we will
be interested in efficiently computing the complex event semantics

J𝜑K(𝑆). We stress, however, that our techniques can be extended to

also efficiently compute the valuation semantics instead.

3 QUERY COMPILATION
At the heart of evaluating a CEQL query lies the problem of eval-

uating the query’s SELECT-WHERE-WITHIN clauses on either a

single stream, or multiple different substreams thereof (for a query

with PARTITION BY). In this section and the next, we discuss how

to do so efficiently, focusing on evaluation over a single stream. To

this end, let 𝑄 be a CEQL query without PARTITION BY and with

only one stream mentioned in the FROM clause.

In CORE we first compile the SELECT-WHERE part of 𝑄 into a

Complex Event Automaton (CEA for short) [31, 33], which is a form

of finite state automaton that produces complex events. CORE’s

evaluation algorithm is then defined in terms of CEA: it takes

as input a CEA A, the (optional) time window 𝜖 specified in the

WITHIN clause of 𝑄 , and a stream 𝑆 , and uses this to compute

J𝑄K(𝑆). This evaluation algorithm is described in Section 4. Here,

we introduce CEA.

Roughly speaking, a CEA is similar to a standard finite state

automaton. The difference is that a standard finite state automaton

processes finite strings and also has transitions of the form 𝑝 𝜎−−→𝑞

with 𝑞, 𝑝 states and 𝜎 a symbol from some finite alphabet, whereas

a CEA processes possibly unbounded streams of data-tuples and

has transitions of the form 𝑝
𝑃/𝑚−−→𝑞 with 𝑝 and 𝑞 states, 𝑃 a predicate

and𝑚 an action, which can be marking (•) or unmarking (◦). The
semantics of such a transition 𝑝

𝑃/𝑚−−→𝑞 is that, when a new tuple 𝑡

arrives in the stream and the CEA is in state 𝑝 , if 𝑡 satisfies 𝑃 then

the CEAmoves to state 𝑞 and applies the action𝑚: if𝑚 is a marking

action then the event 𝑡 will be part of the output complex event

once a final state is reached, otherwise it will not.

Example 1. In Figure 3 we show a CEA A that represents query

𝑄1 from Figure 1. There, we depict predicates by listing, in array

notation, the event type, the requested value of the name attribute,
and the constraint on the price attribute. The initial state is 𝑞1 and

there is only one final state: 𝑞4. The figure also shows an example

stream 𝑆 , and several runs of A on 𝑆 . Every run shown is accepting

(i.e., ends in an accepting state of the automaton), and as such returns

a complex event. The time of this complex event is the interval [𝑖, 𝑗]
with 𝑖 the position where the run starts, and 𝑗 the position where

the run ends. The data of this complex event consists of all positions

marked by the run. For example, the complex event 𝐶1 output by

run 1 is ( [0, 4], {0, 2, 4}); the complex event 𝐶2 output by run 2 is

( [0, 6], {0, 2, 6}), and so on.

Formally, a Complex Event Automaton (CEA) is a tuple A =

(𝑄,Δ, 𝑞0, 𝐹 ) where 𝑄 is a finite set of states, Δ ⊆ 𝑄 × P × {•, ◦} ×
(𝑄 \ {𝑞0}) is a finite transition relation, 𝑞0 ∈ 𝑄 is the initial state,

and 𝐹 ⊆ 𝑄 is the set of final states. We will denote transitions

in Δ by 𝑞
𝑃/𝑚−−→𝑞′. A run of A over stream 𝑆 from positions 𝑖 to 𝑗

𝑞1 𝑞2 𝑞3 𝑞4

[
SELL
MSFT
> 100

]
| •

[
SELL
INTL
∗

]
| •

TRUE | ◦

[
SELL
AMZN
< 2000

]
| •

TRUE | ◦

CEA A:

[
SELL
MSFT
101

]0 [
SELL
MSFT
102

]1 [
SELL
INTL

80

]2 [
BUY
INTL

80

]3 [
SELL
AMZN
1900

]4 [
SELL
INTL

81

]5 [
SELL
AMZN
1920

]6

· · ·Stream:

•−→ ◦−→ •−→ ◦−→ •−→ •−→ ◦−→ •−→𝑞1 𝑞2 𝑞2 𝑞3 𝑞3 𝑞4 𝑞2 𝑞3Run 1:

•−→ ◦−→ •−→ ◦−→ ◦−→ ◦−→ •−→ •−→𝑞1 𝑞2 𝑞2 𝑞3 𝑞3 𝑞3 𝑞3 𝑞4Run 2:

•−→ ◦−→ ◦−→ ◦−→ ◦−→ •−→ •−→ •−→𝑞1 𝑞2 𝑞2 𝑞2 𝑞2 𝑞2 𝑞3 𝑞4Run 3:

◦−→ •−→ •−→ ◦−→ •−→ ◦−→ ◦−→ •−→𝑞1 𝑞1 𝑞2 𝑞3 𝑞3 𝑞4 𝑞3 𝑞4Run 4:

◦−→ •−→ •−→ ◦−→ ◦−→ ◦−→ •−→ •−→𝑞1 𝑞1 𝑞2 𝑞3 𝑞3 𝑞3 𝑞3 𝑞4Run 5:

◦−→ •−→ ◦−→ ◦−→ ◦−→ •−→ •−→ •−→𝑞1 𝑞1 𝑞2 𝑞2 𝑞2 𝑞2 𝑞3 𝑞4Run 6:

Figure 3: A CEA representing 𝑄1 from Figure 1 and some of
its runs on an example stream.

is a sequence 𝜌 := 𝑞𝑖
𝑃𝑖/𝑚𝑖−−→ 𝑞𝑖+1

𝑃𝑖+1/𝑚𝑖+1−−→ . . .
𝑃 𝑗 /𝑚 𝑗−−→ 𝑞 𝑗+1 such that

𝑞𝑖 is the initial state of A and for every 𝑘 ∈ [𝑖, 𝑗] it holds that
𝑞𝑘

𝑃𝑘/𝑚𝑘−−→ 𝑞𝑘+1 ∈ Δ and 𝑡𝑘 |= 𝑃𝑘 . A run 𝜌 is accepting if 𝑞 𝑗+1 ∈ 𝐹 .

