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Abstract
In epidemic models, the effective reproduction number is of central importance
to assess the transmission dynamics of an infectious disease and to orient health
intervention strategies. Publicly shared data during an outbreak often suffers
from two sources of misreporting (underreporting and delay in reporting) that
should not be overlooked when estimating epidemiological parameters. The
main statistical challenge in models that intrinsically account for a misreport-
ing process lies in the joint estimation of the time-varying reproduction number
and the delay/underreporting parameters. Existing Bayesian approaches typi-
cally rely on Markov chain Monte Carlo algorithms that are extremely costly
from a computational perspective. We propose a much faster alternative based
on Laplacian-P-splines (LPS) that combines Bayesian penalized B-splines for
flexible and smooth estimation of the instantaneous reproduction number and
Laplace approximations to selected posterior distributions for fast computation.
Assuming a known generation interval distribution, the incidence at a given cal-
endar time is governed by the epidemic renewal equation and the delay structure
is specified through a composite link framework. Laplace approximations to the
conditional posterior of the spline vector are obtained from analytical versions of
the gradient andHessian of the log-likelihood, implying a drastic speed-up in the
computation of posterior estimates. Furthermore, the proposed LPS approach
can be used to obtain point estimates and approximate credible intervals for the
delay and reporting probabilities. Simulation of epidemics with different com-
binations for the underreporting rate and delay structure (one-day, two-day, and
weekend delays) show that the proposedLPSmethodology delivers fast and accu-
rate estimates outperforming existing methods that do not take into account
underreporting and delay patterns. Finally, LPS is illustrated in two real case
studies of epidemic outbreaks.
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medium, provided the original work is properly cited and is not used for commercial purposes.
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1 INTRODUCTION

In the presence of an epidemic outbreak, it is of vital importance to gain insights into the transmissibility of a disease
and have a clear understanding of the mechanisms driving the dynamics of infections over time. Real-time information
on epidemiological parameters can have a determinant role in orienting public health policies and initiating proactive
interventions for disease control and prevention. The effective reproduction number, 𝑅𝑡, defined as the average num-
ber of secondary infections generated by a primary infected individual in a susceptible population at a calendar time
𝑡 > 0 (Bettencourt & Ribeiro, 2008; Hethcote, 2000) is probably among the most important parameters that permit to
gain knowledge of time-dependent variations in the transmission potential (Nishiura & Chowell, 2009). As our interest
lies in measuring transmission (under misreporting) at a specific time point, 𝑅𝑡 denotes the instantaneous reproduction
number rather than the case reproduction number that is used to quantify transmission from a cohort perspective (Cori
et al., 2013; Gostic et al., 2020). During the last 20 years or so, serious efforts have been invested in the development
of sophisticated inferential methods to estimate the time-varying reproduction number, a challenging task as recently
recalled and beautifully summarized by Gostic et al. (2020). Among early contributors, one can cite Wallinga and Teu-
nis (2004) who propose a likelihood-based estimation of the effective reproduction number solely based on information
provided by the observed epidemic curve. This work was further extended and generalized by Cauchemez et al. (2006)
who assume no prior knowledge of the generation interval, that is, the time elapsed between when a susceptible person
becomes infected (infector) andwhen that individual infects another person (infectee) (Svensson, 2007). Their model cap-
tures the pattern of𝑅𝑡 over time by using partial tracing information andMarkov chainMonte Carlo (MCMC) for posterior
inference.
Delay in reporting and underreporting of incidence data (Cui & Kaldor, 1998; Fraser et al., 2009; Lawless, 1994) adds a

further layer of difficulty that cannot be ignored when designing a model to estimate the reproduction number, as misre-
ported data alter the true underlying signal of an epidemic curve and hence introduce bias in estimates of 𝑅𝑡. The model
of Hens et al. (2011) explicitly accounts for underreporting and provides estimates of 𝑅𝑡 based on a frequentist likelihood
approach that assumes a fixed serial interval distribution (the time elapsed between symptom onset in an infectee and
its infector). Azmon et al. (2014) go one step further and use a Bayesian semiparametric approach with penalized radial
splines to model 𝑅𝑡 accounting simultaneously for underreporting and delay in reporting. They use the renewal equa-
tion (Feller, 1941; Fraser, 2007; Nouvellet et al., 2018; Wallinga & Lipsitch, 2007) to establish a link between 𝑅𝑡 and daily
incidence counts to describe the evolutionary dynamics of an epidemic. When resorting to Bayesian methods for infer-
ence in epidemiological models, MCMC sampling practically imposes itself as a default option as it is a deeply routed and
versatile tool that is made accessible and implementable by many computer software packages such as WinBUGS (Lunn
et al., 2000) or JAGS (Plummer et al., 2003).
Notwithstanding the capacity of MCMC to explore virtually any posterior target distribution, there is often a large

computational price to pay accompanied by eventual convergence problems and the systematic necessity to diagnose
MCMC samples. To overcome these limitations and get rid of the computational hurdles imposed by MCMC, we propose
a completely sampling-free approximate Bayesian inference approach for fast and flexible estimation of the reproduction
number 𝑅𝑡 in an epidemic model with misreported data. In particular, we revisit the model of Azmon et al. (2014) by
using Bayesian P-splines (Eilers & Marx, 1996; Lang & Brezger, 2004) for flexible estimation of the time-varying repro-
duction number (Gressani et al., 2022) and Laplace approximations (Gressani & Lambert, 2018, 2021; Rue et al., 2009)
to the conditional posterior of the latent spline vector related to 𝑅𝑡 for fast computation. Our Laplacian-P-splines (LPS)
model is based on the following three assumptions: (1) a closed susceptible population (i.e., no imported cases), (2) the
generation interval distribution is assumed to be known, and (3) an informative prior on the reporting rate is available. A
composite link model (Eilers, 2007; Thompson & Baker, 1981) is used to represent the delay process, for which we inves-
tigate three possible structures, one-day, two-day, and weekend delays. Moreover, we assume that the mean number of
new contaminations is driven by the renewal equation, that is, the product of the effective reproduction number and a
discrete convolution between past cases and generation probabilities. Several simulation scenarios show that the proposed
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methodology gives accurate estimates of the reporting and delay probabilities and is also able to precisely capture the pat-
tern of 𝑅𝑡 over the course of an epidemic. Encouraging results are also observed when comparing LPS with the EpiEstim
package of Cori et al. (2013), which is known for producing robust estimates of 𝑅𝑡. The key advantage of our approach is
that even though we work from a completely Bayesian perspective, LPS delivers estimates of key epidemiological model
parameters in seconds, while several minutes or hours would be needed with MCMC algorithms. This is partly due to
the fact that Laplace approximations are based on analytically derived expressions for the gradient and Hessian of the
log-likelihood of the model.
The presentation of the LPSmethodology for fast inference of 𝑅𝑡 undermisreported data is structured as follows. In Sec-

tion 2, the Laplacian-P-splines model is introduced and priors are imposed on the hyperparameters. After summarizing
the Bayesian model, we show how the conditional posterior of the spline vector related to 𝑅𝑡 is approached with Laplace
approximations. Next, posterior inference on reporting and delay probabilities is presented along with the construction
of credible intervals for the model parameters. Section 3 is devoted to a detailed numerical study that assesses the perfor-
mance of LPS under various epidemic scenarios. In Section 4, we illustrate our new methodology on real datasets, and
Section 5 concludes the paper with a discussion.

2 THE BAYESIAN LAPLACIAN-P-SPLINESMODEL

2.1 Misreported epidemic data

Let 𝑇 > 0 denote the total number of days of an epidemic and  = {𝑀1,… ,𝑀𝑇} the latent set of contaminations with
𝑀𝑡 ∈ ℕ the (unobserved) number of new contaminations on day 𝑡. We write 𝑝𝑗 for the probability that 𝑗 days have passed
until occurrence of infection in an infector–infectee pair and denote by 𝐩 = {𝑝1, … , 𝑝𝑘} the generation interval distribution
ofmaximum length 𝑘, assumed to be known here. FollowingAzmon et al. (2014), we assume that𝑀𝑡 is Poisson distributed
with mean 𝜇𝑡 and probability mass function:

𝑝(𝑀𝑡|𝑅𝑡,𝑘
𝑡 , 𝐩) =

exp(−𝜇𝑡)𝜇
𝑀𝑡
𝑡

𝑀𝑡!
, (1)

where 𝑅𝑡 is the reproduction number at day 𝑡 and𝑘
𝑡 = {𝑀𝑡−1, … ,𝑀𝑡−𝑘} is the set of past values for the number of cases

with history of length 𝑘. The relationship between the mean number of new cases at day 𝑡 and past infections is governed
by the epidemic renewal equation:

𝜇𝑡 =

{
𝜇1 ; for 𝑡 = 1,
𝑅𝑡

(∑min(𝑡−1,𝑘)

𝑠=1
𝑝𝑠𝑀𝑡−𝑠

)
; for 𝑡 > 1.

