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Abstract

In infectious disease epidemiology, the instantaneous reproduction number Rt is a time-

varying parameter defined as the average number of secondary infections generated by an

infected individual at time t. It is therefore a crucial epidemiological statistic that assists pub-

lic health decision makers in the management of an epidemic. We present a new Bayesian

tool (EpiLPS) for robust estimation of the time-varying reproduction number. The proposed

methodology smooths the epidemic curve and allows to obtain (approximate) point esti-

mates and credible intervals of Rt by employing the renewal equation, using Bayesian P-

splines coupled with Laplace approximations of the conditional posterior of the spline vector.

Two alternative approaches for inference are presented: (1) an approach based on a maxi-

mum a posteriori argument for the model hyperparameters, delivering estimates of Rt in

only a few seconds; and (2) an approach based on a Markov chain Monte Carlo (MCMC)

scheme with underlying Langevin dynamics for efficient sampling of the posterior target dis-

tribution. Case counts per unit of time are assumed to follow a negative binomial distribution

to account for potential overdispersion in the data that would not be captured by a classic

Poisson model. Furthermore, after smoothing the epidemic curve, a “plug-in’’ estimate of

the reproduction number can be obtained from the renewal equation yielding a closed form

expression of Rt as a function of the spline parameters. The approach is extremely fast and

free of arbitrary smoothing assumptions. EpiLPS is applied on data of SARS-CoV-1 in

Hong-Kong (2003), influenza A H1N1 (2009) in the USA and on the SARS-CoV-2 pandemic

(2020-2021) for Belgium, Portugal, Denmark and France.

Author summary

The instantaneous reproduction number Rt is a key statistic that provides important

insights into an epidemic outbreak as it informs about the average number of secondary
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infections engendered by an infectious agent. We present a flexible Bayesian approach

called EpiLPS (Epidemiological modeling with Laplacian-P-Splines) for efficient estima-

tion of the epidemic curve and Rt based on daily case count data and the serial interval

distribution. Computational speed and absence of arbitrary assumptions on smoothing

makes EpiLPS an interesting tool for estimation of the reproduction number. Our meth-

odology is validated through different simulation scenarios by using the associated R soft-

ware package (https://cran.r-project.org/package=EpiLPS). We also demonstrate the use

of EpiLPS on real data from two historical outbreaks and on the SARS-CoV-2 pandemic.

This is a PLOS Computational Biology Methods paper.

Introduction

The instantaneous reproduction number Rt is a time-varying parameter defined as the average

number of secondary cases generated by an infectious individual at time t. During epidemic

outbreaks, Rt provides a snapshot (often on a daily basis) that quantifies the extent to which a

given infectious disease transmits in a population and is therefore an important tool that assists

governmental organizations in the management of a public health crisis. The reproduction

number is also a good proxy for measuring the real-time growth phase of an epidemic and as

such, constitutes a key signal about the transmission potential of the outbreak and the required

control effort. For this reason, having a robust, accurate and timely estimator of Rt is a crucial

matter that has attracted considerable interest in developing new statistical approaches during

the last two decades as summarized in [1]. The paper of [2] compares several methods for esti-

mating Rt and gives clear insights about the main challenges and obstacles that have to be

faced. They recommend the method of [3] and its associated EpiEstim package [4] as an

appropriate and accurate tool for near real-time estimation of the instantaneous reproduction

number. Another recent approach is proposed in [5], where a recursive Bayesian smoother

based on Kalman filtering is used to derive a robust estimate of Rt in periods of low incidence.

The EpiNow2 package [6] also provides interesting extensions and implementations of current

best practices for precise estimation and forecast of the reproduction number using a Bayesian

latent variable framework. Spline based approaches have shown to be a useful tool for flexible

modeling of the reproduction number. [7] use penalized radial splines for estimating Rt under

a Bayesian setting with misreported data and [8] accelerated the computational implementa-

tion by replacing the Markov chain Monte Carlo (MCMC) scheme with Laplace approxima-

tions. From a frequentist perspective, [9] uses truncated polynomials and radial basis splines to

model the series of new infections and a derivative thereof as a candidate estimator for the

reproduction number.

In this article, we propose a new Bayesian approach termed “EpiLPS” for estimating Rt

based on case incidence data and the serial interval (SI) distribution (the time elapsed between

the onset of symptoms in an infector and the onset of symptoms in the secondary cases gener-

ated by that infector). Our estimator of Rt is based on epidemic renewal equations [10, 11]

and Laplacian-P-splines smoothing of the mean number of incidence cases. Time series of

new cases by day of reporting (or day of symptom onset) are assumed to follow a negative

binomial distribution to account for potential excess variability as frequently encountered in

epidemiological count data. Algorithms related to Laplace approximations and evaluations of
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B-spline bases are coded in C++ and embedded in the R language through the Rcpp package

[12], making computational speed another key strength of EpiLPS as Rt can be estimated in

seconds. In addition, EpiLPS can also be used to obtain a smoothed estimate of the epidemic

curve that can be of potential interest to further visualize an epidemic outbreak.

The proposed Bayesian methodology is based on a latent Gaussian model for the B-spline

amplitudes and opens up two possible paths for inference. The first is called LPSMAP, a fully

sampling-free approach based on Laplace approximations to the conditional posterior of B-

spline coefficients. The hyperparameter vector is fixed at its maximum a posteriori and credible

intervals of Rt are computed via the “delta” method. The second path is called LPSMALA and

is a MCMC approach based on the Langevin diffusion for efficient exploration of the posterior

distribution of latent variables. The latter approach is computationally heavier than LPSMAP

but has the merit of taking into account the uncertainty surrounding the hyperparameters.

The underlying Metropolis-within-Gibbs structure keeps the practical implementation to a

fairly simple level and the computational cost is reasonable even for long chains.

Compared to existing methods, EpiLPS resembles EpiEstim from a methodological point of

view in the sense that Rt is estimated from incidence time series and a serial interval distribu-

tion, yet the two approaches fundamentally differ in many aspects. First, the methodology of

[3] assumes that incidence at time t is Poisson distributed, while EpiLPS assumes a negative

binomial model. Second, as our approach uses penalized spline based approximations, prior

specifications are imposed on the roughness penalty parameter and not directly on Rt as in

EpiEstim. Third and most importantly, EpiLPS is free of any sliding window specification,

while EpiEstim relies on a user-defined time window. This subjective time window choice is

the key driving force that determines how smooth the estimated Rt trajectory will be. In

EpiLPS, the optimal amount of smoothing is data-driven and objectively estimated (through

the penalty parameter) within the Bayesian model. An R package for EpiLPS has been devel-

oped and is available at https://cran.r-project.org/package=EpiLPS. The software also allows to

compute the Cori et al. (2013) [3] estimate of Rt for the sake of comparison.

The manuscript is organized as follows. We first present the Laplacian-P-splines model for

smoothing count data and show how the Laplace approximation applies to the conditional

posterior of the B-spline amplitudes and also derive the (approximate) posterior of the hyper-

parameter vector to be optimized. This yields the maximum a posteriori (MAP) estimate of the

spline vector via Laplacian-P-splines (LPSMAP). We then use LPSMAP to propose a “plug-in”

estimate of Rt based on renewal equations and proceed to the computation of credible inter-

vals. An alternative path for estimation of Rt based on MCMC is also presented. The latter

approach uses Langevin dynamics for efficient sampling of the target posterior distribution

and is termed LPSMALA for “Laplacian-P-splines with a Metropolis-adjusted Langevin algo-

rithm”. Next, we assess the performance of EpiLPS in various simulation scenarios and make

comparisons with EpiEstim. Finally, we apply EpiLPS to real world epidemic outbreaks before

concluding with a discussion.

Methods

Negative binomial model for case incidence data

Let D ¼ fyt; t ¼ 1; . . . ;Tg be a time series of counts during an epidemic of T days with yt 2 N
(set of non-negative integers) denoting the number of cases by reporting date or by date of

symptom onset. We assume that the number of cases on day t follows a negative binomial dis-

tribution yt� NegBin(μ(t), ρ), with mðtÞ; r 2 R�
þ
≔fx 2 Rjx > 0g and probability mass
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function (see e.g. [13, 14]):

pðytjmðtÞ; rÞ ¼
Gðyt þ rÞ

Gðyt þ 1ÞGðrÞ

mðtÞ
mðtÞ þ r

� �yt r

rþ mðtÞ

� �r

; ð1Þ

where Γ(�) is the gamma function. The above parameterization is frequently encountered in

epidemiology [15] and yields a mean EðytÞ ¼ mðtÞ and variance VðytÞ ¼ mðtÞ þ mðtÞ
2
=r, so

that ρ is the parameter responsible for overdispersion (variance larger than the mean) that is

absent in a Poisson setting. In the limiting case limr!þ1VðytÞ ¼ mðtÞ ¼ EðytÞ and we recover

the mean-variance equality of the Poisson model. The key argument in favor of a negative

binomial distribution is thus its ability to capture the often encountered feature of overdisper-

sion present in infectious disease count data [16]. We assume that μ(t) evolves smoothly over

the time course of the epidemic and model it with cubic B-splines [17]:

logðmðtÞÞ ¼
XK

k¼1

ykbkðtÞ ¼ θ>bðtÞ; ð2Þ

where θ = (θ1, . . ., θK)> is the vector of B-spline amplitudes to be estimated and b(�) = (b1(�),

