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Abstract 

Background Rapid postnatal growth may result from exposure in utero or early life to adverse conditions and has 
been associated with diseases later in life and, in particular, with childhood obesity. DNA methylation, interfacing 
early‑life exposures and subsequent diseases, is a possible mechanism underlying early‑life programming.

Methods Here, a meta‑analysis of Illumina HumanMethylation 450K/EPIC‑array associations of cord blood DNA 
methylation at single CpG sites and CpG genomic regions with rapid weight growth at 1 year of age (defined with 
reference to WHO growth charts) was conducted in six European‑based child cohorts (ALSPAC, ENVIRONAGE, Genera‑
tion XXI, INMA, Piccolipiù, and RHEA, N = 2003). The association of gestational age acceleration (calculated using the 
Bohlin epigenetic clock) with rapid weight growth was also explored via meta‑analysis. Follow‑up analyses of identi‑
fied DNA methylation signals included prediction of rapid weight growth, mediation of the effect of conventional risk 
factors on rapid weight growth, integration with transcriptomics and metabolomics, association with overweight in 
childhood (between 4 and 8 years), and comparison with previous findings.

Results Forty‑seven CpGs were associated with rapid weight growth at suggestive p‑value <1e−05 and, among 
them, three CpGs (cg14459032, cg25953130 annotated to ARID5B, and cg00049440 annotated to KLF9) passed the 
genome‑wide significance level (p‑value <1.25e−07). Sixteen differentially methylated regions (DMRs) were identified 
as associated with rapid weight growth at false discovery rate (FDR)‑adjusted/Siddak p‑values < 0.01. Gestational age 
acceleration was associated with decreasing risk of rapid weight growth (p‑value = 9.75e−04). Identified DNA meth‑
ylation signals slightly increased the prediction of rapid weight growth in addition to conventional risk factors. Among 
the identified signals, three CpGs partially mediated the effect of gestational age on rapid weight growth. Both CpGs 
(N=3) and DMRs (N=3) were associated with differential expression of transcripts (N=10 and 7, respectively), includ‑
ing long non‑coding RNAs. An AURKC DMR was associated with childhood overweight. We observed enrichment of 
CpGs previously reported associated with birthweight.
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Conclusions Our findings provide evidence of the association between cord blood DNA methylation and rapid 
weight growth and suggest links with prenatal exposures and association with childhood obesity providing opportu‑
nities for early prevention.

Keywords Rapid weight growth, Weight gain, DNA methylation, Gestational age acceleration, Childhood 
overweight, AURKC, Gene expression

Background
Childhood obesity was declared an epidemic by the 
World Health Organization (WHO) more than two 
decades ago [1]. Forty million children below 5 years of 
age were affected by overweight or obesity in 2016 [2]. 
The changes in eating behaviors, available food choices, 
and physical activity observed during the COVID-19 
pandemic have further amplified this global health issue 
[3]. Being obese during childhood is associated with 
both short-term health consequences (psychosocial, 
including social stigma, depression, and anxiety [4], and 
physical, including asthma [5]) and long-term health con-
sequences (including obesity, cardiovascular diseases, 
diabetes, and cancers in adulthood), which can lead to 
disability and premature death [6, 7]. There is increas-
ing evidence that the path to childhood obesity is estab-
lished early in life, and rapid weight growth (RWG) in 
infancy has emerged as a major early risk factor [8–10], 
consisting of an upward centile crossing in weight growth 
charts and defined as a change greater than 0.67 in weight 
standard deviation (SD) scores. In utero and early life 
are critical time windows due to developmental plastic-
ity. During these periods, exposure to detrimental factors 
may induce long-lasting alterations increasing suscepti-
bility to diseases later in life, as postulated by the devel-
opmental origin of health and disease (DOHaD) theory 
[11]. RWG represents an early phenotype occurring as 
a thrifty adaptive response compensating the effects of 
adverse exposures, which in the long term becomes det-
rimental [12].

Biological mechanisms underlying RWG are poorly 
understood. Epigenetics, the mitotically inheritable 
changes in gene function not explained by changes in the 
DNA sequence, is a possible mechanism through which 
in utero exposures influence health and disease later in 
life [13]. Epigenome-wide association studies (EWAS) 
in large population-based child cohorts coordinated 
by the Pregnancy And Childhood Epigenetics (PACE) 
consortium found that several DNA methylation marks 
(N=914) at birth are associated with birthweight [14], in 
contrast with only one association with weight in child-
hood [15]. Previous studies investigating cord blood 
DNA methylation and early infancy weight and weight 
growth were limited to candidate genes (IGF2 [16], TAC-
STD2 [17], MEG3 [18]) and gestational age acceleration 

(representing the difference between epigenetic gesta-
tional age predicted by CpG targets and actual gestational 
age determined using the last menstruation and/or ultra-
sounds) [19], and one previous EWAS was conducted in 
a small case-control study (N=40 children with RWG 
versus 40 without) [20]. Furthermore, none investigated 
concomitant changes spanning entire genomic regions, 
known as differentially methylated regions (DMRs), nor 
investigated which DNA methylation marks predict 
RWG. A better understanding of biological mechanisms 
acting at birth and underlying RWG is critical to creating 
effective policy and developing workable early-life pre-
vention programs.

Therefore, in this study, we conducted a meta-analysis 
of six European-based child cohort (N=2003) EWAS to 
test the association of cord blood DNA methylation with 
RWG at 1 year at single CpG sites and CpG genomic 
regions. Furthermore, we investigated the association of 
gestational age acceleration with rapid weight growth via 
a fixed-effect meta-analysis similar to the main analysis. 
Then, we tested if the DNA methylation marks identi-
fied as related to RWG (i) improved the prediction of 
RWG by assessment of the predictive performance of 
models incorporating identified DNA methylation levels 
and conventional risk factors, including maternal educa-
tion level [21], age at delivery [22], smoking during the 
index pregnancy [23], pre-pregnancy body mass index 
(BMI) [24], parity [25], and child gestational age [26]; (ii) 
were mediators of the effect of conventional risk factors 
on RWG; (iii) were associated with transcriptome and 
the metabolome, to guide functional interpretation; (iv) 
were associated with childhood overweight phenotype 
(between 4 and 8 years); and (v) overlapped with the pre-
vious literature findings.

