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SUMMARY

It is very common in regression analysis to encounter incompletely observed covariate information. A
recent approach to analyse such data is weighted estimating equations (Robins, J. M., Rotnitzky, A. and
Zhao, L. P. (1994), JASA, 89, 846–866, and Zhao, L. P., Lipsitz, S. R. and Lew, D. (1996), Biometrics,
52, 1165–1182). With weighted estimating equations, the contribution to the estimating equation from a
complete observation is weighted by the inverse of the probability of being observed. We propose a test
statistic to assess if the weighted estimating equations produce biased estimates. Our test statistic is similar
to the test statistic proposed by DuMouchel and Duncan (1983) for weighted least squares estimates for
sample survey data. The method is illustrated using data from a randomized clinical trial on chemotherapy
for multiple myeloma.
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1. INTRODUCTION

The regression modeller of, for example, clinical trials or sample surveys, is often confronted with
incompletely observed covariate information. Precisely, we consider a regression analysis of an outcome
y on a vector x = (x1, . . . , xK )′ of K covariates which are always observed, and a covariate z, which
can be missing for some subjects. Our interest centres on estimating the regression parameters, say β.
In our example in Section 4, we analyse a randomized clinical trial in multiple myeloma (Kalish, 1992).
The outcome variable is survival time, and there are eight covariates, one of which has missing values.
The main covariate of interest is the effect of the new chemotherapy versus the standard therapy. Besides
treatment, the other seven covariates of interest are: bone fractures at diagnosis (yes/no), logarithm of
the blood urea nitrogen (LOGBUN), hemoglobin (HGB), platelet count (PLATELET), logarithm of the
white blood cell count (LOGWBC), the logarithm of plasma cells in bone marrow (LOGPBM), and
serum calcium (SCALC). Patients with high values of LOGBUN, HGB, LOGPBM, and SCALC, and

∗To whom correspondence should be addressed.

c© Oxford University Press (2001)



296 S. LIPSITZ ET AL.

low values of PLATELET and LOGWBC are expected to have shorter survival. Even though survival
as an outcome typically calls for time-to-event type methods, we use Poisson regression to estimate the
regression parameters for an exponentially distributed survival time.

The only covariate with missing values is z = bone fractures at diagnosis, which is missing for
84 (37.5%) of the 224 cases. This covariate is a very important predictor since multiple myeloma is
a haematologic cancer which attacks the bone marrow, so a patient with bone fractures at diagnosis
may have more advanced cancer, and thus shorter survival. With such a large fraction of missing data,
a complete case analysis using only the 140 subjects with no missing data could give highly inefficient
and/or biased estimates. Nevertheless, such a complete case analysis is still one of the most commonly
encountered modes of analysis in practice.

A recent approach that can reduce the bias of the complete case estimate is weighted estimating
equations (WEE) (Robins et al., 1994; Zhao et al., 1996). With WEE, the contribution to the regression
estimating equation from a complete observation (y, x, z) is weighted by the inverse of the response
probability, i.e. the probability that z was observed. It has been shown that WEE are applicable to
regression analysis when missing covariates are missing at random (MAR); (Robins et al., 1994), i.e. when
the probability that z is missing depends on (y, x) but not z. To use WEE, one must pose and estimate a
binary regression model for the probability of z being observed as a function of (y, x). A logistic, probit,
or complementary log–log binary regression model can be used, or the parametric assumptions can be
lessened by using generalized additive models (Hastie and Tibshirani, 1990). Of course, the quality of the
inference will depend on the correctness of the posited model of the probability of being observed.

WEE are sometimes preferred to maximum likelihood since one does not need to specify the full joint
distribution of (y, x, z), which could be complicated when (y, x, z) are mixed discrete and non-normal
continuous. If the model for the probability of z being observed is correctly specified, then the WEE
will produce a consistent estimate. However, even if the missing data model is mis-specified, the WEE
estimate could have little or no bias. For example, if missingness depends on all of the covariates x and z,
but not y, and the (wrongly) posed missing data model contains any subset of x and z, one can show that
the WEE estimate will be consistent for β. Thus, although one can use goodness-of-fit statistics for the fit
of the binary regression model for missingness, one would still want a direct test of whether the WEE is
asymptotically unbiased. We propose a test statistic that gives the investigator an idea if the WEE produce
biased regression parameter estimates. This statistic is similar to a statistic proposed by DuMouchel and
Duncan (1983) for testing if unweighted or weighted least squares should be used in sample surveys with
unequal probability of being selected into the sample, where the weights are the inverse probability of
selection.