. . ., bK(�))> is a cubic B-spline basis defined on the domain T ¼ ½rl;T�, where rl is a lower

bound on the time axis, typically the first day of the epidemic (i.e. rl = 1). The philosophy

behind P-splines consists in specifying a “large” number K of basis functions together with a

discrete roughness penalty λθ>Pθ as a counterforce to the induced flexibility of the fit. The

parameter λ> 0 acts as a tuning parameter calibrating the “degree” of smoothness and P ¼
D>r Dr þ εIK is a penalty matrix built from rth order difference matrices Dr of dimension (K −
r) × K perturbed by an ε-multiple (here ε = 10−6) of the K-dimensional identity matrix IK to

ensure full rankedness. There are several attractive reasons to use P-splines for smoothing the

epidemic curve and Rt . First, as the P-splines setting specifies an abundant number of B-spline

basis functions coupled with a penalty on the spline coefficients to control for overfitting, the

resulting μ(t) fit is smooth and estimates can be obtained for any t on the continuous time

domain. Second, even if the number K of B-splines is free to choose, the shape of the fitted Rt

curve is actually regulated by the smoothing parameter λ and hence only negligibly affected by

the arbitrary choice of K, provided it is large enough [18]. Third, the intrinsic sparseness of P
and of the B-spline basis matrix is computationally appealing as it softens the algorithmic

implementation and yields numerically stable routines [19, 20]. Another key advantage of P-

splines smoothers is their natural formulation in a Bayesian framework by translating differ-

ence penalties on contiguous B-spline coefficients into Gaussian random walk smoothness pri-

ors [21]. Following the latter reference, we impose a Gaussian prior on the vector of spline

coefficients θjl � N dimðθÞð0;Q� 1
l
Þ, with precision matrix Qλ = λP. For full Bayesian inference,

the following priors are imposed on the model hyperparameters. Following [22], a robust

Gamma prior is specified for the roughness penalty parameter ljd � Gð�=2; ð�dÞ=2Þ, where

Gða; bÞ is a Gamma distribution with mean a/b and variance a/b2, ϕ = 2 and δ is an additional

dispersion parameter with hyperprior d � Gðad ¼ 10; bd ¼ 10Þ. This prior specification favors

“small” λ values and translates the belief that a wiggly Rt fit is more inclined to arise during

the epidemic period as opposed to an oversmoothed fit. Finally, the following uninformative

prior is imposed on the overdispersion parameter r � Gðar ¼ 0:0001; br ¼ 0:0001Þ. Let η≔
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(λ, ρ)> denote the vector of hyperparameters. The full Bayesian model is thus:

ytjmðtÞ; r � NegBinðmðtÞ; rÞ;

logðmðtÞÞ ¼ θ>bðtÞ;

θjl � N dimðθÞð0;Q� 1
l
Þ;

ljd � Gð�=2; ð�dÞ=2Þ;

d � Gðad; bdÞ;

r � Gðar; brÞ:

Laplace approximation to the conditional posterior of θ
The Laplace approximation has two key roles in the proposed EpiLPS methodology. First, it

determines the approximating distribution to the (conditional) posterior of the spline vector θ
that will be used to estimate the average incidence of cases at time t, i.e. EðytÞ and hence Rt via

the renewal equation. Second, the variance-covariance matrix of the Laplace approximation is

used to quantify the uncertainty of the instantaneous reproduction number through a “delta”

method in LPSMAP and is also introduced in the proposal distribution of the LPSMALA algo-

rithm to form the skeleton of the correlation structure for the spline components. The synergy

between Laplace approximations and P-splines has already been shown to be very effective for

modeling count data (see for instance [23], in the context of generalized additive models). The

log-likelihood for the negative binomial model is given by:

‘ðθ; r; DÞ _¼
XT

t¼1

fgðyt; rÞ þ ytθ
>bðtÞ þ r logðrÞ � ðyt þ rÞ logðexpðθ

>bðtÞÞ þ rÞg; ð3Þ

with g(yt, ρ) = log Γ(yt + ρ) − log Γ(ρ) and _¼ denoting equality up to an additive constant. The

gradient of the log-likelihood with respect to the spline coefficients is:

rθ‘ðθ; r; DÞ ¼
@‘ðθ; r; DÞ

@y1

; . . . ;
@‘ðθ; r; DÞ

@yK

� �>

;

where:

@‘ðθ; r; DÞ
@yk

¼
XT

t¼1

ytbkðtÞ �
XT

t¼1

ðyt þ rÞ expðθ
>bðtÞÞ

ðexpðθ>bðtÞÞ þ rÞ
bkðtÞ; k ¼ 1; . . . ;K:

The Hessian of the log-likelihood with respect to the B-spline amplitudes is:

r2
θ‘ðθ; r; DÞ ¼

@
2
‘ðθ; r; DÞ
@y

2

1

. . .
@

2
‘ðθ; r; DÞ
@y1@yK

..

. . .
. ..

.

@
2
‘ðθ; r; DÞ
@yK@y1

. . .
@

2
‘ðθ; r; DÞ
@y

2

K

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

;

with entries:

@
2
‘ðθ; r; DÞ
@yk@yl

¼ �
XT

t¼1

rðyt þ rÞ
expðθ>bðtÞÞ

ðexpðθ>bðtÞÞ þ rÞ2
bkðtÞblðtÞ; k; l ¼ 1; . . . ;K:
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Using Bayes’ rule, the conditional posterior of θ for a given η is:

pðθjη;DÞ / Lðθ; r; DÞpðθjlÞ

/ exp ‘ðθ; r; DÞ �
l

2
θ>Pθ

� �

;
ð4Þ

where Lðθ; r; DÞ denotes the likelihood function. The gradient and Hessian of the log-likeli-

hood (3) can be used to compute the gradient and Hessian of the (log-)conditional posterior

(4), namely:

rθ log pðθjη;DÞ ¼ rθ‘ðθ; r; DÞ � lPθ;

r2
θ log pðθjη;DÞ ¼ r

2
θ‘ðθ; r; DÞ � lP:

The above two equations will be used iteratively in a Newton-Raphson algorithm to obtain the

Laplace approximation to the conditional posterior of θ:

epGðθjη;DÞ ¼ N dimðθÞðθ
�
ðηÞ;S�ðηÞÞ; ð5Þ

where θ�(η) and S�(η) is the mode and variance-covariance respectively after convergence of

the Newton-Raphson algorithm. The latter two quantities are functions of the hyperparameter

vector η. An intuitive choice for η is to fix it at its maximum a posteriori. This is the option

retained here, although it is also possible to work with a grid-based approach [23, 24].

Hyperparameter optimization

The hyperparameter vector η = (λ, ρ)> will be calibrated by posterior optimization. Following

[25] and [24], the hyperparameter vector can be approximated as follows:

epðη; djDÞ /
Lðθ; r; DÞpðθjlÞpðljdÞpðdÞpðrÞ

epGðθjη;DÞ
jθ¼θ�ðηÞ: ð6Þ

Approximation (6) can be written extensively as:

epðη; djDÞ / l
Kþ�

2
� 1
d
�
2
þad � 1 exp � d

�l

2
þ bd

� �� �

rar � 1

�jS�ðηÞj
1
2 exp ‘ðθ�ðηÞ; r; DÞ �

l

2
θ�>ðηÞPθ�ðηÞ � brr

� �

;

where the K/2 power of λ comes from the determinant jQ� 1
l
j
� 1=2
¼ jlPj1=2

/ l
K=2

. As

d
�
2
þad � 1 exp � d �l

2
þ bd

� �� �
is the kernel of a Gamma distribution for the dispersion parameter

δ, the following integral can be analytically solved:

Z þ1

0

epðη; djDÞ dd ¼ epðηjDÞ

/ l
Kþ�

2
� 1 �l

2
þ bd

� �� �
2
þadð Þ

rar � 1

� jS�ðηÞj
1
2 exp ‘ðθ�ðηÞ; r; DÞ �

l

2
θ�>ðηÞPθ�ðηÞ � brr

� �

:

Using the transformation of variables (ensuring numerical stability during optimization) w =

log(ρ), v = log(λ), one can show that epðηjDÞ can be written as follows after using the
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multivariate transformation method:

epðeηjDÞ / expðvÞ
Kþ�

2
� expðvÞ

2
þ bd

� �� �
2
þadð Þ

expðwÞar

�jS�ðeηÞj
1
2 exp ‘ θ�ðeηÞ; expðwÞ; Dð Þ �

expðvÞ
2

θ�>ðeηÞPθ�ðeηÞ � br expðwÞ
� �

;

where eη ¼ ðw; vÞ>. The approximated log-posterior becomes:

log epðeηjDÞ _¼ 0:5 logjS�ðeηÞj þ 0:5ðK þ �Þvþ arw � ð0:5�þ adÞ log ð0:5� expðvÞ þ bdÞ

þ‘ðθ�ðeηÞ; expðwÞ; DÞ � 0:5 expðvÞθ�>ðeηÞPθ�ðeηÞ � br expðwÞ:
ð7Þ

Eq (7) is numerically optimized and yields eη� ¼ argmax~η log epðeηjDÞ. Plugging the latter vec-

tor into the Laplace approximation (5), we obtain the estimate θ̂ ¼ θ�ðeη�Þ of the spline vector.