Methods
Study population
The study population includes six European ancestry 
children cohorts: (i) the Avon Longitudinal Study of Par-
ents And Children (ALSPAC) [27], (ii) the ENVironmen-
tal Influences ON early AGEing (ENVIRONAGE) study 
[28], (iii) the Generation XXI (GXXI) study [29], (iv) the 
INfancia y Medio Ambiente (INMA) cohort [30], (v) the 
Piccolipiù cohort [31], and (vi) the Rhea cohort [32, 33]. 
However, the EWAS analyses are performed within four 
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studies: (i) the ALSPAC, (ii) the ENVIRONAGE study, 
(iii) the GXXI study, and (iv) the EXPOsOMICS study 
[34], because the latter study is a combination of samples 
from four cohorts (ENVIRONAGE, INMA, Piccolipiù, 
and RHEA). EXPOsOMICS samples have been analyzed 
at the same moment, in the same laboratory, randomized 
across the different arrays. The ENVIRONAGE cohort is 
part of EXPOsOMICS and has additionally performed 
separate DNA methylation arrays; nevertheless, there are 
no samples in common between the two studies. Multiple 
births (non-singleton) were excluded from the analyses. 
Participants of the cohorts included in the main analyses 
had a combined sample size of 2003 children with com-
pleted information (Table 1).

Written informed consent was obtained from partici-
pating mothers/parents in all cohorts. Information on 
inclusion criteria and protocols are described in Addi-
tional file  1: Supplementary Methods [27–38] and fully 
detailed in the respective references [27–33].

DNA methylation
Cord blood DNA methylation was measured using the 
Infinium HumanMethylation450 BeadChip in ARIES 
and EXPOsOMICS [39, 40] and using Infinium Meth-
ylationEPIC BeadChip in ENVIRONAGE and GXXI 
studies. Each cohort independently performed quality 
control and normalization of DNA methylation data, 
as reported in Additional file 1: Supplementary Meth-
ods [27–38]. DNA methylation levels were trimmed 
using the Tukey method if the removal of outliers had 
not been performed by cohort-specific preprocessing, 
and were expressed as beta values. CpGs were anno-
tated to the nearest gene by the annotation provided 
by Illumina.

Cell type estimation
Cell types were estimated through established de-con-
volution approaches using Gervin’s in for ARIES and 
GENXXI [41] studies and Bakulski’s method in ENVI-
RONAGE and EXPOsOMICS studies [42].

DNA methylation gestational age estimation and gestational 
age acceleration
DNA methylation gestational age was estimated using 
the Bohlin [43] and Knigh’s [44] epigenetic clocks via 
the methylclock R package (version 1.0.0) [45]. We used 
Spearman’s correlation to select the clock that pre-
dicted best the chronological gestational age. Gesta-
tional age acceleration was calculated as the residuals of 

the regression of chronological gestational age on DNA 
methylation gestational age.

Rapid weight growth
In all the cohorts, weight measurements were obtained 
from obstetric records at birth, while measurements at 
later times were measured by trained staff (in ALSPAC 
and GXXI) or measured by trained staff or self-reported 
from parents (in ENVIRONAGE and EXPOsOMICS) 
as detailed in Additional file  1: Supplementary Meth-
ods [27–38]. A two-step prediction approach was used 
for calculating sex- and age-specific weight at exactly 1 
year, using fractional polynomials of age by gender in 
each cohort, as previously described [46]. Weight gain 
(WG) at 1 year was calculated as the difference between 
sex- and age-adjusted WHO-SD scores of birthweight 
and predicted weight at 1 year. Children were classified 
as having RWG if WG was > 0.67 SD scores according 
to Ong et al. [47].

Covariates
In all the models, the following covariates, identified as 
a priori confounders or potential predictors depend-
ing on the performed analysis, were considered: mater-
nal tobacco smoke during pregnancy [23] (categorized 
as smoker or non-smoker), education level at delivery 
[21] (categorized as low, medium, and high education 
based on cohort-specific preferential classification), pre-
pregnancy BMI [24] (in kg/m2), age at delivery [22] (in 
years), parity [25] (categorized as nulli- and multipa-
rous), and child gestational age [26] (in weeks) based 
on last menstrual period or ultrasound, sex, and cohort 
membership (for EXPOsOMICS only). Bead array row 
and bisulfite conversion batch were considered as tech-
nical confounders. All the analyses were adjusted for 
cell types estimated as described before. Infants with 
low birthweight are more likely to experience RWG, but 
birthweight could be either a mediator or a confounder 
in the association between cord blood DNA methylation 
and RWG, as it is measured at the same time as DNA 
methylation. Hence, birthweight was not included as a 
confounder in the main analyses but only in sensitivity 
analyses, along with delivery mode [48] (categorized as 
natural delivery or cesarean section) which could also 
be a potential confounder. Additional covariates, which 
may also confound the association under study, were 
used to restrict analyses and included maternal gesta-
tional diabetes [49] (categorized as having or not gesta-
tional diabetes) and ethnicity [50] (categorized as white 
European or non-white European children). A detailed 
description of the covariates in each cohort is reported 
in Additional file 1: Supplementary Methods [27–38].
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Gene expression
Gene expression levels were measured in the 200 cord 
blood samples of the ENVIRONAGE cohort participat-
ing in the EXPOsOMICS project [34]. Total  RNA was 
extracted using the total RNA miRNeasy mini kit (Qia-
gen, Venlo, Netherlands) according to the manufac-
turer’s protocol, as detailed previously [39, 51]. In brief, 
samples were quality checked and further hybridized 
onto Agilent Whole Human Genome 8×60 K micro-
arrays, and microarray signals were detected by an 
Agilent DNA G2505C Microarray Scanner. After pre-
processing and quality control were performed using 
an in-house developed R pipeline, gene expression was 
 log2 transformed and normalized by quantile normali-
zation using arrayQC. Residuals from linear regression 
between transcripts and hybridization date and leuco-
cyte were used instead of the actual measures of gene 
expression to account for technical noise for a final 
sample size left available for further analysis of 29,164 
transcripts for 165 children.

Metabolomics
Untargeted metabolomics was measured in 500 cord 
blood samples of EXPOsOMICS, as previously described 
[52, 53]. Briefly, a reversed-phase liquid chromatogra-
phy-quadrupole time-of-flight mass spectrometry sys-
tem was used in positive ion mode with 499 of the 500 
EXPOsOMICS samples successfully analyzed. After 
data preprocessing, 4712 features for 499 samples were 
left available for the subsequent analysis. Data were log-
transformed and missing values were imputed using the 

impute. QRILC function within the imputeLCMD R 
package.

Childhood overweight
Weight and height measurements were available during 
childhood, between 4 and 8 years of age, in ALSPAC, 
GXXI, and EXPOsOMICS studies. BMI was determined 
as the ratio of weight (in kilograms) over squared height 
(in meters) self-reported by parents or measured by 
trained staff. When multiple BMI measurements were 
available, the closest measurement to 6 years of age was 
considered to assess childhood overweight. Childhood 
overweight (including obesity) was defined if the child’s 
sex- and age-adjusted WHO-SD BMI score was >2 in 
children below 5 years of age and >1 in children older 
than 5 years of age, according to the WHO cut-offs [54].

Statistical analysis
The study workflow is depicted in Fig. 1.