Our proposed test statistic is as follows. First, we estimate the probability of z being observed given
(y, x), and then use WEE to obtain β̂wee, in which only the complete cases are inversely weighted by the
estimates probabilities of z being observed. Although unrealistic, suppose we actually knew (say, from a
follow-up sample) the missing z values, and thus could obtain a consistent estimate of β, say β̂, using all of
the data. To check for asymptotic unbiasedness of β̂wee, we could use a quadratic form in (β̂wee − β̂). This
quadratic form will be asymptotically chi-square with (K +1) degrees of freedom under the null that β̂wee

is asymptotically unbiased for β, or, equivalently, under the null that the ‘WEE and the full data estimates
converge in probability to the same parameter’. The quadratic form in (β̂wee − β̂) is the test statistic that
we would like to use. Unfortunately, we do not know the missing z so we propose using the quadratic form
(β̂wee − β̂) under the constraint that the regression coefficient of z equals 0. To obtain this new quadratic
form, we fit the regression model of y given x (without z) using WEE, as well as all data. In this case,
even though the estimated regression coefficients of x are biased for the regression coefficients of x for
the model E(y|x, z), the estimate using all of the data will converge to some fixed vector, say γ , and the
weighted estimating equations will converge to the vector γw. As was the case for β̂wee, if the model for
the probability of z being observed is correctly specified or, if missingness only depends on some function
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of (x, z) and the probability of z being observed is modelled as the wrong function of (x, z), then WEE
and the full data estimates converge in probability to the same parameter, i.e. γw = γ . In particular, our
proposed test statistic, which is a quadratic form in (β̂wee − β̂) under the constraint that the regression
coefficient of z equals 0, will be asymptotically chi-square with K degrees of freedom under the null that
the ‘WEE and full data estimates converge in probability to the same parameter vector’. Note that this
null hypothesis is more broad than a null that ‘the probability of z being observed is modelled correctly’,
because, as we have discussed above, we could reject the null ‘the probability of z being observed is
modelled correctly’, but still could have the null ‘the WEE and full data estimates converge in probability
to the same parameter vector’ hold.

Section 2 introduces necessary notation and describes the weighted estimating equations. Section 3
describes the test statistic. Section 4 illustrates the methods with the example and, in Section 5, we give the
results of simulations comparing the power of our proposed test statistic to the preferred, but unavailable
statistic, which is the quadratic form in (β̂wee − β̂).

2. NOTATION AND MODEL

Consider a regression problem involving n independent subjects, i = 1, . . . , n. The data collected on
the i th subject are the outcome variable yi , a vector xi = (xi1, . . . , xi K )T of K covariates that are always
observed, and a covariate zi that is missing for some subjects. Since zi can be missing, we also define the
indicator random variable Ri , which equals 1 if zi is observed and 0 if zi is missing. The distribution of
Ri given (yi , xi , zi ), is Bernoulli with probability

πi = Pr(Ri = 1|yi , xi , zi ),

and is referred to as the missing data mechanism. If missingness is non-ignorable, then πi depends on zi .
In this paper, we restrict attention to missing data mechanisms that are MAR, i.e. in which πi does not
depend on zi , but solely on (yi , xi ). If πi depends on none of yi , xi , and zi , then the data are missing
completely at random.

Let µi = E(yi |xi , zi ) denote the expectation of the outcome yi given the covariates. In most regression
problems, it is of interest to estimate the regression coefficients β ′ = (β0, β

′
x , βz), where β0 and βz are

scalars and βx is a vector, from the regression model

µi = g(β0 + x ′
iβx + ziβz), (1)

where g(·) is a specified function, such as g(a) = a for linear regression and g(a) = exp(a)/[1 + exp(a)]
for logistic regression.