The latter can be seen as a MAP estimate of θ. Thus, the approximated (conditional) posterior

of the spline vector is:

epGðθjeη�;DÞ ¼ N dimðθÞðθ
�
ðeη�Þ;S�ðeη�ÞÞ; ð8Þ

and can be used to construct credible intervals for functions that depend on θ, such as Rt as

shown in the following section.

Estimation of Rt with LPSMAP

The renewal equation “plug-in” estimate. In this section, we show how the negative

binomial model for smoothing incidence counts can be used to estimate Rt through the

renewal equation. Let φ = {φ1, . . ., φk} be a known k-dimensional vector representing the serial

interval (SI) distribution, where φs is the probability that the SI is equal to s day(s), i.e.

φs ¼ PðSI ¼ sÞ. We also assume
Pk

s¼1
φs ¼ 1 and PðSI � 0Þ ¼ PðSI > kÞ ¼ 0. The renewal

model [10, 11] gives a mathematical statement of equality between the mean incidence of cases

at time step t and a product between the reproduction number Rt and a convolution involving

antecedent cases and the serial interval distribution:

EðytÞ ¼ RtLt; ð9Þ

where Lt ¼
Pt� 1

s¼1
φsyt� s denotes the number of circulating cases that contribute to active trans-

mission, also known as total infectiousness at time t [5]. Rearranging Eq (9) and taking the

length k of the serial interval into account, we obtain an equation with the instantaneous

reproduction number on the left-hand side:

Rt ¼

EðytÞ for t ¼ 1;

EðytÞð
Pt� 1

s¼1
φsyt� sÞ

� 1 for 2 � t � k;

EðytÞð
Pk

s¼1
φsyt� sÞ

� 1 for k < t � T:

8
>>><

>>>:

ð10Þ

Our Bayesian “plug-in” estimator of Rt at time step t is obtained by replacing the average

number of cases EðytÞ ¼ mðtÞ by the estimated average m̂ðtÞ ¼ expðθ̂
>

bðtÞÞ and by replacing
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yt−s by m̂ðt � sÞ ¼ expðθ̂
>

bðt � sÞÞ:

R̂t ¼

expðθ̂>bðtÞÞ for t ¼ 1;

expðθ̂>bðtÞÞð
Pt� 1

s¼1
φs expðθ̂

>bðt � sÞÞÞ� 1 for 2 � t � k;

expðθ̂>bðtÞÞð
Pk

s¼1
φs expðθ̂

>bðt � sÞÞÞ� 1 for k < t � T:

8
>>>><

>>>>:

ð11Þ

Note that the MAP estimate of the overdispersion parameter affects the estimate m̂ðtÞ via θ̂.

Using the indicator function Ið�Þ, i.e. IðAÞ ¼ 1 if condition A is true and IðAÞ ¼ 0 otherwise,

the above estimator can be written in a single line:

R̂t ¼ expðθ̂>bðtÞÞ
�

Iðt ¼ 1Þ þ
Xt� 1

s¼1

φs expðθ̂
>bðt � sÞÞ

 !� 1

Ið2 � t � kÞ

þ
Xk

s¼1

φs expðθ̂
>bðt � sÞÞ

 !� 1

Iðk < t � TÞ
�

:

ð12Þ

Credible intervals for Rt. Using the functional relationship between Rt and θ as in Eq

(12), the log of the instantaneous reproduction number can be written as:

logRt ≔ hðθjtÞ

¼ θ>bðtÞ þ log zðθÞ;

with

zðθÞ ¼ Iðt ¼ 1Þ þ
Xt� 1

s¼1

φs expðθ
>bðt � sÞÞ

 !� 1

Ið2 � t � kÞ

þ
Xk

s¼1

φs expðθ
>bðt � sÞÞ

 !� 1

Iðk < t � TÞ:

Note that h(θ|t) is seen here as a function of the spline vector θ for a given time point t. A (1 −
α) × 100% approximate credible interval for Rt is obtained via a “delta” method. Consider a

first-order Taylor expansion of h(θ|t) around θ�ðeη�Þ (henceforth θ� for the sake of a light nota-

tion), the mean of the Laplace approximated posterior of the spline vector in (8):

hðθjtÞ � hðθ�jtÞ þ ðθ � θ�Þ>rhðθjtÞjθ¼θ� ; ð13Þ

where the kth entry of the gradient vectorrh(θ|t) = (@h(θ|t)/@θ1, . . ., @h(θ|t)/@θK)> is:

@hðθjtÞ
yk

¼ bkðtÞ þ z
� 1
ðθÞ

@zðθÞ
@yk

:

@zðθÞ
@yk

¼ �
Xt� 1

s¼1

φsexpðθ
>bðt � sÞÞ

 !� 2
Xt� 1

s¼1

φsexpðθ
>bðt � sÞÞbkðt � sÞIð2 � t � kÞ

�
Xk

s¼1

φsexpðθ
>bðt � sÞÞ

 !� 2
Xk

s¼1

φsexpðθ
>bðt � sÞÞbkðt � sÞIðk < t � TÞ:
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It follows that for k = 1, . . ., K, we have:

@hðθjtÞ
yk

¼ bkðtÞ þ
�

0Iðt ¼ 1Þ

�
Xt� 1

s¼1

φsexpðθ
>bðt � sÞÞ

 !� 1
Xt� 1

s¼1

φsexpðθ
>bðt � sÞÞbkðt � sÞIð2 � t � kÞ

�
Xk

s¼1

φsexpðθ
>bðt � sÞÞ

 !� 1
Xk

s¼1

φsexpðθ
>bðt � sÞÞbkðt � sÞIðk < t � TÞ

�

:

The Taylor expansion in (13) is a linear combination of the vector θ that is a posteriori
(approximately) Gaussian due to the Laplace approximation. As the family of Gaussian

distributions is closed under linear combinations, it follows that h(θ|t) (and hence logRt) is a
posteriori also (approximately) Gaussian with mean EðhðθjtÞÞ � hðθ�jtÞ and variance

VðhðθjtÞÞ � r>hðθjtÞjθ¼θ�S
�rhðθjtÞjθ¼θ� , where S�≔S�ðeη�Þ is the covariance matrix of the

Laplace approximation (8). This suggests to write:

ðlogRtjDÞ � N 1ðhðθ
�
jtÞ;r>hðθjtÞjθ¼θ�S

�rhðθjtÞjθ¼θ� Þ: ð14Þ

The accuracy of the variance approximation in (14) can be improved through a scaling of the

covariance matrix S� by multiplying it with the scaling factor kr̂t≔ð1þ r̂ � 1m̂ðtÞÞ� 1
, corre-

sponding to the estimated mean-to-variance ratio EðytÞ=VðytÞ at time step t (see S2 Appendix).

The (approximate) posterior distribution for Rt is thus given by ðRtjDÞ � LogNormðm�Rt
; s2�

Rt
Þ,

i.e. a lognormal distribution with parameters m�Rt
¼ hðθ�jtÞ and s2�

Rt
¼ r>hðθjtÞjθ¼θ�k

r̂
t

S�rhðθjtÞjθ¼θ� . A quantile-based (1 − α) × 100% approximate credible interval for Rt is thus

CI1� a
Rt
¼ expðm�Rt

� za=2s
�
Rt
Þ, where zα/2 is the α/2-upper quantile of a standard normal variate.

Estimation of Rt with LPSMALA

In Bayesian statistics, posterior distributions obtained with Bayes’ theorem often entail a high

degree of complexity and are typically not analytically tractable. To circumvent this problem,

MCMC methods have been developed for generating samples from (possibly unnormalized)

target distributions [26]. One of the most popular MCMC methods together with the Gibbs

sampler [27] is the Metropolis-Hastings (MH) algorithm originally proposed by [28] and later

generalized by [29]. In this section, we propose to implement a modified version of the Metrop-

olis-adjusted Langevin algorithm (MALA) [30] within the EpiLPS framework. The major

advantage of MALA as compared to MH algorithms is that the proposal distribution is based

upon a discretized approximation of the Langevin diffusion that uses the gradient of the target

posterior distribution. These “smarter” proposals make use of additional information about the

target density so that algorithms based on Langevin dynamics can converge at sub-geometric

rates and tend to be more efficient than naive random-walk Metropolis algorithms [31, 32].

This motivates our choice for embedding a MALA algorithm in EpiLPS as an efficient way of

obtaining MCMC samples for inference on the instantaneous reproduction number Rt via the

renewal equation. The end-user will thus have a fully flexible choice regarding the underlying

approach for estimating Rt either via Laplacian-P-splines, where the uncertainty surrounding

the parameter λ responsible for smoothing is ignored and λ is fixed at its maximum a posteriori
(LPSMAP); or via a modified MALA algorithm, where the uncertainty surrounding the penalty

(and overdispersion) parameter is fully taken into account (LPSMALA). The approach permits

to obtain samples from the joint posterior of the spline vector and the penalty and overdispersion
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parameters. The latter can then be injected in functionals of the spline vector to obtain smooth

estimates of the epidemic curve as well as the instantaneous reproduction number. Another

advantage is that highest posterior density intervals can be easily calculated with LPSMALA.

