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Abstract

Monitoring and investigating temporal trends in antimicrobial data is a high priority for

human and animal health authorities. Timely detection of temporal changes in antimicrobial

resistance (AMR) can rely not only on monitoring and analyzing the proportion of resistant

isolates based on the use of a clinical or epidemiological cut-off value, but also on more

subtle changes and trends in the full distribution of minimum inhibitory concentration (MIC)

values. The nature of the MIC distribution is categorical and ordinal (discrete). In this contri-

bution, we developed a particular family of multicategory logit models for estimating and

modelling MIC distributions over time. It allows the detection of a multitude of temporal

trends in the full discrete distribution, without any assumption on the underlying continuous

distribution for the MIC values. The experimental ranges of the serial dilution experiments

may vary across laboratories and over time. The proposed categorical model allows to esti-

mate the MIC distribution over the maximal range of the observed experiments, and allows

the observed ranges to vary across labs and over time. The use and performance of the

model is illustrated with two datasets on AMR in Salmonella.

Introduction

Challenges

The identification and understanding of temporal trends in antimicrobial data is of high

importance to public health authorities (European Food Safety Authority and European Cen-

tre for Disease Prevention and Control [1]). Antimicrobial data from serial dilution experi-

ments are registered as minimum inhibitory concentration (MIC) values, defined as the

minimal concentration of an antimicrobial substance that inhibits the growth of a pathogen. A

higher MIC value of a bacterium for an antimicrobial indicates a higher resistance to this anti-

microbial and, when it increases beyond a certain threshold (clinical breakpoints) it may indi-

cate a public health or animal health issue since treatment with this antimicrobial may be no

longer effective [2].
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Each observed discrete MIC value (often transformed on base 2 logarithmic scale) repre-

sents an interval of an unobserved true MIC value. The observed discrete MIC data typically

refer to unobserved (latent) MIC values within particular intervals on continuous exponen-

tiated scale (base 2). Thus, in statistical terms, MIC data are censored: left-, interval-, and

right-censored. For example, if the range is specified as� −2, −1, 0, 1, 2, 3,> 3 for a particular

assay, the value� −2 refers to the interval [0, 0.25] (left-censored), a value −1� j� 3 corre-

sponds to an unobserved “true” value in the interval (2j−1, 2j] (interval-censored, e.g (0.25, 0.5]

for j = −1), and the value > 3 refers to the interval (8, +1) (right-censored). The typical range

of observed (discrete) values differs with the antimicrobial type. A further complication is that

the observed range is not fixed, but rather assay dependent. As a dataset typically includes data

from different assays, the ranges may differ, and a particular value j may need to be considered

left/right-censored for some observations and interval-censored for others. The objective of

the design of an assay is typically to set up the range such that it is centered around one partic-

ular value, the clinical breakpoint (when available) and/or the antimicrobial type specific epi-

demiological cut-off value (ECV or ECOFF). This cut-off value intends to identify the value

separating the “wild type” subpopulation and the subpopulation with acquired or mutational

(increased) resistance to the drug of interest. Using agreed criteria for the acceptance of MIC

distributions, (official or tentative) ECOFFs can be then proposed by national and interna-

tional agencies (e.g., Clinical and Laboratory Standards Institute (CLSI), European Committee

on Antimicrobial Susceptibility Testing (EUCAST) [3].

Existing methodology

The last 10–15 years, several statistical methods and models with different objectives have been

developed to analyse MIC data. The statistical methods vary from fully nonparametric

approaches, with no assumptions on the MIC distribution, over semi-parametric approaches

(partly without and partly with assumptions on the MIC distribution) to fully parametric dis-

tributions with a fully specified underlying continuous MIC distribution. The more parametric

approaches are in general more efficient, but are prone to misspecifications, which may lead to

possible bias(es). Nonparametric approaches are more robust, but at the cost of being less effi-

cient. Choosing between more or less parametric approaches is not only driven by opting for

efficiency versus robustness, but also by the focus of the research question at hand. If deeper

insight in the underlying, latent continuous MIC distribution is envisaged, or the confirma-

tion/determination of an ECOFF is the objective, the more parametric approaches are the pre-

ferred candidates. If one aims at detecting temporal changes, all approaches are candidates,

each of them having strengths and weaknesses.

The most basic approach collapses the full observed range to dichotomised resistance data

(“prevalence” of resistance with an isolate considered as resistant if its MIC value is above a

given threshold, typically the ECOFF). Approaches include the Cochran-Armitage trend test

or logistic regression trend models [6]. The advantage is the simplicity of the binary outcome,

avoiding any issue with the unknown continuous MIC distribution, any issue concerning cen-

soring and varying ranges. In that sense it is a nonparametric, categorical approach. Further-

more, it allows to easily apply more complex time trend models, including fractional

polynomials, splines, seasonal effects etc., as well as the inclusion of other complexities in the

data, such as hierarchical structures (MIC data correlated in one or more intermediate clusters,

such as labs or countries), using generalized linear mixed models and GEE (generalized esti-

mating equations) methodology [4, 5].

But there are some major disadvantages as well. There is of course the dependence on the

choice of the ECOFF, especially in case there is no generally accepted unique ECOFF. Next,
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not all available information is being used in the trend analyses, and more detailed and subtle

information about any time trends may be lost by collapsing the MIC data. In fact, for a partic-

ular ECOFF, no significant changes in the “resistance prevalence” might be detected, whereas

there may be significant and interesting time related changes in the full categorical MIC distri-

bution (and in the underlying unobserved continuous MIC distribution). Also in case the

basic logistic regression approach does detect any major time trend, it is not unimportant to

have more complete insights in changes in the full MIC distribution.

Using a baseline multicategory logit model is a natural extension of the binary logistic

regression model, by using the full discrete/categorical range of the MIC data, and avoiding

the use of a cut-off value. While such multicategory logit models share the advantages of classi-

cal logistic regression, model building and interpretation is somewhat more complex, as more

than one model is involved (the number of models equals the number of MIC values minus

one). As illustrated and discussed in Aerts et al. [6], the strength is the use of the full scale of

MIC values, and being nonparametric, as there is no need to specify the underlying continuous

MIC distribution. But, the baseline logit model ignores the ordinality of the MIC values, imply-

ing a less efficient approach, whereas models for ordinal categorical data such as the popular

proportional odds model (or other members of the cumulative logit models) do exploit ordin-

ality. The family of cumulative logit models assumes however a unimodal underlying continu-

ous MIC distribution (such as the normal or the logistic distribution, not a realistic choice for

the MIC distribution). Consequently, the so-called common slope assumption of such models

is violated, turning them less attractive. A further weakness is that the same range of MIC val-

ues, and thus categories, should be used. We will come back to models for ordinal categorical

MIC data and varying experimental ranges in the next section.