Epigenome‑wide association studies of rapid weight growth
First, EWAS were conducted for the single cohorts 
separately, or in the case of the EXPOsOMICS cohorts 
together as the separate sample sizes were too small. 
Logistic mixed models with random effects on bead array 
row and bisulfite conversion batch were used to test the 
association between the cord blood CpGs (as explana-
tory variables) and RWG (as dependent variable) via the 
lme4 R package (version 1.1.26). Models were adjusted 
for maternal tobacco smoke during pregnancy, mater-
nal education level at delivery, pre-pregnancy BMI, 
age at delivery, parity, child gestational age, sex, cohort 

Fig. 1 Flow chart depicts the study workflow
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membership (for EXPOsOMICS only), and cell propor-
tions. Models were adjusted for child sex, although out-
comes were based on sex- and age-adjusted SD weight 
scores, because sex is known to be a major source of vari-
ation in DNA methylation. Quality control of the results 
was performed by visual inspection of scatter plots of 
coefficients and standard errors, quantile-quantile plots 
(QQ plots) of p-values, and calculating inflation using the 
bacon method (λbacon) via the R package bacon (version 
1.14.0) [55].

Meta‑analysis of EWAS of rapid weight growth
Then, single EWAS results were meta-analyzed via 
fixed-effects meta-analysis weighted by the inverse of 
the variance using the R package metafor (version 2.4.0). 
Meta-analysis was performed only on DNA methyla-
tion probes available in at least three EWAS (for a total 
of 398,036 CpG probes). Associations were deemed to 
be significant at the genome-wide level if p-values were 
below the Bonferroni-adjustment threshold (pBonferroni) 
of 1.25e−07 (0.05/398,036). We also investigated CpGs 
at a less stringent p-value threshold (pSuggestive) of 1e−05. 
Results were presented as mean (and standard error) dif-
ferences in log odds of RWG per 10% increase in meth-
ylation at each CpG. Quality control of the results was 
performed by visual inspection of coefficients, standard 
errors and p-values, and calculation of λbacon. To assess 
the genome-wide robustness of the findings to inter-
study heterogeneity, we used QQ plots of the p-values 
for heterogeneity (I2). Probes with I2 > 50% were excluded 
from further analyses. Results were inspected by forest 
plots, and meta-analyses leaving out one cohort at a time 
were performed.

DMRs were identified by using ENmix-comb-p (ver-
sion 1.22.6) [56] and DMRcate (version 2.0.7) [57] R 
packages. We used the results from the meta-analysis of 
EWAS (estimated coefficients, p-values and z-values) as 
inputs for DMR analyses. The default setting values were 
used for DMRcate (e.g., minimum number of CpGs in a 
region = 2 and minimum length of nucleotides = 1000). 
To correct for multiple comparisons, we used FDR cor-
rection in DMRcate and 1-step Siddak correction in 
ENmix-comb-p. DMRs were considered to be statisti-
cally significant if both FDR-adjusted p-values in DMR-
cate and Siddak p-values in ENmix-comb-p were < 0.01.

Sensitivity analyses were also performed by repeat-
ing the meta-EWAS, adding birthweight and delivery 
mode to the confounders, and removing estimated cell 
counts from the confounders. Furthermore, we restricted 
meta-EWASs by excluding children born from mothers 
affected by gestational diabetes and of non-white Euro-
pean ethnicity.

Analysis of DNA methylation gestational age acceleration 
and rapid weight growth
In each study, we analyzed the association between ges-
tational age acceleration and RWG using logistic models 
adjusted for maternal tobacco smoke during pregnancy, 
maternal education level at delivery, pre-pregnancy BMI, 
age at delivery, parity, child sex, cohort membership (for 
EXPOsOMICS only), and blood cell estimations. Then, 
similarly to the analyses described above, results were 
meta-analyzed via fixed-effects meta-analysis weighted 
by the inverse of the variance. Results were presented 
as odds ratios (ORs) (and 95% confidence intervals (95% 
CI)) of RWG per 1-week increase in gestational age 
acceleration. We performed sensitivity analyses by add-
ing the mode of delivery and removing estimated cell 
counts from the confounders. Analyses of DNA methyla-
tion gestational age acceleration were further restricted 
by excluding children born from mothers affected by 
gestational diabetes and children of non-white European 
ethnicity.

Prediction of rapid weight growth
We estimated how well RWG was predicted using iden-
tified signatures compared to conventional risk factors 
using the RandomForest R package (version 4.7.1.1). We 
used three sets of variables: (1) DNA methylation levels 
of CpGs significantly associated in the meta-analysis of 
EWAS with RWG at pSuggestive<1e−05, (2) conventional 
risk factors (including maternal education level [21], age 
at delivery [22], smoking during the index pregnancy 
[23], pre-pregnancy BMI [24], parity [25], and child 
gestational age [26] and sex), (3) DNA methylation lev-
els of CpGs significantly associated in the meta-analysis 
of EWAS with RWG at pSuggestive<1e−05 in combination 
with conventional risk factors. Residuals from linear 
regression between DNA methylation levels and bead 
array row, bisulfite conversion batch, and cell proportions 
were used instead of the actual measures of DNA methyl-
ation levels to account for technical noise. Missing values 
were imputed using the missForest package. Data were 
split into training (including ALSPAC, ENVIRONAGE, 
and GXXI, being approximately 80% of the total study 
population) and test (including EXPOsOMICS cohorts 
for a total of approximately 20% of the total study pop-
ulation) sets. The model was trained on the training set 
with 10,000 trees. In the test set, the model performance 
was evaluated using the area under the curve (AUROC) 
to assess the classifier’s goodness of fit. The model cali-
bration was performed by visualizing the agreement 
between the observed and predicted values [58].

Using the same methodology, we also tested the predic-
tion of RWG by all the CpG sites belonging to each DMR 
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identified as associated with RWG with FDR-adjusted 
p-values in DMRcate and Siddak p-values in ENmix-
comb-p < 0.01.

Mediation analysis
For each CpG associated in the meta-analysis of EWAS 
with RWG at pSuggestive < 1e−05, we tested in each cohort 
separately, or in the case of the EXPOsOMICS cohorts 
together as the separate sample sizes are too small, if 
DNA methylation was mediator (M) of the effect of 
conventional risk factors (including maternal educa-
tion level [21], age at delivery [22], smoking during the 
index pregnancy [23], pre-pregnancy BMI [24], parity 
[25], and child gestational age [26]) here named expo-
sures (E) on RWG (Y) via model-based single media-
tion analysis using the imputation approach [59] via the 
medflex R package (version 0.6.7). We accounted for 
technically induced variation by using the residuals from 
a preliminary linear model of each CpG (as outcome 
variable) adjusted for bead array row and bisulfite con-
version batch, instead of the levels of DNA methylation. 
Mediation models were adjusted for conventional risk 
factors other than the exposure of interest, child sex and 
cohort membership (for EXPOsOMICS only) and blood 
cell estimations. Child gestational age was excluded from 
confounders as it could be a mediator of the effect of the 
other prenatal exposures. Mediation analysis of mater-
nal education was adjusted only for child sex and cohort 
membership (for EXPOsOMICS only) as the other pre-
natal exposures may act as mediators of its effect. We 
estimated the total effect (TE), which was further decom-
posed into the natural indirect effect (NIE) operating via 
each mediator M and the natural direct effect (NDE). 
These effects were meta-analyzed via fixed-effects meta-
analysis weighted by the inverse of the variance using the 
R package metafor and considered significant if pBonferroni 
was < 1.14e−03 (0.05/44). Results were reported as ORs 
(and 95% CI). The TE ORs express the effects of Y on 
E. The NIE and NDE ORs express the effects of E on Y, 
mediated and unmediated by M.