Conditional posteriors for a “Metropolis-within-Gibbs”. Joint posterior of (ζ, λ)

Let ζ = (θ>, ρ)> be the (K + 1)-dimensional vector gathering the B-spline coefficients θ and

the overdispersion parameter ρ. Using Bayes’ theorem, the joint posterior distribution for ζ, λ
and δ is:

pðζ; l; djDÞ ¼
pðDjζ; l; dÞpðζ; l; dÞ

pðDÞ

/ Lðζ; DÞpðθjlÞpðljdÞpðdÞpðrÞ

/ expð‘ðζ; DÞÞpðθjlÞpðljdÞpðdÞpðrÞ:

ð15Þ

The analytical formulas of the chosen priors are:

pðθjlÞ / l
K
2 expð� 0:5lθ>PθÞ;

pðljdÞ / d
�
2l

�
2
� 1 expð� 0:5�dlÞ;

pðdÞ / d
ad � 1 expð� bddÞ;

pðrÞ / rar � 1 expð� brrÞ:

Injecting the above priors into (15) yields:

pðζ; l; djDÞ / exp ‘ðζ; DÞ � brr � 0:5lθ>Pθ
� �

rar � 1l
Kþ�

2
� 1

�d
�
2
þadð Þ� 1 exp � d 0:5�lþ bdð Þð Þ:

ð16Þ

Conditional posteriors of ζ, λ and δ
The following conditional posterior distributions can be directly obtained from (16):

pðζjl; d;DÞ / rar � 1 expð‘ðζ; DÞ � brr � 0:5lθ>PθÞ; ð17Þ

ðljζ; d;DÞ � Gð0:5ðK þ �Þ; 0:5ðθ>Pθ þ d�ÞÞ; ð18Þ

ðdjζ; l;DÞ � Gð0:5�þ ad; 0:5�lþ bdÞ: ð19Þ

Sampling from the joint posterior pðζ; l; djDÞ
As the full conditionals pðζjl; d;DÞ, pðljζ; d;DÞ and pðdjζ; l;DÞ are available, we follow a

“Metropolis-within-Gibbs” strategy to sample the joint posterior pðζ; l; djDÞ. In particular, the

hyperparameters λ and δ will be sampled in a Gibbs step, while ζ will be sampled using a modi-

fied Langevin-Hastings algorithm. This approach is presented in [33] in the context of Bayesian

density estimation (see also [34] for the use of MALA in a proportional hazards model and [35]

for a recent implementation in mixture cure models). We adapt the algorithm of the latter refer-

ence to our EpiLPS methodology. In particular, the variance-covariance matrix in the Langevin

diffusion will be replaced by the variance-covariance matrix obtained with LPSMAP. The corre-

lation structure borrowed from LPSMAP improves convergence and chain mixing.

The modified Metropolis-adjusted Langevin algorithm. In what follows, we prefer to

work under the log(�) parameterization for ρ, i.e. w = log(ρ) and denote by eζ ¼ ðθ>;wÞ>, the

(K + 1)-dimensional vector of B-spline amplitudes and (log) overdispersion w. Under this

parameterization, the conditional posterior of eζ given λ and δ can be obtained from (17) by
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using the transformation method of random variables:

pðeζ jl; d;DÞ / expðwÞarexpð‘ðeζ ; DÞ � br expðwÞ � 0:5lθ>PθÞ; ð20Þ

with the following log-likelihood under the reparameterization:

‘ðeζ ; DÞ _¼
XT

t¼1

�

logGðyt þ expðwÞÞ � logGðexpðwÞÞ þ ytθ
>bðtÞ þ expðwÞw

� ðyt þ expðwÞÞ log
�

expðθ>bðtÞÞ þ expðwÞ
��

:

ð21Þ

Let us denote by eζ ðm� 1Þ 2 RðKþ1Þ
the state of the chain at iteration (m − 1). In the Langevin-

Hastings algorithm, the proposal for the vector eζ at iteration m is a draw from the following

multivariate Gaussian distribution:

eζ ðpropÞ � N ðKþ1Þð
eζ ðm� 1Þ þ 0:5%SLHr~ζ log pðeζ jl; d;DÞj~ζ¼~ζ ðm� 1Þ ; %SLHÞ; ð22Þ

where % > 0 is a tuning parameter that has to be carefully chosen in order to reach a desired

acceptance rate and SLH is the following block-diagonal variance-covariance matrix:

SLH ¼
S� 0

0 1

 !

; ð23Þ

where S� is the K-dimensional covariance matrix obtained with LPSMAP. The gradient of

log pðeζ jl; d;DÞ ¼ ‘ðeζ ; DÞ � 0:5lθ>Pθ � br exp ðwÞ þ arw can be decomposed as follows:

r~ζ log pðeζ jl; d;DÞ ¼ r>θ log pðeζ jl; d;DÞ;
@ log pðeζ jl; d;DÞ

@w

 !>

; ð24Þ

and is analytically available (see S1 Appendix for more details). All the quantities related to the

Langevin-Hastings proposal have been analytically derived, so that the draw in (22) can be

obtained (for a given value of λ and δ). As in a classic MH algorithm, the next step consists in

computing the acceptance probability:

p eζ
ðm� 1Þ

;eζ
ðpropÞ� �

¼ min 1;
pðeζ

ðpropÞ
jl; d;DÞ

pðeζ
ðm� 1Þ

jl; d;DÞ

q
�

eζ
ðpropÞ

;eζ
ðm� 1Þ

�

q
�

eζ
ðm� 1Þ

;eζ
ðpropÞ

�

8
>><

>>:

9
>>=

>>;

; ð25Þ

where q(�, �) denotes the (Gaussian) proposal distribution and pð�jl; d;DÞ the target (condi-

tional) posterior distribution. Finally, we generate a uniform random variable u � Uð0; 1Þ and

accept the proposed vector eζ ðpropÞ if u � pðeζ ðm� 1Þ;eζ ðpropÞÞ and reject it otherwise. While iterating

through the Metropolis-within-Gibbs algorithm, the tuning parameter % is automatically

adapted to reach the optimal acceptance rate of 0.57 [31, 36, 37]. The pseudo-code below sum-

marizes the LPSMALA algorithm.

LPSMALA algorithm to sample the posterior pðθ; r;l; djDÞ.
1: Fix initial values m = 0, λ(0), δ(0), %(0) and eζ ð0Þ ¼ ðθð0Þ>;wð0ÞÞ>.
2: for m = 1, . . ., M do
3: (Langevin-Hastings)
4: Compute Langevin diffusion:

E ðeζ ðm� 1ÞÞ ¼ eζ ðm� 1Þ þ 0:5%ðm� 1ÞSLHr~ζ log pðeζ jl
ðm� 1Þ

; d
ðm� 1Þ

;DÞj~ζ¼~ζ ðm� 1Þ.
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5: Generate a proposal: eζ ðpropÞ � N ðKþ1Þ

�

E ðeζ ðm� 1ÞÞ; %ðm� 1ÞSLH

�

.

6: Compute acceptance probability:

p eζ ðm� 1Þ;eζ ðpropÞ
� �

¼ min
�

1;
pð~ζ ðpropÞ jlðm� 1Þ ;dðm� 1Þ ;DÞ
pð~ζ ðm� 1Þ jlðm� 1Þ ;dðm� 1Þ ;DÞ

q
�

~ζ ðpropÞ ;~ζ ðm� 1Þ

�

q
�

~ζ ðm� 1Þ ;~ζ ðpropÞ
�

�

.

7: Draw u � Uð0; 1Þ.
8: if u � π set eζ ðmÞ ¼ eζ ðpropÞ (accept), else eζ ðmÞ ¼ eζ ðm� 1Þ (reject).
9: (Gibbs sampler)
10: Draw d

ðmÞ
� G ð0:5�þ ad; 0:5�l

ðm� 1Þ
þ bdÞ,

11: Draw l
ðmÞ
� G

�
0:5ðK þ �Þ; 0:5ðθðmÞ>PθðmÞ þ dðmÞ�Þ

�
.

12: (Adaptive tuning)

13: Update %ðmÞ ¼H 2
� ffiffiffiffiffiffiffiffiffiffiffi

%ðm� 1Þ
p

þm� 1

�
p
�
eζ ðm� 1Þ;eζ ðpropÞ

�
� 0:57

��
.

14: end for
The adaptive tuning part (line 13) involves the step functionH ðzÞ ¼ �Iðz < �Þ þ zIð� �

z � A ÞþA Iðz > A Þ, with � = 10−4 andA ¼ 104, see [33] for details. Finally, the ratio

qðeζ ðpropÞ;eζ ðm� 1ÞÞq� 1ðeζ ðm� 1Þ;eζ ðpropÞÞ entering the computation of the acceptance probability (line

6) is derived in S1 Appendix.