With no missing covariate data, one can use a quasi-likelihood (McCullagh and Nelder, 1989)
estimator of β, which is the solution to u(β̂) = 0, where

u(β) =
n∑

i=1

ui (β) =
n∑

i=1

div
−1
i (yi − µi ). (2)

Here, di = ∂µi
∂β

, and vi = vi (β) = Var(Yi |xi , zi ). Since ui (β) is a linear function of (yi − µi ), it

has expection 0. Since E[u(β)] = 0, and we are solving u(β̂) = 0, using method of moment ideas,
the estimate of β from the quasi-likelihood converges to β, establishing consistency. Moreover, using a
first-order Taylor series expansion,

(β̂ − β) ≈
[

n∑
i=1

div
−1
i d ′

i

]−1 n∑
i=1

div
−1
i (yi − µi ). (3)
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By application of the central limit theorem, the estimate of β has an asymptotic normal distribution with
mean β and covariance matrix[

n∑
i=1

div
−1
i d ′

i

]−1 [
n∑

i=1

E[ui (β)ui (β)′]
] [

n∑
i=1

div
−1
i d ′

i

]−1

, (4)

which can be consistently estimated by[
n∑

i=1

d̂i v̂
−1
i d̂ ′

i

]−1 [
n∑

i=1

d̂i d̂
′
i v̂

−2
i (yi − µ̂i )

2

] [
n∑

i=1

d̂i v̂
−1
i d̂ ′

i

]−1

, (5)

where all quantities in (5) are evaluated at β̂. The solution to the estimating equation (2) cannot be solved
in closed form. Fisher’s method of scoring can be used to solve these nonlinear equations numerically.

With missing data, the most popular method of estimation is the complete case estimate, β̂cc, which is
the solution to the estimating equation ucc(β̂cc) = 0, where

ucc(β) =
n∑

i=1

ri div
−1
i (yi − µi ) = 0, (6)

where ri is the realized value of Ri and hence only complete cases contribute.

2.1 Weighted estimating equations

Suppose now that πi , the probability of zi being observed, depends on the observed outcome yi and the
covariates xi , and that the dependence is specified up to a known probability function indexed by a finite
number of unknown parameters. Specifically, we consider a logistic regression for the probability of being
observed,

πi = πi (α) = exp(α′mi )

1 + exp(α′mi )
, (7)

where α is a vector of unknown parameters and mi is a function of (yi , x ′
i )

′. We could have mi = (yi , x ′
i )

′,
but mi could also include interactions among the elements of (yi , x ′

i )
′ whilst preserving the MAR nature

of the mechanism.
In order to obtain a consistent estimate of the regression parameters under a MAR mechanism, we can

use the WEE proposed by Robins et al. (1994) and Zhao et al. (1996). In the WEE, we replace ri in the
complete case estimating equation (6) with ri/πi . In particular, the WEE are uwee(β̂wee) = 0, where

uwee(β) =
n∑

i=1

ri

πi
ui (β) =

n∑
i=1

ri

πi
div

−1
i (yi − µi ). (8)

We provide a brief sketch of the argument for why β̂wee is consistent. The estimating equation given
by (8) is unbiased for 0 at the true β if πi is correctly specified because

E

[(
Ri

πi

)
div

−1
i (yi − µi )

]
= Exi ,zi

(
Eyi |xi ,zi

{
div

−1
i (yi − µi )

[
ERi |yi ,xi ,zi

(
Ri

πi

)]})
= Exi ,zi (Eyi |xi ,zi {div

−1
i (yi − µi )})

= Exi ,zi (0) = 0. (9)
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As before, since the estimating equation is unbiased for 0, β̂wee defines a consistent estimator for β. If
πi is either known or is consistently estimated, a consistent estimate of β is obtained. Under a MAR
mechanism, πi can be estimated independently from the model for µi , and hence there is no need to
fully specify the joint distribution of (yi , xi , zi , ri ). In most applications, πi (α) is unknown and needs to
be estimated and substituted in (8). We estimate πi using ordinary logistic regression with outcome Ri

and covariates mi given in (7). The ordinary logistic regression estimating equations for α are given by
uα(̂α) = 0, where

uα(α) =
n∑

i=1

uαi (α) =
n∑

i=1

m′
i [ri − πi (α)]. (10)

We can put the estimating equations for (β, α) together to get

Swee(β, α) =
n∑

i=1

[
uwee,i (β)

uα,i (α)

]
=

n∑
i=1

[
(ri/πi )div

−1
i (yi − µi )

m′
i [ri − πi (α)]

]
. (11)

If we have the correct models for µi and πi (Zhao et al., 1996), then the estimates of both β and α are
consistent. Using a Taylor series expansion, (β̂wee, α̂) also have an asymptotic normal distribution with
covariance matrix that is consistently estimated by