Other approaches are defined on the unobserved continuous MIC distribution, and require

the partial or full specification of this continuous MIC distribution. These methods can be con-

sidered as extensions of linear regression models with a mixture distribution for the MIC

response variable. The strength of these approaches is that they go beyond the limitation of the

design of serial dilution experiments (implying the discrete nature of the observed MIC distri-

bution). The price to pay is that more complex estimation methods are required (fitting mix-

tures taking into account the censoring), that an appropriate continuous bi-/multinomial

distribution has to be selected, or has to be assumed, implying possible misspecification and

bias.

Craig [7] proposed a mixture of Gaussian distributions with resistant and non-resistant

populations for the underlying MIC distribution. Jaspers et al. [8] developed a Bayesian

approach to the semiparametric estimation of the MIC distribution, with an assumed paramet-

ric distribution for the left wild type subpopulation and a nonparametric (unspecified, flexible

and data-driven) model for the right resistant subpopulation. Komárek [9] presents an R pack-

age for Bayesian estimation of mixtures allowing for selection of the number of components,

dealing with the censored nature of the observed MIC data. Jaspers et al. [10] extended this

approach to multivariate mixtures to fit the joint distribution of MIC data on two or more

antimicrobials, with covariate-depending mixing weights allowing to examine time trends.

Zhang et al. [11] developed a hierarchical Bayesian latent class normal mixture model that

incorporates a linear trend for the mean log2MIC of the non-resistant population.

Contribution and outline

In this contribution we turn back to the categorical type of models, avoiding any assumptions

regarding the underlying continuous MIC distribution. Using the baseline category logit

model as the starting point, we define new models for ordinal categorical data reflecting the
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particular properties of MIC data: the central role of the ECOFF; the censored nature of the

data; potentially the varying experimental ranges; and, in case of data collected over time, the

temporal trend.

The following section introduces the new family of categorical models in detail. Next, the

ISU VDL data and the CIPR data are briefly described, and different members of the new fam-

ily are fit to both datasets. The Akaike information criterion [12] (AIC) and Schwarz’s Bayes-

ian information criterion [13] (BIC) model selection criteria are applied to select a final model.

For both criteria, lower values indicate better fitting models. Penalizing more for complexity

of a model, the BIC tends to select more parsimonious models [14]. The final model is then

discussed, and its estimates are interpreted subsequently. A final discussion ends the paper.

Materials and methods

Minimum inhibitory concentration data

Consider MIC data y = 2j (or y = j on log2-scale) within its experimental range ℓ� j� u + 1.

For ℓ< j� u, the continuous unknown MIC value takes a value in the interval (2j−1, 2j] (inter-

val censored) The case j = ℓ stands for −1< j� ℓ, or the continuous unknown MIC value (on

the original scale) takes a value in the interval (0, 2ℓ] (left censored). And finally, j = u + 1

stands for u< j<1, or the continuous unknown MIC value (on original scale) takes a value

in the interval (2u,1) (right censored).

The bounds ℓ, u may vary across observations but not in a random way; they are set by the

design of the experiment. Here, the categorical MIC values y = 2j or, equivalently y = j on

log2-scale, is considered as a categorical random variable, and interest goes to the estimation

of the probabilities

Pðy ¼ jÞ; L ¼ minf‘g � j � maxfug þ 1 ¼ U þ 1; ð1Þ

with the convention that

Pðy ¼ jÞ≔ Pðj � 1 < y � jÞ; ð2Þ

and

Pðy ¼ LÞ≔ Pðy � LÞ; Pðy ¼ U þ 1Þ≔Pðy > UÞ: ð3Þ

It might happen that the overall bounds L, U are never observed. In case the lower bound L is

never observed, we redefine

L ¼ minfyg;

and in case the upper bound U is never observed, we redefine

U ¼ maxfyg � 1;

with the interpretation

Pðy ¼ LÞ≔PðL � 1 < y � LÞ; Pðy ¼ U þ 1Þ≔PðU < y � U þ 1Þ:

Finally, for convenience, the categories L, . . ., U + 1 will be relabeled as 1, . . ., U − L. For

instance, for the CIPR data min{ℓ} = −7 and max{u} = 5.

The epidemiological cutoff baseline logit model

The baseline logit model models the log of the odds of the probability P(y = j) against P(y =

baselinecategory). The choice of the baseline or reference category is in general arbitrary, and
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different choices lead to equivalent models. Typical choices include, the first, the last or the

most frequent category. In the context of AMR, a natural choice is the category corresponding

to the ECOFF, as this ECOFF dichotomizes the MIC distribution in the wild-type part (left of

ECOFF) and the non-wild type (or resistant) part (right of ECOFF).

Denoting the ECOFF category as JE, the baseline category logit model can be written as,

with x representing a covariate of interest:

log
Pðy ¼ jjxÞ
Pðy ¼ JEjxÞ

¼ aj þ fjðxÞ; L � j � U þ 1; ð4Þ

with the constraints

aJE ¼ 0; fJEðxÞ ¼ 0; fjð0Þ ¼ 0:

Given a sample {(x1, y1), . . ., (xn, yn)}, estimates can be obtained by maximum likelihood

(MLE) by maximizing the log-likelihood

log L ¼
Xn

i¼1

X

L�j�Uþ1

dijlog Pðyi ¼ jjxiÞ

with δij = 1 if yi = j, and 0 otherwise.

In this paper, the covariate x of interest is time, but x can also represent other characteristics

of interest, such as the presence of a plasmid or a genetic variant.

Accounting for varying experimental ranges

The above definition of the baseline logit model cannot be fitted to our datasets in the applica-

tion setting, as it ignores the varying experimental ranges ℓ, u and the censored nature of

the data. To accommodate this, the likelihood is modified similar to the likelihood for cen-

sored continuous type of data. Consider the following cases for observation yi within the range

{ℓi, ℓi − 1, . . ., ui − 1, ui, ui + 1}, its value j, and corresponding contribution to the log-likeli-

hood: for ℓi< yi = j� ui the contribution is P(yi = j|xi); for yi = ℓi it is PðL � yi � ‘ijxiÞ
¼
P‘i

j¼L Pðyi ¼ jjxiÞ; and for yi = ui + 1 the contribution is Pðui < yi � U þ 1jxiÞ ¼
PUþ1

j¼uiþ1
Pðyi ¼ jjxiÞ. This results in the log-likelihood expression log L ¼

Pn
i¼1

log Li, with log

Li given by

di‘i log
X‘i

j¼L

Pðyi ¼ jjxiÞ

 !

