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Abstract 

Background We explore frequentist operating characteristics of a Bayesian adaptive design that allows 

continuous early stopping for futility. In particular, we focus on the power versus sample size 

relationship when more patients are accrued than originally planned.  

Methods We consider the case of a phase II single-arm study and a Bayesian phase II outcome-adaptive 

randomization design. For the former, analytical calculations are possible; for the latter, simulations 

are conducted. 

Results Results for both cases show a decrease of power with an increasing sample size. It appears that 

this effect is due to the increasing cumulative probability of incorrectly stopping for futility. 

Conclusion The increase in cumulative probability of incorrectly stopping for futility is related to the 

continuous nature of the early stopping, which increases the number of interim analyses with accrual. 

The issue can be addressed by, for instance, delaying the start of testing for futility, reducing the 

number of futility tests to be performed or by setting stricter criteria for concluding futility.  
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Background 

Adaptive designs are becoming more often applied in randomized clinical trials (RCT)1,2. The U.S. Food 

and Drug Administration (FDA) defines an adaptive design as “a clinical trial design that allows for 

prospectively planned modifications to one or more aspects of the design based on accumulating data 

from subjects in the trial”3. 

Within the Bayesian framework, continuous monitoring and updating of available information is 

handled in an intuitive way. Thus, the framework is attractive for implementation of adaptive clinical 

trial designs. Bayesian adaptive designs that allow for early stopping have been proposed with high 

expectations and superior performance, as compared to their frequentist counterparts4,5. However, 

several issues with these designs have already been identified as well6,7,8. 

Bayesian adaptive designs with stopping rules are generally not concerned with the effect of 

monitoring treatment outcomes on the type-I error probability or power. However, for regulatory 

agencies such as the FDA, the frequentist properties of Bayesian designs are important3,9. Thus, 

properties of such designs should be investigated10,11,12. 

In Bayesian designs with futility stopping and a binary response, it is common to test the futility and 

efficacy of a particular treatment by applying a two-thresholds testing strategy, in which an 

(unacceptably) low threshold for the response probability is used to decide about efficacy and a 

(desirably) high threshold is applied to decide about futility4,13. The two thresholds are used in defining 

the hypotheses of efficacy and futility, respectively. Bayesian hypothesis-tests are then used during 

the trial to decide whether randomization to a particular treatment arm should be stopped. This 

stopping strategy was applied in the BATTLE trial14,15, as well as more recently by Barry et al.16 and Gu 

et al.17. 

A particular design is characterized by outcome-adaptive randomization and involves, next to the 

possibility of continuous stopping for futility, updating the randomization rates of enrolled subjects 

based on the results of the subjects already included in the trial. The design can be extended by 
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considering different strata of patients based on, for instance, biomarkers. Hereby, it becomes possible 

to assign patients within a particular stratum to the most promising treatment arm(s) during the course 

of the trial, while allowing to stop the trial early14. 

In this paper, we show that Bayesian adaptive designs with continuous futility stopping may lead to an 

undesirable relationship between power and sample size when accruing more patients than originally 

planned. We further investigate and confirm this issue by simulations considering the Bayesian 

outcome-adaptive randomization design with continuous futility stopping proposed by Barry et al.16. 
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Methods 

Single-arm setting 

To set the scene, we consider a single-arm phase-II design with a single treatment and continuous 

Bayesian stopping for futility for a binary response. Assume that the number of responses 𝑋𝑁  among 

𝑁 patients receiving the treatment is binomially-distributed with response-probability 𝜋. We want to 

test whether 𝜋 exceeds some unacceptable level 𝜋0. Therefore, a Bayesian hypothesis test is 

considered based on the posterior distribution 𝑃(𝜋|𝑥𝑁 , 𝑁) of 𝜋 after observing 𝑥𝑁 responses. Hereto, 

consider the efficacy indicator 𝐸 defined as follows: 

𝐸 = {
1 𝑖𝑓 𝑃(𝜋 ≥ 𝜋0|𝑥𝑁 , 𝑁) > 𝛿𝐸 ,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                          

  (1) 

where (1 − 𝛿𝐸) is a pre-defined size of a one-sided credible set. When 𝐸 = 1, probability 𝜋 is deemed 

statistically significantly larger than 𝜋0. 