Posterior inference with LPSMALA. Provided the LPSMALA algorithm is iterated long

enough, say after eM iterations, MCMC theory certifies thatS ¼ fðθðmÞ>; rðmÞ; lðmÞ; dðmÞÞgMm¼ ~Mþ1

can be viewed as random draws from the target posterior distribution pðθ; r; l; djDÞ. Note that

a convenient starting point for the initial values of the parameters might be to fix them at their

LPSMAP estimate. Given the sampleS , inference on quantities that are functions of θ becomes

straightforward in the sense that point estimates and credible intervals can be easily obtained. A

point estimate for the mean number of incidence counts at time t is taken to be the posterior

mean (after discarding the burn-in phase):

m̂ðtÞ ¼
1

M � eM

XM

m¼ ~Mþ1

exp θðmÞ>bðtÞ
� �

: ð26Þ

Note also thatS can be used to compute highest posterior density intervals of μ(t) at any point

t. Using the renewal equation and the MCMC sample, one can apply the “plug-in” method and

recover the following estimate of the instantaneous reproduction number at time point t:

R̂t ¼
1

M � eM

XM

m¼ ~Mþ1

exp θðmÞ>bðtÞ
� �

(

Iðt ¼ 1Þ þ
Xt� 1

s¼1

φs exp ðθ
ðmÞ>bðt � sÞÞ

 !� 1

Ið2 � t � kÞ

þ
Xk

s¼1

φs exp ðθ
ðmÞ>bðt � sÞÞ

 !� 1

Iðk < t � TÞ

)

:

ð27Þ

Also, usingS , one can compute a highest posterior density interval of Rt at time step t.

Results

Setting of the simulation study

In this section, a numerical study is implemented with nine epidemic scenarios to assess the

accuracy with which EpiLPS is able to track the target reproduction number over time. EpiLPS

results are compared with the instantaneous reproduction number estimate from the EpiEstim

package [3] using three sliding windows options (the default weekly windows, three days win-

dows and daily windows). In addition, we disentangle between comparisons of EpiLPS against
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EpiEstim with Rt estimates reported on the last day of a window following the convention of

[3] and Rt estimates reported at the midpoint of a smoothing window following the best prac-

tice recommendation of [2]. For EpiLPS, K = 40 (cubic) B-splines are specified with a second-

order penalty and a chain length of 3 000 for LPSMALA (including a burn-in of size 1 000). In

each scenario, S = 100 incidence time series of T days are simulated (initiated with 10 index

cases). The epidemic data generating process computes the mean incidence at a given day t,
i.e. μ(t) according to the renewal equation and the incidence of cases at time point t is sampled

from the negative binomial distribution yt� NegBin(μ(t), ρ). The simulation study also

accounts for varying degrees of overdispersion by using different values of ρ in the considered

scenarios. Furthermore, the incidence data are generated according to three different serial

interval distributions, namely φFLU, φSARS and φMERS corresponding to an influenza, a SARS-

CoV-1 and a MERS-CoV like serial interval, respectively. The discretized version of the SI dis-

tributions are computed by using the Cori et al. (2013) [3] discretization formula assuming a

(shifted) Gamma distribution. In Scenario 1, a constant instantaneous reproduction number

Rt ¼ 1:3 is considered. Scenario 2 imitates an intervention strategy, so that Rt ¼ 2 until a

sudden drop to Rt ¼ 0:9 occurs at day t = 20. The latter scenario allows to check whether

EpiLPS is able to quickly react to a sudden change in Rt. Scenario 3 is characterized by a more

wiggly structure for Rt and Scenario 4 considers the case of a vanishing epidemic with a

monotonic decreasing reproduction number. Scenarios 5–8 assume the same functional form

for Rt as in Scenarios 1–4 but with a different serial interval distribution. In Scenario 9, the Rt

function is chosen in such a way that there is a single large wave in the early phase of the epi-

demic and a more stable pattern (with smaller waves) in the late phase. Table 1 summarizes

the time domain of the epidemic curve, the target Rt function, the serial interval distribution

and its associated source(s) in the literature.

The simulation study is organized as follows. First, we compare EpiLPS with EpiEstim

using the convention of Cori and colleagues, namely reporting the Rt estimate at the end of

the smoothing window, which is well suited for real-time estimation. The latter approach

reports the Rt estimate computed in the window [t − ω; t], where ω denotes the window

width. Next, the Gostic et al. (2020) [2] recommendation is used, where the Rt estimate is

reported at the center of the window, i.e. [t − ω/2; t + ω/2]. Concentrating on the window

midpoint avoids lagged Rt estimates at the cost of ruling out estimates at the last ω/2 time

points as, in that case, the upper bound of the window reaches future calendar days for

which data is not yet available. Fig 1 summarizes the two window structures used in the sim-

ulation study.

Table 1. Time domain of the epidemic curve, assumed functional form of the reproduction number, serial interval distribution and its associated source(s) in the lit-

erature for the nine scenarios considered in the simulation study.

Scenario Time domain of epidemic curve Rt target function Serial Interval Mean (SD), days Reference for Serial Interval

1 T ¼ ½1; 40� Rt ¼ 1:3 φFLU
2.6 (1.5)

Ferguson et al. (2005) [38]

Cori et al. (2013) [3]2 Rt ¼ 2 Iðt < 20Þ þ 0:9 Iðt � 20Þ

3 Rt ¼ 0:25þ expðcosðt=7ÞÞ

4 Rt ¼ expðcosðt=15ÞÞ

5 T ¼ ½1; 40� Rt ¼ 1:3 φSARS
8.4 (3.8)

Lipsitch et al. (2003) [39]

Cori et al. (2013) [3]6 Rt ¼ 2 Iðt < 20Þ þ 0:9 Iðt � 20Þ

7 Rt ¼ 0:25þ expðcosðt=7ÞÞ

8 Rt ¼ expðcosðt=15ÞÞ

9 T ¼ ½1; 60� Rt ¼ 0:5 ðexpðsinðpt=9ÞÞ þ 1:5 expðcosð4=tÞÞÞ φMERS
6.8(4.1)

Cauchemez et al. (2016) [40]

https://doi.org/10.1371/journal.pcbi.1010618.t001
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Comparing EpiLPS with EpiEstim at window boundary

The performance indicators computed for each scenario include the average bias, mean square

error (MSE), coverage probability (CP) and width (CIΔ) of 90% and 95% credible intervals for

the Rt estimator (see detailed formulas in S2 Appendix) with EpiLPS and EpiEstim, respec-

tively. Estimates obtained during the first week of the epidemic are ignored as they may be

subject to serious bias due to the poor information carried by the (few) incident cases in such

an early phase. Therefore, the performance measures are computed as an average over days

t = 8, . . ., T, where T is the upper bound of T . For a chosen time window, the performance

measures for EpiEstim are computed by comparing the true value of the reproduction number

at time step t with the estimated reproduction number (and credible interval) obtained at the

end of the chosen time window (cf. Fig 1). A detailed description of the data generating process

and the figures of the estimated Rt trajectories for all scenarios are provided in S2 Appendix.

The performance measures given in Tables 2 and 3 provide interesting insights into the

behavior of EpiLPS and EpiEstim across the considered scenarios. In terms of bias, EpiLPS is

really competitive against EpiEstim as both LPSMAP and LPSMALA outperform EpiEstim

(no matter the time window size) in Scenarios 4–8. For the remaining scenarios, the bias

between the two competing methods is more or less similar. Regarding the MSE, EpiLPS

exhibits smaller values as compared to EpiEstim with three days and daily windows respec-

tively across all scenarios. Moreover, specifying smaller time windows in EpiEstim leads (gen-

erally) to an increase in MSE and also an increase in bias. A close inspection of the coverage

probability of credible intervals reveals that EpiLPS has close to nominal coverage in almost all

scenarios. This is however not the case for EpiEstim, especially for weekly and three days win-

dows, where severe to mild undercoverage is observed. Also, EpiEstim tends to show more

severe undercoverage in scenarios where data is more overdispersed (see e.g. Scenario 4).

More importantly, even when EpiEstim approaches the nominal coverage probability (with

daily windows), it has much wider credible interval width (and so less precision) as compared

to EpiLPS in almost all scenarios.

Figs 2 to 4 summarize the epidemic curves and the trajectories obtained for the estimated

Rt with LPSMAP (blue curves) and EpiEstim under weekly sliding windows (green curves)

for selected scenarios. These figures highlight the flexibility and the precision with which

Laplacian-P-splines are able to capture the reproduction number over the time course of the

Fig 1. Illustration of smoothing windows of width ω to estimate Rt with EpiEstim. (a) Cori et al. (2013) [3] convention with sliding

windows [t − ω; t], where Rt is reported at the end of the window. (b) Gostic et al. (2020) [2] recommendation with centered sliding

windows [t − ω/2; t + ω/2], where Rt is reported at the midpoint of the window. Under the midpoint rule, Rt estimates for the last ω/2

time units are unavailable ;.

https://doi.org/10.1371/journal.pcbi.1010618.g001
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epidemic. The dashed (dotted) curves represent the pointwise median (computed over the

S = 100 estimates) of Rt with LPSMAP (EpiEstim). For LPSMAP, it closely follows the true

pattern of Rt even under strong nonlinearities as in Fig 4. The EpiEstim trajectories appear

shifted to the right of the target Rt curve. This lag is due to the fact that for weekly sliding win-

dows, the Rt estimate provided by EpiEstim at the end of the window is entirely based on data

Table 2. Results for EpiLPS and EpiEstim in Scenarios 1–8 for S = 100 simulated epidemics. The Bias, MSE, coverage probability (CP) and width (CIΔ) of 90% and 95%

credible intervals for Rt are averaged over days t = 8, . . ., 40. For EpiEstim, Rt is reported at the end of the window.