An accepting run 𝜌 of A over 𝑆 from 𝑖 to 𝑗 naturally defines the

complex event 𝐶𝜌 := ( [𝑖, 𝑗], {𝑘 | 𝑖 ≤ 𝑘 ≤ 𝑗 ∧𝑚𝑘 = •}) . If position
𝑖 and 𝑗 are clear from the context, we say that 𝜌 is a run of A
over 𝑆 . Finally, we define the semantics of A over a stream 𝑆 as

JAK(𝑆) := {𝐶𝜌 | 𝜌 is an accepting run of A over 𝑆}.
We note that in this paper, because we consider complex events

with time intervals, a run may start at an arbitrary position 𝑖 in

the stream, which differs from the semantics of CEA considered

in [31, 33] where complex events do not have time intervals and

runs always start at the beginning of the stream. It is also important

to note that in the definition above no transition can re-enter the

initial state 𝑞0; this will be important for defining the time-interval

of the output complex events in Section 4. This requirement on the

initial state is without loss of generality, since any incoming transi-

tions into the initial state 𝑞0 may be removed without modifying

semantics by making a copy 𝑞′
0
of 𝑞0 (also copying its outgoing

transitions) and rewrite any transition into 𝑞0 to go to 𝑞′
0
instead.

The usefulness of CEA comes from the fact that CEL can be

translated into CEA [31, 33]. Because the SELECT-WHERE part of a

CEQL query is in essence a CEL formula, this reduces the evaluation

problem of the SELECT-WHERE-WITHIN part of CEQL query into

the evaluation problem for CEA, in the following sense.
3

Theorem 1. For every CEL formula 𝜑 we can construct a CEA A
of size linear in 𝜑 such that for every 𝜖 :

J𝜑 WITHIN 𝜖K(𝑆) = {𝐶 | 𝐶 ∈ JAK(𝑆) ∧𝐶 (end) −𝐶 (start) ≤ 𝜖}.

Our evaluation algorithm will compute the right-hand side in

this equation. It requires, however, that the input CEAA is I/O-

deterministic: for every pair of transitions 𝑞
𝑃1/𝑚1−−→ 𝑞1 and 𝑞

𝑃2/𝑚2−−→ 𝑞2

from the same state 𝑞, if 𝑃1 ∩ 𝑃2 ≠ ∅ then 𝑚1 ≠ 𝑚2. In other

3
We remark that any selection policy mentioned in the SELECT clause can also be

expressed using CEA, see [31, 33].



words, an event 𝑡 may trigger both transitions at the same time

(i.e., 𝑡 |= 𝑃1 and 𝑡 |= 𝑃2) only if one transition marks the event,

but the other does not. In [31, 33], it was shown that any CEA can

be I/O-determinized. The determinization method we use is based

on the classical subset construction of finite state automata, thus

possibly adding an exponential blow-up in the number of states. To

avoid this exponential blow-up in practice, in CORE we determinize

the CEA not all at once, but on the fly while the stream is being

processed. Importantly, we cache the previous states that we have

computed. In Section 4.4 we discuss the internal implementation of

CORE and how this exponential factor impacts system performance.

4 EVALUATION ALGORITHM
In this section, we present an efficient evaluation algorithm that,

given a CEA A, time window 𝜖 , and stream 𝑆 , computes the set

JAK𝜖 (𝑆) := {𝐶 | 𝐶 ∈ JAK(𝑆) ∧𝐶 (end) −𝐶 (start) ≤ 𝜖}.
In fact, our algorithm will compute this set incrementally: at every

position 𝑗 in the stream, it outputs the set

JAK𝜖𝑗 (𝑆) := {𝐶 ∈ JAK𝜖 | 𝐶 (end) = 𝑗}.
The algorithm works by incrementally maintaining a data structure

that compactly represents partial outputs (i.e., fragments of 𝑆 that

later may cause a complex event to be output). Whenever a new

tuple arrives, it takes constant time (in data complexity [52]) to

update the data structure. Furthermore, from the data structure, we

may at each position 𝑗 enumerate the complex events of JAK𝜖𝑗 (𝑆)
one by one, without duplicates, and with output-linear delay [33, 51].

This means that the time required to print the first complex event

of JAK𝜖𝑗 (𝑆) from the data structure, or any of the following ones, is

linear in the size of complex event being printed. Note in particular

that the data complexity of our algorithm is asymptotically optimal:

any evaluation algorithm needs to at least inspect every input tuple

and list the query answers. Also note that, because it takes constant

time to update the data structure with a new input event, the size

of our data structure is at most linear in the number of seen events.

We first define the data structure in Section 4.1, and operations

on it in Section 4.2. The evaluation algorithm is given in Section 4.3

and aspects of its implementation in Section 4.4.

4.1 The Data Structure
Our data structure is called a timed Enumerable Compact Set (tECS).

Figure 4 gives an example. Specifically, a tECS is a directed acyclic

graph (DAG) E with two kinds of nodes: union nodes and non-

union nodes. Every union node u has exactly two children, the left

child left(u) and the right child right(u), which are depicted by

dashed and solid edges in Figure 4, respectively. Every non-union

node n is labeled by a stream position (an element of N) and has

at most one child. If non-union node n has no child it is called a

bottom node, otherwise it is an output node. We write pos(n) for
the label of non-union node n and next(o) for the unique child of

output node o. To simplify presentation in what follows, we will

range over nodes of any kind by n; over bottom, output, and union

nodes by b, o, and u, respectively.
A tECS represents sets of complex events or, more precisely, sets

of open complex events. An open complex event is a pair (𝑖, 𝐷) where
𝑖 ∈ N and𝐷 is a finite subset of {𝑖, 𝑖+1, . . .}. An open complex event

0 0

1 1

∨
2 4

5 ∨ 6

0 0

1 1

1

1 1

1
1

1

Figure 4: An example tECS. Union nodes are labeled by ∨
while non-union nodes are depicted as circles. Left and right
children of union nodes are indicated by dashed and solid
edges, respectively. The maximum-start of each node is at
its top-right in grey.

is almost a complex event, with a start time 𝑖 and set of positions

𝐷 , but where the end time is missing: if we choose 𝑗 ≥ max(𝐷),
then ( [𝑖, 𝑗], 𝐷) is a complex event. Intuitively, when processing a

stream, the open complex events represented by a tECS are partial

results that may later become full complex events.