(2)

Equation (2) suggests that for 𝑡 > 1 themean number of new contaminations on day 𝑡 (namely 𝜇𝑡) is a convex combination
of the past number(s) in the set𝑘

𝑡 weighted by 𝑅𝑡, that is, the average number of secondary cases generated by a primary
case at moment 𝑡. The observed set of disease counts subject to underreporting, and delay in reporting is denoted by =

{𝑂1, … , 𝑂𝑇}. The daily reporting probability is given by 𝜌 ∈ (0, 1) and is considered to be time-homogeneous over the entire
duration of the epidemic. The fraction of cases on day 𝑖 reported on day 𝑡 is written as 𝛿𝑖→𝑡 ∈ [0, 1] and represents a delay
probability that can be embedded under various structures in the model via a composite link framework (Eilers, 2007). In
this paper, we consider three delay structures proposed in Section 2.2 of Azmon et al. (2014), namely a one-day, two-day,
and weekend delay pattern. The underreporting-delay process is reflected in the Poisson distributional assumption for 𝑂𝑡
with mean 𝜌𝜇𝑑𝑡 :

𝑝(𝑂𝑡|𝜌, 𝜇𝑑𝑡 ) = exp(−𝜌𝜇𝑑𝑡 )(𝜌𝜇
𝑑
𝑡 )
𝑂𝑡

𝑂𝑡!
, (3)

where 𝜇𝑑𝑡 ∶=
∑𝑡

𝑖=1
𝛿𝑖→𝑡𝜇𝑖 is the average number of cases on day 𝑡 subject to delays computed by aggregating the current

and past (unobserved) mean number of cases weighted by their associated delay probability. Mathematically, the delay
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pattern is determined by a square composition matrix  of dimension 7 × 7, with rows and columns representing the
days of a week. The link between 𝝁 = (𝜇1, … , 𝜇𝑡)⊤ and 𝜇𝑑𝑡 can thus be written compactly as 𝜇

𝑑
𝑡 = ⊤

,𝑤𝑑(𝑡)
𝝁, where ,𝑤𝑑(𝑡) is

column 𝑤𝑑(𝑡) of the composition matrix  and 𝑤𝑑(𝑡) ∈ {1 ∶= Monday, … , 7 ∶= Sunday} is an index function returning
an integer corresponding to the day of the week for time point 𝑡. By construction, adding the probabilities along each row
of  yields unity; a constraint translated as

∑
𝑡
𝛿𝑖→𝑡 = 1. Appendix A contains the compositionmatrices for the three delay

patterns considered in this paper.

2.2 Bayesian model formulation

2.2.1 Flexible specification of the effective reproduction number

P-splines (Eilers & Marx, 1996) are an interesting candidate to model the time-varying reproduction number dynamics
over the considered epidemic period. Two main appealing features of this spline smoother are worth mentioning. First,
the penalty matrix can be straightforwardly obtained withminimal numerical effort for any chosen penalty order. Second,
P-splines are naturally adapted in a Bayesian framework by replacing the deterministic discrete difference penalty by ran-
dom walks with Gaussian errors (Lang & Brezger, 2004), yielding Gaussian priors for the B-spline coefficients and thus
translating frequentist P-splines to Bayesian P-splines. Thismotivates our choice formodeling the log of the effective repro-
duction number as a linear combination of B-splines, that is, log(𝑅𝑡) =

∑𝐾

𝑘=1
𝜃𝑘𝑏𝑘(𝑡) = 𝜽

⊤
𝑏(𝑡), where 𝜽 = (𝜃1, … , 𝜃𝐾)⊤ is

the latent vector of B-spline coefficients and 𝑏(⋅) = (𝑏1(⋅), … , 𝑏𝐾(⋅))⊤ is a basis of cubic B-splines on the domain  = [0, 𝑇]

ranging from 0 to the last day of the epidemic. A “large” number 𝐾 of B-spline basis functions is specified to ensure
that the fitted curve for 𝑅𝑡 is flexible enough, and a discrete penalty term 𝜆𝜽

⊤
𝑃𝜽 is introduced as a measure of rough-

ness of the B-spline coefficients with 𝜆 > 0 as a tuning parameter. The penalty matrix is given by 𝑃 = 𝐷⊤𝑟 𝐷𝑟 + 𝜀𝐼𝐾 and
equals the product of 𝑟th-order difference matrices 𝐷𝑟 with a small perturbation on the main diagonal (here 𝜀 = 10−5)
to ensure full rankedness. The Gaussian prior for the spline vector is denoted by 𝜽|𝜆 ∼dim(𝜽)(0, 𝑄

−1
𝜆
), with precision

matrix 𝑄𝜆 = 𝜆𝑃. The tuning parameter is assigned a Gamma prior 𝜆 ∼ (𝑎𝜆, 𝑏𝜆) with mean 𝑎𝜆∕𝑏𝜆 and variance 𝑎𝜆∕𝑏2𝜆.
Choosing 𝑎𝜆 = 𝑏𝜆 = 10−5 yields a dispersed (yet proper) prior for 𝜆 with a large variance (see, e.g., Lang & Brezger, 2004;
Lambert & Eilers, 2005).

2.2.2 Prior assumptions on reporting and delay probabilities

The tuning parameter and the reporting and delay probabilities are gathered in the hyperparameter vector 𝜼 =
(𝜆, 𝜌, 𝛿𝑖→𝑗; 𝑖, 𝑗 = 1, … , 7)

⊤. A noninformative uniformprior is imposed on the delay probabilities, that is, 𝛿𝑖→𝑗 ∼  (0, 1) for
𝑖, 𝑗 = 1:Monday, 2:Tuesday, … , 7:Sunday. Typically, the reporting rate 𝜌 cannot be obtained from real-time data (Heester-
beek et al., 2015) and thus needs to be estimated, adding an extra layer of difficulty in the inference process. As noted
by Thompson et al. (2019), underreporting has already proved to be a burden for inference and forecasting in various
infectious disease models. Without minimal prior knowledge of 𝜌, posterior estimates of key epidemiological quantities
such as the effective reproduction number will likely be biased and accompanied by high uncertainty with wide credible
intervals. We, therefore, assume that minimal prior information is available for the reporting probability translated by a
uniform prior 𝜌 ∼  (𝑎𝜌, 𝑏𝜌) with bounds 0 ≤ 𝑎𝜌 < 𝑏𝜌 ≤ 1 that encompass the true underlying 𝜌. Such informative pri-
ors can, for instance, be constructed using hierarchical models based on available historical data (Riou et al., 2018) or by
using posterior distributions of 𝜌 inferred from previous studies (Stocks et al., 2020). When serological surveillance data
are available, prior knowledge of the reporting rate can be extrapolated by computing the ratio of reported cases over the
number of seropositive individuals (Abrams et al., 2021; Zhao et al., 2020).
To approximate the (latent) number of cases on a given day 𝑀𝑡, we use a simple inflation factor approach as in Jan-

darov et al. (2014) and Stocks et al. (2020) based on our prior assumption for 𝜌. More specifically, we use the following
approximation 𝑀̃𝑡 = (1∕𝜌)𝑂𝑡 (rounded to the nearest integer), where 𝜌 = (𝑎𝜌 + 𝑏𝜌)∕2 is themidpoint in the prior domain
[𝑎𝜌, 𝑏𝜌]. Although more sophisticated methods exist to account for underreporting (see, e.g., Bracher & Held, 2021), the
main rationale for using a simple multiplication rule is that the focus of this paper is on the methodological approach for
fast approximate Bayesian inference of 𝑅𝑡 taking reporting/delay into account, rather than on an explicit modeling of the
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(under)reporting process in itself. To summarize, the full Bayesian model is given by(
𝑂𝑡|𝜌, 𝜇𝑑𝑡 ) ∼ Poisson (𝜌𝜇𝑑𝑡 ),

𝜇𝑑𝑡 =

𝑡∑
𝑖=1

𝛿𝑖→𝑡𝑅𝑖

(∑
𝑠

𝑝𝑠𝑀̃𝑖−𝑠

)
,

log(𝑅𝑡) =

𝐾∑
𝑘=1

𝜃𝑘𝑏𝑘(𝑡),

𝜽|𝜆 ∼ dim(𝜽)
(
0, 𝑄−1

𝜆

)
,

𝜆 ∼ (𝑎𝜆 = 10
−5, 𝑏𝜆 = 10

−5),

𝛿𝑖→𝑗 ∼  (0, 1) for 𝑖, 𝑗 = 1, … , 7,

𝜌 ∼  (𝑎𝜌, 𝑏𝜌) with 0 ≤ 𝑎𝜌 < 𝑏𝜌 ≤ 1.