Scenario Method Bias MSE CP90% CP95% CID
90%

CID
95%

1

φFLU
LPSMAP -0.012 0.016 90.970 95.333 0.399 0.477

LPSMALA -0.012 0.017 93.000 96.727 0.454 0.544

EpiEstim (7d windows) -0.007 0.012 88.970 94.242 0.330 0.394

EpiEstim (3d windows) 0.004 0.025 88.636 93.515 0.466 0.555

EpiEstim (1d windows) 0.036 0.075 88.515 93.970 0.776 0.927

2

φFLU
LPSMAP -0.004 0.013 77.030 82.424 0.175 0.209

LPSMALA -0.003 0.010 92.697 93.909 0.313 0.375

EpiEstim (7d windows) 0.071 0.043 67.970 73.303 0.142 0.169

EpiEstim (3d windows) 0.027 0.021 77.818 84.424 0.182 0.217

EpiEstim (1d windows) 0.003 0.016 83.424 89.242 0.287 0.342

3

φFLU
LPSMAP -0.009 0.015 91.970 96.242 0.396 0.474

LPSMALA -0.008 0.017 92.545 96.152 0.451 0.541

EpiEstim (7d windows) -0.023 0.093 23.394 29.333 0.279 0.332

EpiEstim (3d windows) -0.006 0.033 76.939 84.939 0.434 0.518

EpiEstim (1d windows) 0.044 0.073 89.576 94.394 0.761 0.909

4

φFLU
LPSMAP 0.000 0.002 89.879 94.091 0.189 0.226

LPSMALA -0.001 0.003 92.152 96.455 0.175 0.208

EpiEstim (7d windows) 0.152 0.027 9.485 11.273 0.105 0.125

EpiEstim (3d windows) 0.056 0.007 40.970 47.667 0.133 0.158

EpiEstim (1d windows) 0.003 0.008 80.848 88.455 0.209 0.250

5

φSARS
LPSMAP 0.013 0.232 93.030 96.667 1.903 2.356

LPSMALA 0.005 0.246 91.061 96.273 1.897 2.376

EpiEstim (7d windows) 0.061 0.162 83.344 89.781 1.089 1.301

EpiEstim (3d windows) 0.146 0.395 82.844 89.438 1.619 1.939

EpiEstim (1d windows) 0.388 1.091 86.938 92.281 2.783 3.362

6

φSARS
LPSMAP 0.001 0.201 90.939 95.394 1.660 2.044

LPSMALA -0.012 0.218 91.485 96.242 1.731 2.157

EpiEstim (7d windows) 0.115 0.202 72.562 79.812 0.909 1.085

EpiEstim (3d windows) 0.114 0.330 77.719 85.219 1.295 1.548

EpiEstim (1d windows) 0.238 0.843 81.312 88.219 2.162 2.602

7

φSARS
LPSMAP -0.008 0.288 96.121 98.606 2.272 3.023

LPSMALA -0.005 0.384 92.182 96.545 1.929 2.485

EpiEstim (7d windows) 0.040 0.278 75.062 82.781 1.090 1.304

EpiEstim (3d windows) 0.160 0.410 85.125 91.656 1.700 2.044

EpiEstim (1d windows) 0.493 1.199 89.562 94.031 3.051 3.707

8

φSARS
LPSMAP 0.021 0.187 91.667 95.303 1.416 1.750

LPSMALA 0.005 0.191 91.061 96.121 1.522 1.900

EpiEstim (7d windows) 0.217 0.206 69.312 77.281 0.838 1.000

EpiEstim (3d windows) 0.157 0.311 79.375 86.781 1.163 1.391

EpiEstim (1d windows) 0.250 0.725 82.594 89.281 1.950 2.350

https://doi.org/10.1371/journal.pcbi.1010618.t002
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from past days and is therefore lagged compared to the target (instantaneous) Rt. This shift

effect can be corrected by decreasing the time window (e.g., using daily windows) at the cost of

more “noisy” trajectories. Even then, the median Rt estimates of EpiEstim appear to capture

less precisely the target Rt function as compared to LPSMAP/LPSMALA (see S2 Appendix)

across most of the considered scenarios.

Table 3. Results for EpiLPS and EpiEstim in Scenario 9 for S = 100 simulated epidemics. The Bias, MSE, coverage probability (CP) and width (CIΔ) of 90% and 95%

credible intervals for Rt are averaged over days t = 8, . . ., 60. For EpiEstim, Rt is reported at the end of the window.

Scenario Method Bias MSE CP90% CP95% CID
90%

CID
95%

9

φMERS

LPSMAP -0.026 0.078 90.566 94.528 0.849 1.021

LPSMALA -0.024 0.082 92.981 96.925 0.935 1.128

EpiEstim (7d windows) -0.002 0.347 41.981 49.698 0.705 0.841

EpiEstim (3d windows) 0.048 0.184 79.925 86.830 1.035 1.236

EpiEstim (1d windows) 0.160 0.423 85.585 91.358 1.766 2.121

https://doi.org/10.1371/journal.pcbi.1010618.t003

Fig 2. (Left) Simulated incidence data for Scenario 2. (Center) Estimated trajectories of Rt for each simulated dataset with LPSMAP. (Right) Estimated

trajectories of Rt with EpiEstim using weekly sliding windows and Rt reported at the end of the window. The pointwise median estimate of Rt for EpiLPS

(dashed) and EpiEstim (dotted) is also shown.

https://doi.org/10.1371/journal.pcbi.1010618.g002

Fig 3. (Left) Simulated incidence data for Scenario 3. (Center) Estimated trajectories of Rt for each simulated dataset with LPSMAP. (Right) Estimated

trajectories of Rt with EpiEstim using weekly sliding windows and Rt reported at the end of the window. The pointwise median estimate of Rt for EpiLPS

(dashed) and EpiEstim (dotted) is also shown.

https://doi.org/10.1371/journal.pcbi.1010618.g003
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To summarize, this simulation study sheds light on the trade-off faced by the Cori method

when estimating the instantaneous reproduction number. Choosing a weekly sliding window

as a default option in EpiEstim can lead to a forward shifted (and so inaccurate) estimate of

Rt . Smaller time windows in EpiEstim alleviate the lag effect, but the price to pay is that the fit-

ted Rt trajectory is wiggly (undersmoothing) as it captures more variation than necessary [2].

EpiLPS does not suffer from such a trade-off as the latter is naturally solved by P-splines. In

fact, one could say that the time window size in EpiEstim is analogue to the smoothing param-

eter λ in EpiLPS as these quantities will be key for the resulting smoothness of the fit. The

major advantage with EpiLPS is that λ is estimated naturally within the Bayesian model (either

via maximum a posteriori estimation or MCMC), while the choice of the time window in

EpiEstim is chosen freely outside the model.

Comparing EpiLPS with EpiEstim at window midpoint

To correct for the lag effect in EpiEstim resulting from reporting the reproduction number

estimate at the end of the window, Gostic and colleagues recommend to report it at the center

of the window to obtain an estimate that is more accurately oriented in time. It is therefore

important to compare the performance of EpiLPS against this “corrected” EpiEstim output as

it is considered a best practice for a retrospective usage and, as such, is a legitimate candidate

against EpiLPS which is by nature only partially real-time (see next section). We therefore run

the entire simulations for all scenarios one more time accounting for the corrected EpiEstim

output under weekly windows ω = 6 and three days windows ω = 2, where the estimated Rt is

computed at the window midpoint. Results for a daily window (ω = 0) are identical to those

reported in Tables 2 and 3, as sliding windows become degenerate intervals at each time step

[t, t]. The performance measures are reported in Table 4 and Figs 5 to 7 summarize the esti-

mated trajectories for the same scenarios as in the previous section for the sake of comparison.

As expected, the resulting Rt trajectories for EpiEstim are now closer to the target and the lag

effect has disappeared. Despite this improvement, the performance indicators clearly highlight

that EpiLPS outperforms EpiEstim in all scenarios except Scenario 1, where the numbers are

of a similar order of magnitude. In general, the EpiLPS approach is less biased and provides

credible intervals with close to nominal coverage. Even when correcting for the reporting of

Rt at the middle of the window, EpiEstim results are less accurate, especially regarding

Fig 4. (Left) Simulated incidence data for Scenario 9. (Center) Estimated trajectories of Rt for each simulated dataset with LPSMAP. (Right) Estimated

trajectories of Rt with EpiEstim using weekly sliding windows and Rt reported at the end of the window. The pointwise median estimate of Rt for EpiLPS

(dashed) and EpiEstim (dotted) is also shown.

https://doi.org/10.1371/journal.pcbi.1010618.g004
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credible intervals with weekly windows that can strongly undercover. This has important

implications regarding the recommendation of using EpiLPS in practice and detailed recom-

mendation guidelines are provided below.

Real-time considerations

EpiEstim is a powerful tool to estimate Rt in real-time and is probably the best tool currently

available to deliver timely estimates of the reproduction number [41]. EpiLPS can be

Table 4. Simulation results for EpiLPS and EpiEstim in Scenarios 1–9 for S = 100 simulated epidemics. The performance indicators in Scenarios 1–8 for Rt are aver-

aged over days t = 8,. . .,37 for LPSMAP, LPSMALA and weekly windows (EpiEstim) and over days t = 8,. . .,39 for 3 days windows under EpiEstim. In Scenario 9, the per-

formance indicators for Rt are averaged over days t = 8,. . .,57 for LPSMAP, LPSMALA and weekly windows (EpiEstim) and over days t = 8,. . .,59 for 3 days windows

under EpiEstim. For EpiEstim, Rt is reported at the window midpoint.