We applied the same methodology to explore media-
tion via the DMRs associated with RWG (with FDR-
adjusted p-values in DMRcate and Siddak p-values in 
ENmix-comb-p < 0.01) using all the CpGs belonging to 
each DMR as joint multiple mediators. Results were con-
sidered significant if pBonferroni was< 3.12e−03 (0.05/16). 
Finally, we explored mediation via gestational age accel-
eration and considered significant results with a p-value 
<0.05.

Transcriptomics and metabolomics functional analysis
To better characterize the functional role of the CpG 
associated in the meta-analysis of EWAS with RWG at 

pSuggestive < 1e−05, we integrated CpG measurements 
with the levels of the transcriptome available for the chil-
dren of ENVIRONAGE participating in EXPOsOMICS 
(N = 152) and of the metabolome available in the entire 
set of EXPOsOMICS participants (N = 444).

CpG methylation levels were regressed against tran-
script (n= 29,164 transcripts) and metabolite (n = 
4712 metabolic features) signals (as outcomes) in linear 
mixed models with random effects on bead array row 
and bisulfite conversion batch and adjusted for maternal 
tobacco smoke during pregnancy, maternal education 
level at delivery and pre-pregnancy BMI, age at delivery, 
and parity, gestational age, child sex, cohort member-
ship (for metabolomics analyses), and blood cell esti-
mations. Results were presented as mean (and standard 
error) differences in transcript and metabolite levels per 
10% increase in methylation level at each CpG. Results 
were considered significant if pBonferroni was< 3.90e−08 
(0.05/(44×29,164)) for transcriptomics analyses and < 
2.41e−07 (0.05/(44×4712)) for metabolomics analyses.

Using the same methodology, we evaluated the func-
tional role of all the CpGs in the identified DMRs having 
FDR-adjusted p-values in DMRcate and Siddak p-values 
in ENmix-comb-p < 0.01. Results from these analyses 
were considered significant if pBonferroni was < 1.79e−08 
(0.05/(96×29,164)) for transcriptomics analyses and < 
1.10e−07 (0.05/(96×4712)) for metabolomics analyses.

Transcriptomics analyses were further restricted to cis 
transcripts (on the same chromosome up to 10Kb in both 
directions from CpGs’ position).

Overrepresentation analyses (ORA) of the transcripts 
associated with CpGs in the functional analyses below 
the pSuggestive of 1e−05 were performed using Consensus-
pathDB online tool (http:// conse nsusp athdb. org/), with a 
pathway considered significantly enriched if the p-value 
was smaller than 0.05 and included at least three genes.

Analyses of childhood overweight
To assess if the identified CpGs were associated with 
childhood overweight, we used information on over-
weight in childhood available in ALSPAC, GXXI, and 
EXPOsOMICS children (N=1916).

Association between cord blood DNA methylation 
and childhood overweight was assessed via single study-
specific logistic regression models that were integrated 
via fixed-effect meta-analysis using the same method-
ology adopted in the main analysis and adding age at 
the measurement of BMI in childhood among the con-
founders. Results were presented as mean (and standard 
error) differences in log odds of childhood overweight 
per 10% increase in methylation for each CpG. We per-
formed a look-up of the differentially methylated CpGs in 
the meta-analysis of EWAS at pSuggestive < 1e−05, which 
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were considered to be statistically significant if pBonferroni< 
1.14e−03 (0.05/44), while DMRs were considered if both 
FDR-adjusted p-values in DMRcate and Siddak p-values 
in comb-p were < 0.01.

Comparison with previous findings
We investigated whether CpG sites associated with 
childhood anthropometrics, as identified by our recent 
systematic review [60], were associated with RWG by a 
look-up of these hits (N=1526 CpGs) in our study popu-
lation. Results were considered significant if pBonferroni< 
3.28e−05 (0.05/1526).

We compared our results at single CpG sites with those 
of a previous meta-EWAS of birthweight (N=8825 chil-
dren) and we tested the enriched CpGs significantly over-
lapped with our analysis using the chi-square test.

Results
Population
Of the total 2003 participants, 34% (677) were classified 
as having RWG (Table 1). In most of the studies, children 
born at a shorter gestational age, with lower birthweight, 
that were first born, and with mothers who smoked dur-
ing the pregnancy were more likely to show RWG (Addi-
tional file 2: Table S1).

Association between DNA methylation and rapid growth
Based on the meta-analyses, 49 CpGs were associated 
with RWG at pSuggestive < 1e−05 (Fig.  2a, b and Supple-
mentary Table  2), and among them three (cg14459032, 
cg25953130 annotated to ARID5B, and cg00049440 
annotated to KLF9) had pBonferroni< 1.25e−07 (Table  2). 
Forty-five (92%) of these CpGs showed a positive associa-
tion with RWG (regression coefficients range=0.4−1.6%). 
Sixteen DMRs were identified as being associated with 
RWG with FDR- and Siddak adjusted p-value <0.01 in 
DMRcate and ENmix-comb-p, respectively (Fig.  2b and 
Table 3).

Forest plots showing coefficients per each single 
study did not show evidence of heterogeneity among 
CpGs with pBonferroni < 1.25e−07 (Fig.  3). Visualization 
of I2p-values via QQ plot did not reveal heterogeneity 
(Additional file  3: Fig. S1). Evidence of high between-
study heterogeneity (I2> 50%) was detected for five 
(cg04677123, cg22341513, cg22807187 annotated to 
SNORD115-15, cg24335751 annotated to PRDM16, and 
cg07780199 annotated to CRCT1) of the 49 CpGs with 
pSuggestive < 1e−05 (Additional file 2: Table S2 and Addi-
tional file  3: Fig. S2), which were removed from subse-
quent analyses. Analyses leaving out one cohort at a time 
indicated that no single study had an influential effect on 