V̂ar

[
β̂wee

α̂

]
=

[
n∑

i=1

Âi

]−1 [
n∑

i=1

B̂i

] [
n∑

i=1

Â′
i

]−1

, (12)

where

Ai =
[
(Ri/πi )v

−1
i di d ′

i (Ri/πi )(1 − πi )v
−1
i (yi − µi )di m′

i
0 πi (1 − πi )mi m′

i

]
(13)

and

Bi =
[

(Ri/π
−2
i )[v−1

i (yi − µi )]2di d ′
i (Ri/πi )w

−1
i (yi − µi )(Ri − πi )di m′

i
(Ri/πi )v

−1
i (yi − µi )(Ri − πi )mi d ′

i (Ri − πi )
2mi m′

i ,

]
, (14)

where 0 is a matrix of zeros with appropriate dimensions, and (12) is evaluated at (β̂wee, α̂).
If the model for πi is correctly specified, then β̂wee is consistent for β. If the model for πi is under-

specified, the estimate of the regression coefficients of interest, β, could be biased. Note, however, that
β̂wee will sometimes be consistent even if πi is mis-modelled. The weighted estimate will be unbiased
when πi truly depends on a function of the covariates (xi , zi ), say πi (xi , zi ), but one models πi as the
wrong function of (xi , zi ), say π∗

i (xi , zi ). Thus, even if the missing data are non-ignorably missing (πi

depends on zi ), but missingness does not depend on yi , we can mis-model πi , and a still get consistent
estimates using WEE. The following equation shows that the WEE with the wrong ‘weights’ π∗

i (xi , zi ) is
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still unbiased for 0,

E

[(
Ri

π∗
i (xi , zi )

)
div

−1
i (yi − µi )

]
= Exi ,zi

[
Eyi |xi ,zi

(
div

−1
i (yi − µi )

[
ERi |yi ,xi ,zi

(
Ri

π∗
i (xi , zi )

)])]
= Exi ,zi

[
Eyi |xi ,zi

(
div

−1
i (yi − µi )

[
πi (xi , zi )

π∗
i (xi , zi )

])]
= Exi ,zi

[(
πi (xi , zi )

π∗
i (xi , zi )

)
Eyi |xi ,zi (div

−1
i (yi − µi ))

]
= Exi ,zi

[(
πi (xi , zi )

π∗
i (xi , zi )

)
0

]
= 0. (15)

As before, since the estimating equation is unbiased for 0, β̂wee defines a consistent estimator for β. Note
that, if we set π∗

i (xi , zi ) = 1 in (15), we get the complete case estimate described in (6). Thus, (15) can be
used to show that the complete case estimate is asymptotically unbiased as long as the true πi is a function
of (xi , zi ) but not yi .

Even if πi depends on both xi and yi , but we mis-model πi , we still may get small bias in the
weighted estimate. However, in order to ensure minimal bias, one should go about finding the best fit
for πi as one usually does for logistic regression. Tests for interactions can be performed, and stepwise
logistic regression can be used to obtain a model for πi . Thus, although one can use goodness-of-fit
statistics to obtain the best fit of the binary regression model for missingness, one would still want a direct
test of whether the WEE is asymptotically unbiased. Further, our null of interest is that WEE produces
asymptotically unbiased estimates, and one can use the test statistics proposed in the following section to
assess this. Note that this null hypothesis is broader than a null that πi is correctly specified because, as
we have discussed above, if missingness only depends on (xi , zi ), and we mis-model πi , we could reject
the null ‘that πi is correctly specified’, but still have the null ‘WEE produces asymptotically unbiased
estimates’ hold.

3. TEST STATISTIC TO ASSESS IF WEE IS ASYMPTOTICALLY UNBIASED

Suppose β̂wee converges in probability to the parameter vector βw. If the model for πi is correctly
specified, then βw = β, or, if missingness only depends on some function of (xi , zi ) and πi is modelled
as the wrong function of xi , we still have βw = β. Although unrealistic, if we knew the true value of β,
then we could test the null hypothesis that βw = β using a quadratic form in (β̂wee − β). Although again
unrealistic, suppose we actually knew (say, from a follow-up sample) the values of the missing zi , and
thus could obtain a consistent estimate of β, say β̂, using all of the data. In this case, we could test the null
hypothesis that βw = β using a quadratic form in (β̂wee − β̂), which will be asymptotically chi-square
with (K + 1) degrees of freedom under the null that β̂wee is asymptotically unbiased for β. This quadratic
form in (β̂wee − β̂) is the test statistic that we would like to use, and is similar in spirit to the test statistic
proposed by DuMouchel and Duncan (1983) for sample survey data. However, since we do not know the
missing zi , we cannot use it. Instead, we attempt to form a test statistic as ‘close’ as possible to a statistic
based on (β̂wee − β̂): our statistic is a quadratic form of (β̂wee − β̂), under the restriction that βz = 0. Our
general null hypothesis is that the ‘WEE estimates and full data estimates converge in probability to the
same parameter’.