(4)

2.3 Approximation of the conditional posterior spline vector

The log-likelihood function of the Poisson model for the observed number of cases is

𝓁(𝜽, 𝜼;)=̇

𝑇∑
𝑡=1

𝑂𝑡 log(𝜌𝜇
𝑑
𝑡 ) − 𝜌𝜇

𝑑
𝑡 , (5)

where =̇ denotes equality up to an additive constant. Replacing 𝜇𝑑𝑡 by its extensive form in terms of the epidemic renewal
equation and the spline specification of the effective reproduction number, the mean of 𝑂𝑡, namely 𝜌𝜇𝑑𝑡 , is written as the
following function:

𝑠𝑡(𝜽, 𝜼) ∶= 𝜌

𝑡∑
𝑖=1

𝛿𝑖→𝑡 exp

(
𝐾∑
𝑘=1

𝜃𝑘𝑏𝑘(𝑖)

)(∑
𝑠

𝑝𝑠𝑀̃𝑖−𝑠

)
. (6)

The above equation is used to write the log-likelihood as follows:

𝓁(𝜽, 𝜼;) =̇

𝑇∑
𝑡=1

(𝑂𝑡 log (𝑠𝑡(𝜽, 𝜼)) − 𝑠𝑡(𝜽, 𝜼)). (7)

Using (7) and Bayes’ rule, the conditional posterior of the spline vector is

𝑝(𝜽|𝜼,) ∝ exp (𝓁(𝜽, 𝜼;))𝑝(𝜽|𝜆)
∝ exp

(
𝑇∑
𝑡=1

(𝑂𝑡 log (𝑠𝑡(𝜽, 𝜼)) − 𝑠𝑡(𝜽, 𝜼)) −
𝜆

2
𝜽
⊤
𝑃𝜽

)
. (8)

Let 𝑔𝑡(𝜽, 𝜼) ∶= 𝑂𝑡 log(𝑠𝑡(𝜽, 𝜼)) − 𝑠𝑡(𝜽, 𝜼) denote the contribution of observables at day 𝑡 to the log-likelihood. A Laplace
approximation to 𝑝(𝜽|𝜼,) is obtained by iteratively computing a second-order Taylor expansion of 𝑔𝑡(𝜽, 𝜼) in terms of 𝜽
by starting from an initial guess 𝜽(0). The Taylor expansion to 𝑔𝑡(𝜽, 𝜼) yields a quadratic form in 𝜽 and plugging the latter
into (8), one recovers (up to a multiplicative constant) a multivariate Gaussian density. The iterative Laplace approx-
imation scheme is implemented in a Newton–Raphson type algorithm for which the gradient and Hessian of 𝑔𝑡(𝜽, 𝜼)
and hence of the log-likelihood are analytically derived in Appendix B for maximum numerical efficiency. The Laplace
approximated conditional posterior of the B-spline vector after convergence of the Newton–Raphson algorithm is denoted
by 𝑝𝐺(𝜽|𝜼,) =dim(𝜽)(𝜽

∗
(𝜼), Σ∗(𝜼)), where 𝜽∗(𝜼) is the mean (mode) and Σ∗(𝜼) the variance–covariance matrix, for a

given value of the hyperparameter vector 𝜼.
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2.4 Posterior inference on hyperparameters

The posterior of the hyperparameter vector 𝜼 can be written in terms of the conditional posterior of the B-spline vector
derived in Section 2.3, namely

𝑝(𝜼|) = 𝑝(𝜽, 𝜼|)
𝑝(𝜽|𝜼,) ∝ exp(𝓁(𝜽, 𝜼;))𝑝(𝜽|𝜆)𝑝(𝜆)𝑝(𝜌)∏

𝑖,𝑗
𝑝(𝛿𝑖→𝑗)

𝑝(𝜽|𝜼,) . (9)

Following Tierney and Kadane (1986) and Rue et al. (2009), the above hyperparameter posterior can be approximated
by replacing the denominator in (9) with its Laplace approximation and by substituting 𝜽 by the modal value 𝜽∗(𝜼) of the
latter Laplace approximation. The resulting approximated posterior is then solely a function of 𝜼:

𝑝(𝜼|) ∝ exp(𝓁(𝜽, 𝜼;))𝑝(𝜽|𝜆)𝑝(𝜆)𝑝(𝜌)∏
𝑖,𝑗
𝑝(𝛿𝑖→𝑗)

𝑝𝐺(𝜽|𝜼,)
|||||𝜽=𝜽∗(𝜼). (10)

The uniform priors on the reporting and delay probabilities vanish into the proportionality constant and so the
approximated hyperparameter posterior (10) is written extensively as

𝑝(𝜼|) ∝ exp( 𝑇∑
𝑡=1

(
𝑂𝑡 log(𝑠𝑡(𝜽

∗
(𝜼), 𝜼)) − 𝑠𝑡(𝜽

∗
(𝜼), 𝜼)

)
−
𝜆

2
𝜽
∗
(𝜼)⊤𝑃𝜽

∗
(𝜼)

)

×𝜆
𝐾

2
+𝑎𝜆−1 exp(−𝑏𝜆𝜆)|Σ∗(𝜼)| 12 . (11)

As the hyperparameters live in different domains, for example, 𝜆 > 0 and 𝜌 ∈ (0, 1), we propose a transformation to ensure
that all variables are unbounded with values inℝ. This transformation is crucial to ensure numerical stability when using
algorithms to explore 𝑝(𝜼|). Let us define 𝑣 = log(𝜆), 𝜌̆ = log(− log(𝜌)) and 𝛿̆𝑖→𝑗 = log(− log(𝛿𝑖→𝑗)) for 𝑖, 𝑗 = 1, … , 7 and
denote our transformed hyperparameter vector as 𝜼̆ = (𝑣, 𝜌̆, 𝛿̆𝑖→𝑗; 𝑖, 𝑗 = 1, … , 7)⊤. Using the multivariate transformation
method, the hyperparameter posterior becomes

𝑝(𝜼̆|) ∝ exp( 𝑇∑
𝑡=1

(
𝑂𝑡 log(𝑠𝑡(𝜽

∗
(𝜼̆), 𝜼̆)) − 𝑠𝑡(𝜽

∗
(𝜼̆), 𝜼̆)

)
−
exp(𝑣)

2
𝜽
∗𝑇
(𝜼̆)𝑃𝜽

∗
(𝜼̆)

)

×exp(𝑣)
𝐾

2
+𝑎𝜆−1 exp (−𝑏𝜆 exp(𝑣))|Σ∗(𝜼̆)| 12

×

(
exp(𝑣)(− exp(− exp(𝜌̆) + 𝜌̆))

∏
𝑖,𝑗

(− exp(− exp(𝛿̆𝑖→𝑗) + 𝛿̆𝑖→𝑗))

)
, (12)

where the last line equals the absolute value of the Jacobian from the multivariate transformation. The approximate pos-
terior of the transformed hyperparameter vector in (12) is the main ingredient for posterior inference on 𝜼. At this stage,
MCMCmethods could be used to explore the above (approximate) target density (see, e.g., Gómez-Rubio&Rue, 2018; Van-
hatalo et al., 2013). As the philosophy of our approach is to rely on a completely sampling free methodology, we decide to
compute themaximum a posteriori (MAP) estimate of 𝜼̆ via a Newton–Raphson algorithm. Even thoughMAP approaches
ignore the uncertainty surrounding the estimate contrary to grid-based strategies orMCMCsamplers, they have the advan-
tage of being less costly to implement from a computational perspective and still have good statistical properties as will
be shown later in the simulation study.
When designing a Newton–Raphson algorithm to explore a complex posterior as in (12), great care needs to be taken

to avoid convergence problems. For maximization, it is important to ensure that an ascent direction is taken at every
iteration. This can be achieved by proposing a modified positive definite version of the negative Hessian whenever the
latter fails to be positive definite (Goldfeld et al., 1966; Marquardt, 1963; Levenberg, 1944) combined with a backtracking
strategy (e.g. step-halving) to ensure heading uphill. Taking this into account, our Newton–Raphson algorithm did not
encounter any convergence issues and reached amaximum (at least a local one) inmost cases. Divergence of the Newton–
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7 of 20 GRESSANI et al.