Fig. 2 Results from the meta‑analysis of EWAS of rapid weight growth. a Volcano plot shows the −log10p‑values (vertical axis) against the estimates 
(horizontal axis) of each CpG site. b Manhattan plot shows the −log10p‑values (vertical axis) against the chromosomal position (horizontal axis) of 
each CpG site. c Quantile‑quantile plots of the observed  log10p‑values (vertical axis) against the expected log10 p‑values (horizontal axis) of each 
CpG site. Estimates are reported per 10% increase in methylation levels

Table 2 Genome‑wide significant CpGs in the meta‑analysis of EWAS of rapid weight growth 

Coefficients are reported per 10% increase in methylation levels. I2 heterogeneity. CpGs depicted have p Bonferroni < 1.25e-07

CpG Gene name Gene region Coefficient Standard error p-value I2 I2p-value

cg14459032 ‑ ‑ 4.03 0.74 4.71e−08 0.00 0.68

cg25953130 ARID5B Body 6.61 1.22 6.14e−08 43.42 0.15

cg00049440 KLF9 Body 5.56 1.05 1.10e−07 14.15 0.32
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meta-analysis results (Fig. 3 and Additional file 3: Fig. S2). 
Quality control of a single EWAS of RWG revealed the 
inflation measured by the λbacon ranged from 0.92 to 1.05 
indicating little deflation or inflation from the expected 
p-values, as detailed in Additional file  3: Fig. S3. In the 
meta-analysis of EWAS, λbacon was 1.05 suggesting little 
evidence of inflation (Fig. 2c).

In sensitivity analyses, we found that the direction of 
the associations at the 49 CpGs with pSuggestive < 1e−05 
was stable, while p-values were attenuated. Adding birth-
weight as a confounder, the significance of all the associa-
tions faded above pSuggestive of 1e−05, except for six CpGs 
(cg13710814, cg05455036, cg00747477, cg26682904, 
cg23404711, cg06846833; Additional file  2: Table  S3). 
Adding delivery mode as a covariate, p-values for the 
association of all the CpGs were still below pSuggestive of 
1e−05, with the exception of one CpG (cg16072126), 
and p-values of all the three genome-wide significant 

CpGs in the main analyses were still below the pBonfer-

roni significance level of 1.25e−07 (Additional file  2: 
Table  S3). Removing cell types from confounders, 21 
CpGs had still pSuggestive < 1e−05, and the p-values of two 
of the genome-wide significant CpGs (cg25953130 and 
cg14459032) were still below the pBonferroni significance 
level of 1.25e−07 (Additional file 2: Table S3). Excluding 
subjects with mothers having had gestational diabetes or 
unknown information (N = 113) and children that were 
non-white European or unknown information (N=53) 
(Additional file  2: Table  S4), p-values of the association 
of 28 and 35 CpGs were still below pSuggestive of 1e−05, 
respectively, in each analysis, and p-value of one out of 
the three genome-wide significant CpGs faded above the 
pBonferroni threshold of 1.25e−07 in the analyses exclud-
ing gestational diabetes cases (cg00049440) and non-
white European children (cg14459032) (Additional file 2: 
Table  S3). In sensitivity analyses of the DMR analyses, 

Fig. 3 CpGs associated with rapid weight growth at pBonferroni<1.25e−07 in the meta‑analysis of EWAS. a Forest plots show log odds of showing 
rapid weight growth per 10% increase of methylation levels and 95% confidence intervals from single EWAS and pooled in the meta‑analysis. b 
Plots show log odds of showing rapid weight growth per 10% increase of methylation levels and 95% confidence intervals from leave out one 
cohort at time analyses. 95% CI 95% confidence interval
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when birthweight was added as a confounder, the sig-
nificance of all the DMRs faded above the FDR- and Sid-
dak-adjusted p-value threshold of 0.01 in DMRcate and 
ENmix-comb-p, respectively, except for the THEM5 and 
AURKC DMRs (Additional file 2: Table S5). When add-
ing delivery mode, all the regions, except for the AURKC 
DMR had FDR- and Siddak-adjusted p-values below 
of 0.01 in DMRcate and ENmix-comb-p, respectively 
(Additional file 2: Table S5). Excluding mothers with ges-
tational diabetes or unknown information and children 
that were non-white European or unknown information 
(Additional file 2: Table S4), three (LOXL1-AS1, ACTG1, 
and ALOX12-AS1) and one (FETUB) DMRs, respectively, 
faded above the FDR- and Siddak-adjusted p-values 
of 0.01 in DMRcate and ENmix-comb-p, respectively 
(Additional file 2: Table S5). The p-value of the associa-
tions with rapid growth remained below FDR- and Sid-
dak-adjusted p-value threshold of 0.01 in DMRcate and 
ENmix-comb-p, respectively, for all the regions, apart 
from seven (located at FETUB, LOXL1-AS1, PRDM16, 
C17orf64, STK10 and ALOX12-AS1, and GNMT), in 
models not adjusted for cell types (Additional file  2: 
Table S5).

Association between gestational age acceleration 
and rapid weight growth
In all the studies, few CpGs (ranging from 0 to 8) were 
missing for the calculation of gestational age acceleration 

using both clocks (Additional file 2: Table S6). The corre-
lation of Bohlin’s clock with chronological gestational age 
was stronger (correlation coefficient r range= 0.63–0.73) 
than Knight’s (correlation coefficient r range = 0.33–
0.55), which was excluded in the subsequent analyses 
(Additional file 2: Table S6 and Additional file 3: Fig. S4). 
The meta-analysis found that gestational age acceleration 
was associated with decreasing risk of showing RWG 
(OR per one gestational age acceleration week=0.71, 95% 
CI= 0.60–0.85, p-value=9.75e–04) (Fig. 4). Adding deliv-
ery mode, removing estimated cells from confounders, 
excluding mothers with gestational diabetes or unknown 
information and children that were non-white Euro-
pean or with unknown information, did not mitigate the 
results (Additional file 3: Fig. S5).

Rapid weight growth prediction
Using Random Forest classification, the rapid growth 
prediction model showed a predictive ability of an 
AUROC value of (Fig.  5) 0.63 (95% CI=0.57–0.70) by 
including to the model the 44 CpGs related to RWG at 
pSuggestive < 1e−05; 0.61 (95% CI= 0.55–0.68) by includ-
ing the 96 CpGs belonging to the 16 DMRs related to 
RWG at FDR-adjusted p-value in DMRcate and Sid-
dak p-values in ENmix-comb-p < 0.01; 0.67 (95% CI= 
0.61–0.74) by including conventional risk factors; 0.70 
(0.64–0.77) when both the 44 CpGs related to RWG at 
pSuggestive < 1e−05 and the conventional risk factors were 

Fig. 4 Association of gestational age acceleration and rapid weight growth. Forest plot show odds ratio and 95% confidence intervals of showing 
rapid weight growth for an increase of 1 week of gestational age acceleration from the single study analyses and pooled in the meta‑analysis. 95% 
CI 95% confidence interval
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incorporated in the model; and 0.69 (0.63–0.75) when 
both the 96 CpGs belonging to the 16 DMRs associated 
with RWG at FDR-adjusted p-value in DMRcate and 