Thus, suppose we set βz = 0, which is equivalent to dropping zi from the regression model, and we fit
the regression model of yi given xi (without zi ) using both the WEE, and all of the data. Even though the
estimated regression coefficients of xi when setting βz = 0 are biased for the regression coefficients βx of
xi for the model E(yi |xi , zi ), the estimate of βx using all of the data will converge to some fixed vector,
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say γ , and the WEE will converge to the vector γw. Under the null ‘the WEE and full data estimates
converge in probability to the same parameter’, Ho : γw = γ . Thus, our statistic, a quadratic form of
(β̂wee − β̂) under the restriction that βz = 0, will be asymptotically chi-square with K degrees of freedom
under the null that the ‘WEE and full data estimates converge in probability to the same parameter’.

In formally explaining our test statistic, since yi and xi are observed for all individuals, we can use the
full data and fit the model

E(Yi |xi , γ ) = µi∗(γ ) = g(γ0 + γ1xi ). (16)

Note that, assuming that (1) is the correct model for E(Yi |xi , zi ), it is very unlikely that (16) is the true
model for E(Yi |xi ). This is because it is very unlikely that E(Yi |xi ) and E(Yi |xi , zi ) will both have the
same link function g(·), except in the linear case, when x and z are orthogonal. To estimate γ = [γ0, γ

′
1]′,

one can use the full data estimating equation (2), in which we replace µi with µi∗, di with di∗ = dµi∗
dγ

and
vi with vi∗ = vi (γ ) = Var(Yi |xi , γ ). The resulting estimate γ̂ has similar asymptotic properties as the
estimate in Section 2, i.e. γ̂ is asymptotically normal with mean γ and asymptotic variance given by (4).
Also, γ̂ is consistent for γ . Following White (1982), γ is the quantity that minimizes the Kullback–Leibler
distance between the true model and the chosen parametric family. For the purposes of our proposed
methods, it is not important that (16) is not the correct model.

Next, suppose that we use the WEE to fit model (16). In particular, suppose we solve Swee(γ̂wee, α̂) =
0, where

Swee(γ, α) =
n∑

i=1

[
ui (γ )

ui (α)

]
=

n∑
i=1

[
(ri/πi )di∗v−1

i∗ (yi − µi∗)
mi [ri − πi (α)]

]
, (17)

where di∗ = dµi∗
dγ

, and vi∗ = vi∗(γ ) = Var(Yi |xi ).
Using results similar to (9), one can show that, if the model for πi is correctly specified, then the

solution to (17), γ̂wee, is consistent for γ , the same quantity as the full data estimator γ̂ converges to.
In particular, under the null ‘WEE estimates and all data estimates converge in probability to the same
parameter’, then (γ̂wee − γ̂ ) is asymptotically normal with mean 0, and covariance matrix equal to

Var(γ̂wee − γ̂ ) = Var(γ̂wee) + Var(γ̂ ) − 2Cov(γ̂wee, γ̂ ).

We can consistently estimate Var(γ̂ ) with (5) and Var(γ̂wee) with (12), and using a Taylor series expansion,
one can show that Cov(γ̂wee, γ̂ ) can be consistently estimated with the upper (p + 1) × (p + 1) block of[

n∑
i=1

Âi

]−1 [
n∑

i=1

Ĉi

] [
n∑

i=1

Â′
i2

]−1

, (18)

where Âi2 = d̂i∗v̂−1
i∗ d̂ ′

i∗,

Ai =
[
(Ri/π̂i )̃v

−1
i∗ d̃i∗d̃ ′

i∗ (Ri/π̂i )(1 − π̃i )̃v
−1
i∗ (yi − µ̃i∗)d̃i∗m′

i
0 π̃i (1 − π̃i )mi m′

i

]
,

Ci = [
(Ri/π̃

−2
i )̂v−1

i∗ (yi − µ̂i∗)(Ri − π̃i )mi d̂ ′
i∗, (Ri/π̃

−2
i )̂v−1

i∗ (yi − µ̂i∗)(yi − µ̃i∗)̃v−1
i∗ d̂i∗d̃ ′

i∗
]
,

and d̂i = di (γ̂ ), v̂i = vi (γ̂ ), d̃i = di (γ̂wee), ṽi = vi (γ̂wee).
To test if Ho : γw = γ , we propose the global Wald statistic,