þ
X

‘i<j�ui

dijlog Pðyi ¼ jjxiÞ þ di;uiþ1log
XUþ1

j¼uiþ1

Pðyi ¼ jjxiÞ

 !

: ð5Þ

Accounting for the ordinality of the MIC categories

The model as defined above does not yet exploit the ordinality of the MIC categories

L� j� U + 1. Exploiting ordinality typically allows building more parsimonious and more

powerful models, with less association parameters, being homogeneous in one or more direc-

tions. As such the baseline model is not the optimal choice, but it can be fitted to ordinal cate-

gorical response data and the model can be modified to reflect the ordinal nature of the MIC

data. Reconsider the model formula (4). The basic baseline logit model, with a linear effect of

time, would correspond to the choice

fjðxÞ ¼ bjx; ð6Þ
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with the constraint that bJE
¼ 0. The effect of time could be modelled differently, not just lin-

ear, but in a saturated way with dummies, or with e.g. a quadratic effect next to the linear

effect. But characteristic for the baseline model is that each logit log Pðy¼jjxÞ
Pðy¼JE jxÞ

gets a different

slope (all βj different). Reason for this is that, for nominal data, the categories can be permuted

randomly. Here, however, we have ordered categories L� j� U + 1, and we might expect a

positive or negative trend over time. Intuitively, as a starting point, one might expect the fol-

lowing effect of time on the MIC distribution:

1. a shift from the susceptible part to the resistant part, or, with x denoting time

log
Pðisolate is resistantjxÞ
Pðisolate is susceptiblejxÞ

¼ log
Pðy > JEjxÞ
Pðy � JEjxÞ

increases as a function of time x;

2. the probabilities related to the susceptible part do not change with time (wild-type distribu-

tion remaining unchanged), so for js� JE,

Pðy ¼ jsjy � JE; xÞ do not depend on time x;

3. the probabilities related to the resistant part do change with time (moving to the right), so

for jr> JE,

log
Pðy ¼ jr þ 1jy > JE; xÞ
Pðy ¼ jrjy > JE; xÞ

increase as a function of time x:

The challenge is to identify one or more models that fit well to the data, based on parsimo-

nious parameterizations, which reflect (fully or partly) the above preliminary expectations. In

addition, models not consistent with these expectations have to be explored as well.

The family of models

A family of models representing particular trends and recognizing the central role of the

ECOFF is defined by (subscripts s and r referring to the categories to the left (susceptible) and

to the right (resistant) of the ECOFF):

fjðxÞ ¼
fsðj � JEÞbsx for L � j � JE;

frðj � JEÞbrx for JE � j � U þ 1;

(

ð7Þ

with fs, fr “score” functions reflecting the ordinal structure with the constraint that fs(0) = fr(0)

= 0 (implying that fJEðxÞ ¼ 0). This model contains two covariate-effect parameter βs and βr
(possibly identical), acting with multiplicative factors fs(j − JE), fr(j − JE) across all logits, in a

possibly different fashion left and right of the ECOFF. The linear effects βsx, βrx could be gen-

eralized to multiple linear effects with several covariates or to other particular effect functions

gs(x), gr(x) (e.g. including a quadratic effect, a fractional polynomial or a periodic function).

Different choices for fs, fr imply different models. Of particular interest are (suppressing the

subscripts s and r) f(x) = x (identity function), f(x) = sign(x) (sign function), f(x) = 0 (null func-

tion, equivalent to putting the corresponding parameter β to 0) or other functions such as

those reflecting particular scores (e.g. distances between midpoints in case the categories are

not equidistant). Fig 1 demonstrates the time effect according to some of the models that play

a main role in the analysis of the CIPR data analysis (Table 2). The red curves show the distri-

bution at a particular year x: the MIC distribution P(y = j) (upper panel), and the logit

log Pðy¼jÞ
Pðy¼JEÞ

� �
in the lower panel (with the ECOFF category indicated by the red vertical line).
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Fig 1. The family of models. Illustration of particular models using the identity, sign and null function, with reference to the setting of the

CIPR data analysis (Table 2). The red curve refers to the MIC distribution at year x, the other curves refer to the distribution at year x + 1,

according to different models: model 7 (solid, black) is the model with fs(x) = 0 and fr(x) = x with βr> 0; model 8 (dashed, black) is the model

with fs(x) = 0 and fr(x) = sign(x) with βr> 0; model 12 (solid, blue) is the model with fs(x) = x with βs> 0, and fr(x) = x with βr> 0. The

vertical red line refers to the ECOFF category. The upper panel shows the MIC distribution P(y = j), j = −7, . . ., 0 (corresponding to MIC

PLOS ONE A multicategory logit model detecting temporal changes in antimicrobial resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0277866 December 1, 2022 7 / 22



The other curves show the changes one year later, according to three models. The particular

values assigned to the parameter of the models were inspired, though not equal by those of the

CIPR data analysis (the effects were taken larger to show them more clearly).

Model 7 with fs(x) = 0, fr(x) = x (solid black) corresponds to no changes over time in the

logit log Pðy¼jsÞ
Pðy¼JEÞ

� �
in the susceptible component of the distribution (left of the ECOFF, red and

solid black curves are identical in the lower panel) and a positive effect on the resistant compo-

nent (right of the ECOFF, black curve lays above the red curve in the lower panel). The log

odds ratios (LOR) (j − JE) βr show the increase over time x + 1 (one year later), with a linear

increase of this effect over j − JE = 1, 2, 3, 4. This latter linear increase over j (with values

1.10,2.21,3.31,4.41) is shown by the short black solid vertical lines at the horizontal axis in the

lower panel of Fig 1 (with scale indicated in the right vertical axis). The corresponding MIC

distribution for model 7 one year later is shown in the above panel (solid black). It shows a

pronounced increase of probabilities for the larger categories in the resistant component.