Scenario Method Bias MSE CP90% CP95% CID
90%

CID
95%

1

φFLU
LPSMAP -0.013 0.017 91.433 95.567 0.415 0.497

LPSMALA -0.013 0.018 93.033 96.567 0.467 0.560

EpiEstim (7d windows) -0.010 0.011 88.533 93.900 0.303 0.361

EpiEstim (3d windows) 0.001 0.023 88.531 93.406 0.452 0.539

2

φFLU
LPSMAP -0.004 0.015 75.900 81.267 0.179 0.214

LPSMALA -0.003 0.011 92.300 93.467 0.322 0.386

EpiEstim (7d windows) -0.032 0.036 65.733 71.167 0.106 0.126

EpiEstim (3d windows) -0.007 0.015 77.500 84.156 0.166 0.198

3

φFLU
LPSMAP -0.009 0.013 92.033 96.267 0.368 0.440

LPSMALA -0.010 0.014 92.233 95.967 0.407 0.487

EpiEstim (7d windows) 0.020 0.016 79.233 86.500 0.268 0.319

EpiEstim (3d windows) 0.014 0.023 89.031 94.094 0.431 0.514

4

φFLU
LPSMAP 0.000 0.002 89.200 93.667 0.192 0.230

LPSMALA 0.000 0.003 92.300 96.367 0.179 0.214

EpiEstim (7d windows) -0.029 0.005 34.800 43.200 0.074 0.089

EpiEstim (3d windows) -0.005 0.003 80.781 87.281 0.119 0.142

5

φSARS
LPSMAP 0.016 0.227 93.567 96.933 1.897 2.345

LPSMALA 0.001 0.234 91.400 96.433 1.887 2.359

EpiEstim (7d windows) 0.057 0.160 82.967 89.333 1.065 1.272

EpiEstim (3d windows) 0.146 0.395 82.844 89.438 1.619 1.939

6

φSARS
LPSMAP 0.003 0.203 91.233 95.433 1.682 2.067

LPSMALA -0.016 0.217 91.967 96.467 1.764 2.193

EpiEstim (7d windows) 0.010 0.154 74.967 82.400 0.856 1.022

EpiEstim (3d windows) 0.080 0.316 78.469 86.000 1.295 1.548

7

φSARS
LPSMAP -0.003 0.187 96.267 98.733 1.895 2.401

LPSMALA -0.024 0.193 92.467 96.667 1.649 2.096

EpiEstim (7d windows) 0.082 0.155 84.433 91.267 1.049 1.256

EpiEstim (3d windows) 0.185 0.410 86.219 92.125 1.700 2.044

8

φSARS
LPSMAP 0.023 0.198 91.700 95.267 1.447 1.773

LPSMALA 0.004 0.201 92.067 96.733 1.595 1.987

EpiEstim (7d windows) 0.026 0.125 78.067 86.733 0.770 0.919

EpiEstim (3d windows) 0.095 0.294 80.906 87.531 1.163 1.391

9

φSARS
LPSMAP -0.026 0.081 91.340 95.240 0.870 1.047

LPSMALA -0.025 0.084 93.200 97.140 0.948 1.142

EpiEstim (7d windows) -0.004 0.087 77.180 84.920 0.675 0.805

EpiEstim (3d windows) 0.047 0.141 85.788 91.500 1.024 1.223

https://doi.org/10.1371/journal.pcbi.1010618.t004
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Fig 5. (Left) Simulated incidence data for Scenario 2. (Center) Estimated trajectories of Rt for each simulated dataset with LPSMAP. (Right) Estimated

trajectories of Rt with EpiEstim using weekly sliding windows and Rt reported at the window midpoint. The pointwise median estimate of Rt for EpiLPS

(dashed) and EpiEstim (dotted) is also shown.

https://doi.org/10.1371/journal.pcbi.1010618.g005

Fig 7. (Left) Simulated incidence data for Scenario 9. (Center) Estimated trajectories of Rt for each simulated dataset with LPSMAP. (Right) Estimated

trajectories of Rt with EpiEstim using weekly sliding windows and Rt reported at the window midpoint. The pointwise median estimate of Rt for EpiLPS

(dashed) and EpiEstim (dotted) is also shown.

https://doi.org/10.1371/journal.pcbi.1010618.g007

Fig 6. (Left) Simulated incidence data for Scenario 3. (Center) Estimated trajectories of Rt for each simulated dataset with LPSMAP. (Right) Estimated

trajectories of Rt with EpiEstim using weekly sliding windows and Rt reported at the window midpoint. The pointwise median estimate of Rt for EpiLPS

(dashed) and EpiEstim (dotted) is also shown.

https://doi.org/10.1371/journal.pcbi.1010618.g006
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considered a real-time approach only to a certain degree, where the real-time concept is par-

tially present but fundamentally different from the one proposed in EpiEstim. By real-time

method, we mean a method for which an estimate of the reproduction number at time t uses

data up to (and including) time t. Let us assume that EpiLPS is applied on epidemic data over a

specific period, say, T ¼ ½1;T�. For time points t = 1, . . ., T − 1, EpiLPS is clearly non real-

time as the global smoothing of Rt on the “bandwidth” T will be computed based on past, cur-

rent and future data values. However, at the domain boundary (time point T), the EpiLPS esti-

mate of Rt will exclusively make use of data up to time T and is therefore real-time (in the

same sense as EpiEstim).

The EpiLPS real-time characteristic for this last time point is however only retained tempo-

rarily, as if applied (the next day) over the period T � ¼ ½1;T þ 1�, the estimate of the repro-

duction number at time T is not real-time anymore since it will be computed based on data up

to time T and the “future” data value available at time point T+ 1. For EpiEstim, the real-time

characteristic of the Rt estimate is retained for any time point t and is therefore more suitable

for timely estimation. The real-time properties of EpiLPS and EpiEstim are compared and

illustrated in Fig 8.

The extensive simulation results provided here, suggest that EpiLPS imposes itself as a

robust retrospective estimation method. In particular, it seriously addresses a challenge faced

by many existing methods, namely that Rt estimates typically lead or lag the true value [2].

EpiLPS is therefore a powerful retrospective tool to estimate the reproduction number during

and/or after epidemic outbreaks. It is however less preferable than EpiEstim for real-time esti-

mation and should therefore be used with care for timely purposes.

Computing time and sensitivity analyses

The computational time of the EpiLPS algorithm is mainly affected by the number K of B-

splines specified in the basis and the total number of days T of the epidemic. Table 5 gives an

overview of the real elapsed time in seconds required to run the EpiLPS routines for different

(T, K) couples. Obviously, LPSMAP requires far less computational resources as it is a

completely sampling-free approach relying on the MAP estimate of the hyperparameter vector.

Even with an epidemic of roughly two months and K = 60, LPSMAP is extremely fast and

delivers results in a fraction of a second. LPSMALA needs a larger computational budget as

the algorithm relies on an iterative sampling scheme (MCMC). However, even for (T = 60,

Fig 8. Real-time properties of EpiLPS (top) and EpiEstim (bottom) when applied on domains T ¼ ½1;T� and T � ¼ ½1;T þ 1�.

EpiLPS provides real-time estimates of Rt only at the boundary of the considered domain and estimates at preceding time points are

retrospective. On the contrary, estimates of Rt with EpiEstim are always real-time and therefore preferred for a timely usage.

https://doi.org/10.1371/journal.pcbi.1010618.g008
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K = 60), LPSMALA requires less than 10 seconds, which is a relatively reasonable time given

the number of parameters involved in the model.

We assessed the sensitivity of the EpiLPS estimated reproduction number with respect to

model inputs that are free to choose in order to check whether EpiLPS is robust with respect to

different parameter choices. In particular, we focus on the sensitivity of the Rt fit (with

LPSMAP) to the number K of B-splines and to the parameters aδ and bδ of the Gamma hyper-

prior on δ. The sensitivity analyses are implemented in S2 Appendix and reveal a negligible

sensitivity of the estimated Rt curve with respect to the above-mentioned parameters. We also

discuss the sensitivity of the reproduction number estimates when computed over time

domains of increasing width, for instance on [1, T1] and [1, T2] with T2 > T1. This gives an

idea of the magnitude of variation in the estimated Rt in the domain [1, T1] when EpiLPS is

actually fitted on the wider domain [1, T2]. Results show that despite having values of Rt that

vary (in the past) when applied to larger time domains due to the global smoothing approach

inherent in EpiLPS, the estimated values of the reproduction number remain reasonably close

to the target. S3 Appendix provides ancillary results on the estimation performance of the

overdispersion parameter ρ and sensitvity analyses of the computed credibles intervals for Rt

with respect to different couples (aδ, bδ).

Application to observed case counts in infectious disease epidemics

Epidemics of SARS-CoV-1 and influenza A H1N1. In this section, the LPSMALA algo-

rithm is applied on two historical outbreak datasets presented in [3]. In particular, we consider

the 2003 SARS outbreak in Hong Kong and the 2009 pandemic influenza in a school in Penn-

sylvania (USA). We use K = 40 B-splines with a second-order penalty and the serial interval

distributions provided in the EpiEstim package [4]. The LPSMALA algorithm is implemented

with a chain of length 25 000. Acceptance rates for the generated chains are close to the opti-

mal value of 57% and the posterior samples have converged according to the Geweke (1992)

[42] diagnostic test (at the 1% level of significance). Fig 9 shows the smoothed epidemic curves

and the estimated Rt for the two outbreaks. Results for the SARS data show that the reproduc-

tion number reaches a first peak during the third week, where R̂t ¼ 9:67 (95% CI: 5.19–16.47)

and a second more moderate peak around week 6 with R̂t ¼ 2:78 (95% CI: 1.82–3.82). After

day t = 43, the epidemic is under control and Rt smoothly decays below 1. For the pandemic

influenza in Pennsylvania, in the end of the second week Rt is around 2.05 (95% CI: 1.21–

3.06). During the middle of the third week, the situation is less severe and Rt points below 1.

