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Objectives
• Aim 1: Improve physical and climate models

to include alternative aviation use.

• Aim2: A reliable and globally harmonized life
cycle assessment (LCA) approach (including
the impact of land use change).

• Aim 3: Reduction of the fuel cost and time
cost in drop-in jet fuel certification.

• Aim 4: Providing protocols and guidance for
alternative fuel introduction in the aviation
sector.

https://www.alternateproject.com
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Aviation’s GHG Emissions

• Aviation: 2.1% of global greenhouse gas emissions in 2019.

• International aviation: 1.3%

• ICAO (International Civil Aviation Organization)

• Tracks emissions from international civil aviation

• Aspirational goals
• Short-term: 1.5% annual fuel efficiency improvement between 2009 and 

2019.

• Medium-term: Carbon neutral growth from 2020.

• Long-term: Reduce net emissions to 50% of what they were in 2005 by 2050.

Air Transport Action Group (ATAG) 
Waypoint 2050 Report, 2020
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Basket of Measures

• Technological advances

• Operational improvements

• Alternative sustainable aviation fuels (SAF), 

Drop-in fuels

• Market-based measures

e.g. CORSIA

Air Transport Action Group (ATAG) 
Waypoint 2050 Report, 2020

Seamless integration with existing 
infrastructure
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CORSIA
• Carbon Offsetting and Reduction Scheme for International Aviation

• Responsible parties: Airlines

• Buying carbon credits

• Credits generated by projects/programs reducing emissions

• Using CORSIA Eligible Fuels (CEF)

• SAF within CORSIA: Aviation fuel that has the potential to generate lower 
carbon emissions than conventional kerosene on a life cycle basis

Feedstocks with CORSIA default life cycle values as of February 2019.*
*ICAO 2019 Environmental Report 5



ASTM Approved Fuel Conversion Pathways

D7566: Standard specification for aviation turbine fuel containing synthesized hydrocarbons
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Feedstocks for Alternate

Non-edible
vegetable oils
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Oilseed feedstocks

1Angelini et al. 2020, 2Carrino et al. 2020, 3Stratton et al. 2010, 4FAOSTAT, 5Fatica et al. 2019 6 Estimated using the product slate from Pearlson et al. 2013

Feedstock Distribution
Av.Yield
(t/ha-yr)

Oil content 
(wt %)

Jet fuel production 
potential (L/ha)6

Oil extraction   
co-products

Camelina N. America, EU 1.91 36.0 800-3,100 Meal

Castor India, Brazil, China 1.12 47.0 400-1,550 Meal

Jatropha
Asia, Africa, S. 
America

2.53 35.0
1,200-4,600

Meal/ husk/shell

Palm Malaysia, Indonesia 17.94 22.4 10,000-39,000 Palm kernel meal

Pennycress Eurasia, N. America 1.05 34.0 450-1,800 Meal

Rapeseed EU 3.44 44.0 1,250-4,800 Meal

Salicornia
Africa, Middle East, 
S. America, China, 
US

2.03 28.2 1,200-4,500 Meal / straw

Soybean N. America, Brazil 3.24 19.1 2,700-10,500 Meal

Energy 
tobacco 

China, Brazil, India, 
US, Greece

2.15 38.0 925-3,600 Meal
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Life cycle assessment (LCA)
• Functional Unit: MJ jet fuel, emissions reported as: gCO2 equivalent/MJ jet fuel

• System Boundary: emissions from the complete fuel cycle (well-to-wake)

• Baseline: e.g. ICAO Baseline for jet fuel is 89 gCO2e/MJ jet fuel

• Co-products: Emissions from the life cycle can be distributed/allocated among co-products using
various allocation methods or displacement (system expansion).
• e.g. ICAO: Energy allocation, distributes the life cycle GHG emissions based on the energy content (lower heating value)

of the co-products and fuel

• Attributional LCA
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Scope for the attributional LCA 
• All the direct and indirect energy/material inputs will be considered within the following

process steps for the oilseed crops.