Model 8 (dashed black curves) is similar to model 7 (no changes in the logits at the susceptible

side), but the increase, now equal to LOR βr, is constant over j. The constant increase 2.59 is

shown by the short black dashed vertical lines at the horizontal axis in the lower panel. Model

12 is also similar to model 7, but at the right resistant side. This model however represents a

decrease at the susceptible side as well, expressed by the LOR’s (j − JE)βs with now j − JE = −1,

−2, −3. This latter linear decrease over j (with values -1.65,-1.10,-0.55) is shown by the short

blue solid vertical lines at the horizontal axis in the lower panel. How such changes in the logits

reflect changes in the MIC distribution is shown in the upper panel. Note that if more proba-

bility is assigned to the resistant component on the right, less probability is automatically

assigned to the left susceptible component (as observable in the upper panel of Fig 1).

Model (7) implies particular odds ratio interpretations of the effect parameters βs, βr, for

different 2 × 2 tables, as indicated by Table 1. Starting with the baseline odds, we have the rela-

tion between the odds corresponding with a unit increase in time x:

Pðy ¼ jjx þ 1Þ

Pðy ¼ JEjx þ 1Þ
¼ ORj;JE

Pðy ¼ jjxÞ
Pðy ¼ JEjxÞ

with

ORj;JE
¼

expffsðj � JEÞbsg for L � j � JE;

expffrðj � JEÞbrg for JE � j � U þ 1:

(

Focusing to the left side of the ECOFF (j< JE), fs� 0 refers to no effect of x on the susceptible

component; the sign function implies a single OR for all susceptible categories, and the identity

values 2j). The lower panel shows the logits log Pðy¼jÞ
Pðy¼JEÞ

. The short vertical lines at the horizontal axis in the lower panel show how these logits

have changed after one year (LOR’s) according to model 7, model 8 and model 12, in their respective line types and colors.

https://doi.org/10.1371/journal.pone.0277866.g001

Table 1. The 2 × 2 tables of interest, to the left and to the right of the ECOFF, with notation πj(x) = P(y = j|x).

js − 1 js jE − 1 jE jE + 1 jr jr + 1

x pjs � 1 xð Þ pjs
ðxÞ pJE � 1ðxÞ p;JE ðxÞ pJEþ1ðxÞ pjr

ðxÞ pjrþ1 xð Þ

x + 1 pjs � 1(x + 1) pjs
ðxþ 1Þ pJE � 1ðx þ 1Þ pJE

ðxþ 1Þ pJEþ1ðxþ 1Þ pjr
ðxþ 1Þ pjrþ1 (x + 1)

https://doi.org/10.1371/journal.pone.0277866.t001
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function implies a muliplicative factor for each step further apart from the ECOFF category.

Similar interpretations hold for the baseline odds with j> JE.

Next, consider adjacent odds, to the right of the ECOFF JE < jr< jr + 1� U + 1

Pðy ¼ jr þ 1jxþ 1Þ

Pðy ¼ jrjxþ 1Þ
¼ ORjrþ1;jr

Pðy ¼ jr þ 1jxÞ
Pðy ¼ jrjxÞ

with

ORjrþ1;jr
¼ expf½frðjr þ 1 � JEÞ � frðjr � JEÞ�brg:

For fr� 0, we obtain no effect of x as ORjr ;jrþ1 ¼ 1. The sign function implies ORjr ;jrþ1 ¼ 1 as

well. And the identity function leads to ORjr ;jrþ1 ¼ ebr . Note that these ORs are interpretable as

conditional ORs, given that y> JE. Similar considerations and interpretations hold for condi-

tioning on the left side L� js< js + 1< JE. One can also contrast two categories at both sides

of the ECOFF js< JE< jr:

Pðy ¼ jrjxþ 1Þ

Pðy ¼ jsjxþ 1Þ
¼ ORjr ;js

Pðy ¼ jrjxÞ
Pðy ¼ jsjxÞ

with

ORjr ;js
¼ expffrðjr � JEÞbr � fsðjs � JEÞbsg:

Finally, model (7) implies the following odds contrasting the probabilities for resistance

against susceptibility:

Pðy > JEjxÞ
Pðy � JEjxÞ

¼

P
jr>JE

eajrþfrðjr � JEÞbrx
P

js�JE
eajsþfrðjs � JEÞbsx

;

which looks rather complicated. But, for the case both functions fs and fr are the sign function,

we get

Pðisolate is resistantjxÞ
Pðisolate is susceptiblejxÞ

¼
Pðy > JEjxÞ
Pðy � JEjxÞ

¼ CeðbsþbrÞx; ð8Þ

for some constant C. Expression (8) is just a basic linear logistic regression model

log
Pðy > JEjxÞ
Pðy � JEjxÞ

¼ ~a þ ~bx;

with

~a ¼ log
P

j>JE
aj

P
j�JE
aj

( )

; ~b ¼ bs þ br:

If one of the functions fs and fr is the zero-function, this logistic regression model still holds

but with slope βr and βs respectively.

Let us reconsider the intuitively expected time effects on the susceptible and resistant sub-

populations, being a model reflecting the properties i)-iii). Consider a model with fs� 0,

implying no effect of x on the susceptible subpopulation, as

ORjs;jsþ1 ¼ ORjs;JE
¼ 1; L � js < js þ 1 � JE:
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With fs(x) = sign(x) and βs> 0:

ORjs;jsþ1 ¼ 1; L � js < js þ 1 < JE;

but

ORjs ;JE
¼ e� bs < 1; L � js < js þ 1 � JE;

indicating there is a “negative” effect, reflecting a shift of higher probability to the ECOFF cate-

gory JE.

For the resistant part, consider a model with fr the sign function or the linear function with

a slope βr> 0. Both reflect a shift to more probability to the “higher” categories of the resistant

subpopulation. For the linear function fr(x) = x this implies that, with βr> 0,

ORjr ;jrþ1 ¼ ebr > 1; JE � jr < jr þ 1 < U þ 1;

and

ORjr ;JE
¼ eðjr � JEÞbr > 1; JE � jr < jr þ 1 < U þ 1;

reflecting a gradual shift to higher MIC values. In combination with fs the sign function, it

holds that

ORjr ;js
¼ eðjr � JEÞbrþbs > 1; js < JE < jr:

For fr(x) = x and fs(x) = sign(x) we have

log
Pðisolate is resistantjxÞ
Pðisolate is susceptiblejxÞ

¼ ~a þ bsxþ log
X

jr>JE

eajrþðjr � JEÞbrx
 !

which is increasing as a function of x. In conclusion, intuitively, the model with fr(x) = x and

fs(x) = sign(x) (or fs(x) = 0) is expected to be very plausible.