The representation is as follows. A full-path in E is a path

𝑝 = n1, n2, . . . , n𝑘 such that n𝑘 is a bottom node. Each full-path 𝑝 rep-

resents the open complex event J𝑝KE = (𝑖, 𝐷) where 𝑖 = pos(𝑛𝑘 ) is
the label of the bottom node𝑛𝑘 , and𝐷 is the set of labels of the other

non-union nodes in 𝑝 . For instance, for the full-path 𝑝 = 4, 2,∨, 1, 1
in Figure 4, we have J𝑝KE = (1, {1, 2, 4}). Given a node n, the set
JnKE of open complex events represented by n consists of all open

complex events J𝑝KE with 𝑝 a full-path in E starting at n.

Example 2. In Figure 4 we have J4KE = {(0, {0, 2, 4}), (1, {1, 2, 4})
and J6KE = {(0, {0, 2, 6}), (0, {0, 5, 6}), (1, {1, 2, 6}), (1, {1, 5, 6}).

Remember that our purpose in constructing E is to be able to enu-
merate the set JAK𝜖𝑗 (𝑆) at every 𝑗 . To that end, it will be necessary

to enumerate, for certain nodes n in E, the set
JnK𝜖E ( 𝑗) := { ([𝑖, 𝑗], 𝐷) | (𝑖, 𝐷) ∈ JnKE ∧ 𝑗 − 𝑖 ≤ 𝜖 },

i.e., all open complex events represented by n that, when closed

with 𝑗 , are within a time window of size 𝜖 .

Example 3. The set of all complex events output by the accepting

runs of CEA A in Figure 3 can be retrieved from the tECS of Figure 4

by enumerating J4K6

E (4) and J6K6

E (6), which contains all complex

events output at position 4 and 6, respectively.

A straightforward algorithm for enumerating JnK𝜖E ( 𝑗) is to per-

form a depth-first search (DFS) starting at n. During the search we

maintain the full-path 𝑝 from n to the currently visited nodem. Ev-

ery time we reach a bottom node, we check whether J𝑝KE satisfies

the time window, and, if so, output it. There are two problems with

this algorithm. First, it does not satisfy our delay requirements: the

DFS may spend unbounded time before reaching a full-path 𝑝 that

satisfies the time window and actually generates output. Second,

it may enumerate the same complex event multiple times. This

happens if there are multiple full-paths from 𝑛 that represent the

same open complex event. We therefore impose three restrictions

on the structure of a tECS.

The first restriction is that E needs to be time-ordered, which is

defined as follows. For a node n define its maximum-start, denoted

max(n), as max(n) = max

(
{𝑖 | (𝑖, 𝐷) ∈ JnKE }

)
. A tECS is time-

ordered if (1) every node n carries max(n) as an extra label (so that

it can be retrieved in 𝑂 (1) time) and (2) for every union node u it
holds that max(left(u)) ≥ max(right(u)). For instance, the tECS of
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u
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u
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n𝑘

Figure 5: Gadgets for the implementation of the unionmethod. The unodes are union nodes, where the dashed and bold arrows
symbolize the left and right nodes, respectively.

Figure 4 is time-ordered. The DFS-based enumeration algorithm

described above can be modified to avoid needless searching on

a time-ordered tECS: before starting the search, first check that

𝑗−max(𝑛) ≤ 𝜖 . If so, JnK𝜖E ( 𝑗) is non-empty andwe perform the DFS-

based enumeration. However, when we traverse a union node u we

always visit left(u) before right(u). Moreover, we only visit right(u)
if 𝑗 −max(right(u)) ≤ 𝜖 . Otherwise, right(u) and its descendants

do not contribute to JnK𝜖E ( 𝑗), and can be skipped.

The second restriction is that E needs to be 𝑘-bounded for some

𝑘 ∈ N, which is defined as follows. Define the (left) output-depth

odepth(n) of a node n recursively as follows: if n is a non-union

node, then odepth(n) = 0; otherwise, odepth(n) = odepth(left(n))+
1. The output depth tell us how many union nodes we need to tra-

verse to the left before we find a non-union node that, therefore,

produces part of the output. Then, E is 𝑘-bounded if odepth(n) ≤ 𝑘

for every node n. For instance, the tECS of Figure 4 is 1-bounded.

The 𝑘-boundedness restriction is necessary because even though

we know that, on a time-ordered E, we will find a complex event to

output by consistently visiting left children of union nodes, starting

from n, there may be an unbounded number of union nodes to

visit before reaching a bottom node. In that case, the length of the

corresponding full-path 𝑝 risks being significantly bigger than the

size of J𝑝KE , violating the output-linear delay.
The third restriction on E, needed to ensure that we may enu-

merate without duplicates, is for it to be duplicate-free. Here, E is

duplicate-free if all of its nodes are duplicate-free, and a node n is
duplicate-free if for every pair of distinct full-paths 𝑝 and 𝑞 that

start at n we have J𝑝KE ≠ J𝑞KE .

Theorem 2. Fix 𝑘 . For every 𝑘-bounded and time-ordered tECS

E, and for every duplicate-free node n of E, time-window bound 𝜖 ,

and position 𝑗 , the set JnK𝜖E ( 𝑗) can be enumerated with output-linear

delay and without duplicates.

4.2 Methods for Managing the Data Structure
The evaluation algorithm will build the tECS E incrementally: it

starts from the empty tECS and, whenever a new tuple arrives on

the stream 𝑆 , it modifies E to correctly represent the relevant open

complex events. To ensure that we may enumerate JAK𝜖𝑗 (𝑆) from
E by use of Theorem 2, E will always be time-ordered, 𝑘-bounded

for 𝑘 = 3, and duplicate-free. We next discuss the operations for

modifying a tECS E required by the evaluation algorithm.

It is important to remark that, in order to ensure that newly

created nodes are 3-bounded, many of these operations expect their

argument nodes to be safe. Here, a node is safe if it is a non-union

node or if both odepth(n) = 1 and odepth(right(n)) ≤ 2. All of our

operations themselves return safe nodes, as we will see.

Operations on tECS. We consider the following three operations:

b← new-bottom(𝑖) o← extend(n, 𝑗) u← union(n1, n2)

where 𝑖, 𝑗 ∈ N, n, n1 and n2 are nodes in E, and b, o, and u are the
bottom, output, and union nodes, respectively, created by these

methods. The first method, new-bottom(𝑖) simply adds a new bot-

tom node b labeled by 𝑖 to E. The second method, extend(n, 𝑗)
adds a new output node o to E with pos(o) = 𝑗 and next(o) = n.
The third method, union(n1, n2) returns a node u such that JuKE =

Jn1KE ∪ Jn2KE . This method requires a more detailed discussion.