Siddak p-values in ENmix-comb-p <0.01 and the conven-
tional risk factors were incorporated in the model. Pre-
diction models developed with the CpGs related to RWG 

Fig. 5 Receiver operating characteristic (ROC) mean value of Random Forest prediction models of rapid weight growth. a ROC curves of models 
including conventional risk factors, 44 CpGs associated with rapid weight growth at pSuggestive< 1e−05 in the meta‑analysis of EWAS, and both as 
identified by the color legend. b ROC curves of models including conventional risk factors, 96 CpGs belonging to the 16 differentially methylated 
regions associated with rapid weight growth at FDR‑adjusted p‑values in DMRcate and Siddak p‑values in ENmix‑comb‑p were < 0.01, and both as 
identified by the color legend. DMRs differentially methylated regions; conventional risk factors include maternal tobacco smoke during pregnancy, 
education level at delivery, pre‑pregnancy BMI, age, parity, and child sex and gestational age
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(Additional file  3: Fig. S6) or CpGs belonging to DMRs 
related to rapid growth in DMRcate and Siddak p-values 
in ENmix-comb-p (Additional file 3: Fig. S7) in addition 
to the conventional risk factors showed moderately low 
classification of RWG.

Mediation analysis
Among the 44 CpGs associated with RWG at pSuggestive < 
1e−05, three CpGs (cg20068209, located on TMEM30A; 
cg25953130, located on ARID5B; and cg26433582, 
located on TPCN2) partly mediated the effect of gesta-
tional age on RWG with pBonferroni< 1.14e−03 (0.05/44), 
yet the total effect was mainly explained through other 
pathways (Fig. 6). While some of the 44 CpGs were highly 
correlated between themselves, these three CpGs were 
not (Additional file  3: Fig. S8). No mediation effect on 
RWG was found at the other CpGs or DMRs, for any 
exposure under study (all pBonferroni for DMRs > 3.11e−03 
(0.05/16)). Gestational age acceleration did not mediate 
the effect of any exposure under study on rapid weight 
growth (Additional file 2: Table S7, all p-values>0.05).

Downstream analysis
In the ENVIRONAGE cohort, among the 44 CpGs asso-
ciated with RWG at pSuggestive < 1e−05, cg20068209 
(located on TMEM30A) and cg20076442 were nega-
tively associated with ten transcripts (of XLOC_008311, 
LOC102724800, XLOC_014512, AADACP1, SSTR5-
AS1, TTTY16, CHMP7, and FLJ32756) (at pBonferroni 
< 3.90e−08) (Additional file  3: Fig. S9A). Restricting 
the analyses to cis signals, cg20038219 was found posi-
tively associated with the expression of WBSCR27 and 

cg20938359 (located on SLC6A13) was negatively associ-
ated with a SLC6A13 transcript (at pBonferroni < 2.63e−03) 
(Additional file  3: Fig. S9B). Identified gene expres-
sion signals below the pSuggestive < 1e−05 (N=315) were 
mapped to 176 unique genes which were involved in 
seven significant pathways (p-values < 0.05), including 
MAPK signaling and cell-cell communication pathways 
(Additional file 2: Table S8).

Among the 96 CpGs belonging to the 16 DMRs (Addi-
tional file  2: Table  S9) associated with RWG at FDR-
adjusted p-value in DMRcate and Siddak p-values in 
ENmix-comb-p <0.01, ten CpGs (located in SPATA33, 
CLDN4, and GNMT DMRs) were associated with seven 
transcripts (of PEX6, HMGB4, ETNK2, MCAT , and 
WBSCR27) (Additional file  3: Fig. S9C). Restricting 
the analyses to cis signals, 11 CpGs (located in CLDN4, 
GNMT, and THEM5 DMRs) were associated with five 
transcripts (of WBSCR27, PEX6, GNMT, and THEM5) 
(at pBonferroni < 4.42e−03) (Additional file  3: Fig. S9D). 
Notably, WBSCR27 and PEX6 transcripts were iden-
tified both at the transcriptome-wide level and in the 
cis-restricted analyses (Additional file  3: Fig. S8C, 8D). 
Identified gene expression signals below the pSuggestive < 
1e−05 (N = 297) were mapped to 175 unique genes and 
were involved in 32 significant pathways (p-values <0.05), 
including type II diabetes mellitus, insulin signaling, 
sphingolipid signaling, growth hormone synthesis, secre-
tion and action, immune system, and nervous system 
development pathways (Additional file 2: Table S8).

No association was found between the 44 CpGs 
associated with RWG at pSuggestive < 1e−05 and 
the metabolome in the EXPOsOMICS population 

Fig. 6 Effects of gestational age on rapid weight growth mediated by three CpGs. The plot represents on the x‑axis the point estimates odds ratio 
(dots) and 95% confidence intervals (bars) of the mediation analysis of the 1‑week increase of gestation on rapid weight gain via DNA methylation. 
Only CpGs with p‑values of the natural indirect effects below pBonferroni threshold of 1.14e−03 (0.05/44 CpGs associated with rapid weight growth at 
pSuggestive< 1e−05 in the meta‑analysis of EWAs) are shown. NDE natural direct effect, NIE natural indirect effect, TE total effect
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(minimum p-value= 8.36e−06 versus p-value Bonfer-
roni threshold=2.41e−07, Additional file  3: Fig. S10A). 
The 96 CpGs belonging to the 16 DMRs associated with 
RWG at FDR-adjusted p-value in DMRcate and Siddak 
p-values in ENmix-comb-p <0.01 were not associated 
with the metabolome (minimum p-value= 1.01e−06 ver-
sus p-value Bonferroni threshold = 1.10e−07, Additional 
file 3: Fig. S10B).

Association between DNA methylation and childhood 
overweight
The study population for the analyses of childhood over-
weight included 1916 children, with a prevalence of 
overweight of 23.4% (N=435) at a mean age of 6.5 years 
(Additional file  2: Table  S10). Among the 44 CpGs that 
were associated with RWG at pSuggestive < 1e−05, none 
was associated with childhood overweight at pBonfer-

roni < 1.14e−03 (0.05/44) (cg21844291 had the smallest 
p-value being equal to 0.05, Additional file 2: Table S11). 
Of the 16 DMRs associated with RWG at FDR-adjusted 
p-value in DMRcate and Siddak p-values in ENmix-
comb-p <0.01, the AURKC DMR was also associated 
with childhood overweight (FDR-adjusted p-value in 
DMRcate=2.64e−13 and Siddak p-values in ENmix-
comb-p=1.86e−15) (Additional file 2: Table S12). Gesta-
tional age acceleration was not associated with childhood 
overweight (OR per one gestational age acceleration 
week = 0.85, 95% CI= 0.70–1.04, p-value=0.12) (Addi-
tional file 3: Fig. S11).