Raphson algorithm can arise when iterations get absorbed into flat regions of the posterior distribution. In that case, a
simple remedial measure consists of restarting the algorithm at another initial condition. Also, a too small number of
B-splines in the basis might lead to an ill-behaved posterior distribution for 𝜼, so that computation of the MAP is often
prone to numerical errors. We, therefore, recommend to use at least 𝐾 = 10 B-splines (or more) to avoid such problems.

2.5 Approximate posterior estimates and credible intervals

Let us denote by 𝜼̂ the MAP estimate of 𝜼 obtained from the Newton–Raphson algorithm. Plugging the latter into the
Laplace approximation scheme, one recovers 𝜽∗(𝜼̂) and Σ∗(𝜼̂) ∶= Σ∗, that is, the point estimate of the B-spline vector and
its associated estimated variance–covariance matrix. Using the latter quantities, a point estimate of the effective repro-
duction number is taken to be 𝑅𝑡 = exp(𝜽

∗⊤
𝑏(𝑡)). Let ℎ(𝜽|𝑡) = log(𝑅𝑡) = 𝜽⊤𝑏(𝑡) be the log of the reproduction number

at a given day 𝑡 seen as a function of the spline vector 𝜽 and consider the first-order Taylor expansion of ℎ(𝜽|𝑡) around
𝜽
∗
= 𝜽

∗
(𝜼̂):

ℎ(𝜽|𝑡) ≈ ℎ(𝜽∗|𝑡) + (𝜽 − 𝜽∗)⊤∇ℎ(𝜽|𝑡)||𝜽=𝜽∗, (13)

with gradient ∇ℎ(𝜽|𝑡)|𝜽=𝜽∗ = 𝑏(𝑡). Note that (13) is a linear combination of the random vector 𝜽 and that the latter
has a Gaussian (conditional) posterior due to the Laplace approximation scheme. It follows that a posteriori ℎ(𝜽|𝑡) is
also approximately Gaussian withmean 𝔼(ℎ(𝜽|𝑡)) ≈ ℎ(𝜽∗|𝑡) and variance𝕍(ℎ(𝜽|𝑡)) ≈ ∇⊤ℎ(𝜽|𝑡)|𝜽=𝜽∗Σ∗(𝜼̂)∇ℎ(𝜽|𝑡)|𝜽=𝜽∗ .
Accordingly, a (1 − 𝛼) × 100% (approximate) quantile-based credible interval for log(𝑅𝑡) on day 𝑡 is

𝐶𝐼1−𝛼
ℎ(𝜽|𝑡) = ℎ(𝜽∗|𝑡) ± 𝑧𝛼∕2√𝑏(𝑡)𝑇Σ∗𝑏(𝑡), (14)

where 𝑧𝛼∕2 is the 𝛼∕2-upper quantile of a standard normal distribution. Applying the exp(⋅) transform on (14) yields
the desired credible interval for 𝑅𝑡. While the Gaussian prior on the spline vector 𝜽 helps ensure that its conditional
posterior does not substantially deviate from a Gaussian distribution, the non-Gaussian priors on the hyperparameters
in 𝜼 might contribute in shaping a posterior distribution that has non-Gaussian features such as heavier tails. For this
reason, we advise the use of a heavier tailed distribution for components of 𝜼 and assume that the marginal posterior
of a hyperparameter variable 𝜂𝑙 has a Student-t distribution (see, e.g., Martins & Rue, 2014) with 𝜈 = dim(𝜼) − 5 degrees
of freedom, namely (𝜂𝑙|) ∼ 𝑡𝜈(𝜂𝑙,MAP, 𝜎2𝑙,MAP), where the mean 𝜂𝑙,MAP is the MAP estimate from the Newton–Raphson
algorithm and 𝜎2

𝑙,MAP
is the appropriate diagonal entry of the inverse of the negative Hessian of the log of (12) evaluated

at the MAP estimate. The resulting (1 − 𝛼) × 100% credible interval for 𝜂𝑙 is then 𝜂𝑙 ± 𝑡𝜈,𝛼∕2
√
(𝜈∕(𝜈 − 2))𝜎2

𝑙,MAP
.

3 RESULTS

3.1 Simulation study

The performance of our approach (with 10 cubic B-splines and a penalty of order 3) is assessed in six different epidemic
scenarios with a duration of 𝑇 = 30 days. In Scenarios 1–3, the incidence data are governed by a decaying effective repro-
duction number 𝑅𝑡 = exp(cos(𝑡∕13)) as in Azmon et al. (2014) with a reporting rate fixed at 𝜌 = 0.2. Scenarios 4 and 5
assumemore complex structures for 𝑅𝑡 to see whether the Laplacian-P-splines model is able to capture the true dynamics
of the reproduction number, and Scenario 6 is characterized by a sharp drop in 𝑅𝑡 at day 𝑡 = 15. Table 1 summarizes the
functional form of the reproduction number, the delay structure, the reporting rate, and the assumed prior information on
𝜌 used in each scenario. We simulate 𝑆 = 500 replications in each scenario assuming an epidemic starting with𝑀1 = 10

index cases on day 𝑡 = 1 and an influenza-like generation interval distribution with a mean of 2.6 days and standard devi-
ation of 1.5 days (Cori et al., 2013; Ferguson et al., 2005). The discretized version of the generation interval is obtained
with the discr_si() routine of the EpiEstim package. The inflated latent number of cases for weekend days (Saturday
and Sunday) in Scenario 3 is obtained by multiplying 𝜌−1 by a simple average of the cases in the preceding days of the
corresponding week. The simulated data ensure that at least one case is observed on the first day, that is, 𝑂1 ≥ 1. Figure 1
shows the latent (𝑀𝑡 in red) and observed (𝑂𝑡 in orange) incidence data for Scenarios 1–3.
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GRESSANI et al. 8 of 20

TABLE 1 Reproduction number, delay structure, reporting rate and prior on 𝜌 for Scenarios 1-6

Scenario Reproduction number Delay 𝝆 Prior for 𝝆
1 𝑅𝑡 = exp(cos(𝑡∕13)) One-day 𝜌 = 0.20 𝜌 ∼  (0, 0.40)

2 𝑅𝑡 = exp(cos(𝑡∕13)) Two-day 𝜌 = 0.20 𝜌 ∼  (0, 0.40)

3 𝑅𝑡 = exp(cos(𝑡∕13)) Weekend 𝜌 = 0.20 𝜌 ∼  (0, 0.40)

4 𝑅𝑡 = exp(0.40 + 0.30 cos(𝑡∕10) + 0.80 sin((𝑡𝜋)∕6)) One-day 𝜌 = 0.60 𝜌 ∼  (0.25, 0.85)

5 𝑅𝑡 = exp(0.98 + sin((1.75 + 0.022𝑡)
2)) − 0.10 Two-day 𝜌 = 0.70 𝜌 ∼  (0.34, 0.94)

6 𝑅𝑡 = 1.8 𝕀(𝑡 < 15) + 0.7 𝕀(𝑡 ≥ 15) Weekend 𝜌 = 0.40 𝜌 ∼  (0.20, 0.60)
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F IGURE 1 Stacked histograms of daily incidence for different delay patterns (Scenarios 1–3)

For each scenario, we report the mean estimate, empirical standard error (ESE), root mean square error (RMSE), and
coverage probability for a 95% credible interval (CP95%) on the hyperparameters. The performancemetric for𝑅𝑡 is taken to
be the mean absolute error (MAE) defined as MAE𝑅𝑡 = 𝑆

−1∑𝑆

𝑠=1
|𝑅𝑡(𝑠) − 𝑅𝑡|. We also compare how LPS performs against

the estimate_R() function of theEpiEstimpackage (Cori et al., 2013). In particular, we use the syntax estimate_R(incid
= Mtestim, method = "non_
parametric_si",config = make_config(list(si_distr = c(0,p)))), where Mtestim corresponds to the