Specifically, union requires that its inputs n1 and n2 are safe and

that max(n1) = max(n2). Under these requirements, union(n1, n2)
operates as follows. If n1 is non-union then a new union node

u is created which is connected to n1 and n2 as shown in Fig-

ure 5(a). If n2 is non-union, then u is created as shown in Figure 5(b).

When n1 and n2 are both union nodes we distinguish two cases.

If max(right(n1)) ≥ max(right(n2)), three new union nodes, u,
u1, and u2 are added, and connected as shown in Figure 5(c). Fi-

nally, if max(right(n1)) < max(right(n2)), three new union nodes

are added, but connected as we show in Figure 5(d). In all cases,

JuKE = Jn1KE ∪ Jn2KE and the newly created union nodes are time-

ordered. Furthermore, the reader is invited to check that, because

n1 and n2 are safe, u is also safe, and the output-depth of the newly

created union nodes is a most 3.

Because also the nodes created by new-bottom and extend are

safe, time-ordered, and have output-depth at most 3, it follows that

any tECS that is created using only these three methods is time-

ordered and 3-bounded. Moreover, all of these methods output safe

nodes and take constant time.

Union-lists and their Operations. To incrementally maintain E,
the evaluation algorithm will also need to manipulate union-lists. A

union-list is a non-empty sequence ul of safe nodes of the form ul =

n0, n1, . . . , n𝑘 such that (1) n0 is non-union, (2) max(n0) ≥ max(n𝑖 )
and (3) max(n𝑗 ) > max(n𝑗+1), for every 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 < 𝑘 . In

other words, a union-list is a non-empty sequence of safe nodes

sorted decreasingly by maximum-start.

We require three operations on union-lists, all of which take

safe nodes as arguments. The first method, new-ulist(n), creates a
new union-list containing the single non-union node n. The second
method, insert(ul, n), mutates union-list ul = n0, . . . , n𝑘 in-place

by inserting a safe node n such that max(n) ≤ max(𝑛0). Specifically,
if there is 𝑖 > 0 such that max(n𝑖 ) = max(n), then it replaces n𝑖 in
ul by the result of calling union(n𝑖 , n). This hence also updates E.



Algorithm 1 Evaluation of an I/O-deterministic CEA A = (𝑄,Δ, 𝑞0, 𝐹 ) over a stream 𝑆 given a time-bound 𝜖 .

1: procedure Evaluation(A, 𝑆, 𝜖)

2: 𝑗 ← −1

3: T← ∅
4: while 𝑡 ← yield(𝑆) do
5: 𝑗 ← 𝑗 + 1

6: T
′ ← ∅

7: ul← new-ulist(new-bottom( 𝑗))
8: ExecTrans(𝑞0, ul, 𝑡, 𝑗)
9: for 𝑝 ∈ ordered-keys(T) do
10: ExecTrans(𝑝,T[𝑝], 𝑡, 𝑗)
11: T← T

′

12: Output( 𝑗, 𝜖)

13: procedure ExecTrans(𝑝, ul, 𝑡, 𝑗 )
14: n← merge(ul)
15: if 𝑞 ← Δ(𝑝, 𝑡, •) then
16: n′ ← extend(n, 𝑗)
17: ul′ ← new-ulist(n′)
18: Add(𝑞, n′, ul′)
19: if 𝑞 ← Δ(𝑝, 𝑡, ◦) then
20: Add(𝑞, n, ul)
21: return

22: procedure Add(𝑞, n, ul)
23: if 𝑞 ∈ keys(T′) then
24: T

′[𝑞] ← insert(T′[𝑞], n)
25: else
26: T

′[𝑞] ← ul

27: return
28:

29: procedure Output( 𝑗, 𝜖)
30: for 𝑝 ∈ keys(T) do
31: if 𝑝 ∈ 𝐹 then
32: n← merge(T[𝑝])
33: Enumerate(n, 𝑗)

Otherwise, we discern two cases. If max(n) = max(n0), then n is

inserted at position 1 in ul. Otherwise, n is inserted between n𝑖
and n𝑖+1 with 𝑖 > 0 such that max(n𝑖 ) > max(n) > max(n𝑖+1). The
last method, merge(ul), takes a union-list ul and returns a node u
such that JuKE = Jn0KE ∪ . . . ∪ Jn𝑘KE . Specifically, if 𝑘 = 0, then

u = n0. Otherwise, we add 𝑘 union nodes u, u1, . . . , u𝑘−1
to E, and

connect them as shown in Figure 5 (e). It is important to observe that,

because n0 is a non-union node, odepth(u) ≤ 1. Moreover, because

all n𝑖 are safe, odepth(u𝑖 ) ≤ 2. As a result, u is safe. Furthermore, all

of the new union nodes are time-ordered and are 3-bounded. This,

combined with the properties of new-bottom, extend, and union
described above implies that any tECS that is created using only

these three methods plus merge is time-ordered and 3-bounded.

Furthermore, all of these methods retrieve safe nodes, and their

outputs are hence valid inputs to further calls. Finally, we remark

that all methods on union-lists take time linear in the length of ul.

Hash Tables. In order to incrementally maintain E, the evaluation
algorithm will also need to manipulate hash tables that map CEA

states to union-lists of nodes. If T is such a hash table, then we

write T[𝑞] for the union-list associated to state 𝑞 and T[𝑞] ← ul
for inserting or updating it with a union-list ul. We use the method

keys(T) to iterate through all the current states of T and write 𝑞 ∈
keys(T) for checking if 𝑞 is already a key in T or not. For technical

reasons, we also consider a method called ordered-keys(T) that
iterates over keys of 𝑇 in the order in which they have been inserted

into 𝑇 . If a key is inserted and then later is inserted again (i.e.,

an update), then it is the time of first insertion that counts for

the iteration order. One can easily implement ordered-keys(T) by
maintaining a traditional hash table together with a linked list that

stores keys sorted in insertion order. Compatible with the RAM

model of computation [9], we assume that hash table lookups and

insertion take constant time, while iteration over their keys by

means of keys(T) and ordered-keys(T) is with constant delay.