Application to real datasets

Two datasets are analysed: the ISU VDL data with identical experimental ranges across time;

the CIPR data with varying experimental ranges.

R [15] was used for coding the models and analyzing the data. R scripts are available from

the corresponding author on request.

The CIPR data

The CIPR dataset was derived from the annual antimicrobial susceptibility testing results of

Salmonella isolates from pigs, collected through a national antimicrobial resistance monitoring

program in Spain in 2002–2013. Briefly, samples of the content of caecum from pigs collected

at the abattoir representing independent epidemiological units (i.e., farms) are processed for

the bacteriological culture of Salmonella. More details on the sampling strategy of the isolates

can be found in Teng et al. [16]. Isolates retrieved are then subjected to antimicrobial suscepti-

bility testing using the broth microdilution method. Here we focus on the MIC data generated

for the antimicrobial ciprofloxacin (CIPR).

Fig 2 shows the varying experimental ranges together with the data of 1189 isolates tested

during the 2002–2013 period. The horizontal lines (in red) represent the lower and upper

experimental range for groups of isolates and the blue jittered points are the observed MIC val-

ues (on log2 scale). The ECOFF equals -4. The single outlying MIC value of log2(MIC) = 4 was
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excluded, resulting in a total of 1188 observations. The upper part of Table 5 shows the

observed counts with, in the right margin, the sample sizes varying from 40 to 211 over the

12-year period.

The full range across all isolates runs from—7 up to 5: (-4,5) in the period 2002–2007, (-7,3)

in the period 2008–2011, and (-6,3) in the priod 2012–2013. A majority of observed MIC val-

ues (55%) equals the lower experimental bound (36 MIC values are equal to the lower bound

-6 and 618 MIC values are equal to the ECOFF, being the lower bound -4 in the period 2002–

2007, see also Fig 2 and Table 5. So the majority of MIC values are left censored. None of the

MIC values exceeds the upper bound (being right-censored). Note that depending on the par-

ticular year, a value of -6 needs to be interpreted differently: for 2008 the discrete value -6

refers to the interval (-7,-6] whereas for 2012 it refers to the interval (−1, −6].

Fig 3 shows the observed categorical MIC distribution for each year, with the width of the

bars proportional to the number of isolates tested in the corresponding year. Note that this fig-

ure is misleading. For instance, the MIC distribution for 2002 might suggest the value -4 (the

ECOFF!) is most frequent, but actually this bar stands for all values� −4. So, the analysis has

to take this into account, and such an extreme situation might jeopardize the use of methods

modelling the underlying continuous MIC distribution.

Standard multicategory logit models. Here we take the MIC values (categories) as they

are, not correcting for the varying experimental ranges, implying that the majority of left-cen-

sored values are treated incorrectly. The upper part of Table 2 shows AIC and BIC values of

naive standard multicategory logit models, with no or a linear effect of time. As there are 7 pos-

sible categories (corresponding to the observed values -6 to 0), there are 6 multicategory logits,

and hence 6 intercepts and, additionally, 0, 1 common or 6 different slopes, depending on the

model. This upper part of Table 2 shows that the proportional odds and the adjacent logit

model (with equal slopes) do not fit well, as compared to the baseline logit model. The upper

Fig 2. The CIPR data. Jittered MIC values in blue; the red lines show the experimental ranges.

https://doi.org/10.1371/journal.pone.0277866.g002
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Fig 3. Barplots of the CIPR data. Barplots with observed relative frequencies for each year in the period 2002–2013, with barwidth proportional to the

sample size of the respective year. The dotted vertical lines indicate: the smallest lower bound -7 and the highest upper bound 5 across all years (in red); the

lower and upper bound of the experiments of the corresponding year (in green), the ECOFF (in black).

https://doi.org/10.1371/journal.pone.0277866.g003
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part of S1 Table shows the estimated probabilities on the MIC categories over the period

2002–2013, based on the standard baseline logit model, not accounting for the left censoring,

and not exploiting the ordinal nature of the MIC distribution. The fit is to a large extent driven

by the experimental lower limits. Moreover, this model implies an unlikely shift to the suscep-

tible part of the distribution (left of ECOFF).

New family of multicategory logit models. Several members of the new family of models

introduced in the materials and methods section have been fitted to the CIPR data. These

models are formulated for 8 categories:� −7, −6, . . ., 0. The lowest category is now the cate-

gory� −7, allowing the model to distinguish between the two types of -6 values (as mentioned

before). The highest category is category 0, as no higher values have been observed, and as the

value 0 has a unique interpretation across all years, regardless of the upper bounds 3 and 5 for

the experimental ranges.

Summary goodness-of-fit statistic for the fitted models are given in Table 2. This table is

designed as follows. The upper 4 (unnumbered) models are the standard type of multicategory

logit models, without accounting for any varying experimental ranges. The models numbered

1 and 2 are again the only intercepts model (no time effect) and the baseline logit model, but

both now accounting for the varying experimental ranges. These models however do not

exploit the ordinal nature of the MIC categories L� j� U + 1. But both models do show a

spectacular drop in AIC and BIC measures and clearly model 2 with time effects is the best fit-

ting (but most complex) model.

All other models 3–15 are particular members of the new family, defined by Eq (7): models

3–10 represent models for which the effect of time is represented by one single slope, whereas

models 11–15 contain two slopes (one for the left susceptible part and one for the right resis-

tant part).