General system boundary for oilseed crops

Transportation
from farm to 

biorefinery
Fertilization

Tillage/ploughing

Harvest

Sowing

Fertilizer
production 
and input

Energy 
inputs

Receiving and storage

Flaking and cleaning

Oil extraction

Meal processing

Oil recovery

Degumming

Hydrogenation

Hydrodeoxygenation/
Decarboxylation/
Decarbonylation

Hydroisomerization

Hydrocracking

Jet fuel

Energy 
inputs

N-hexane 
production 
and input

Co-products:
meal, etc.

Energy 
inputs

Hydrogen 
production 
and input

Jet fuel
T&D

Co-products:
Diesel, 

naphtha, etc.

Cultivation

Oil extraction
HEFA conversion

Jet fuel
combustion

Oil
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Stochasticity
• Some of the technologies that will be

assessed as part of this work are not
yet fully commercialized. The data is
sometimes limited, and variability
might be high.

• For this reason, probability density
functions were assigned into key
parameters, using available data from
the literature and industry sources.

• These distribution curves will then be
used to conduct Monte Carlo analysis
that samples values.

Example Life cycle inventory

1Lognormal distributions: [log mean, log standard deviation]

Triangular/Beta distributions: [low, mode, high]

Variable Nominal Range1 Units Distribution 

Feedstock properties    

Seed lipid content [29, 34, 36], a % Triangular 

Seed moisture content 12, b % - 

Loss factor for oil extraction 4, c % - 

Material and energy inputs    

Cultivation     

N total [27.8, 46.4, 138.9] g/kg seeds Beta 

P2O5
 [3.26, 0.64] g/kg seeds Lognormal 

K2O [2.91, 0.48] g/kg seeds Lognormal 

Diesel [0.17, 0.17, 0.16] MJ/kg seeds Triangular 

Oil extraction    

Feedstock to oil  (1-b)/a/(1-c) kg/kg oil - 

Meal (1-a-b)/b/(1-c) kg/kg oil - 

HEFA Conversion    

Oil   [1.23, 1.25, 1.27] kg/kg jet Triangular 

Natural gas [0.08, 0.14, 0.19] MJ/MJ jet Triangular 

Electricity [0.0046, 0.0062, 0.0077] MJ/MJ jet Triangular 

Hydrogen [0.017, 0.054, 0.092] MJ/MJ jet Triangular 
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Attributional results without land-use change
• The attributional LCA results for the ALTERNATE

feedstocks show life cycle greenhouse gas
emissions below the ICAO fossil-fuel baseline of
89.0 gCO2e/MJ (Median values from the
stochastic analysis are shown here).

• Energy-based allocation was applied in order to
distribute the emissions between the co-
products that are produced during the fuel
production processes.

➢ The main contributors to the results are
cultivation and fuel production steps. Oil
extraction step is also important due to the
amount, and energy content of by-products
produced.

• The difference in the results is due to the
cultivation step in most cases, where
fertilizer/diesel use is the main factor.

ALTERNATE feedstocks

PRELIMINARY RESULTS- PLEASE DO NOT CITE 12



Stochastic uncertainty analysis
• Monte-Carlo simulations approach, based on

20,000 randomized trials, was used to evaluate the
uncertainties caused by the variability of input
parameters.

• The results show at least ±15 % variability.

• Local sensitivity analysis have been done to
determine the impact of certain parameters on the
emissions.

PRELIMINARY RESULTS- PLEASE DO NOT CITE

Energy-based allocation
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Sensitivity Analysis

• Sensitivity to changes in nitrogen use, 
hydrogen production technology, and HEFA
conversion efficiency have been observed. 

PRELIMINARY RESULTS- PLEASE DO NOT CITE

Energy-based allocation

Castor-HEFA jet
Parameters Change from base value

Oil content -20% +20%

Nitrogen fertilizer -20% +20%

Diesel for farming -20% +20%

Hydrogen -20% +20% 

HEFA conversion yield 

(current: 80%)

71.9% -

Hydrogen production technology

(current: natural gas SMR)

Electrolysis Coal
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Effect of allocation method on LCA results
• Emissions were allocated on oil extraction

co-products (e.g. meal) using market- and
mass-based allocation methods. Energy-
based allocation was used for fuel co-
products in all cases.