4.3 The Evaluation Algorithm
CORE’s main evaluation algorithm is presented in Algorithm 1.

It receives as input an I/O deterministic CEA A = (𝑄,Δ, 𝑞0, 𝐹 ), a
stream 𝑆 , and a time-bound 𝜖 . As already mentioned at the begin-

ning of Section 4, its goal is to enumerate, at every position 𝑗 in the

stream, the set JAK𝜖𝑗 (𝑆) of complex events produced by accepting

runs terminating at 𝑗 that satisfy the time-bound Y. It does so by
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Figure 6: Illustration of Algorithm 1 on the CEA A and
stream 𝑆 of Figure 3.

maintaining (1) a tECS E to represents all open complex events up

to the current position 𝑗 and (2) the set of active states of A. Here,

a state 𝑞 ∈ 𝑄 is active at stream position 𝑗 if there is some (not

necessarily accepting) run of A that starts at position 𝑖 ≤ 𝑗 which

is in state 𝑞 at position 𝑗 . Specifically, in order to incrementally

maintain the tECS, Algorithm 1 will link active states to the set of

open complex events that they generate. Towards that goal, it uses

a hash table 𝑇 that maps active states of 𝑄 to a union-list of nodes.

We next explain how Algorithm 1 works. During our discussion,

the reader may find it helpful to refer to Figure 6, which illustrates

Algorithm 1 as it evaluates the CEA of Figure 3 over the stream 𝑆

of Figure 3. Each subfigure depicts the state after processing 𝑆 [ 𝑗].
The tECS is denoted in black, while the hash table 𝑇 that links the

active states to union-lists is illustrated in blue. For each position,

the set ordered-keys(𝑇 ) will be ordered top down. (E.g., for 𝑆 [4]
this will be 𝑞4, 𝑞3, 𝑞2 while for 𝑆 [3] this will be 𝑞3, 𝑞2.)

Algorithm 1 consists of four procedures, of which Evaluation is

the main one. It starts by initializing the current stream position 𝑗 to

−1 and the hash table 𝑇 to empty (lines 2–3). Then, for every tuple

in the stream, it executes the while loop in lines 4–12. Here, we

assume that yield(𝑆) returns the next unprocessed tuple 𝑡 from 𝑆 .

For every such tuple, 𝑗 is updated, and the hash table T
′
is initialized

to empty (lines 5-6). Intuitively, in lines 6–10, the hash table 𝑇 will

hold the states that are active at position 𝑗 − 1 (plus corresponding

union-lists) while 𝑇 ′ will hold the states that are active at position

𝑗 . In particular, 𝑇 ′ is computed from 𝑇 in lines 7–10. Specifically,

lines 7–8 take into account that a new run may start at any position

in the stream, and hence in particular at the current position 𝑗 .



For this purpose, the algorithm creates a new union-list starting

at position 𝑗 (line 7) and executes all transitions of initial state 𝑞0

by calling ExecTrans (line 8), whose operation is explained below.

Subsequently, lines 9–10 take into account that a state 𝑞 is active at

position 𝑗 if there is a state 𝑝 active at position 𝑗 −1 and a transition

𝑝
𝑃/𝑚−−→𝑞 of A with 𝑡 |= 𝑃 . As such, we iterate through all active

states of 𝑇 and execute all of their transitions (line 9-10). Once this

is done, we swap the content of 𝑇 with 𝑇 ′ to prepare of the next

iteration. We also call the Output method (lines 29-33) who is in

charge of enumerating all complex events in JAK𝜖𝑗 (𝑆), and whose

operation is explained below.

The procedure ExecTrans is the workhorse of Algorithm 1. It

receives an active state 𝑝 , a union-list ul, the current tuple 𝑡 , and
the current position 𝑗 . The union-list ul encodes all open complex

events of runs that have reached 𝑝 . ExecTrans first merges ul
into a single node n (line 14). Then it executes the marking (line

15) and non-marking transitions (line 19) that can read 𝑡 while in

state 𝑝 . Specifically, we write 𝑞 ← Δ(𝑝, 𝑡,𝑚) to indicate that there

is 𝑝
𝑃/𝑚−−→𝑞 in Δ with 𝑡 |= 𝑃 . Given that A is I/O-deterministic, there

exists at most one such state 𝑞 and, if there is none, we interpret

𝑞 ← Δ(𝑝, 𝑡,𝑚) to be false. In lines 15–18, if there is a marking

transition reaching 𝑞 from 𝑝 , then we extend all open complex

events represented by n with the new position 𝑗 (line 16) and add

them to T
′[𝑞]. In lines 19–20, if there is a non-marking transition

reaching 𝑞 from 𝑝 , we add n directly to T
′[𝑞] without extending it.

To add the open complex events to T
′[𝑞], we use the method Add

(lines 22-27). This method checks whether it is the first time that

we reach 𝑞 on the 𝑗-th iteration or not. Specifically, if 𝑞 ∈ keys(T′),
then we have already reached 𝑞 on the 𝑗-th iteration and therefore

we insert n in the list T
′[𝑞] (lines 23-24). Instead, if it is the first

time that we reach 𝑞 on the 𝑗-iteration, then we initialize the 𝑞

entry of T
′
with the union-list representation of n.

The Output procedure (lines 29-33) is in charge of enumerating

all complex events in JAK𝜖𝑗 (𝑆). Given that, when it is called, T

contains all active states at position 𝑗 , it suffices to iterate over

𝑝 ∈ keys(T) and check whether 𝑝 is a final state or not (lines 30-31).

If 𝑝 is final, then we merge the union-list at T[𝑝] into a node n
and call Enumerate(n, 𝑗), where Enumerate is the enumeration

algorithm of Theorem 2.

Recall that by Theorem 2 if the tECS is 𝑘-bounded, time-ordered,

and duplicate-free then the set JnKE ( 𝑗) can be enumerated with

output-linear delay. Because Algorithm 1 builds E only through

the methods of Section 4.2, we are guaranteed it is 3-bounded

and time-ordered. Moreover, we can show that, because A is I/O-

deterministic, E will also be duplicate-free. From this, we can derive

the following correctness statement of Algorithm 1.

Theorem 3. After the 𝑗-th iteration of Evaluation, the Output

method enumerates the set JAK𝜖𝑗 (𝑆) with output-linear delay.

We note that the order in which we iterate over active states and

execute transitions in lines 7–11 is important for the correctness

of the algorithm. In particular, because we first execute transitions

of initial state 𝑞0 and then process all states according to their

insertion-order, we can prove that states are processed following a

decreasing order of the max-start of active states. From this, we also

derive that every call to insert(𝑇 ′[𝑞], 𝑛) in line 24 is legal: when it

is called we have that max(𝑇 ′[𝑞]) ≥ max(𝑛), as is required by the

definition of insert.
Let us now analyze the update-time. When a new tuple arrives,

lines 5–11 of Algorithm 4.3 update 𝑇 , 𝑇 ′, and E by means of the

methods of Section 4.2. All of these either take constant time, or

time linear in the size of the union list being manipulated. We can

show that, for every position 𝑗 , the length of every union list is

bounded by the number of active states (i.e., the number of keys in

T). Then, because in each invocation of lines 5–11 we iterate over

all transitions in the worst case, and because executing a transition

takes time proportional to the length of union-list, which is at most

the number of states, we may conclude that the time for processing

a new tuple is O(|𝑄 | · |Δ|). This is constant in data complexity.