Comparison with previous findings
In the look-up of the 1526 CpG sites associated with 
anthropometrics in children by a previous systematic 
review [60], no signal  was significantly associated with 
RWG in our meta-analysis (Additional file  3: Fig. S12 
[60], minimum p-value for cg00753924 located on RXRA 
= 8.72e−05 versus pBonferroni< 3.28e−05 (0.05/1526)). Out 
of the 44 CpGs we identified as associated with RWG, 19 
were among the 2423 CpGs (chi-squared p-value<1e−16) 
associated with birthweight with p-value<1e−05 (out of 
473,864 CpGs) in the previous PACE meta-EWAS [14].

Discussion
In this meta-EWAS of six population-based cohorts, 
including a total of more than 2000 children, we found 
evidence of an association of cord blood DNA methyla-
tion with RWG during the first year of life at the DMR 
(N=16) level (using FDR-adjusted p-values in DMRcate 
and Siddak p-values in ENmix-comb-p thresholds of 
0.01, respectively), although only three CpGs reached 
genome-wide significance at the single CpG level (pBon-

ferroni threshold of 1.25e−07). Considering a less strin-
gent significance level (pSuggestive threshold of 1e−05), 

our findings of 44 CpGs were enriched in CpGs previ-
ously reported in relation to birthweight. However, six 
were associated with RWG independently of birthweight, 
indicating that some epigenetic signatures might only be 
related to RWG while others are a shared mechanism 
with birthweight (or a correlate of this measure). Our 
findings also showed that higher gestational age accel-
eration was associated with a lower risk of experienc-
ing RWG. A small improvement in predicting RWG was 
obtained by coupling the top CpGs associated with RWG 
with conventional risk factors. Translating our findings 
to the metabolomic and gene expression level indicated 
that the identified CpGs were associated with differential 
expression of different genes and long non-coding RNAs, 
but not with metabolic changes. Exploring a set of prena-
tal exposures previously associated with RWG [21–26], 
we found that gestational age was inversely associated 
with RWG and part of this association was mediated by 
the methylation level at three CpGs. AURKC DMR was 
associated with RWG and childhood obesity between 4 
and 8 years old.

The identified genome-wide significant CpGs 
(cg14459032, cg25953130, and cg00049440) are here 
related to RWG for the first time; nevertheless, they 
have been previously associated with birthweight [14, 
61, 62], which is not surprising given the fact that 
RWG is calculated based on the difference between 
weight at 1 year and birthweight. cg14459032 was not 
mapped to any gene, but enhancing annotation as pre-
viously described [63], we found the nearest known 
gene within 10 MB is PCSK5, encoding for a proprotein 
convertase subtilisin/kexin type 5, which genome-wide 
association studies have associated to height [64] and 
high-density lipoprotein cholesterol [65]. cg25953130 is 
located on the AT-rich interactive domain-containing 
protein 5B (ARID5B), which encodes for a transcrip-
tional repressor of beige adipocyte biogenesis leading 
to a shift towards increasing energy-storing white adi-
pocytes [66]. cg00049440 is located on the Kruppel-like 
factor 9 (KLF9), which encodes a zinc-finger transcrip-
tion factor that regulates the adipocyte differentiation 
by binding to peroxisome proliferator-activated recep-
tor γ2 (PPARγ2) promoter [67] and was associated with 
BMI in adults in a genome-wide association study [68]. 
We found that increasing cord blood DNA methylation 
at these sites was associated with a higher occurrence 
of RWG, which is consistent with the previous find-
ings of an inverse relationship with birthweight, which 
in turn is inversely associated with RWG [61]. Since 
the temporal co-occurrence of birthweight and DNA 
methylation impedes assessing whether birthweight is 
a mediator or a confounder in the association between 
DNA methylation and RWG, our main analyses were 
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not adjusted for birthweight. The involvement of 
birthweight in these associations was further demon-
strated in sensitivity analyses, where adjustment for 
birthweight revealed that the strength of association 
decreased for the three CpG sites, and the significance 
faded at a crude p-value of 0.05 at cg25953130. Similar 
to single CpGs, only two DMRs were associated with 
RWG independently of birthweight. Our findings sug-
gest that birthweight mostly has an influence on DNA 
methylation, rather than being a mediator of its effect 
on RWG. Studies in adults and children supported this 
hypothesis [69, 70]. Along this line, DNA methylation 
between 10 and 18 years at the one gene (RPH3AL) 
was found to be predicted by BMI of 10-year-old chil-
dren [71]. THEM5 and AURKC DMRs (among the 16 
DMRs associated with RWG at FDR-adjusted p-values 
in DMRcate and Siddak p-values in ENmix-comb-p< 
0.01) and six CpGs (among the 44 CpGs associated 
with RWG at pSuggestive < 1e−05) were associated with 
RWG independently from birthweight. This finding 
may indicate that some epigenetic signatures are shared 
by birthweight and RGW, while others are only related 
to RWG. Thioesterase superfamily member 5 (THEM5) 
encodes a thioesterase involved in the cardiolipin 
remodeling process, which in animal models has a criti-
cal role in the development of fatty liver [72]. Aurora 
kinase C (AURKC) encodes a protein kinase that regu-
lates multiple key steps during the mitotic cell division 
process and whose expression levels in placentas are 
reduced in early-onset fetal growth-restricted pregnan-
cies [73].

Prediction of RWG was slightly improved by adding 
the CpGs associated with RWG with pSuggestive<1e−05 
or the CpGs belonging to DMRs associated with RWG 
(using FDR-adjusted p-values in DMRcate and Siddak 
p-values in ENmix-comb-p < 0.01) to conventional 
risk factors (c-index increased from 0.67 in models 
including only conventional risk factors to 0.70 and 
0.69 in models including also the CpGs and the CpGs 
belonging to DMRs, respectively), which could be due 
to the CpGs laying on the casual paths linking the pre-
natal exposures to RWG. Our mediation analysis sup-
ports this hypothesis by the finding that three CpGs 
(g25953130, previously described, cg20068209 located 
on TMEM30A, and cg26433582 located on TPCN2) 
mediate the effect of gestational age on RWG, although 
most of the effect of gestational age on RWG is direct. 
Methylation levels of these CpGs at birth have been 
previously associated with gestational age [43] and 
birthweight [14]. cg25953130 in cord blood was also 
associated with maternal hypertensive disorders in 
pregnancy [74]. Our analyses could not exclude the 
possibility that maternal hypertensive disorders or 

other unmeasured confounders affect DNA methyla-
tion at birth, gestational age, and RWG later in infancy.