(inflated) number of contaminations. Similarly, we use incid = Observed to obtain estimates based on the observed
number of cases without an inflation factor, which is most commonly used in the literature. We choose the method
"non_parametric_si" to specify the distribution of the serial interval, or as is the case here, the generation interval
distribution denoted by p and inject the latter in the make_config option. Moreover, we keep the default option that
estimates 𝑅𝑡 on weekly sliding windows and uses the posterior mean as a point estimate. Table 2 summarizes the results
related to the LPS hyperparameter estimates for Scenarios 1–3, and the left column of Figure 2 shows the estimated curves
for 𝑅𝑡 (gray) and the pointwise median of the 𝑆 = 500 estimated curves obtained with LPS (dashed) and EpiEstim (dotted-
dashed), respectively, using the simple inflation factor to estimate𝑀𝑡. Figure 2 right column shows theMAE of 𝑅𝑡 for days
𝑡 = 8, … , 30 obtained with LPS (green) and the EpiEstim package with inflation factor on contaminations (light blue) and
without inflation factor (dark blue). Estimates of the delay probabilities are relatively close to their true value with a cover-
age probability slightly above the 95%nominal value inmost cases. As underreported data only convey limited information
about the underlying transmission process, the credible intervals tend to be wide and conservative (i.e., overcoverage will
be observed) especially when 𝜌 is low. Mean estimates of the reporting probability are close to the true value in all sce-
narios with a more pronounced undercoverage under a two-day delay pattern (as in Azmon et al., 2014). It is also worth
mentioning that the downward trend of 𝑅𝑡 is well captured under the three considered delay patterns in Scenarios 1–3.
Furthermore, Figure 2 (right column) shows that LPS is competitive against EpiEstim regarding the estimation of 𝑅𝑡. Sim-
ulation results for the hyperparameters in Scenarios 4–6 with LPS are given in Table 3. Again, the estimates are relatively
close to their true value and the coverages are all reasonable. The undercoverage of certain delay probabilities in Scenario
4 can be explained by the complex shape of 𝑅𝑡 and the fact that using a simple inflation factor to recover the latent number
of contaminations may be too simplistic here. Figure 3 shows that the estimated 𝑅𝑡 obtained with LPS captures the real
underlying trend even with more complex structures such as in Scenario 4. In the latter scenario, the MAE of 𝑅𝑡 is quite
high with EpiEstim, while it remains reasonably low with LPS. In Scenario 6, neither EpiEstim nor LPS is able to capture

 15214036, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200024 by U
niversiteit H

asselt, W
iley O

nline L
ibrary on [25/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



9 of 20 GRESSANI et al.

TABLE 2 Simulation results for the reporting and delay probabilities under Scenarios 1–3 with 𝑆 = 500

Delay pattern Parameter True value Mean ESE RMSE CI.low CI.up CP95%
One-day
(Scenario 1)

𝛿𝑀𝑜→𝑇𝑢 0.4 0.283 0.089 0.147 0.029 0.660 100.0
𝛿𝑇𝑢→𝑊𝑒 0.5 0.383 0.081 0.142 0.072 0.710 100.0
𝛿𝑊𝑒→𝑇ℎ 0.7 0.600 0.080 0.129 0.171 0.857 99.4
𝛿𝑇ℎ→𝐹𝑟 0.3 0.169 0.068 0.148 0.004 0.615 100.0
𝛿𝐹𝑟→𝑆𝑎 0.4 0.270 0.074 0.149 0.030 0.628 100.0
𝛿𝑆𝑎→𝑆𝑢 0.6 0.504 0.081 0.125 0.146 0.780 99.8
𝛿𝑆𝑢→𝑀𝑜 0.5 0.421 0.092 0.121 0.078 0.748 100.0
𝜌 0.2 0.196 0.008 0.009 0.176 0.217 98.8

Two-day
(Scenario 2)

𝛿𝑀𝑜→𝑇𝑢 0.3 0.309 0.109 0.109 0.026 0.701 100.0
𝛿𝑀𝑜→𝑊𝑒 0.4 0.295 0.113 0.154 0.039 0.656 99.2
𝛿𝑇𝑢→𝑊𝑒 0.4 0.290 0.108 0.154 0.016 0.700 100.0
𝛿𝑇𝑢→𝑇ℎ 0.3 0.216 0.089 0.123 0.018 0.582 100.0
𝛿𝑊𝑒→𝑇ℎ 0.3 0.224 0.082 0.112 0.007 0.647 100.0
𝛿𝑊𝑒→𝐹𝑟 0.4 0.251 0.097 0.178 0.021 0.628 100.0
𝛿𝑇ℎ→𝐹𝑟 0.5 0.415 0.096 0.128 0.052 0.773 100.0
𝛿𝑇ℎ→𝑆𝑎 0.3 0.242 0.088 0.106 0.026 0.597 100.0
𝛿𝐹𝑟→𝑆𝑎 0.3 0.208 0.071 0.117 0.004 0.646 100.0
𝛿𝐹𝑟→𝑆𝑢 0.4 0.299 0.108 0.148 0.041 0.647 99.4
𝛿𝑆𝑎→𝑆𝑢 0.5 0.400 0.112 0.151 0.037 0.778 100.0
𝛿𝑆𝑎→𝑀𝑜 0.3 0.268 0.086 0.092 0.028 0.632 100.0
𝛿𝑆𝑢→𝑀𝑜 0.3 0.257 0.092 0.101 0.011 0.677 100.0
𝛿𝑆𝑢→𝑇𝑢 0.6 0.444 0.114 0.193 0.105 0.748 95.4
𝜌 0.2 0.215 0.011 0.019 0.201 0.229 47.4

Weekend
(Scenario 3)

𝛿𝑀𝑜→𝑇𝑢 0.4 0.403 0.138 0.138 0.000 0.923 100.0
𝛿𝑇𝑢→𝑊𝑒 0.5 0.187 0.076 0.322 0.002 0.676 99.6
𝛿𝑊𝑒→𝑇ℎ 0.7 0.483 0.066 0.227 0.144 0.758 80.2
𝛿𝑇ℎ→𝐹𝑟 0.3 0.288 0.086 0.087 0.035 0.653 100.0
𝛿𝐹𝑟→𝑀𝑜 0.4 0.447 0.108 0.118 0.074 0.780 100.0
𝛿𝑆𝑎→𝑀𝑜 0.6 0.534 0.093 0.114 0.000 0.971 100.0
𝛿𝑆𝑢→𝑀𝑜 0.5 0.437 0.100 0.118 0.000 0.961 100.0
𝜌 0.2 0.183 0.001 0.017 0.165 0.203 76.8

the step function of 𝑅𝑡. This is as expected, since the case incidence data are subject to underreporting and delay and
therefore cannot convey enough information to capture sharp drops in the reproduction number.
In terms of computational speed, the LPS approach is extremely fast. With an Intel Xeon E-2186M CPU running at 2.90

GHz, the elapsed real time for fitting the model with misreported data was recorded to be approximately 6 s for a one-day
or weekend delay and a little bit more (around 10 s) for a two-day delay as the hyperparameter dimension is larger in
the latter case. This is substantially less than any existing MCMC algorithm that typically takes minutes (or hours) to fit
such complex epidemic models. Furthermore, as LPS does not rely on any sampling scheme, the additional burden of
diagnostic checks (e.g., trace plots, Geweke statistics) is also avoided.
It is also worth mentioning that specifying the B-splines basis on the entire domain of the epidemic curve, that is,

 = [0, 𝑇] implies that LPS provides a global smooth fit to the reproduction number in that domain, where the degree of
smoothness is controlled by the smoothing parameter 𝜆̂. Applying LPS on a larger domain, say, ̃ = [0, 𝑇 + 7] (i.e., with
an additional week of incidence data) will affect the estimated smoothing parameter, so that 𝜆̂ will typically differ from
̂̃𝜆, the smoothing parameter resulting from the fit in ̃ . As such, the estimates of 𝑅𝑡 in the domain [0, 𝑇] will also differ
under  and ̃ . The simulation study has shown that the trend of 𝑅𝑡 is on average well captured by LPS (as confirmed by
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GRESSANI et al. 10 of 20

F IGURE 2 (Left column) Estimation of the time-varying reproduction number (gray curves) and pointwise median with LPS (dashed)
and EpiEstim (dotted-dashed) for Scenarios 1–3. (Right column) MAE of 𝑅𝑡 for days 𝑡 = 8, … , 30 with LPS (green), EpiEstim (light blue) with
multiplication factor, and EpiEstimNM (dark blue) ignoring the multiplication factor on contaminations.

the MAE values). Hence, even though LPS keeps changing estimates in the past, these changes will be characterized by
fluctuations in a “close” neighborhood of the target and should therefore not be considered a limitation of our approach.