Moreover, to stop the trial early for futility, continuous monitoring of the posterior distribution 

𝑃(𝜋|𝑥𝑛, 𝑛) after every patient is applied during the trial. Let 𝑛0 be the minimum number of patients 

required to be enrolled in the trial before allowing early stopping. Treatment is considered futile when 

𝜋 is smaller than some desirable (target) response probability 𝜋1. A Bayesian hypothesis test for futility 

can then be defined through the futility indicator 𝐹𝑛: 

𝐹𝑛 = {
1 𝑖𝑓 𝑃(𝜋 ≥ 𝜋1|𝑥𝑛, 𝑛) ≤ 𝛿𝐹 ,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                         

  (2) 

Denote by (1 − 𝛿𝐹) the pre-defined size of a one-sided credible set. When 𝐹𝑛 = 1, for 𝑛 = 𝑛0 , … , 𝑁, 

the trial is stopped for futility after accrual of 𝑛 patients. 

Assuming a beta-distribution, 𝐵𝑒𝑡𝑎(𝛼𝑝, 𝛽𝑝), as a prior for 𝜋 leads to the following posterior Beta 

distribution of 𝜋: 

𝑃(𝜋|𝑥𝑛, 𝑛) = 𝐵𝑒𝑡𝑎(𝛼𝑝 + 𝑥𝑛, 𝛽𝑝 + 𝑛 − 𝑥𝑛). 



 

6 
 

By varying values of 𝛿𝐸 and 𝛿𝐹, one can vary the frequentist trial-operating characteristics. Denote by 

𝑃(𝐸 = 1|𝜋 = 𝜋0) and 𝑃(𝐸 = 1|𝜋 = 𝜋1) the frequentist type-I error probability and power, 

respectively. Other operating characteristics of interest include the cumulative probability of correctly 

and falsely stopping the trial early, i.e., ∑ 𝑃(𝐹𝑖 = 1|𝜋 = 𝜋0)𝑛
𝑖=1  and ∑ 𝑃(𝐹𝑖 = 1|𝜋 = 𝜋1)𝑛

𝑖=1 , 

respectively. Note that, in this case, direct calculations of the operating characteristics are feasible. 

Bayesian biomarker-driven outcome-adaptive randomization design 

To evaluate over-accrual in a more complex setting, we consider a phase-II trial setting with Bayesian 

biomarker-based outcome-adaptive randomization allowing to stop early for futility, as proposed by 

Barry et al.16, hereafter referred to as Barry design. In the proposed design, patients are divided into 

𝑆 + 1 mutually exclusive and exhaustive biomarker-based strata. The objective of the trial (see 

Appendix A in Supplementary Materials) is to evaluate the efficacy of 𝑇 + 1 treatments within each 

stratum by using a binary clinical outcome (response). A Bayesian futility hypothesis test is performed 

during the adaptive-randomization phase of the trial. At the end of the trial, after a final test of futility, 

a Bayesian hypothesis test is performed to obtain the conclusion regarding efficacy. Toward this aim, 

the futility and efficacy indicators in equations (1) and (2) are updated to account for all stratum-

treatment combinations (see Appendix B in Supplementary Materials). 

The trial begins with equal randomization within the considered strata. For every recruited patient, 

first, biomarker status is established. Subsequently, the patient is randomized to treatments available 

in the biomarker-stratum to which the patient belongs and the response of the patient is observed. 

When a predetermined number of patients, 𝑛0, has been accrued, the updated data are used in a test 

of futility which may result in termination of accrual to one or more treatments in various strata. 

Subsequently, the randomization ratios are updated and used for the next patient. When the targeted 

number of patients has been reached, the trial is terminated and the data are used to conduct a final 

test of futility, and a test of efficacy. Because the futility and efficacy decisions are based on thresholds 

defined by 𝜋1 and 𝜋0, respectively, there is a probability of ending up with a set of observations 
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satisfying both criteria. One conservative way to avoid this issue is by favouring futility, i.e., including 

the final test of futility before testing for efficacy. Note that the trial can also stop before reaching the 

targeted sample size if all stratum-treatment groups have become closed for accrual based on the 

results of the futility test. In that case, no efficacy tests are conducted at the time of closing accrual to 

the last group.  