Within the group 3–10, model 6 and 7 have the lowest AIC and BIC. These models reflect a

linear time effect at the resistant side of the MIC distribution and no or a sign effect at the

Table 2. The CIPR data: Summary goodness-of-fit statistics for all fitted models.

model -2 log-likelihood # par AIC BIC

standard only intercepts model 2938.2 6 2950.2 2980.7

standard baseline logit model 1896.0 12 1920.0 1981.0

standard proportional odds model 2498.7 7 2512.7 2548.3

standard adjacent logit model 2805.7 7 2819.7 2855.2

1: no time effect 1710.1 7 1724.1(15) 1759.7(14)

2: baseline logit 1672.2 14 1700.2(1) 1771.3(15)

3: fs(x) = fr(x) = x, βs = βr 1693.5 8 1709.5(9) 1750.1(6)

4:fs(x) = fr(x) = sign(x), βs = βr 1693.0 8 1709.0(8) 1749.6(5)

5: fs(x) = x, fr(x) = sign(x), βs = βr 1698.2 8 1714.2(13) 1754.8(10)

6: fs(x) = sign(x), fr(x) = x, βs = βr 1689.7 8 1705.7(4) 1746.4(2)

7: fs(x) = 0, fr(x) = x 1689.1 8 1705.1(3) 1745.8(1)

8: fs(x) = 0, fr(x) = sign(x) 1692.6 8 1708.6(7) 1749.2(4)

9: fs(x) = x, fr(x) = 0 1702.5 8 1718.5(14) 1759.1(13)

10: fs(x) = sign(x), fr(x) = 0 1693.9 8 1709.9(10) 1750.5(7)

11: fs(x) = sign(x), fr(x) = x, βs 6¼ βr 1689.1 9 1707.1(5.5) 1752.8(8.5)

12: fs(x) = fr(x) = x, βs 6¼ βr 1683.6 9 1701.6(2) 1747.3(3)

13: fs(x) = fr(x) = sign(x), βs 6¼ βr 1692.6 9 1710.6(11.5) 1756.3(11.5)

14: fs(x) = fr(x) = x, βs 6¼ βr, βs, βr > 0 1689.1 9 1707.1(5.5) 1752.8(8.5)

15: fs(x) = fr(x) = sign(x), βs 6¼ βr, βs, βr > 0 1692.6 9 1710.6(11.5) 1756.3(11.5)

https://doi.org/10.1371/journal.pone.0277866.t002
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susceptible side (a sign effect identical to the linear effect at the resistant side). Model 12, the

best fitting model within the group 11–15, has linear effects with different slopes at both sides

of the ECOFF. A closer inspection of the estimates of this model reveals however an issue with

this model. Indeed the estimates for the slopes are b̂s ¼ � 0:1171 (se 0.0517) and b̂r ¼ 0:1087

(se 0.0249). The positive sign for b̂r is to be expected, but the negative for b̂s not. This negative

slope implies that, with JE = −4 (for the CIPR data) and j = −7, −6, −5

Pðy ¼ jjx þ 1Þ

Pðy ¼ � 4jxþ 1Þ
¼ eð� 4� jÞ0:1171

Pðy ¼ jjxÞ
Pðy ¼ � 4jxÞ

and

Pðy ¼ jþ 1jxþ 1Þ

Pðy ¼ jjxþ 1Þ
¼ e� 0:1171 Pðy ¼ jþ 1jxÞ

Pðy ¼ jjxÞ

reflecting, within the susceptible part of the MIC distribution, a shift to the left over time. Such

shift is not happening in reality, and is an “artefact” of the changing experimental ranges over

time. Fig 3 shows indeed that from 2008 onwards the experimental range stretches over two

lower categories further. This increasing experimental range over time, the left censoring, and

a possible time shift to the left of the susceptible part of the MIC distribution are confounded

and cannot be disentangled. But by forcing both slopes to be positive, a possible shift to the left

is excluded by the model formulation. Adding this (biologically justified) constraint was the

motivation to add model 14 and 15. By excluding model 12, model 11 and 14 are, ex aequo,

the best fitting models in this group of models with 8 parameters.

When looking across all 15 models, the baseline model 2 has the lowest AIC (1696.2), fol-

lowed by model 12 (AIC 1699.6) and next by model 7 and 6 (AIC 1703.1 and 1703.7 respec-

tively). According to BIC, model 7 and 6 are the best choice (BIC 1738.7 and 1739.3

respectively) followed by model 12 (BIC 1740.2) and model 8 (BIC 1742.1). Penalizing much

more for complexity, BIC ranks model 2 as the worst. So AIC and BIC are completely in dis-

agreement about model 2. Preferring more parsimonious models and excluding model 12, we

select model 7 as best.

Model 7 is nested in model 11 and 14. For both models 11 and 14, the slope βs is not signifi-

cantly different from 0 (p value 0.41 and 0.48 respectively), confirming the selection of model

7 as best model. Table 3 shows the estimates of intercepts and logit specific slopes, according

to model 1, 2, 6, 7, 11 and 14 (best 2 in each group, excluding model 12) and Table 4 provides

more details about the estimates of the best model 7. This model implies, with JE = −4 and j =

−7, −6, −5 that the odds P(y = j|x)/P(y = −4|x) of the categories on the susceptible part of the

Table 3. The CIPR data: Estimates of intercepts and slopes of model 1, 2, 6, 7, 11 and 14.

model 1 model 2 model 6 model 7 model 11 model 14

cat α β α β α β α β α β α β

�-7 -7.420 0 -7.428 -0.056 -7.427 -0.042 -7.430 0 -7.444 -0.017 -12.080 0.000

-6 1.186 0 0.050 0.139 1.523 -0.042 1.181 0 1.047 -0.017 1.182 0.000

-5 2.518 0 3.331 -0.099 2.856 -0.042 2.515 0 2.381 -0.017 2.515 0.000

-4 all 0 being the ECOFF category

-3 -0.938 0 -0.177 -0.111 -1.051 0.042 -1.247 0.059 -1.324 0.065 -1.247 0.059

-2 -0.247 0 -0.777 0.122 -0.605 0.084 -0.892 0.118 -0.998 0.130 -0.892 0.118

-1 -0.471 0 -0.981 0.119 -1.093 0.126 -1.487 0.177 -1.634 0.196 -1.488 0.177

0 -2.363 0 -2.207 0.007 -3.269 0.168 -3.788 0.236 -3.987 0.261 -3.791 0.236

https://doi.org/10.1371/journal.pone.0277866.t003
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MIC distribution remain constant, and that for j = −3, −2, −1, 0, the odds

Pðy ¼ jjx þ 1Þ

Pðy ¼ � 4jxþ 1Þ
¼ eðjþ4Þ0:059 Pðy ¼ jjxÞ

Pðy ¼ � 4jxÞ

and

Pðy ¼ jþ 1jxþ 1Þ

Pðy ¼ jjxþ 1Þ
¼ e0:059 Pðy ¼ jþ 1jxÞ

Pðy ¼ jjxÞ

reflect the increase to the neighboring higher category with about 6.1% with every additional

year. Finally, we have that

Pðisolate is resistantjtime xÞ ¼
P

j>� 4
eajþðjþ4Þ0:059x

1þ
P

j>� 4
eajþðjþ4Þ0:059x ð9Þ

which is an increasing function over time. Fig 4 shows the observed proportions of resistant

isolates over time, together with the fitted model (9).