We identified 16 DMRs associated with RWG (at 
FDR-adjusted p-values in DMRcate and Siddak p-values 
in ENmix-comb-p < 0.01), by applying two independ-
ent methods (ENmix-comb-p [56] and DMRcate [57]), 
compared to three only single CpG sites. The difference 
in the number of identified signals may be due to the 
greater statistical power of DMR analyses. However, by 
identifying DMRs and CpGs, the mechanisms underly-
ing the propensity to RWG involve multiple CpGs. In 
accordance with this finding, a previous study found that 
at birth DMRs but not single CpG were predictive of the 
waist-to-hip ratio of children at 5 years, including the 
PRMD16 DMR [75], which we also found in our study 
associated with RWG. PRMD16 encodes for a transcrip-
tional regulatory factor that controls the differentiation of 
brown adipose tissue, and promotes the transition from 
white to beige adipose tissue and is closely related to obe-
sity [76]. Methylation at single CpG sites of this gene was 
previously reported to be associated cross-sectionally to 
childhood obesity and severe obesity [15, 77], and more 
recently with overweight and obesity in adulthood, both 
at single CpG sites and methylation haplotypes [78]. 
However, in our study, we were not able to identify an 
association of this DMR with childhood overweight. 
AURKC DMR was the only one we identified significantly 
associated with both RWG and childhood overweight.

Among the identified DMRs, two, LOXL1-AS1 and 
ALOX12-AS1 DMR, were mapped to genes putatively 
encoding long non-coding RNAs. DMRs are generally 
regarded as regions with functional roles. While most 
studies assume that DNA methylation influences proxi-
mal genes, recent multi-omics studies demonstrated that 
changes in DNA methylation could be associated with 
distal expression changes [79, 80]. Here, we explored 
the relationships between identified DNA methylation 
signals and gene expression at the genome-wide level, 
finding that three DMRs were associated with seven 
transcripts at the transcriptome-wide level, three of 
which were cis transcripts (located in the proximity of 
the DMRs). In addition, investigating the functional rele-
vance of single CpG sites associated with RWG, we found 
that two CpGs, including cg20068209 (identified as a 
possible mediator in mediation analyses), were negatively 
associated with ten transcripts at the transcriptome-wide 
level, including several long non-coding RNAs. All these 
transcripts were located far from the identified CpGs 
(only one transcript shared the same chromosomal loca-
tion of the associated CpG), both of which are enhancers. 
This finding suggests that the regulation of transcription 
goes beyond classical repression of promoter methyla-
tion and suggests a possible and more complex interplay 
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between multiple epigenetic layers (methylation, chro-
matin, and non-coding RNAs). This hypothesis is con-
sistent with findings from a previous study that miRNA 
expression levels in the placenta were correlated with 
methylation levels, which in turn were associated with 
the offspring’s anthropometry at 6 years [81].

Pathway analyses confirmed a functional role of the 
identified DNA methylation signals by identification 
of gene expression being involved in several pathways, 
including type II diabetes mellitus, insulin signaling, 
growth hormone synthesis, immune system, and cell 
signaling pathways.

Finally, our results indicate that children with greater 
gestational age acceleration have a lower risk of RWG 
(p-value<0.05), which is consistent with previous stud-
ies finding that greater gestational age acceleration was 
associated with higher birthweight [82] and lower weight 
growth from birth to 10 years (although this last associa-
tion was not significant) [19]. These findings suggest that 
gestational age acceleration reflects factors related to 
gestation, such as growth and development, rather than 
general processes of aging (as adult age acceleration), 
and is advantageous in childhood. Maternal smoking 
and socioeconomic position have been associated with 
infant’s DNA methylation age at birth [23, 83] and RWG 
[21]. Our analysis found that maternal tobacco smoke 
during pregnancy, maternal age, and primiparity were 
associated with a higher risk of children showing RWG, 
but gestational age acceleration did not mediate these 
associations.

The main strengths of this study are the large sample 
size, the investigation of regional patterns of DNA meth-
ylation in addition to the single CpG sites, the incorpo-
ration of multiple omic layers in the analyses to explore 
downstream functionality of DNA methylation targets, 
and the mediation analyses that we have undertaken to 
disentangle the role of DNA methylation in the asso-
ciation between conventional risk factors and RWG. We 
first studied RWG independently of birthweight, as birth-
weight is part of the definition of RWG. Nevertheless, 
we tested all associations also taking birthweight into 
account and hereby further clarifying the role of birth-
weight in the epigenetic programming of RWG.

We acknowledge some limitations. We used DNA 
methylation in cord blood as an accessible collectible tis-
sue for large populations, but we acknowledge that cord 
blood is a mix of cell types. We used estimated cell counts 
to account for cell variability using two reference meth-
ods specific to the umbilical cord that can be combined 
across studies [41, 42, 84]. DNA methylation was meas-
ured in the participating studies by the Illumina EPIC 
and 450K BeadChip arrays. We decided to meta-ana-
lyze DNA methylation levels measured in at least three 

studies which reduced the total number of CpG included 
in the analysis to less than 400,000, representing a small 
fraction (~1.5%) of the 28.3 million of total CpG sites in 
the genome [85]. Furthermore, genome-wide technolo-
gies are mainly employed to discover biomarkers that in 
turn require validation by other testing methods (e.g., 
pyrosequencing, quantitative methylation-specific poly-
merase chain reaction). Further validation of the identi-
fied signals is warranted. RWG was defined based on a 
fixed threshold (0.67 SD scores), which is well established 
in the literature [47]. Future studies analyzing the asso-
ciation of DNA methylation and the continuous increase 
of RWG are needed to robustly replicate these results 
and may provide further biological insights. Neverthe-
less, we performed sensitivity analyses for prenatal expo-
sures (adjusting for delivery mode or excluding mothers 
affected gestational diabetes and children with non-white 
European ethnicity) known to affect both DNA meth-
ylation and RWG and most of the signals we identified 
were stable to sensitivity analyses, we cannot exclude the 
possibility of unmeasured confounding by genetic and 
other prenatal factors, including paternal factors. Finally, 
in the mediation analysis of single CpGs, we considered 
each potential mediator as independent, while genome-
wide techniques are available for correlated high-dimen-
sional data [86]. However, the three CpGs identified as 
mediators in our analysis were not correlated between 
themselves.

Conclusions
In conclusion, our findings show that DNA methylation 
of regions of DNA, gestational age acceleration, and to a 
lesser extent single CpGs in cord blood were associated 
with RWG. The DNA methylation signatures identified 
showed a slight improvement in the prediction of RWG 
in addition to conventional risk factors. Furthermore, our 
mediation analysis indicated that some of the identified 
DNA methylation signatures were mediating the effect of 
gestational age on RWG. Finally, throughout the analy-
sis incorporating RWG, we identified the AURKC DMR 
as predictive of overweight in childhood. Results were 
enriched in CpGs previously reported associated with 
birthweight. By increasing knowledge of the molecular 
mechanisms underlying RWG, our results can contribute 
to identifying target groups and developing prevention 
strategies already at birth.
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