Simulation study 

To evaluate the effect of over-accrual, we consider direct calculations for the single-arm setting and 

conduct a simulation study for the Bayesian biomarker-based outcome-adaptive randomization 

design. 

Single-arm setting We assume 𝜋0 = 0.25, 𝜋1 = 0.5, and 𝑛0 = 5. Moreover, we set the 

prior-distribution parameters 𝛼𝑝 and 𝛽𝑝 both equal to 2.5 for the test of futility, and both equal to 1 

for the test of efficacy.  

Note that, for the test for futility, the prior 𝐵𝑒𝑡𝑎(2.5,2.5) is centred around 0.5, the target response 

probability, with 95% of its mass between 0.12 and 0.88. This results in a ‘conservative’ prior 

distribution that reduces the probability of stopping for futility when the sample size is small, i.e., early 

in the trial. The choice is motivated by the idea that stopping for futility should only be considered 

when there is enough information in the data that suggests an absence of effect.  

For the test of efficacy, the prior parameter values result in a uniform (flat) prior for 𝜋. The choice is 

motivated by the idea that stopping for efficacy should be guided as much as possible by the data. 

Finally, we consider the null-hypothesis setting with 𝜋 = 0.25 and the alternative-hypothesis setting 

with 𝜋 = 0.5. 

To control the type-I error probability at 10% and obtain a power of at least 80% for a targeted sample 

size of 20 patients, we set 𝛿𝐸 = 0.94 and 𝛿𝐹 = 0.095 (see also Appendix C in Supplementary 
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Materials). To evaluate the effect of over-accrual, we consider a final sample size up to 100 patients 

and investigate the relationship between power and sample size. 

Barry design In the simulations, two different settings are considered. The first setting corresponds to 

the simulation study in Barry et al16. It considers general outcome-adaptive randomization with one 

binary biomarker. In essence, this is equivalent to two phase-II trials conducted in two strata with 

stopping for futility. The second simulation setting corresponds to the real-life example presented by 

Barry et al.16. It considers a trial aimed at the development of new, or an appropriate application of 

existing, breast cancer therapies directed by biomarker information.  

In the first simulation setting, the prevalence of biomarker-positive patients is set equal to 0.5. In terms 

of underlying true response probabilities 𝜋𝑠𝑡  of treatment 𝑡 in stratum 𝑠, a quantitative stratum-by-

treatment interaction is considered. No difference in response probabilities for treatments in the 

biomarker-negative stratum is assumed (𝜋00 = 𝜋01 = 0.25), while the experimental treatment is 

more efficacious in the biomarker-positive stratum (𝜋11 = 0.5, 𝜋10 = 0.25). This setting is equivalent 

to the ‘single-marker’ scenario considered by Barry et al.16. 

The outcome-adaptive randomization stage is started after initial accrual of 𝑛0 = 25 patients to ensure 

that, with high probability, at least two patients are assigned to each stratum-treatment combination 

before starting outcome-adaptive randomization and allowing the trial to stop early for futility. 

Following Barry et al.16, we consider 𝛿𝐹 = 0.025 and 𝛿𝐸=0.9. This results in a targeted sample size of 

100 patients that allows reaching a power of at least 0.8, while controlling the type-I-error probability 

at 0.1. To evaluate the effect of accruing more patients than initially planned, final sample sizes of 𝑁 ∈

{25,50,75,100,125,150} are considered. 

The second simulation setting is based on the idea of designing a randomized phase II trial to evaluate 

a PI3K inhibitor therapy in advanced breast cancer patients. In the trial, four biomarker strata and two 

treatments (experimental and control) are considered, what leads to eight distinct stratum-treatment 

combinations (see Appendix D in Supplementary Materials). 
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In terms of the trial design characteristics, fixed 1:1 randomization within each stratum is considered 

until at least one patient is enrolled to each stratum-treatment combination. In this case, 𝑛0 is random. 