The lower panel of S1 Table shows the estimated probabilities based on model 7, and the

middle part of Table 5 shows the expected counts. The lower part of Table 5 shows the

expected counts again, but censored by the experimental ranges as in the original dataset. This

facilitates the comparison between observed frequencies in the upper part of that same table.

Overall, the observed and expected counts can be considered as close, given also that the

counts for many categories are quite low. For 2012 the differences are larger, but, as also can

be seen from Fig 3, the counts for the categories -6 and -5 are quite disproportionate as com-

pared to those of the other years in the period 2008–2013.

The ISU VDL data

Swine samples from the Iowa State University Veterinary Diagnostic Laboratory (ISU VDL

data) included a subset of data on Salmonella enterica I,4, [5],12:i:- tested with ceftiofur (TIO)

from swine submissions. As in Zhang et al. [11], focus is on data obtained between 2011 and

2017. The upper part of Table 6 shows the observed counts in each MIC category for each

year. Note that the experimental range does not change over time. For more details about this

dataset, see Zhang et al. [11]. Using a hierarchical Bayesian latent class mixture model

approach, Zhang et al. [11] detected a significantly increasing pattern in the non-resistant

means for Salmonella I,4, [5],12:i:- tested with TIO.

Table 7 shows the goodness of fit statistics of the 10 fitted models. The classical baseline

logit model with 12 parameters has AIC = 5498.9 and BIC = 5564.8. Note that AIC and BIC

Table 4. The CIPR data. Model 7: estimate, standard error, t-value and p-value.

est se est/se p-value

α−7 -7.430 10.276 -0.723 0.235

α−6 1.181 0.220 5.367 0.000

α−5 2.515 0.200 12.572 0.000

α−4 0 0 ECOFF category

α−3 -1.247 0.284 -4.391 0.000

α−2 -0.892 0.282 -3.159 0.001

α−1 -1.487 0.354 -4.197 0.000

α0 -3.788 0.581 -6.522 0.000

βr 0.059 0.013 4.498 0.000

https://doi.org/10.1371/journal.pone.0277866.t004
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largely agree in ranking the 10 models. The best fitting model is model 7, with:

fjðxÞ ¼
ðj � JEÞb

1

s xþ signðj � JEÞb
s
sx

2 for L � j � JE;

0 for JE � j � U þ 1;

8
<

:
ð10Þ

reflecting a linear and quadratic trend on the “susceptible component” (below threshold) and

no trend on the “resistant component” (above threshold). The linear effect magnifies for cate-

gories further away from the threshold category (factor (j − JE)), on the left end of the range,

while the quadratic effect remains constant (sign(j − JE) = −1).

S2 Table shows the fitted MIC distribution over the period 2011–2017. The observed and

expected counts are shown in Table 6. The observed and expected frequencies for each MIC

value, as a function of time is shown in the upper rows of Fig 5, and the observed and expected

MIC distribution for each year is shown in the lower rows of Fig 5. The observed and expected

frequencies are quite close, except for 2011. But the sample size of 2011 was very low, and

much less than for the other years.

Fig 4. The CIPR data with fitted model. Scatterplot of observed proportions of resistant isolates by year, with bubble size proportional to the number of

isolates. Solid line is the fitted model for the probability for an isolate to be resistant, as a function of time, and based on the final model 7.

https://doi.org/10.1371/journal.pone.0277866.g004
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Table 5. The CIPR data. The upper table: observed counts for each year. Middle table: based on the best fitting model 7, the expected counts for each year. Lower table:

based on the best fitting model 7, the expected counts for each year, according to the observed experimental ranges.

observed counts

year �-7 -6 -5 ECOFF = -4 -3 -2 -1 0 total

2002 46 3 1 0 0 50

2003 124 2 3 0 0 129

2004 133 2 2 5 0 142

2005 122 5 2 3 0 132

2006 126 1 4 2 0 133

2007 67 3 4 8 4 86

2008 0 13 44 4 0 3 1 1 66

2009 0 23 154 13 5 11 4 1 211

2010 0 7 24 1 1 5 2 0 40

2011 0 9 57 2 2 6 6 0 82

2012 21 15 2 0 5 5 0 48

2013 15 40 5 1 4 4 0 69

total 1067 25 50 40 6 1188

expected counts

year �-7 -6 -5 ECOFF = -4 -3 -2 -1 0 total

2002 0 9 35 3 1 1 1 0 50

2003 0 24 90 7 2 3 2 0 128

2004 0 26 99 8 3 4 3 0 143

2005 0 24 91 7 3 4 3 0 132

2006 0 24 91 7 3 5 3 0 133

2007 0 15 58 5 2 3 3 0 86

2008 0 12 44 4 1 3 2 0 66

2009 0 36 138 11 5 10 9 1 210

2010 0 7 26 2 1 2 2 0 40

2011 0 14 52 4 2 5 5 1 83

2012 0 8 30 2 1 3 3 1 48

2013 0 11 42 3 2 5 5 1 69

total 0 210 796 63 26 48 41 4 1188

expected counts accounting for the observed experimental ranges

year �-7 -6 -5 ECOFF = -4 -3 -2 -1 0 total

2002 47 1 1 1 0 50

2003 121 2 3 2 0 128

2004 133 3 4 3 0 143

2005 122 3 4 3 0 132

2006 122 3 5 3 0 133

2007 78 2 3 3 0 86

2008 0 12 44 4 1 3 2 0 66

2009 0 36 138 11 5 10 9 1 210

2010 0 7 26 2 1 2 2 0 40

2011 0 14 52 4 2 5 5 1 83

2012 8 30 2 1 3 3 1 48

2013 11 42 3 2 5 5 1 69

total 1069 26 48 41 4 1188

https://doi.org/10.1371/journal.pone.0277866.t005
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Table 8 shows the estimates for the intercepts and slopes of the best fitting model 7. The lin-

ear and quadratic effect shift probability mass from the left to the right categories situated at

the left of the threshold category. Fig 6 shows this trend visually, with the green curve referring

to year 2011, coloring gradually more yellow/orange to year 2017. The major trend happens in

categories -2 (MIC� 0.25) and category 0 (0 < MIC� 1). This is in agreement with the con-

clusion in Zhang et al. [11], who “detected a significantly increasing pattern in the non-resis-

tant means for Salmonella I,4, [5],12:i:- tested with TIO”.