• Energy allocation assigns a relatively small
share of the emissions to the meal, whereas
mass allocation allocates a high share of
emissions due to large amount of meal
produced in most cases.

• For the new feedstocks market-based
allocation is done based on calculated prices
from the literature and/or using soybean
meal as proxy. Meal prices are generally low,
resulting in increased allocation of emissions
into the oil.

PRELIMINARY RESULTS- PLEASE DO NOT CITE

Main results: energy-based allocation using median values

ALTERNATE feedstocks
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• Direct land use change (DLUC): conversion of land from previous uses to
agricultural production (e.g., to grow biofuel feedstock).

• DLUC can increase life cycle GHG emissions when land carbon stocks decrease,
e.g., when feedstock production entails natural land cover loss

• CORSIA establishes that:

• SAF should not be produced at the cost of land classified as primary forests, wetlands and
peatlands after 1 January 2008.

• Still, CORSIA does not provide a protocol for DLUC calculation, besides IPCC guidelines

• IPCC’s Tier 1 procedure: GHG emissions from DLUC estimated as differences in land
carbon stocks before and after the land conversion

• Considering 25 years as amortization period, in line with ICAO

Direct land use change (DLUC)
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Method for DLUC estimation
• GHG sources from changes C pools → Equation 2.1 (IPCC 2006)

• Above-ground biomass (AGB) and below-ground biomass (BGB)

• Dead organic matter in dead wood (DW) and litter (LI)

• Soil organic carbon (SOC) 

• Harvested wood products (HWP) are 0 under Tier 1

• Additional C flows → Equations 2.27; 11.2; 11.8; 11.10 (IPCC 2006)
• Non-CO2 gases (CH4, N2O) from burning of AGB, DW and LI
• N2O emissions from mineralized N as a result of SOC changes (direct & indirect)
→ Forgone carbon sequestration is excluded

∆𝐶𝐷𝐿𝑈𝐶 = ∆𝐶𝐴𝐺𝐵 + ∆𝐶𝐵𝐺𝐵 + ∆𝐶𝐷𝑊 + ∆𝐶𝐿𝐼 + ∆𝐶𝑆𝑂𝐶 + ∆𝐶𝐻𝑊𝑃
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Method for DLUC estimation
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• Need to consider spatial variability in biomass yields, SOC, carbon pools in AGB 
and BGB, and management practices

• Two approaches:

1) Scenario-based approach: using default carbon pools and coefficients in IPCC 
guidelines (2006)

2) Spatially-explicit approach: 

• using simulated yields (at 5 arc-minute resolution) by IIASA-FAO’s GAEZv4 
https://gaez.fao.org/ considering variability in soil suitability, terrain slopes and land cover 
consistent with the Agro-Ecological Zone classification

• Combined with carbon pools in the GLOBIOM model: SOC, AGB and BGB (at 30 arc-minute 
resolution = 50 x 50 km) 

+ Assumptions on crop management in both 1) and 2)

https://gaez.fao.org/


Assumptions for DLUC estimation

Assumptions needed on:
• Yields (approach 1)
• Oil content in seed 

(approach 1 & 2)
• Carbon sequestration in 

agricultural biomass 
(approach 1 & 2)

• Crop management 
(approach 1 & 2)

• Fertilizer input intensity 
(approach 1 & 2) 

Yield 

(t dm/ha)

Oil content 

in seed (%)

Crop biomass 

(t C/ha)