G = (γ̂wee − γ̂ )′[V̂ar(γ̂wee − γ̂ )]−1(γ̂wee − γ̂ ), (19)

which is approximately chi-square with (p + 1) degrees of freedom (the dimension of γ ) under the null.
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4. ANALYSIS OF MULTIPLE MYELOMA DATA

To illustrate our proposed approach we consider data on a subset of n = 224 patients from an Eastern
Cooperative Oncology Group clinical trial, E2479 (Kalish, 1992). The main purpose of the trial was to
evaluate whether Vincristine, BCNU, Melphalan, Cyclophosphamide, and Prednosone (VBMCP) should
replace Melphalan plus Prednosone (MP) as a standard therapy for patients with previously untreated
multiple myeloma. We are primarily interested in how treatment affects survival time, the time of entry
into the study until death; we are also interested in how survival is predicted by seven other baseline
characteristics. The other seven covariates have been described in Section 1. Patients with high values of
LOGBUN, HGB, LOGPBM and SCALC, and low values of PLATELET and LOGWBC, are expected
to have shorter survival. The covariate z = bone fractures at diagnosis is missing for 84 (37.5%) of the
224 patients; all other covariates are completely observed. To use WEE, this FRAC covariate should be
MAR. FRAC is determined by x-ray, and sicker patients at diagnosis were not always well enough to
have an x-ray taken. Since multiple myeloma is a haematologic cancer which attacks the bone marrow, a
patient with bone fractures at diagnosis may have more advanced cancer, and thus shorter survival. Thus,
we would expect pr(Ri = 1|zi ) to depend on zi . However, conditional on the censoring time, and the
covariates xi , we expect the probability of being observed to be conditionally independent of the FRAC
covariate.

For illustration, we assume the survival time is exponentially distributed. Let Ti be the true failure
time for subject i . We note that 10 (2.4%) of the 224 cases have their survival time censored. If we let Ui

be the censoring time, then we observe Xi0 = min(Ti , Ui ) and the censoring indicator Yi = I {Ti � Ui }.
Under non-informative censoring, the density of (yi , xi0|xi , zi ) is

p(yi , xi0|xi , zi , β) ∝ e−λi xi0λ
yi
i , (20)

where

λi = exp[β0 + β ′
1xi + β ′

2zi ] (21)

is the hazard and xi contains LOGBUN, HGB, PLATELET, LOGWBC, LOGPBM and SCAL. We note
that the complete case estimator can be obtained as the solution to (2), by treating the censoring indicator
Yi as a Poisson outcome random variable with mean

µi = xi0λi = exp[log(xi0) + β0 + β ′
1xi + β ′

2zi ],
where log(xi0) is an offset.

To use the WEE, we must specify the logistic model for πi = pr(Ri = 1|yi , xi ), ensuring that it is
well fitting. Since a good fit for πi is indeed important, we do not worry about a high type I error rate;
we would rather over-specify than under-specify, since under-specification could bias the estimates of β.
Thus, one should fit the largest possible model for πi that appears reasonable (say, for a given model, one
could use the jackknife, making sure that there are no ‘outlying estimates’ when dropping an observation).
In this dataset, very few of the models with three-way interactions converged to a solution (some of the
parameter estimates were converging to ±∞ using the Newton–Raphson algorithm). We suggest keeping
any parameter in the model for πi that is significant at the 0.35 level. We can find the best-fitting model
for πi using ordinary logistic regression, without having to worry about the specification of the model for
[yi | xi , zi , β]. We considered the main effects model in xi and log censoring time as the baseline model
for πi , and used a step-up logistic regression approach from the main effects. The best-fitting model for πi

contained pairwise interactions between log(survival) and SCALC, LOGBUN and HGB, and HGB and
SCALC. The results are shown in Table 1. The Hosmer–Lemeshow goodness-of-fit statistic has a value
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Table 1. Maximum likelihood estimates of the missingness model
pr(Ri = 1|xi , yi ) for myeloma data

