A three-stage service network design model for intermodal transport under uncertainty

Thibault Delbart
Prof. Dr. Yves Molenbruch
Prof. Dr. Kris Braekers
Prof. Dr. An Caris
13 September 2022

Project

Digital twin for synchromodal transport

 DISpATchObjective: Facilitate synchromodal transport

Support logistics service providers in their transition towards synchromodal transport
"Synchromodal transport is real-time, dynamic and optimised intermodal transport" (Ambra et al., 2019)

How? Decision support model to assist capacity decisions under uncertainty

Research focus

Optimise capacity planning under uncertainty

(1) Which capacity?
$>$ Train slots on the long/medium term
$>$ Trucking capacity in the short term
(2) Which uncertainty?
>Demand volume
$>$ Available train slots over time
$>$ Train slot prices over time

Network assumptions

Train services
> Offered by rail operators
> LSPs can book slots between each terminal pair
$>$ Fixed schedules
> Can be booked in advance
Truck services
> Unlimited number
$>$ More expensive and faster than trains
> Only booked in the short term
Terminals
$>$ Cost per transhipped container
$>$ Transhipment time

Network example

Network example

Literature results

Modelling approach	Capacity and transportation time	Demand	Demand and transportation time
Chance-constrained mixed integer programming			1
Fuzzy chance-constrained mixed integer programming	1		
Mixed integer linear program			1
Simulation optimisation			1
Two-stage chance constrained programming			1
Two-stage robust programming		1	
Two-stage stochastic programming		6	
Total number of studies	1	7	4

Planning timeline

6 months
Cheapest slots
High availability
High uncertainty

Planning timeline

Model description

Integer programming model

Objective

Minimise costs
$>$ Train slots at each stage
$>$ Trucking at the operational stage
>Transhipment

Model description

> | First stage | Second stage | Third stage |
| :---: | :--- | :--- |
| Train slots to book | Train slots to book | Train slots to book |
| | Train slots to cancel | Train slots to cancel |
| | | Trucks to book |
| | | Container routing |

Available capacity	Available capacity
Total demand in the	Demand volume
transport market	Order sizes
	Time windows

Modelling uncertainty

How is demand modelled?

How many train slots are left at each stage?

What are the train slot prices at each stage?

Scenario tree

Demand modelling

Low demand:	Medium	High demand:
25%	demand: 50%	25%

Each terminal pair has its own average demand
$2^{\text {nd }}$ stage demand distributions depend on the total demand in the market

Each market state has its own probability

Demand modelling

Low demand:	Medium	High demand:
25%	demand: 50%	25%

Each terminal pair has its own average demand
$2^{\text {nd }}$ stage demand distributions depend on the total demand in the market

Each market state has its own probability
Long-term demand distribution is the weighted sum of the $2^{\text {nd }}$ stage distributions

Available number of train slots

Fixed in the first stage
Second and third stages:
$>$ Stochastic capacity decrease per connection
> Distribution mean depends on the market state

Train slot prices

Evolution of prices per train slot

Fixed increase compared to initial prices
Depends on the market state

Methodology

Exact commercial solver with a time limit

Sensitivity analyses:
>Fictional instances
$>$ Comparison between 2-stage and 3-stage models
$>$ Common random numbers to reduce variance

Sensitivity analyses

Network	\# train services	1.2

Experimental results

Measure	2-stage model	3-stage model	Difference
Average cost	$€ 430,100.75$	$€ 424,684.23$	-1.26%
Average cost over lower bound	$€ 25,616.90$	$€ 20,200.38$	-21.14%
Average distance by train in km	$267,558.0$	$284,578.3$	6.36%
Average distance by truck in km	$96,106.2$	$83,876.1$	-12.73%

Experimental results

Share of rail transport with varying demand volume variance

Model contributions

More realistic compared to two-stage models in academic literature
Combination of stochastic demand and capacity

Better decision-making

What-if analyses
$>$ Impact of demand uncertainty
> Effect of network changes
$>$ Effect of other input parameters (truck/train cost ratio, demand volume/capacity ratio, prices, ...)

Thank you for your attention

Questions are welcome

M thibault.delbart@uhasselt.be

Thibault Delbart
Prof. dr. Yves Molenbruch
Prof. dr. Kris Braekers
Prof. dr. An Caris

Hasselt University
Vrije Universiteit Brussel Hasselt University
Hasselt University

Research group website:
https://www.uhasselt.be/en/onderzoeksgroepen-en/research-group-logistics

Literature results

| REFERENCE | TRANSPORT MODES | STOCHASTICITY | |
| :--- | :--- | :--- | :--- | :--- |
| Lium et al. (2009) | Unspecified | Demand | Two-stage stochastic programming |
| Hoff et al. (2010) | Unspecified | Demand | Two-stage stochastic programming |
| Crainic et al. (2011) | Unspecified | Demand | Two-stage stochastic programming |
| Bai et al. (2014) | Unspecified | Demand | Two-stage stochastic programming |
| Meng et al. (2015) | Barge, rail, road | Demand | Two-stage stochastic programming |
| Demir et al. (2016) | Barge, rail, road | Demand and transportation time | Mixed integer linear program |
| Layeb et al. (2018) | Barge, rail, road | Demand and transportation time | Simulation optimisation |
| Sun et al. (2018) | Rail, road | Capacity and transportation time | Fuzzy chance-constrained mixed integer programming |
| Zhao et al. (2018) | Rail, ship | Demand and transportation time | Two-stage chance constrained programming |
| Zhao et al. (2018) | Rail, ship | Demand and transportation time | Chance-constrained mixed integer programming |
| Wang and Qi (2019) | Unspecified | Demand | Two-stage robust programming |
| Wang et al. (2019) | Unspecified | Demand | Two-stage stochastic programming |