Crop 

management
Input intensity

Camelina 1.9 0.36 1.375 Reduced tillage Low input

Castor 1.1 0.47 1.29 Reduced tillage Medium input*

Jatropha 2.5 0.35 12.02 No tillage Medium input*

Oil palm 18 0.24 37.5 No tillage Medium input*

Pennycress 1 0.34 1.02 Reduced tillage Low input

Rapeseed 3.4 0.42 1.47 Tillage Medium input*

Salicornia 2 0.28 4.2 Reduced tillage Low input

Soybean 3.2 0.18 1.37 No tillage Low input

Solaris tobacco 2.1 0.33 2.01 Tillage Medium input*

* Medium input refers to medium input intensity without manure in all cases.
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PRELIMINARY RESULTS- PLEASE DO NOT CITE

Jatropha Tobacco Castor Salicornia Pennycress Camelina Soybean Oil palm

Asia Cont: Asia continental; Asia In: Asia insular; C. temp: cool temperate; Deg. Grassl.: Degraded grassland; Grassl.: grassland; low: 
low input intensity; Med.: medium input intensity; NT: No tillage; RT: Reduced tillage; South Am: South America; T: Tillage. 20

Rapeseed
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Land use modelling of jatropha
Yield assumptions

• Based on high input irrigated yield maps from GAEZ v4 

(FAO-IIASA)

• World 2.58 t seed/ha

• India 3.24 t seed/ha

• USA 2.49 t seed/ha

• Replanting: literature indicates 2 years of very low yield

• Yields above are adjusted down by 10%

Carbon stock in natural vegetation: Jung et al., 2021

Biomass sequestration: average 20 yrs plantation cycle 

(above and below ground - ratio: 0.386) - 12.0 t C ha−1

Source: GAEZ v4

Source: Spawn

et al., 2019

Plantation yield

Natural vegetation carbon (AGB)



Spatially-explicit DLUC emission factors

22PRELIMINARY RESULTS- PLEASE DO NOT CITE

• Spatially-explicit DLUC
emission factors of jatropha 
production (g CO2e/MJ)

• Potential for net carbon gain 
in locations with relatively 
high yields and relatively 
low carbon stocks

• Very high DLUC factors in 
tropical locations with very 
high land carbon stocks

Jatropha



Total GHG emissions (g CO2e/MJ)

PRELIMINARY RESULTS- PLEASE DO NOT CITE

• Total life cycle GHG emissions: DLUC 
factors + core-LCA emissions (41.3 
gCO2e/MJ) for jatropha.

• Potential for net GHG savings relative 
to the fossil reference fuel in locations 
with relatively high yields and 
relatively low carbon stocks:

• India, USA, Sub-Saharan Africa, 
Southern Brazil and Argentina and 
Oceania

Jatropha
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Attributional results with DLUC
• Emissions including the impact from direct

land use change are shown when grassland is
used for the cultivation of crops.

• High DLUC emission factors are due to soil
organic carbon loss. Low seed/oil yields from
the corresponding crops also contribute to
high DLUC factors.

• All of the ALTERNATE feedstocks are below the
fossil baseline even when the land use change
is factored in. At least 25 % emissions savings
are provided (max 63 % savings).

• Next step: Consequential LCA that will factor
in induced land use change and the changes to
the market.

PRELIMINARY RESULTS- PLEASE DO NOT CITE
ALTERNATE feedstocks
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Summary
• Attributional LCA of GHG emissions from HEFA-jet fuels have been presented and the results show 

at least 25 % emissions savings, when suitable land types are targeted (grassland).

• Monte-Carlo sampling for ALTERNATE feedstocks displayed the extent of uncertainty within the 
results: at least ±15 % variability (up to 35 %).

• Treatment of co-products and allocation methods was shown to have an impact on results: energy-
based allocation was used for baseline

• Sensitivity analysis was performed: higher sensitivity to nitrogen use and hydrogen production 
technology

• The importance of emissions from land use change is clearly visible in the overall results:  
Conversion of grassland/degraded grassland into cropland keep the overall emissions low, but 
conversion of other land types may lead to emissions higher than fossil fuel.

• Most of the new crops presented are not domesticated, and they have been cultivated in small 
fields. Their domestication will improve the oil yields, and as a result have a positive impact on their 
life cycle emissions. On the other hand, their deployment could generate additional emissions 
through indirect land use changes, not captured here.
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