Parameter Estimate Standard Z -value p-value
error

INTERCEPT 2.615 7.050 0.37 0.711
LOGSURV −1.776 0.657 −2.70 0.007
LOGBUN −3.772 2.518 −1.50 0.134
HGB 0.260 0.677 0.38 0.701
PLATELET −0.550 0.680 −0.81 0.417
LOGWBC 0.295 0.318 0.93 0.353
LOGPBM −0.089 0.188 −0.48 0.634
SCALC 0.651 0.460 1.41 0.158
TRT −0.107 0.252 −0.42 0.673
LOGSURV*SCALC 0.165 0.064 2.59 0.010
LOGBUN*HGB 0.367 0.259 1.42 0.156
HGB*SCALC −0.103 0.047 −2.17 0.030

of 6.753, which, when compared to a chi-square with eight degrees of freedom has a p-value of 0.5635.
Thus, the Hosmer–Lemeshow statistic indicates a good fit for πi .

Table 2 gives estimates and standard errors for the regression coefficients based on WEE (with π̂i from
Table 1), and CC (complete case) estimation. We see that the only appreciable difference between WEE
and CC is in the estimate of the SCALC effect, which is about 50% greater for WEE than CC, and is also
significant for WEE and not CC. Now, we use our method fitting the Poisson regression model

µi∗ = xi0λi∗ = exp[log(xi0) + γ0 + γ ′
1xi ],

using WEE, CC and the full data. Here we note that our method does apply, not only to WEE, but also to
CC, merely by considering the CC estimates as a special form of WEE with πi = π . For the WEE, our test
has a value of 4.970, which, when compared to a chi-square with eight degrees of freedom has a p-value
of 0.7608. For the CC, our test has a value of 7.907, which, when compared to a chi-square with eight
degrees of freedom has a p-value of 0.4426. Although they are global test statistics, the statistics indicate
that the WEE and CC estimates are not significantly different than the full data. Thus, we feel comfortable
that β̂wee is not asymptotically biased. In the following section, we perform simulations comparing the
power of our proposed test statistic to the preferred, but unavailable, test statistic, which is a quadratic
form in (β̂wee − β̂).

5. A SIMULATION STUDY

We performed a simulation study based on the myeloma example discussed in Section 4, with survival
time as response, and covariates TRT (xi1), SCALC (xi2) and FRAC (zi ). We are mainly interested in how
the power of the quadratic form in (γ̂wee − γ̂ ) (given in (19)) compares to the similar quadratic form in
(β̂wee − β̂), which is unavailable for a given dataset with zi missing, but easily obtained for a simulation
in which we know the value of the missing zi .

We formulate the true model from which we simulate by specifying each term on the right side of

p(ri , zi , yi , xi1, xi2, α, β, φ)

= p(ri |yi , xi , zi , α)p(yi |xi1, xi2, zi , β)p(zi |xi1, xi2, φ1)p(xi2|xi1, φ2)p(xi1|φ3). (22)
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Table 2. Regression parameter (β) estimates for the myeloma data

Effect Approach β̂ SE Z -statistic p-value
INTERCEPT WEE −6.352 1.007 −6.31 0.000

CC −5.952 0.947 −6.28 0.000

LOGBUN WEE 0.318 0.260 1.22 0.222
CC 0.273 0.232 1.18 0.238

HGB WEE −0.027 0.025 −1.10 0.271
CC −0.036 0.026 −1.40 0.160

PLATELET WEE −1.457 0.762 −1.91 0.056
CC −1.400 0.600 −2.33 0.024

LOGWBC WEE 0.198 0.162 1.22 0.222
CC 0.208 0.156 1.33 0.183

LOGPBM WEE 0.285 0.086 3.32 0.001
CC 0.279 0.085 3.30 0.001

SCALC WEE 0.074 0.035 2.13 0.033
CC 0.050 0.043 1.16 0.244

TREATMENT WEE −0.070 0.107 −0.66 0.512
CC −0.045 0.112 −0.41 0.685

FRAC WEE −0.035 0.110 −0.32 0.753
CC −0.024 0.116 −0.21 0.834

In the covariate distributions, we let Xi1, be a Bernoulli random variable with pr(Xi = 1) = 0.5. We let
p(xi2|xi1, φ2) be a Bernoulli distribution with the logit of the probability of success equal to

logit[pr(Xi2 = 1|xi1, φ2)] = −0.2 + 0.9xi1.

