

A three-stage service network design model for synchromodal transport

Thibault Delbart Prof. Dr. Yves Molenbruch Prof. Dr. Kris Braekers Prof. Dr. An Caris 5 July 2022

Logistics research group

05/07/2022

2

Support logistics service providers in their transition towards synchromodal transport

"Synchromodal transport is **real-time**, **dynamic** and **optimised** intermodal transport" (Ambra et al., 2019)

How? Decision support model to assist capacity decisions under uncertainty

Optimise capacity planning under uncertainty

(1) Which capacity?

➤Train slots on the long/medium term

>Trucking capacity in the short term

(2) Which uncertainty?

- Demand volume
- >Available train slots over time
- ➤Train slot prices over time

Network assumptions

Train services

- ➢ Offered by rail operators
- LSPs can book slots between each terminal pair
- Fixed schedules
- Can be booked in advance
- Truck services
- Unlimited number
- More expensive and faster than trains
- Only booked in the short term

Terminals

- Cost per transhipped container
- Transhipment time

▶▶

UHASSEL1

Network example

Network example

Literature results

Modelling approach	Capacity and transportation time	Demand	Demand and transportation time
Chance-constrained mixed integer programming			1
Fuzzy chance-constrained mixed integer programming	1		
Mixed integer linear program			1
Simulation optimisation			1
Two-stage chance constrained programming			1
Two-stage robust programming		1	
Two-stage stochastic programming		6	
Total number of studies	1	7	4

05/07/2022

Planning timeline

Planning timeline

6 months		1 month		1 week	
Cheapest slots	5	More expensive slots		Expensive slots	
High availabili	ty	Intermediate availability		Low availability	
High uncertair	nty	Less uncertainty		Low uncertainty	

Model description

Integer programming model

Minimise costs

Train slots at each stage

>Trucking at the operational stage

➤Transhipment

Model description

	First stage	Second stage	Third stage
	Train slots to book	Train slots to book	Train slots to book
Decisions		Train slots to cancel	Train slots to cancel
			Trucks to book
			Container routing
2 Uncertainty		Available capacity	Available capacity
• Oncertainty		Total demand in the	Demand volume
		transport market	Order sizes
			Time windows

Modelling uncertainty

How is demand modelled?

How many train slots are left at each stage?

What are the train slot prices at each stage?

Scenario tree

.

05/07/2022

Demand modelling

Demand modelling

Each terminal pair has its own average demand

2nd stage demand distributions depend on the **total demand in the market**

Each market state has its own probability

Long-term demand distribution is the weighted sum of the 2nd stage distributions

Available number of train slots

UHASSELT
KNOWLEDGE IN ACTION

Fixed in the first stage

Second and third stages:

- Stochastic capacity decrease per connection
- Distribution mean depends on the market state

Train slot prices

Evolution of prices per train slot

Fixed increase compared to initial prices

Depends on the market state

Exact commercial solver with a time limit

Sensitivity analyses:

- ➢ Fictional instances
- ➤Comparison between 2-stage and 3-stage models

Common random numbers to reduce variance

^{3rd} stage scenarios

Number of scenarios	25	50	100	200	500
Average cost	452282.0	453877.9	453468.4	452381.1	452570.6
Standard deviation	1997.19	1931.96	984.70	1260.99	708.51
95% c.i.	1428.70	1382.04	704.41	902.06	506.84
Relative 95% c.i.	0.32%	0.30%	0.16%	0.20%	0.11%

2nd stage scenarios

Number of scenarios	5	10	15
Average cost	452748.1	453250.8	453712.9
Standard deviation	220.00	175.65	128.98
95% c.i.	157.38	135.02	119.29
Relative 95% c.i.	0.035%	0.030%	0.026%

Sensitivity analyses

Network # train services	4	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
Capacity/demand ratio	1.2	1.7
Train/truck cost ratio	50%	70%
Demand volume variance	20%	50%

Experimental results

Measure	2-stage model	3-stage model	Difference
Average cost	€ 433,671.28	€ 428,217.48	-1.60%
Average cost over lower bound	€ 26,663.91	€ 21,210.10	-20.45%
Average distance by train in km	281,602.3	292,271.4	3.79%
Average distance by truck in km	73,942.5	65,077.0	-11.99%

Experimental results

Share of rail transport with varying demand volume variance

.

More realistic compared to academic literature

Better decision-making

What-if analyses

Impact of demand uncertainty

Effect of network changes

Effect of other input parameters (truck/train cost ratio, demand volume/capacity ratio, prices, ...)

Thank you for your attention

M <u>thibault.delbart@uhasselt.be</u>

Thibault Delbart

Hasselt University

Prof. dr. Yves Molenbruch Prof. dr. Kris Braekers Prof. dr. An Caris

Vrije Universiteit Brussel Hasselt University Hasselt University

Research group website: https://www.uhasselt.be/en/onderzoeksgroepen-en/research-group-logistics

KNOWLEDGE IN ACT

▶▶

Literature results

REFERENCE	TRANSPORT MODES	STOCHASTICITY	APPROACH
Lium et al. (2009)	Unspecified	Demand	Two-stage stochastic programming
Hoff et al. (2010)	Unspecified	Demand	Two-stage stochastic programming
Crainic et al. (2011)	Unspecified	Demand	Two-stage stochastic programming
Bai et al. (2014)	Unspecified	Demand	Two-stage stochastic programming
Meng et al. (2015)	Barge, rail, road	Demand	Two-stage stochastic programming
Demir et al. (2016)	Barge, rail, road	Demand and transportation time	Mixed integer linear program
Layeb et al. (2018)	Barge, rail, road	Demand and transportation time	Simulation optimisation
Sun et al. (2018)	Rail, road	Capacity and transportation time	Fuzzy chance-constrained mixed integer programming
Zhao et al. (2018)	Rail, ship	Demand and transportation time	Two-stage chance constrained programming
Zhao et al. (2018)	Rail, ship	Demand and transportation time	Chance-constrained mixed integer programming
Wang and Qi (2019)	Unspecified	Demand	Two-stage robust programming
Wang et al. (2019)	Unspecified	Demand	Two-stage stochastic programming