The Bayesian hypothesis tests are defined by setting 𝛿𝐹 = 0.01 and 𝛿𝐸 = 0.9. As indicated in Barry et 

al.16, this ensures a power of at least 0.9 while controlling the type-I error probability at 0.1 when a 

targeted sample size of 𝑁 = 168 patients is considered. To evaluate the effect of over-accrual, final 

sample sizes of 𝑁 ∈ {50,168,250,300,600} are considered. 

In both simulation settings, the considered target and unacceptable response rates, 𝜋1 and 𝜋0, are set 

at 0.5 and 0.25, respectively. Moreover, the parameters defining the prior distribution for 𝜋𝑠𝑡  are 

chosen based on the goal of the analysis (futility or efficacy), but independently of the simulation 

setting (see also Appendix E in Supplementary Materials). 

For each final sample size, 1000 trials are simulated. In each simulation, the Gibbs sampler code 

developed by Barry et al.16 was used. Based on the Raftery & Lewis diagnostic18, 15,000 posterior 

samples were retained after a 15 iteration burn-in to achieve convergence for estimation of the 

required quantiles. Sufficiency of the number of burn-in iterations and non-informativeness of the 

initialisation was confirmed by inspection of randomly selected trace-plots and additional simulations 

(results not shown) with starting values sampled from U(-10,10). Computation time for one simulated 

trial with futility stopping (𝑁 =  150) was equal to about 4 hours on a 64-bit, 2.6 GHz, 8GB RAM 

machine using R 3.4.2 (x64)19. The R scripts can be found in Appendix F in Supplementary Materials. 

 

Results 

Single-arm setting 

The results from the single-arm phase-II setting with continuous Bayesian stopping for futility are 

summarized in Figure 1. Panel a of Figure 1 shows the probability to conclude efficacy as a function of 

the considered final sample size. In the panel, results for both type-I error probability, based on the 
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null-hypothesis setting (𝜋 = 0.25), and power, based on the alternative-hypothesis setting (𝜋 = 0.5), 

are shown. 

[Include Figure 1 about here] 

From panel a of Figure 1 it can be seen that, for 𝛿𝐸 = 0.94 and 𝛿𝐹 = 0.095, a final sample size of 20 

patients would ensure the type-I error probability to remain below 10% and power about 80%. Hence, 

we assume the threshold values to be calibrated for the targeted sample size of 20 patients. Over-

accruing beyond 20 patients, however, leads to a counterintuitive decrease in power. For example, 

accruing up to 100 patients would decrease the power from 80% to about 70%. 

An explanation of the decrease of power due to over-accrual is offered in panel b of Figure 1. The plot 

shows the cumulative probability of stopping the trial early for futility. For a final sample size of 20 

patients, the probability to correctly stop the trial under the null-hypothesis setting is about 90%. On 

the other hand, the probability to incorrectly stop the trial under the alternative-hypothesis setting is 

about 19%. However, the cumulative probability of stopping early for futility is a strictly increasing 

function of sample size. Thus, over-accruing subjects beyond 20 patients increases the probability to 

values larger than 20%. This implies that the achievable power at the end of the trial falls below 80%. 

Barry design 

For the Barry design, we focus on the (simulation-based) proportion of trials which end with a 

statistically significant efficacy conclusion. For the efficacious biomarker-treatment combinations, this 

proportion is an estimate of power. For inefficacious combinations, the proportion estimates the type-I 

error probability. We also report the proportion of trials in which a particular stratum-treatment arm 

was stopped due to futility before or at the final sample size. For the efficacious stratum-treatment 

combinations, this proportion estimates the cumulative probability of incorrectly stopping for futility. 

Simulation-study setting Panel a of Figure 2 shows that, for a trial with a final sample size of about 100 

patients, the power to correctly conclude efficacy in the efficacious stratum-treatment combination 
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(green curve) is about 85%. On the other hand, for the inefficacious stratum-treatment combinations 

(red curves), the type-I error probability is at most 10%. Therefore, as noted by Barry et al.16, for the 

required power and type-I-error-probability control objectives, the proposed threshold values imply a 

targeted sample size of 100 patients. However, accruing 150 patients decreases the power to about 

80%, while decreasing the type-I error probability to about 2.5%. 