Next, we let p(zi |xi1, xi2, φ1) be a Bernoulli distribution with the logit of the probability of success equal
to

logit[pr(Zi = 1|xi1, xi2, φ1)] = 0.5 − 0.5xi1 − 0.5xi2 + 0.5xi1xi2. (23)

In each simulation, the exponential model for the survival time (Ti ) had hazard

λi = exp[−3 − xi1 + xi2 + zi ], (24)

i.e. β = (β0, β1, β2, βz) = (−3.8, −1, 1, 1)′. We then sampled Ti accordingly, without censoring any
values. In all simulations, the true model for pr(Ri = 1|yi , xi1, xi2) was

logit{pr(Ri = 1|ti , xi1, xi2, α)}
= 0.5 − 0.5 log(ti ) + 0.5xi1 + 0.5xi2 − θ [log(ti )xi1 + log(ti )xi2 + xi1xi2], (25)

where we varied θ from 0 to 1.2 in 0.1 intervals. At each value of θ , we performed 1000 simulation
replications, where each replication had a sample size of n = 1500. In the simulations, when fitting the
WEE, we specified the model for πi as in (25), except we set θ = 0. We then studied the power of our



Testing for bias in weighted estimating equations 305

Fig. 1. Rejection probabability of our method (– – –: GAMMA) and the unavailable method (——: BETA) for testing
Ho : βw = β.

proposed test statistic as compared to the similar quadratic form in (β̂wee − β̂). In our statistic, we fit the
model dropping zi , i.e.

λi = exp(γ0 + γ1xi1 + γ2xi2),

and test if γ = (γ0, γ1, γ2)
′ estimated from all data, and γ estimated from WEE are the same.

Figure 1 gives the results of the simulations. The line labelled ‘GAMMA’ is the proportion of two-
sided p-values less than 0.05 when testing if γ is equal using all data and WEE. The line labelled ‘BETA’
is the quadratic form for testing if β is equal using all data and WEE. Both test statistics appear to
have very similar power properties, and 95% confidence intervals for both power curves overlap. We
have performed many simulations comparing the two statistics, including letting Zi be independent of
the other covariates, letting (xi1, xi2, zi ) be continuous, and setting the α, β, and φ to many different
values. In all of these simulations, the resulting power curves were very similar to Figure 1. These results
are very encouraging for the use of our statistic. However, because of the broad range of possible data
configurations and underlying probability distributions generating the data, it is difficult to draw definitive
conclusions from simulations. We can only make general suggestions. In our simulation study, we have
seen that our proposed test statistic performs very similarly to the preferred, but unavailable, statistic based
on (β̂wee − β̂).



306 S. LIPSITZ ET AL.

6. DISCUSSION

We have developed a global goodness-of-fit test statistic to assess if WEE produces asymptotically
unbiased estimates. The test statistic is relatively easy to calculate, and can be used in addition to
stepwise regression and any other goodness-of-fit statistics for the missingness model. Ideally, one would
like to compare the WEE estimate of β to those obtained using the full dataset with no missing data.
Unfortunately, the missing data makes this impossible. Thus, we feel that the comparison of the estimate
of γ (after setting βz = 0 or, equivalently, dropping out z) using WEE and the full dataset is the next best
thing. In our simulations, we have seen that quadratic forms based on (β̂wee − β̂) or (γ̂wee − γ̂ ) have very
similar power properties; thus the quadratic form in (γ̂wee − γ̂ ) appears to be a very good ‘surrogate’ for
the quadratic form in (β̂wee − β̂).

If one fits the fullest possible model for πi and still gets significant differences between γ̂ and
γ̂wee, then what should the researcher do? Here we briefly discuss the possibilities. One alternative is
maximum likelihood, in which one must also specify the conditional distribution for zi given xi , but not
the conditional distribution for ri given xi . One would then run into the problem of bias caused by the
mis-specification of the distribution of zi given (yi , xi ). When using WEE, one has to specify the logistic
regression model for πi correctly (except in the case where the true πi depends on (xi , zi )). When using
maximum likelihood, we would have to correctly specify p(zi |xi , φ). Thus, besides needing to correctly
specify the regression model for yi , ML and WEE require us to correctly specify another distribution. As
an even better extension, one could use the modified WEE of Sharfstein et al. (1999) in which the estimate
of β will be consistent if either πi or p(zi |xi , φ) is correctly specified.
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