3.2 Importance of prior information on 𝝆

When case incidence data is affected by underreporting and delay, prior information on the reporting rate 𝜌 is of crucial
importance. The simple multiplication rule given in Section 2.2.2 reflects our prior knowledge of the reporting rate and is
used to approximate the daily latent number of cases𝑀𝑡 bymultiplying the observed disease counts𝑂𝑡 by 𝜌−1. We analyze
the effect on the 𝑅𝑡 estimate obtained with LPS resulting from a potential mismatch between 𝜌 and 𝜌 by computing the
absolute value of the average bias of 𝑅𝑡 over days 𝑡 = 1, … , 𝑇 under Scenario 1 and Scenario 3, respectively (cf. Section 3.1).
The average bias of the reproduction number for a given couple (𝜌, 𝜌) is computed as

𝔹𝑅
(𝜌,𝜌)

=
||||| 1𝑇

𝑇∑
𝑡=1

{
1

𝑆

𝑆∑
𝑠=1

(
𝑅
(𝜌,𝜌)
𝑡 − 𝑅𝑡

)}|||||, (15)
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11 of 20 GRESSANI et al.

TABLE 3 Simulation results for the reporting and delay probabilities under Scenarios 4–6 with 𝑆 = 500

Delay pattern Parameter True value Mean ESE RMSE CI.low CI.up CP95%
One-day
(Scenario 4)

𝛿𝑀𝑜→𝑇𝑢 0.6 0.570 0.064 0.071 0.425 0.691 95.4
𝛿𝑇𝑢→𝑊𝑒 0.8 0.715 0.061 0.105 0.509 0.843 78.6
𝛿𝑊𝑒→𝑇ℎ 0.3 0.097 0.047 0.209 0.011 0.348 89.6
𝛿𝑇ℎ→𝐹𝑟 0.2 0.101 0.040 0.107 0.021 0.283 99.0
𝛿𝐹𝑟→𝑆𝑎 0.5 0.526 0.043 0.050 0.405 0.633 99.0
𝛿𝑆𝑎→𝑆𝑢 0.7 0.817 0.050 0.128 0.651 0.904 85.8
𝛿𝑆𝑢→𝑀𝑜 0.4 0.449 0.065 0.082 0.299 0.589 91.2
𝜌 0.6 0.606 0.012 0.014 0.578 0.633 98.0

Two-day
(Scenario 5)

𝛿𝑀𝑜→𝑇𝑢 0.4 0.287 0.117 0.163 0.046 0.615 98.2
𝛿𝑀𝑜→𝑊𝑒 0.5 0.539 0.122 0.128 0.155 0.820 99.8
𝛿𝑇𝑢→𝑊𝑒 0.7 0.541 0.122 0.201 0.074 0.864 98.6
𝛿𝑇𝑢→𝑇ℎ 0.3 0.413 0.117 0.162 0.056 0.768 100.0
𝛿𝑊𝑒→𝑇ℎ 0.2 0.252 0.091 0.105 0.002 0.735 99.8
𝛿𝑊𝑒→𝐹𝑟 0.4 0.272 0.118 0.174 0.017 0.681 99.2
𝛿𝑇ℎ→𝐹𝑟 0.2 0.229 0.071 0.077 0.003 0.689 100.0
𝛿𝑇ℎ→𝑆𝑎 0.2 0.287 0.096 0.129 0.010 0.718 100.0
𝛿𝐹𝑟→𝑆𝑎 0.6 0.432 0.072 0.183 0.018 0.840 99.8
𝛿𝐹𝑟→𝑆𝑢 0.5 0.532 0.092 0.098 0.041 0.881 100.0
𝛿𝑆𝑎→𝑆𝑢 0.4 0.435 0.086 0.093 0.009 0.864 100.0
𝛿𝑆𝑎→𝑀𝑜 0.3 0.244 0.074 0.093 0.011 0.655 99.8
𝛿𝑆𝑢→𝑀𝑜 0.2 0.196 0.058 0.058 0.003 0.638 100.0
𝛿𝑆𝑢→𝑇𝑢 0.1 0.178 0.089 0.118 0.006 0.576 99.6
𝜌 0.7 0.767 0.038 0.077 0.661 0.841 93.2

Weekend
(Scenario 6)

𝛿𝑀𝑜→𝑇𝑢 0.4 0.412 0.148 0.149 0.001 0.903 100.0
𝛿𝑇𝑢→𝑊𝑒 0.5 0.121 0.066 0.384 0.000 0.661 96.0
𝛿𝑊𝑒→𝑇ℎ 0.7 0.483 0.101 0.239 0.094 0.803 93.2
𝛿𝑇ℎ→𝐹𝑟 0.3 0.350 0.131 0.140 0.026 0.775 100.0
𝛿𝐹𝑟→𝑀𝑜 0.4 0.511 0.167 0.200 0.025 0.882 100.0
𝛿𝑆𝑎→𝑀𝑜 0.6 0.482 0.113 0.164 0.000 0.964 100.0
𝛿𝑆𝑢→𝑀𝑜 0.5 0.451 0.100 0.112 0.000 0.966 100.0
𝜌 0.4 0.430 0.030 0.042 0.341 0.516 99.6

where 𝑅(𝜌,𝜌)𝑡 denotes the estimated reproduction number with LPS at time point 𝑡 under 𝜌 when the true underlying
reporting rate is 𝜌. In Figure 4, each cell of the matrix corresponds to the (normalized) average bias of the reproduction
number (i.e., we divided 𝔹𝑅

(𝜌,𝜌)
by the largest observed bias among all considered couples of 𝜌 and 𝜌 in order to have

values between 0 and 1) computed with the above formula and 𝑆 = 20 replications. Results are intuitive and confirm
the importance of prior information on 𝜌. The smallest biases are reached on (and alongside) the main diagonal, where
the midpoint of the prior domain of the reporting rate, that is, 𝜌 is equal to (or close to) the true reporting rate from
the data-generating process. The larger the discrepancy between 𝜌 and 𝜌, the smaller the precision with which LPS is
able to estimate the instantaneous reproduction number in a setting accounting for misreporting. In addition, the bias is
largest under the couple 𝜌 = 0.2 and 𝜌 = 1, that is, when the true reporting probability is small and prior information on
𝜌 assumes that all cases are reported.

3.3 Limitations of the LPS model for misreported data

A potential limitation of our LPS approach is that the daily reporting probability 𝜌 is assumed time-homogeneous. In
practice, during an epidemic outbreak, the reporting process is dynamic and changes over time. To highlight the limitation
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GRESSANI et al. 12 of 20

F IGURE 3 (Left column) Estimation of the time-varying reproduction number (gray curves) and pointwise median with LPS (dashed)
and EpiEstim (dotted-dashed) for Scenarios 4–6. (Right column) MAE of 𝑅𝑡 for days 𝑡 = 8, … , 30 with LPS (green), EpiEstim (light blue) with
multiplication factor, and EpiEstimNM (dark blue) ignoring the multiplication factor on contaminations.

of a constant reporting rate, we run the setting of Scenario 4 (cf. Section 3.1) with a data-generating process assuming
a time-dependent reporting probability governed by an increasing step function 𝜌𝑡 = 0.2 𝕀(𝑡 < 8) + 0.4 𝕀(8 ≤ 𝑡 < 20) +
0.6 𝕀(𝑡 ≥ 20) as represented in the left panel of Figure 5. The right panel of Figure 5 shows the median trajectory of the 𝑅𝑡
curve computed over 𝑆 = 100 replicated datasets. The nonnegligible bias is explained by a poor approximation of the daily
latent number of cases𝑀𝑡 by the naive inflation factor approach of Section 2.2.2. The same overestimation phenomenon
is observed in Azmon et al. (2014), where the effect of an increasing reporting parameter on estimation of 𝑅𝑡 is assessed;
yet the bias appears to be less pronounced with their MCMC approach. This reduced bias can be explained by the fact
that MCMC takes into account the uncertainty surrounding the hyperparameter values by exploring the posterior space,
while LPS simply relies on a MAP estimation scheme for 𝜼.
Another potential limitation is that LPS assumes a known and fixed generation interval distribution. The generation

interval is less easily observed than the serial interval (the time elapsed between the commencement of symptoms in an
infector–infectee pair) as it is hard to gather information on times of infection. Using serial intervals as a proxy for gen-
eration times is a potential source of bias when it comes to estimate the reproduction number (Britton & Scalia Tomba,
2019). Furthermore, even if information on generation timeswould be available, the generation interval is also time depen-
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0.15 0.303 0.394 0.431 0.438

0.161 0.053 0.203 0.27 0.283

0.438 0.187 0.018 0.119 0.136
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F IGURE 4 Normalized average bias of the reproduction number with LPS for different 𝜌 and 𝜌 couples in Scenario 1 (left panel) and
Scenario 3 (right panel). Smaller values on the main diagonal confirm the importance of prior information on 𝜌. A uniform prior on the
reporting rate with midpoint 𝜌 too far from the true 𝜌 will lead to biased estimates of 𝑅𝑡 .
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F IGURE 5 Illustration of the restrictive assumption of a constant reporting rate under LPS. A data-generating process governed by an
increasing reporting rate (left panel) yields biased estimates of 𝑅𝑡 .

dent and its dynamic is certainly influenced by the contagiousness of the variants of a given pathogen. Introducing such
sources of heterogeneity and temporal dimensions within our LPS model for misreported data is of course challenging as
the composite link structure and the renewal equation process already make the model complex.