Table 5. Computational time (real elapsed time in seconds) of LPSMAP and LPSMALA (with a chain length of 3 000) for different combinations of T (total number

of days of the epidemic) and K (total number of B-splines in the basis). EpiLPS algorithm running on an Intel Xeon E-2186M CPU @2.90GHz with 16Go RAM.

Method K = 20 K = 30 K = 40 K = 50 K = 60

LPSMAP T = 20 0.122 0.105 0.140 0.188 0.253

T = 30 0.091 0.124 0.185 0.242 0.326

T = 40 0.096 0.135 0.201 0.255 0.337

T = 50 0.083 0.109 0.156 0.200 0.276

T = 60 0.074 0.110 0.148 0.181 0.287

LPSMALA T = 20 3.098 3.499 4.151 4.832 5.886

T = 30 3.653 4.043 4.776 5.505 6.548

T = 40 4.167 4.663 5.425 6.126 7.238

T = 50 5.061 5.545 6.253 7.151 8.108

T = 60 5.913 6.362 7.151 8.062 9.074

https://doi.org/10.1371/journal.pcbi.1010618.t005
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As noted in [3], a few cases appeared in the last days of the epidemic generating an upward

trend in Rt estimates.

Application on the SARS-CoV-2 pandemic. The EpiLPS methodology is illustrated on

the SARS-CoV-2 pandemic using publicly available data from the Covid-19 Data Hub [43]

and its associated COVID19 package on CRAN (https://cran.r-project.org/package=

COVID19). Country-level data on hospitalizations for Belgium, Denmark, Portugal and

France from April 5th, 2020 to October 31st, 2021 is used and a serial interval distribution

with a mean of 3 days (and standard deviation of 2.48 days) is assumed [44] discretized as φ =

{0.344, 0.316, 0.168, 0.104, 0.068}. In Fig 10, the estimated reproduction number obtained with

EpiLPS and EpiEstim respectively, is shown for the four countries. Results are obtained with

the LPSMAP algorithm using K = 30 B-splines and a second-order penalty. The gray shaded

surface corresponds to 95% (pointwise) credible intervals for Rt with LPSMAP and the dashed

curves are for EpiEstim. From a computational perspective, it takes less than 3 seconds to fit

the EpiLPS model for the four countries. The fitted reproduction numbers reflect the different

waves of the COVID-19 pandemic and the rise in infections in the beginning of September

2021. We also see that EpiLPS tends to follow the same trend as the estimates provided by

EpiEstim, the only difference is that LPSMAP estimates appear globally smoother with credible

intervals that are less wide for Belgium, Denmark and Portugal.

Discussion

EpiLPS (an acronym for Epidemiological modeling with Laplacian-P-Splines) is a fast and

flexible tool for Bayesian estimation of the instantaneous reproduction number Rt during epi-

demic outbreaks. The tool is flexible in the sense that (penalized) spline based approximations

provide smoothed estimates of Rt with little computational effort and without the constraint

Fig 9. (Left column) EpiLPS fit for the epidemic curve (top) and the instantaneous reproduction number Rt (bottom) of the SARS outbreak in Hong

Kong, 2003. (Right column) EpiLPS fit for the epidemic curve (top) and the instantaneous reproduction number Rt (bottom) of the pandemic influenza in

Pennsylvania, 2009. The shaded area corresponds to the 95% credible interval at each day.

https://doi.org/10.1371/journal.pcbi.1010618.g009
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of imposing any sliding window assumption that could potentially affect the timing and accu-

racy of the estimator. Moreover, the end user has the choice between a fully sampling-free

approach (LPSMAP) or an efficient MCMC gradient-based approach with Langevin diffusions

(LPSMALA) for inference. The available EpiLPS package (https://cran.r-project.org/package=

EpiLPS) allows public health policy makers to analyze incoming data faster than existing meth-

ods relying on classic MCMC samplers, thus permitting them to be better informed when tak-

ing decisions on control measures for infectious disease outbreaks. Simulation studies in this

paper provide encouraging results and support EpiLPS as being a robust tool capable of a pre-

cise tracking of Rt over time. The EpiLPS software package and the early website version

(https://epilps.com) provide additional guiding material about the proposed methodology.

EpiLPS cannot be termed a real-time method in the same sense as in the Cori method and

is therefore less preferred than EpiEstim for real-time analysis. Conceptually, EpiLPS and

EpiEstim both use data from the past (EpiLPS also uses data from the future) to estimate the

Fig 10. Estimated reproduction number from 2020–04-05 to 2021–10-31 for Belgium, Denmark, Portugal and France with LPSMAP using K = 30 B-

splines and a second-order penalty. The shaded area corresponds to the 95% credible interval at each day. Dashed curves are results obtained with

EpiEstim (with weekly sliding windows and estimated Rt reported at the end of the window).

https://doi.org/10.1371/journal.pcbi.1010618.g010
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instantaneous reproduction number, but the mechanisms underlying the use of past observa-

tions differ. The method of Cori looks back in time only as far as the width of the chosen time

window in terms of infected individuals. EpiLPS on the contrary has a stronger reach as the P-

splines smoother approximates the reproduction number globally (or blockwise), over the

entire domain of the epidemic curve, i.e. retrospectively and also including future values

(except for the estimate of Rt at the last day of the domain of the epidemic curve which makes

use of the current day value and past values). This difference has important consequences and

implies advantages as well as disadvantages. The advantage of working with a time window

option as in EpiEstim is that one can control how far back in time to look in order to compute

the desired Rt estimate. This is not an option in EpiLPS as the penalty parameter, the key

driver of the degree of smoothness of the fitted Rt curve, is estimated within the model and is

not fixed by the user. There is however no free lunch and the downside of having a time win-

dow choice in EpiEstim implies to face a trade-off between potential oversmoothing (with a

wide time window) and undersmoothing (with a narrow time window). This trade-off is virtu-

ally absent in the EpiLPS setting as P-splines internally deal with the smoothing problem.

It is evident that when applying EpiLPS sequentially over time on epidemic curves with

wider and wider domain length such as [1, T1], [1, T2], [1, T3] with 1< T1 < T2 < T3, the Rt

estimate over past days (for instance t 2 [1, T1]) will inevitably change as EpiLPS is by nature a

global smoother. This past variability should not be seen as a drawback as it is essentially an

“update” taking into account the fact that the method works with an epidemic curve with a

longer domain. The real question is whether the past variability of the Rt estimate remains in a

close neighborhood of the “true” value of the reproduction number for past days. On that side,

the complete simulation study is rather convincing as it shows that EpiLPS is an accurate

method that is successful in capturing the evolution of Rt over time.

There are also other aspects with respect to which EpiEstim and EpiLPS differ. For instance,

prior specification in EpiEstim assumes a Gamma distributed prior on the reproduction num-

ber which is conjugate to the Poisson likelihood (EpiEstim assumes that incidence at time step

t is Poisson distributed), so that the posterior of Rt also has a Gamma distribution. In EpiLPS,

the prior(s) are not directly imposed on the reproduction number, but on the spline parame-

ters (and hyperparameters) and the resulting posterior distribution of Rt with LPSMAP is

approximated by a lognormal distribution. Regarding computational complexity, EpiEstim

and LPSMAP deliver estimates almost instantly, while LPSMALA requires a larger computing

budget as it is a MCMC algorithm. We therefore recommend using LPSMALA over shorter

epidemic durations and LPSMAP on longer outbreaks over several months. Our analysis sug-

gests that EpiLPS might be more accurate than EpiEstim in presence of overdispersed epide-

miological data, especially when it comes to quantify the uncertainty of Rt as EpiLPS is shown

to have narrower credible intervals with good coverage performance. A main limitation is that

EpiLPS is more prone to numerical instability (e.g. during hyperparameter optimization or in

the Newton-Raphson algorithm for the Laplace approximation) than EpiEstim, although such

problems were not encountered here. Finally, it is also worth mentioning that Rt estimates

delivered by EpiLPS (and EpiEstim) are prone to potential biasing effects [2, 45] since the serial

interval is used as a surrogate for the generation interval (time elapsed between infection

events of an infector and an infectee) as the latter is less easily observed.

The EpiLPS project opens up several future research directions. A possible extension would

be to formulate the EpiLPS model within a zero-inflated (Poisson) framework to cope with

incidence time series characterized by an excess of zero counts. Another interesting extension

would be to adapt the model to allow for regional variation and imported cases. Moreover,

akin to EpiEstim, the EpiLPS methodology could be further developed to explicitly account for
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uncertainty in the serial interval distribution. Finally, in face of long-lasting epidemic scenarios

involving several variants characterized by different levels of virulence, it would be useful to

extend the EpiLPS methodology to allow for smooth transitions of the estimated reproduction

number accompanying the evolution of variants.
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