[Include Figure 2 about here] 

Panel b of Figure 2 shows that, for the inefficacious stratum-treatment combinations, the probability 

of stopping for futility is higher as compared to the efficacious combinations. For instance, in the 

biomarker-positive (S=1) stratum, the probability of stopping the inefficacious control treatment (T=0) 

before or at accruing exactly 100 patients is about 55%. The probability to incorrectly stop the trial 

early for an efficacious treatment-stratum combination increases with sample size. Over-accruing 

beyond 100 patients increases the probability to just below 20% at 150 patients, when 150 patients 

are accrued. As a result, and similarly to the situation observed for the single-arm design, the maximally 

achievable power decreases to around 80%. 

Real-life example setting The results for the real-life example simulation setting show the same trends 

as observed for the single arm and simulation study setting. Although a power of 90% is reached with 

the targeted 168 patients, over-accrual eventually leads to a power lower than 90%. Also, over-

accruing patients to about 600 patients increases the cumulative probability of incorrectly stopping 

the trial for futility to just above 10%. With, as a result, reduction of the maximally achievable power 

at the end of the trial (see also Appendix G in Supplementary Materials). 

Reducing the decrease in power The trends observed in panels a of Figures 1 and 2 imply that, 

paradoxically, accruing more patients to a trial may lead to a reduction of power. To alleviate this 

problem, one should reduce the cumulative probability of incorrectly stopping the trial early at larger 

sample sizes. Towards this aim, one could investigate different choices of the prior-distribution 

parameters (𝛼𝑝 and 𝛽𝑝) or the stopping rule for futility (𝛿𝐹). Changing the former is not evident if 
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there is little knowledge about the true value of 𝜋. A more feasible approach is to investigate different 

values of 𝛿𝐹 and select those that may lead to acceptable values of the cumulative probability of 

incorrectly stopping early, as well as early stopping of inefficacious treatments.  

To illustrate the approach, Figure 3 shows operating characteristics of the single-arm design with 𝛿𝐹 =

0.01. Panel a of Figure 3 shows a slight increase of the type-I error probability (red curve) compared 

to the case of 𝛿𝐹 = 0.095 (see panel a of Figure 1). The probability of stopping for futility in case of an 

inefficacious treatment (red curve in panel b of Figure 3) is affected to a greater extent as it decreases 

from about 90% to 50% for a trial with a final sample size of 20 patients, as compared to panel b of 

Figure 1. Decreasing 𝛿𝐹 reduces the cumulative probability of incorrectly stopping for futility (green 

curve in panel b of Figure 3) and decreases its rate of increase with sample size. As a result, the 

maximally achievable power becomes closer to 100% and shows only a slightly decreasing trend for 

larger values of the final sample size (green curve in panel a of Figure 3). 

[Include Figure 3 about here] 

The cumulative probability of incorrectly stopping for futility also depends on the number of patients 

𝑛0 accrued before the first futility test and on the total number of times the futility test is performed 

before testing for efficacy. To illustrate the impact of these factors, operating characteristics of two 

different variations of the single-arm scenario, assuming 𝛿𝐹 = 0.095, were calculated.  

First, we increase 𝑛0 from 5 to 15. Panel b of Figure 4 shows that the cumulative probability of 

incorrectly stopping for futility for a final sample size of 100 patients slightly decreases, as compared 

to panel b of Figure 1. Consequently, the decrease in power, shown in panel a of Figure 4, is also 

reduced, as compared to the decrease in panel a of Figure 1.  

[Include Figure 4 about here] 

Second, Figure 5 summarizes the results when the test for futility is only performed after every 10 

patients. Compared to the setting when futility is tested after every patient (see Figure 1), the 
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cumulative probability of incorrectly stopping for futility decreases from around 0.35 (panel b of Figure 

1) to below 0.3 (panel b of Figure 5) for the final sample size of 100 patients. 