4 REAL DATA APPLICATIONS

4.1 The 1918 influenza pandemic in Baltimore

The LPS methodology is first illustrated in the context of the 1918 H1N1 influenza pandemic in Baltimore, USA,
with data obtained from the EpiEstim package (Cori et al., 2013). The dataset contains daily incidence of the onset
of disease for a period of 92 days and a discrete daily distribution of the serial interval for influenza. We use the
serial interval as a proxy for the generation interval. The serial interval for influenza given by EpiEstim is 𝐩 =
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F IGURE 6 Daily incidence (top) and estimated 𝑅𝑡 for the 1918 Influenza data in Baltimore with the EpiEstim (dashed), LPS (solid), and
Wallinga–Teunis (dotted) method.

{0.233, 0.359, 0.198, 0.103, 0.053, 0.027, 0.014, 0.007, 0.003, 0.002, 0.001}. We assume that there is no underreporting (i.e.,
our prior assumption is such that 𝜌 = 1) and that the delay process is governed by a one-day delay pattern. For a smooth
estimation of the reproduction number, we use 𝐾 = 20 (cubic) B-splines in [0,92] and a third-order penalty to coun-
terbalance the flexibility of the fitted curve. Figure 6 shows the daily incidence of the 1918 H1N1 data (top) and the
estimated time-varying reproduction number (bottom) with LPS (solid), the estimate_R() routine of the EpiEstim pack-
age (dashed), and the Wallinga and Teunis (2004) method (dotted). The gray surface is the (approximate) 95% pointwise
credible interval for 𝑅𝑡 obtained with LPS. Around day 𝑡 = 30, the estimated 𝑅𝑡 reaches a peak before gradually decaying
towards one, a pattern also observed in White and Pagano (2008). The reporting rate is estimated to be 𝜌 = 0.886 with a
95% credible interval [0.832; 0.923].

4.2 COVID-19 data for Australia

In a second application, we use LPS to estimate the time-varying reproduction number of COVID-19 hospitalizations
in Australia between May and September 2020. The data are obtained from the COVID19 package (Guidotti & Ardia,
2020). We use a discrete generation interval with a mean of 4 days and standard deviation of 2 days, namely 𝐩 =
{0.053, 0.249, 0.297, 0.238, 0.163} and estimate the model under a two-day delay structure with prior 𝜌 ∼  (0.7, 0.8) and
hence an inflation factor of 1∕0.75 on the observed number of cases. Figure 7 shows the daily incidence (top) and the esti-
mated 𝑅𝑡 under the two-day delay structure. There is a strong similarity between the estimated pattern of 𝑅𝑡 for the three
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F IGURE 7 Daily incidence (top) and estimated 𝑅𝑡 of COVID-19 for Australia between May and September 2020 with the EpiEstim
(dashed), LPS (solid), and Wallinga–Teunis (dotted) method.

considered methods (LPS, EpiEstim, and Wallinga–Teunis). At the end of May, 𝑅𝑡 is below one and increases during the
next 2 months to reach a peak in July 2020. Then it slowly decreases to reach a value below one around the end of August.

5 CONCLUDING REMARKS

The Laplacian-P-splines methodology presented in this paper combines Laplace approximation and Bayesian penalized
B-splines for fast and flexible estimation of the time-varying reproduction number in an epidemic model with misre-
ported data. The key benefit of our approach is its computational speed. While classic MCMCmethods may take hours to
deliver posterior estimates of key epidemiological parameters, estimation with LPS typically requires a couple of seconds.
Provided minimal prior knowledge is available for the reporting probability (based, for instance, on historical data or
serological studies), our results show that working with a simple multiplication rule on the observed set of disease counts
provides satisfying estimates of the reproduction number.
This article shows that LPS performs at least as good as existing methods for estimation of 𝑅𝑡 such as EpiEstim or

the Wallinga–Teunis approach. Moreover, it allows for different specifications of the delay pattern (one-day, two-day, or
weekend delays), covering practical scenarios arising in the real world during epidemic outbreaks. From here, several
directions can be explored in the future to further improve the LPS methodology in the framework of epidemic modeling.
First, it would be important to go beyond a naivemultiplication factor approach to approximate the latent number of daily
cases𝑀𝑡. Thiswill probably improve the accuracy of posterior estimates for𝑅𝑡 and for the reporting and delay probabilities.
Second, instead of using the MAP estimator for the hyperparameters, an alternative (and also more costly) strategy would
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GRESSANI et al. 16 of 20

be to use grid-based or MCMC approaches that would capture the uncertainty of posterior estimates more precisely and
less locally than the MAP method considered here. Third, it would be interesting to refine the delay patterns and work
for instance with ad hoc reporting structures that take into account public holidays. Finally, since the Poisson assumption
imposed on the number of new (latent and observed) contaminations might underestimate variability in transmission
(Imai et al., 2015), it would be relevant to extend our approach to account for underreporting under a negative binomial
model to reflect a more flexible relationship between the mean and variance in infectious disease counts (Lloyd-Smith,
2007).
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APPENDIX A
Composition matrix for a one-day delay

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 𝛿𝑀𝑜→𝑇𝑢 𝛿𝑀𝑜→𝑇𝑢 0 0 0 0 0

0 1 − 𝛿𝑇𝑢→𝑊𝑒 𝛿𝑇𝑢→𝑊𝑒 0 0 0 0

0 0 1 − 𝛿𝑊𝑒→𝑇ℎ 𝛿𝑊𝑒→𝑇ℎ 0 0 0

0 0 0 1 − 𝛿𝑇ℎ→𝐹𝑟 𝛿𝑇ℎ→𝐹𝑟 0 0

0 0 0 0 1 − 𝛿𝐹𝑟→𝑆𝑎 𝛿𝐹𝑟→𝑆𝑎 0

0 0 0 0 0 1 − 𝛿𝑆𝑎→𝑆𝑢 𝛿𝑆𝑎→𝑆𝑢
𝛿𝑆𝑢→𝑀𝑜 0 0 0 0 0 1 − 𝛿𝑆𝑢→𝑀𝑜

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.1)

Composition matrix for a two-day delay

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 𝛿𝑀𝑜→𝑇𝑢 − 𝛿𝑀𝑜→𝑊𝑒 𝛿𝑀𝑜→𝑇𝑢 𝛿𝑀𝑜→𝑊𝑒 0 0 0 0

0 1 − 𝛿𝑇𝑢→𝑊𝑒 − 𝛿𝑇𝑢→𝑇ℎ 𝛿𝑇𝑢→𝑊𝑒 𝛿𝑇𝑢→𝑇ℎ 0 0 0

. . ⋱ . . . .

. . . ⋱ . . .

. . . . ⋱ . .

. . . . . ⋱ .

𝛿𝑆𝑢→𝑀𝑜 𝛿𝑆𝑢→𝑇𝑢 . . . . 1 − 𝛿𝑆𝑢→𝑀𝑜 − 𝛿𝑆𝑢→𝑇𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.2)

Composition matrix for a weekend delay

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 𝛿𝑀𝑜→𝑇𝑢 𝛿𝑀𝑜→𝑇𝑢 0 0 0 0 0

0 1 − 𝛿𝑇𝑢→𝑊𝑒 𝛿𝑇𝑢→𝑊𝑒 0 0 0 0

0 0 1 − 𝛿𝑊𝑒→𝑇ℎ 𝛿𝑊𝑒→𝑇ℎ 0 0 0

0 0 0 1 − 𝛿𝑇ℎ→𝐹𝑟 𝛿𝑇ℎ→𝐹𝑟 0 0

𝛿𝐹𝑟→𝑀𝑜 0 0 0 1 − 𝛿𝐹𝑟→𝑀𝑜 0 0

1 − 𝛿𝑆𝑎→𝑀𝑜 𝛿𝑆𝑎→𝑀𝑜 0 0 0 0 0

1 − 𝛿𝑆𝑢→𝑀𝑜 𝛿𝑆𝑢→𝑀𝑜 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.3)
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APPENDIX B
The second-order Taylor expansion of 𝑔𝑡(𝜽, 𝜼) around an initial vector 𝜽