4.4 Implementation Aspects of CORE
We review here some implementation aspects of CORE that we did

not cover by the algorithm or previous sections.

The system receives a CEQL query and a stream, reading it tuple

by tuple. From the query, CORE collects all atomic predicates (e.g.,

price > 100) into a list, call it 𝑃1, . . . , 𝑃𝑘 . For each tuple 𝑡 of the

stream, the system evaluates 𝑡 over 𝑃1, . . . , 𝑃𝑘 by building a bit vec-

tor ®𝑣𝑡 of 𝑘 entries such that ®𝑣𝑡 [𝑖] = 1 if, and only if, 𝑡 |= 𝑃𝑖 , for every

𝑖 ≤ 𝑘 . Then, CORE uses ®𝑣𝑡 as the internal representation of 𝑡 for

optimizing the evaluation of complex predicates (e.g., conjunctions

or disjunctions of atomic predicates) and for the determinization

procedure (see below). Furthermore, CORE evaluates each predicate

once, improving the performance over costly attributes (e.g., text).

As already mentioned, CORE compiles the CEQL query into a

non-deterministic CEA A (Theorem 1). For the evaluation of A
with Algorithm 1, CORE runs a determinization procedure on-the-

fly: for a state 𝑝 in the determinization of A and the bit vector

®𝑣 , the states 𝑞• := Δ(𝑝, ®𝑣, •) and 𝑞◦ := Δ(𝑝, ®𝑣, ◦) are computed

in linear time over |A|. Moreover, we cache 𝑞• and 𝑞◦ in main

memory and use a fast-index to recover Δ(𝑝, ®𝑣, •) and Δ(𝑝, ®𝑣, ◦)
whenever is needed again. Although the determinization of A
could be of exponential size in the worst case, this rarely happens

in practice. Note that the determinization process depends on the

selection strategy which can also computed on-the-fly by following

the constructions in [33].

For reducing memory usage when dealing with time windows,

the system manages the memory itself with the help of Java weak

references. Nodes in the tECS data structure are weakly referenced,

while the strong references are stored in a list, ordered by creation

time. When the system goes too long without any outputs, it will

remove the strong references from nodes that are now outside the

timewindow, allowing Java’s garbage collector to reclaim that mem-

ory without the need to modify the tECS data structure. Although

this memory management could break the constant time update

and output-linear delay, it takes constant amortized time and works

well in practice (see Section 5).

For evaluating the PARTITION BY clause, CORE partitions the

stream by the corresponding PARTITION BY attributes, running

one instance of the algorithm for each partition. This process is

done by hashing the corresponding attribute values, assigning them

their own runs, or creating new ones if they don’t exist.

We implemented CORE in Java. Its code is open-source and

available at [1] under the GNU GPLv3 license.



5 EXPERIMENTS
In this section, we compare CORE against four leading CER systems:

SASE [53], Esper [4], FlinkCEP [5], and OpenCEP [6]. These all

provide a CER query language with features like pattern matching,

windowing, and partition-by based correlation, whose semantics

is comparable to CORE. We have surveyed the literature for other

systems to compare against but found ourselves limited to these

baselines, as explained in the online appendix [21].

Setup. We compare against SASE v.1.0, Esper v.8.7.0, FlinkCEP

v.1.12.2, and OpenCEP (commit e320ad8). All systems are imple-

mented in Java except for OpenCEP which uses Python 3.9.0. We

run experiments on a server equipped with an 8-core AMD Ryzen

7 5800X processor running at 3.8GHz, 64GB of RAM, Windows 10

operating system, OpenJDK Runtime 17+35-2724, and the OpenJDK

64-Bit Server Virtual Machine build 17+35-2724. Java and Python

virtual machines are restarted with freshly allocated memory before

each run.

We compare systems on throughput and memory consumption.

All reported numbers are averages over 3 runs.Wemeasure through-

put, expressed as the number of events processed per second (e/s),

as follows. We first load the input stream completely in main mem-

ory to avoid measuring the data loading time. We then start the

timer and allow systems to read and process events as fast as they

can. After 30 seconds, we disallow reading further events and stop

the timer when the last read event has been fully processed, with a

timeout of 1 minute. We report the average throughput, expressed

as the total number of processed events divided by the total running

time. Runs that time-out have a value of “aborted” for the average,

and will not be plotted. Recognized complex events are logged to

main memory. We adopt the consumption policy [26, 30] that for-

gets all events read so far when a complex event is found. We adopt

this policy for all systems because it is the only one supported by

Esper and SASE. We measure memory consumption every 10000

events, and report the average value. Before measuring memory

consumption, we always first call the garbage collector. The experi-

ments that measure memory consumption are run separately from

the experiments that measure throughput.

For the sake of consistency, we have verified that all systems

produced the same set of complex events. When this was not the

case, we explicitly mention this difference below.

CORE and SASE are single-core, sequential programs. To ensure

fair comparison, all of the systems are therefore run in a single-

core, sequential setup. Esper, FlinkCEP, and OpenCEP may exploit

parallelism in a multi-core setup and support work in a distributed

environment. While this may improve their performance, we stress

that in many of the experiments below, CORE outperforms the

competition by orders of magnitude. As such, even if we assume that

these systems have perfect linear scaling in the number of added

processors (which is unlikely in practice), they would need orders

of magnitude more processors before meeting COREs throughput.

Therefore, we do not consider a setup with parallelization.

All the experiments are reproducible. The data and scripts can

be found in [1].

Datasets. We run our experiments over three real datasets: (1) the

stock market dataset [7] containing buy and sell events of stocks in a

single market day; (2) the smart homes dataset [2] containing power

measurements of smart plugs deployed in different households; and

(3) the taxi trips dataset [3] recording taxi trips events in New York.

Each original dataset includes several millions of real-world events

and have already been used in the past to compare CER systems

(e.g. [44–47]). For each dataset, we run experiments on a prefix of

the full stream consisting of about one million events. Full details

on the datasets, the prefix considered, and the queries that we run

are given in the online appendix [1].