[Include Figure 5 about here] 
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Discussion and conclusions 

The presented results for a single-arm phase-II design with continuous Bayesian early futility stopping 

and a Bayesian biomarker-driven outcome-adaptive randomization design allowing for early stopping 

for futility indicate a counterintuitive (from a “classical” fixed-sample-size trial-design point of view) 

decrease in power in case of over-accrual. The decrease of power is due to the increasing cumulative 

probability of incorrectly stopping for futility implied by the repeated futility testing. When additional 

patients are considered, their outcomes may lead to posterior distributions for which the futility test 

criterion will be satisfied. Hence, for any additional patient, there is at least some probability to stop 

the trial for futility. 

The cumulative stopping probability depends on the assumed prior distributions and the considered 

hypothesis-test criterion 𝛿𝐹. By considering smaller values for the latter, the increase in the cumulative 

probability of stopping can be reduced. Unfortunately, this also reduces the probability of correctly 

stopping for futility of an inefficacious treatment. 

Higher probabilities of stopping early at the beginning of the trial will propagate to the cumulative 

stopping probability until the end of the trial. Delaying the first test of futility until more patients have 

been accrued, as well as decreasing the total number of futility tests to be performed, helps to 

decrease the cumulative stopping probability at the end of the trial. 

The sample size at which power will start decreasing depends on the combination of the cumulative 

probability of stopping early and the power to conclude efficacy conditional on reaching a particular 

sample size. For example, in the real-life example setting, accruing beyond the targeted sample size of 

168 patients initially shows an increase in power (see Figure G.1 in Appendix G in Supplementary 

Materials). This occurs when the combination of the probability of reaching a particular final sample 

size and the power conditional on reaching that sample size, exceeds the targeted power. From Figure 

H.2 in Appendix H in Supplementary Materials, one can see that, after an initial increase in power, the 
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probability of reaching the sample size of interest decreases to the point that, when combined with 

the conditional power, the unconditional power starts to decrease. 

The real-life example setting, considered in this manuscript, corresponded to the example analysed by 

Barry et al.16. In that example, Barry et al. additionally capped the maximum number of patients in 

each treatment arm to avoid oversampling. Moreover, a lag was considered for futility testing and 

updating the randomization ratios to account for the length of follow-up needed to observe responses. 

Although these measures were not introduced by Barry et al. for that purpose, they may alleviate the 

decreasing power issue. Capping the maximum sample size for each treatment ultimately limits the 

total sample size that could be over-accrued. On the other hand, introducing a lag in futility testing 

delays the start of testing and, hence, reduces the cumulative probability of incorrectly stopping for 

futility. 

Of course, power always depends on the true response probability (see Appendix I in Supplementary 

Materials). Assuming, for the purposes of designing a trial, a larger-than-the-true value of this 

probability may aggravate the decrease in power due to over-accrual. On the other hand, using a 

smaller-than-the-true value may help in addressing the issue. Unfortunately, the true probability is 

never precisely known. This implies that the risk of power loss due to over-accrual may always be 

present when designing a Bayesian outcome-adaptive randomization trial. 

As noted by the reviewers of this paper, the aforementioned procedures to reduce the impact of the 

decrease in power are viable if unintentional over-accrual is anticipated at the design stage of the trial. 

When over-accrual is purposely considered after reaching the target sample size, other procedures 

could be contemplated. This type of over-accrual could be foreseen, for example, based on post-hoc 

external information20. In such cases, the trial’s test strategies and/or its thresholds could be adapted 

to obtain a particular power conditional on having reached the target sample size (see Appendix H in 

Supplementary Materials). In practice, adapting the test’s thresholds would follow the same approach 

as at the design stage of the trial. 
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In all investigated settings, the impact of the continuous monitoring on power seemed limited, as 

considerable over-accrual was required before the decrease in power would become meaningful from 

a practical point of view. However, the impact depends on the futility stopping and efficacy criteria, as 

well as the underlying true response probabilities. As the latter are never precisely known, it is not 

prudent to dismiss a priori the probability of a substantial power decrease in any case. Moreover, in 

the context of a particular early-phase setting like, for instance, expansion cohort trials, substantial 

increases in sample size are not uncommon20.  

The over-accrual issue, considered in this paper, is different from the concept of “overrunning” 

introduced in the context of, for instance, group-sequential clinical trials21. Given the nature of the 

considered designs, the time between accrual and available data should be relatively short to inform 

the outcome-adaptive randomization. Therefore, the issue of taking a decision while other data are 

being collected is less relevant. The setting considered in our manuscript can be described as delaying 

the stop of accrual and performing the test for efficacy past the sample size fixed at the design of the 

trial. 