Conclusion and discussion

We proposed the use of a new multicategory logit model for estimating and modelling the dis-

crete MIC distributions over time. Not modelling the underlying continuous distribution avoids

Table 6. The ISU VDL data. The upper table: observed counts for each year. Lower table: based on the best fitting model 7, the expected counts for each year, given the

observed total for each year.

observed counts

year � -2 -1 0 ECOFF = 1 2 3 > 3 total

2011 3 7 2 0 0 2 2 16

2012 27 25 26 2 0 4 13 97

2013 35 35 90 15 1 9 30 215

2014 31 31 90 13 1 10 27 203

2015 23 40 109 11 2 28 38 251

2016 59 93 253 26 4 54 83 572

2017 22 45 258 25 2 42 48 442

total 200 276 828 92 10 149 241 1796

expected counts

year � -2 -1 0 ECOFF = 1 2 3 > 3 total

2011 5 4 5 0 0 1 1 16

2012 24 20 33 4 0 6 10 97

2013 41 41 80 10 1 16 26 215

2014 29 35 82 11 1 17 28 203

2015 27 39 111 14 2 22 36 251

2016 46 81 279 31 3 50 81 572

2017 27 57 239 22 2 36 58 442

total 200 276 828 92 10 149 241 1796

https://doi.org/10.1371/journal.pone.0277866.t006

Table 7. The ISU VDL data: Summary goodness-of-fitted of all fitted model.

model -2 log-likelihood # par AIC BIC

1: fs(x) = x, fr(x) = 0 5509.2 7 5523.2(6) 5561.6(6)

2: fs(x) = sign(x), fr(x) = 0 5552.9 7 5566.9(8) 5605.3(8)

3: fs(x) = sign(x), fr(x) = x, βs 6¼ βr 5552.3 8 5568.3(9) 5612.2(9)

4: fs(x) = x, fr(x) = sign(x), βs 6¼ βr 5494.9 8 5510.9(5) 5554.8(4)

5: fs(x) = fr(x) = x, βs 6¼ βr 5490.3 8 5506.3(3) 5550.2(3)

6: fs(x) = fr(x) = sign(x), βs 6¼ βr 5552.8 8 5568.8(10) 5612.7(10)

7: fs(x) = (x, sign(x)x2), fr(x) = 0 5481.8 8 5497.8(1) 5541.8(1)

8: fs(x) = (x, x2), fr(x) = 0 5507.8 8 5523.8(7) 5567.8(7)

9: f sðxÞ ¼ ðx; signðxÞx2Þ; f rðxÞ ¼ x; fβ1
s ;β

2
sg 6¼ βr 5481.2 9 5499.2(2) 5548.6(2)

10: f sðxÞ ¼ ðx; x2Þ; f rðxÞ ¼ x; fβ1
s ; β

2
sg 6¼ βr 5490.1 9 5508.1(4) 5557.5(5)

https://doi.org/10.1371/journal.pone.0277866.t007
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Fig 5. The ISU VDL data. Upper 2 rows: the observed and fitted trend over time using the best fitting model 7, for the probability for each of the

7 MIC values (on log2-scale), and, in the right lower panel, for the proportion resistant> 1 (1 being the threshold). Lower 2 rows: the observed

and fitted MIC distribution using the best fitting model 7, for each year. The vertical red line refers to the threshold category.

https://doi.org/10.1371/journal.pone.0277866.g005
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Table 8. The ISU VDL data: Parameter estimates of best fitting model 7.

parameter est se est/se p-val

intercept α−2 2.39541 0.23003 10.41353 0.00000

intercept α−1 2.01123 0.18121 11.09873 0.00000

intercept α0 2.31049 0.14770 15.64328 0.00000

intercept α1 � 0 ECOFF category

intercept α2 -2.20436 0.33104 -6.65886 0.00000

intercept α3 0.48417 0.13266 3.64975 0.00013

intercept α4 0.96445 0.12264 7.86438 0.00000

slope β1
s 0.18787 0.02221 8.45848 0.00000

slope β2
s -0.03314 0.00639 -5.18241 0.00000

https://doi.org/10.1371/journal.pone.0277866.t008

Fig 6. MIC distribution for the ISU VDL data. The observed and fitted MIC distribution, using the best fitting model 7, for each year. The vertical red

line refers to the threshold category.

https://doi.org/10.1371/journal.pone.0277866.g006
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any assumption and inherently related misspecification of such distribution. Using censored

data techniques, the approach also deals with varying experimental ranges. This approach allows

the identification of trends above or below a breakpoint (here the ECOFF) as opposed to just

changes in the proportion of wild/non-wild type strains. For instance, the estimated 6.1%

increase to the neighboring category above the ECOFF with every additional year observed in

the CIPR data may be suggestive of the accumulation of certain resistance mechanisms (e.g.,

specific mutations in gyrA and parC, and/or presence of plasmid-mediated quinolone-resistance

genes) leading to decreased ciprofloxacin resistance and eventually high-level resistance [17].

The use of an ECOFF plays a central role in the construction of the model. This can be con-

sidered a strength as well as a weakness. It allows the identification of different time trends in

the wild type and resistant subpopulation. But the method requires the existence of a well-

defined ECOFF. Therefore, the proposed method is less suitable if such ECOFF is still “under

discussion”, and obviously not suitable for the confirmation or determination of an ECOFF.

Interesting extension of the categorical model includes its generalization to more than two

subpopulations, its extension to the bi- and multivariate setting. Also, the extension to hierar-

chical data, for which the inclusion of lab- or assay specific random effects can be included in

the model, is an interesting topic for further research.

Supporting information

S1 Fig. The CIPR data. Barplots with fitted probabilities according to model 7, for each year

in the period 2002–2013, but censored by the varying experimental ranges as in the original

dataset, with barwidth proportional to the sample size of the respective year. The dotted verti-

cal lines indicate: the smallest lower bound -7 and the highest upper bound 5 across all years

(in red); the lower and upper bound of the experiments of the correspinding year (in green),

the ECOFF (in black).

(PDF)

S1 Table. The CIPR data. Estimated probabilities for each category, for each year, based on

the standard baseline logit model (upper part) and the best model 7 (lower part).

(PDF)

S2 Table. The ISU VDL data. Observed (upper panel) and estimated probabilities (lower

panel) for each category, by year, based on the best fitting model 7.

(PDF)
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