Sequence Queries With Output. We start by considering se-

quence queries, which have been used for benchmarking in CER be-

fore (see, for example, [28, 48, 53–55]). Specifically, for each dataset

we fix aworkload of queries 𝑃𝑛 of the following form, each detecting

sequences of 𝑛 events.

Pn := SELECT * FROM Dataset
WHERE A1 ; A2 ; ... ; An
FILTER A1[filter_1] AND ... AND An[filter_n]
WITHIN T

Here, A1, . . ., An and filter_1, . . ., filter_n are dataset-dependent,
as detailed in the online appendix. We consider sequences of length

𝑛 = 3, 6, 9, 12, and 24. In this experiment, we use a fixed time

window T of 10 seconds for the stock market and smart homes

dataset, and of 2.7 hours for the taxi trip dataset, which is enough

to find several outputs. While 𝑃12 and 𝑃24 usually do not produce

outputs, they are nevertheless useful to see how systems scale to

long sequence queries.

In the following analysis, when the processing of an input event

triggers one or more complex events to be recognized, we will refer

to this triggering input event as a pattern occurrence. Each pattern

occurrence may generate multiple complex event outputs. In our

experiments, when a pattern occurrence is found, we only enumer-

ate the first thousand corresponding complex events outputs. An

exception is FlinkCEP where, for implementation reasons, we only

generate the first such output. Note that this favors FlinkCEP since

it needs to produce less output. For OpenCEP we use the so-called

ANY evaluation strategy, which is the only one that allows enu-

merating all matches. Unfortunately, it does not produce the same

outputs as CORE, SASE, and FlinkCEP. Despite this, the number of

results produced by OpenCEP is similar to other systems, making

the comparison reasonable.

Figure 7 (left), plots the measured throughput and memory con-

sumption (in log scale) as a function of the sequence length 𝑛.

CORE’s throughput is in the range of [10
5, 10

6] e/s. This through-
put fluctuates due to variations in the number of complex events

found, which must all be reported before an event can be declared

fully processed. For example, for the smart homes dataset, queries

𝑃9 and 𝑃12 are very output intensive (i.e., around 1 million pattern

occurrences in total), and the fluctuations are most noticeable for

this dataset. Instead, the stocks and taxi trips datasets have less pat-

tern occurrences (i.e., around a few thousand) and we can see that

CORE’s throughput is more stable. Note in particular that CORE’s

throughput is only linearly affected by 𝑛 in these cases.

We next compare to the other systems. For 𝑛 = 3, the throughput

of most baselines is one order of magnitude (OOM) lower than

CORE, except for Esper which has comparable throughput on stock

and smart homes. However, as 𝑛 grows, the throughput of all sys-

tems except CORE degrades exponentially. For the smart homes

dataset, the throughput of FlinkCEP is more stable, although up to



3 6 9 12 24
101
102
103
104
105
106
107

T
h
ro
u
g
h
p
u
t
(e
/
s)

Stock Market

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

3 6 9 12 24
101
102
103
104
105
106
107

T
h
ro
u
g
h
p
u
t
(e
/
s)

Stock Market

3 6 9 12 24

Smart Homes

3 6 9 12 24

Taxi Trips

3 6 9 12 24
101
102
103
104
105
106
107

M
em

o
ry

(K
B
)

Esper FlinkCEP SASE OpenCEP CORE

3 6 9 12 24 3 6 9 12 24 3 6 9 12 24
101
102
103
104
105
106
107

M
em

o
ry

(K
B
)

3 6 9 12 24 3 6 9 12 24

Figure 7: Throughput (higher is better) and memory consumption (lower is better) as a function of sequence length 𝑛, on
queries with output (left) and queries without outputs (right, in gray).

2 OOM lower than CORE. Recall, however, that FlinkCEP produces

only a single complex event per pattern occurrence, while all other

systems enumerate up to one thousand complex events per occur-

rence. In contrast to the baselines, CORE’s throughput is stable,

only affected by the high number of complex events found, and

degrades only linearly in 𝑛 on stocks and taxis. As a consequence,

on these datasets, CORE’s throughput is 1 to 5 OOM higher than

the baselines for large values of 𝑛.

The memory used by CORE is high (∼300MB) but stable in 𝑛.

By contrast, the memory consumption of Esper and FlinkCEP can

grow exponentially in 𝑛. OpenCEP and SASE
4
are special cases

whose memory consumption is stable and comparable to CORE.

Sequence Queries Without Output. In practice, we may expect

CER systems to look for unusual patterns in the sense that the

number of complex events found is small. Our next experiment

captures this setting. For each query 𝑃𝑛 we create a variant 𝑃 ′𝑛
by adding, to the sequence pattern of 𝑃𝑛 , an additional event that

never occurs in the stream. These variant queries hence never

produce outputs. Since systems do not know this, however, they

must inherently look for partial matches that satisfy the original

sequence query 𝑃𝑛 . Because no time is spent enumerating complex

events when processing 𝑃 ′𝑛 , this experiment can hence also be

viewed as a way of measuring only the update performance of 𝑃𝑛 .

Note that, even though no complex events are found, systems may

still materialize a large number of partial matches.

Figure 7 (right) plots the results (in log scale) on 𝑃 ′𝑛 for 𝑛 = 3,

6, 9, 12, 24. We see that CORE’s throughput is comparable to the

throughput on 𝑃𝑛 (Figure 7, left), except for the smart homes dataset,

where the throughput has improved. Overall, CORE’s throughput

is on the order of 10
6
e/s, decreasing mostly linearly with 𝑛. By

contrast, other systems have lower throughput, by 1 to 5 OOM, and

this throughput decreases much more rapidly in 𝑛. This is most

observable for Esper and OpenCEP, whose performance drops ex-

ponentially in 𝑛. For the taxi dataset, the throughput of all systems

4
The memory consumption of SASE drops for 𝑃12 and 𝑃24 . This is because in these

cases the number of events that SASE can successfully process in full is significantly

less than for smaller values of 𝑛, and also less than other systems .
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Figure 8: Throughput as a function of time-window size.

reduces to less 10
4
e/s compared to the original 𝑃𝑛 setting, most

probably because of a high number of partial matches that are main-

tained but never completed. CORE is not affected by the number of

partial matches, which explains its stable performance.