In conclusion, we have shown that the choice of a hypothesis-test strategy in a Bayesian 

biomarker-based outcome-adaptive randomization trial with stopping for futility may result in a 

decrease in power when sample size exceeds the sample size for which the trial was powered at. The 

strength of dependence between the magnitude of the decrease and the amount of over-accrual will 

be setting-specific. This is an undesired effect that should be kept in mind when designing any Bayesian 

outcome-adaptive randomization design, as well as during the trial when considering accruing patients 

beyond the planned sample size.  
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Figure 1: Operating characteristics for a single-arm trial with a single treatment designed for a 
targeted sample size of 20 patients (grey dashed line). a. Probability of correctly (power) and 

incorrectly (type-I error) concluding efficacy at the end of the trial as a function of the considered 
final sample size of the trial. b. Cumulative probability of incorrectly (green) and correctly (red) 
stopping for futility as a function of the considered final sample size. The alternative-hypothesis 

setting (𝜋 = 0.5) is denoted in green, the null-hypothesis setting (𝜋 = 0.25) is shown in red. 
Horizontal dashed lines indicate desired operating characteristics; type-I error probability of 0.1 and 

power of 0.8. 
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Figure 2: Operating characteristics of the simulation-study setting of the phase II Bayesian biomarker-
based outcome-adaptive randomization design with a continuous futility stopping for a targeted 

sample size of 100 patients (grey dashed line). a. Proportion of trials concluding efficacy for each of 
the stratum-treatment combination as a function of the considered final sample size. b. Cumulative 
proportion of trials stopping early for futility for each stratum-treatment combination as a function 

of the considered final sample size. Efficacious stratum treatment combination (𝜋𝑠𝑡 = 0.5) marked in 
green, inefficacious combinations (𝜋𝑠𝑡 = 0.25) in red. S, stratum; T, treatment. Horizontal dashed 
lines indicate desired operating characteristics; type-I error probability of 0.1 and power of 0.85. 
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Figure 3: Operating characteristics for the single-arm setting with 𝛿𝐹 = 0.01 for a targeted sample 
size of 20 patients (grey dashed line). a. Probability of correctly (power) and incorrectly (type-I error) 

concluding efficacy at the end of the trial as a function of the final sample size. b. Cumulative 
probability of incorrectly (green) and correctly (red) stopping for futility as a function of the final 

sample size. The alternative-hypothesis setting (𝜋 = 0.5) is denoted in green, the null-hypothesis 
setting (𝜋 = 0.25) is shown in red. Horizontal dashed lines indicate desired operating characteristics; 

type-I error probability of 0.1 and power of 0.8. 
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Figure 4: Operating characteristics for the single-arm setting for a targeted sample size of 20 patients 
(grey dashed line) with 𝑛0 = 15. a. Probability of correctly (power) and incorrectly (type-I error) 

concluding efficacy at the end of the trial as a function of the final sample size. b. Cumulative 
probability of incorrectly (green) and correctly (red) stopping for futility as a function of the final 

sample size. The alternative-hypothesis setting (𝜋 = 0.5) is denoted in green, the null-hypothesis 
setting (𝜋 = 0.25) is shown in red. Horizontal dashed lines indicate desired operating characteristics; 

type-I error probability of 0.1 and power of 0.8. 
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Figure 5: Operating characteristics for the single-arm setting for a targeted sample size of 20 patients 
(grey dashed line) with the futility hypothesis only tested after every 10 patients. a. Probability of 

correctly (power) and incorrectly (type-I error) concluding efficacy at the end of the trial as a function 
of the final sample size. b. Cumulative probability of incorrectly (green) and correctly (red) stopping 

for futility as a function of the final sample size. The alternative-hypothesis setting (𝜋 = 0.5) is 
denoted in green, the null-hypothesis setting (𝜋 = 0.25) is shown in red. Horizontal dashed lines 

indicate desired operating characteristics; type-I error probability of 0.1 and power of 0.8. 
 

 