(0) (e.g., a vector of ones) is written as

𝑔𝑡(𝜽, 𝜼) ≈ 𝑔𝑡(𝜽
(0)
, 𝜼) +

(
𝜽 − 𝜽

(0)
)𝑇
∇𝑔𝑡(𝜽, 𝜼)||𝜽=𝜽(0) + 1

2

(
𝜽 − 𝜽

(0)
)𝑇
∇2𝑔𝑡(𝜽, 𝜼)||𝜽=𝜽(0)(𝜽 − 𝜽(0))

≈ 𝑐 + 𝜽
𝑇
(
∇𝑔𝑡(𝜽, 𝜼)||𝜽=𝜽(0) − ∇2𝑔𝑡(𝜽, 𝜼)||𝜽=𝜽(0)𝜽(0)) + 1

2
𝜽
𝑇
∇2𝑔𝑡(𝜽, 𝜼)||𝜽=𝜽(0)𝜽, (B.1)

where 𝑐 is a constant that does not depend on 𝜽. An analytical version of (B.1) is obtained by computing the following
gradient and Hessian matrix:

∇𝑔𝑡(𝜽, 𝜼)||𝜽=𝜽(0) =
(
𝜕𝑔𝑡(𝜽, 𝜼)

𝜕𝜃1
, … ,

𝜕𝑔𝑡(𝜽, 𝜼)

𝜕𝜃𝐾

)𝑇
𝜽=𝜽

(0)
,

∇2𝑔𝑡(𝜽, 𝜼)||𝜽=𝜽(0) = 𝜕2𝑔𝑡(𝜽, 𝜼)

𝜕𝜽𝜕𝜽
𝑇

|||||𝜽=𝜽(0) =
⎛⎜⎜⎜⎜⎝
𝜕2𝑔𝑡(𝜽,𝜼)
𝜕𝜃2
1

𝜕2𝑔𝑡(𝜽,𝜼)
𝜕𝜃1𝜕𝜃2

…
𝜕2𝑔𝑡(𝜽,𝜼)
𝜕𝜃1𝜕𝜃𝐾

⋮ ⋱ ⋮
𝜕2𝑔𝑡(𝜽,𝜼)
𝜕𝜃𝐾𝜕𝜃1

𝜕2𝑔𝑡(𝜽,𝜼)
𝜕𝜃𝐾𝜕𝜃2

…
𝜕2𝑔𝑡(𝜽,𝜼)
𝜕𝜃2
𝐾

⎞⎟⎟⎟⎟⎠𝜽=𝜽(0)
. (B.2)

Gradient: Recall that 𝑔𝑡(𝜽, 𝜼) = 𝑂𝑡 log(𝑠𝑡(𝜽, 𝜼)) − 𝑠𝑡(𝜽, 𝜼), so the derivative with respect to the 𝑘th B-spline coefficient
is

𝜕𝑔𝑡(𝜽, 𝜼)

𝜕𝜃𝑘
= 𝑂𝑡

𝜕𝑠𝑡(𝜽, 𝜼)

𝜕𝜃𝑘
𝑠𝑡(𝜽, 𝜼)

−1 −
𝜕𝑠𝑡(𝜽, 𝜼)

𝜕𝜃𝑘
, 𝑘 = 1,… , 𝐾,

with
𝜕𝑠𝑡(𝜽, 𝜼)

𝜕𝜃𝑘
= 𝜌

𝑡∑
𝑖=1

𝛿𝑖→𝑡 exp

(
𝐾∑
𝑘=1

𝜃𝑘𝑏𝑘(𝑖)

)(∑
𝑠

𝑝𝑠𝑀̃𝑖−𝑠

)
𝑏𝑘(𝑖), 𝑘 = 1,… , 𝐾. (B.3)

Hessian: To obtain the 𝐾 × 𝐾 Hessian matrix, the following second-order partial derivatives for 𝑘, 𝑙 = 1, … , 𝐾 are
computed:

𝜕2𝑔𝑡(𝜽, 𝜼)

𝜕𝜃𝑘𝜕𝜃𝑙
= 𝑂𝑡

(
𝜕2𝑠𝑡(𝜽, 𝜼)

𝜕𝜃𝑘𝜕𝜃𝑙
𝑠𝑡(𝜽, 𝜼) −

𝜕𝑠𝑡(𝜽, 𝜼)

𝜕𝜃𝑘

𝜕𝑠𝑡(𝜽, 𝜼)

𝜕𝜃𝑙

)
𝑠𝑡(𝜽, 𝜼)

−2 −
𝜕2𝑠𝑡(𝜽, 𝜼)

𝜕𝜃𝑘𝜕𝜃𝑙
,

with
𝜕2𝑠𝑡(𝜽, 𝜼)

𝜕𝜃𝑘𝜕𝜃𝑙
= 𝜌

𝑡∑
𝑖=1

𝛿𝑖→𝑡 exp

(
𝐾∑
𝑘=1

𝜃𝑘𝑏𝑘(𝑖)

)(∑
𝑠

𝑝𝑠𝑀̃𝑖−𝑠

)
𝑏𝑘(𝑖)𝑏𝑙(𝑖). (B.4)

Having computed the gradient and Hessian for all day indexes of the epidemic 𝑡 = 1, … , 𝑇, the results are summed
up to compute the gradient and Hessian of the log-likelihood (across all observations), namely ∇𝑔(𝜽, 𝜼)|

𝜽=𝜽
(0) ∶=∑𝑇

𝑡=1
∇𝑔𝑡(𝜽, 𝜼)|𝜽=𝜽(0) and ∇2𝑔(𝜽, 𝜼)|𝜽=𝜽(0) ∶= ∑𝑇

𝑡=1
∇2𝑔𝑡(𝜽, 𝜼)|𝜽=𝜽(0) . Using the second-order Taylor expansion in (B.1)

(omitting the constant) and the log-likelihood function, we find

𝓁(𝜽, 𝜼;) =

𝑇∑
𝑡=1

𝑔𝑡(𝜽, 𝜼)

≈ 𝜽
𝑇

(
𝑇∑
𝑡=1

∇𝑔𝑡(𝜽, 𝜼)||𝜽=𝜽(0) − 𝑇∑
𝑡=1

∇2𝑔𝑡(𝜽, 𝜼)||𝜽=𝜽(0)𝜽(0)
)
+
1

2
𝜽
𝑇

𝑇∑
𝑡=1

∇2𝑔𝑡(𝜽, 𝜼)|𝜽=𝜽(0)𝜽
≈ 𝜽

𝑇
(
∇𝑔(𝜽, 𝜼)||𝜽=𝜽(0) − ∇2𝑔(𝜽, 𝜼)||𝜽=𝜽(0)𝜽(0)) + 1

2
𝜽
𝑇
∇2𝑔(𝜽, 𝜼)||𝜽=𝜽(0)𝜽. (B.5)
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Plugging (B.5) in (8) and rearranging the terms, one gets the Laplace approximation to the conditional posterior of the
vector of B-spline parameters:

𝑝𝐺(𝜽|𝜼,) ∝ exp(−12𝜽𝑇(𝜆𝑃 − ∇2𝑔(𝜽, 𝜼)|𝜽=𝜽(0))𝜽
+𝜽

𝑇
(
∇𝑔(𝜽, 𝜼)|

𝜽=𝜽
(0) − ∇2𝑔(𝜽, 𝜼)|

𝜽=𝜽
(0)𝜽

(0)
))
. (B.6)

Note that (B.6) is (up to amultiplicative constant) aGaussian densitywithmean (mode) and variance–covariancematrix
equal to

𝜽(1) =
(
𝜆𝑃 − ∇2𝑔(𝜽, 𝜼)|𝜽=𝜽(0))−1 (∇𝑔(𝜽, 𝜼)|𝜽=𝜽(0) − ∇2𝑔(𝜽, 𝜼)|𝜽=𝜽(0)𝜽(0)) ,

Σ(1) =
(
𝜆𝑃 − ∇2𝑔(𝜽, 𝜼)|𝜽=𝜽(0))−1, (B.7)

where the mean (mode) is obtained by solving the equation ∇𝜽 log 𝑝𝐺(𝜽|𝜼,) = 0 for 𝜽 and the variance–covariance
matrix is (−∇2

𝜽
log 𝑝𝐺(𝜽|𝜼,))−1. Let 𝜽∗(𝜼) and Σ∗(𝜼) denote the mode and variance–covariance matrix towards which

the iterative Laplace approximation scheme for 𝑝(𝜽|𝜼,) has converged for a given vector of hyperparameters 𝜼. The final
Laplace approximation is written (by abuse of notation) as

𝑝𝐺(𝜽|𝜼,) =dim(𝜽)(𝜽
∗
(𝜼), Σ∗(𝜼)). (B.8)
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