Notice that CORE does not use lazy evaluation [36, 37, 40] as

some other systems do: it eagerly updates its internal data structure

on each input event.A CER system that uses lazy evaluation could

perform well when there is no output (i.e., for 𝑃 ′𝑛) but badly when

several pattern occurrences appear (i.e., for 𝑃𝑛). One can see CORE

as the best of both worlds. It does work event after event, and results

are ready for enumeration at each pattern occurrence.

Memory consumption of most systems remains high, with the

memory usage of Esper and FlinkCEP increases exponentially with

𝑛. CORE’s memory consumption is stable, like the consumption of

SASE
5
and OpenCEP.

Varying the Time-Window Size.We next measure the effect of

varying the time window size on processing performance. We do

so by fixing query 𝑃 ′
3
, and varying the window size from T to 4T

where T is the original window size. We fix 𝑃 ′
3
because this allows

us to measure the effect of update processing only, and because

performance on 𝑃 ′𝑛 is highest for all systems when 𝑛 = 3.

The results (log scale) are in Figure 8. We see that CORE outper-

forms other systems by at least one OOM for size T and by 2 to 4

OOM for 4T. Note that for stock market and smart homes dataset

we are still using relatively small time windows of a few hundreds

5
Memory consumption for SASE is lower compared to Figure 7 (left) because the

number of events that SASE can successfully process in full is significantly less.
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Figure 9: Throughput of evaluating queries 𝑄1 to 𝑄7, which
include non-sequence operators, over stock market data.

events; in practice windows may be significantly larger (e.g., taxi

trips dataset). We also observe that the throughput of other systems

may degrade exponentially as the size of the time window grows.

Indeed, this is clear for Esper, FlinkCEP, and OpenCEP on stock

market dataset, where the throughput is around 10
5
e/s at T but

less than 10
3
e/s at 4T. In contrast, CORE consistently maintains its

performance at 10
6
e/s, and it is not affected by the window size,

as the theoretical analysis predicted.

In the online appendix [21], we report similar experimental

results even when all systems are allowed to use a selection strategy

heuristic to aid in faster processing.

Other Operators. For the last experiment, we consider a diverse

workload of queries where other operators like disjunction, itera-

tion, or partition-by are used. For these queries, we report only on

the stock market dataset. Given space restrictions, we present the

full CEQL definition of each query in the online appendix [1], and

limit ourselves here to the the following simplified description.

𝑄1 := SELL ; BUY ; BUY ; SELL

𝑄2 := 𝑄1 + FILTER

𝑄3 := 𝑄1 + PARTITION BY

𝑄4 := SELL ; (BUY OR SELL) ; (BUY OR SELL) ; SELL

𝑄5 := 𝑄4 + FILTER

𝑄6 := 𝑄4 + PARTITION BY

𝑄7 := SELL ; (BUY OR SELL)+ ; SELL

SASE and OpenCEP do not support disjunction, and we hence

omit𝑄4–𝑄7 for them. Queries𝑄3 and𝑄6 use the partition-by clause.

Unfortunately, every system gave different outputs when we tried

partition-by queries. Therefore, for𝑄3 and𝑄6 we cannot guarantee

query equivalence for all systems. In all other cases, the results

provided by each system are the same.

In Figure 9 we show the throughput (log-scale), grouped per

query. The results confirm our observations from the previous

experiments. In particular, CORE’s throughput is stable over all

queries (i.e., 10
6
e/s), in contrast to the baselines, which are not

stable. In particular for every baseline system there is at least one

query where CORE’ exhibits 2 OOM or more higher throughput.

𝑄2 and 𝑄5 add filter clauses to 𝑄1 and 𝑄4 respectively. If we

contrast system performance on𝑄2 and𝑄5 with that on𝑄1 and𝑄4,

respectively, then we see that adding such filters reduces perfor-

mance of some baselines, most notably SASE and Esper. CORE does

not suffer from these problems due to its evaluation algorithm.

𝑄3 and𝑄6 add a partition-by clause to𝑄1 and𝑄4, respectively. If

we contrast system performance on𝑄3 and𝑄6 with that on𝑄1 and

𝑄4, respectively, then we see that partition-by aids the performance

of systems like Esper and SASE but slightly decreases the through-

put of CORE. This is because CORE evaluate the partition-by clause

by running several instances of the main algorithm, one for each

partition, which slightly diminishes the throughput. Nevertheless,

CORE still outperforms the baselines.

Limitations of CORE. As the previous experiments show, CORE

outperforms other systems by several orders of magnitudes on

different query and data workloads. We finish this section by a

discussion of the limitations of CORE.

In particular, we see two limitations compared to other ap-

proaches. First, CORE’s asymptotically optimal performance comes

from representing partial matches succinctly in a compact structure,

and enumerating complex events from this structure whenever a

pattern occurrence is found. The enumeration is with output-linear

delay, meaning that the time spent to enumerate complex event 𝐶

is asymptotically O(|𝐶 |), i.e., linear in 𝐶 . This asymptotic analysis

hides a constant factor. While our experiments show that this con-

stant is negligible in practice, enumeration from the data structure

may take longer than directly fetching the complex event from

an uncompressed representation, as most other systems do. This

difference may be important in situations where a user wants to

access outputs multiple times.

Second, CORE compiles CEQL queries into non-deterministic

CEA, which need to be (on-the-fly) determinized before execution.

In the worst case, this determinized CEA can be of size exponential

in the size of the query. Since the time needed to process a new

event tuple, while constant in data complexity, does depends on the

CEA size (Section 4.3), this may also affect processing performance.

While we did not observe this blowup on the queries in this section,

CEQL queries with complicated nesting of iteration and disjunction

can theoretically exhibit such behavior. Unfortunately, no baseline

system (except CORE) currently allows such nesting, and we are

therefore unable to experimentally compare CORE in such a setting.

6 CONCLUSIONS AND FUTUREWORK
We introduced CORE, the first CER system whose evaluation algo-

rithm guarantees constant time per event, followed by output-linear

delay enumeration. We showed experimentally that this algorithm

provides stable performance, being unaffected by the size of the

stream, query, or time window, and leading to a throughput up to

five orders of magnitudes higher than the state of the art.

CORE provides a novel query evaluation approach; however,

there is space for several improvements. A natural problem is to

extend CEQL to allow time windows or partition-by operators in-

side theWHERE clause, which will increase the expressive power

of CEQL. We currently do not know how to extend the evalua-

tion algorithm for such queries while maintaining the performance

guarantees. Other relevant features to include in CORE are aggre-

gation, integration of non-event data sources, or the algorithm’s

parallelization, among others, which we leave as future work.
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