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ON GLOBAL DEFORMATION QUANTIZATION IN THE

ALGEBRAIC CASE

MICHEL VAN DEN BERGH

Abstract. We give a proof of Yekutieli’s global algebraic deformation quan-
tization result which does not rely on the choice of local sections of the bundle
of affine coordinate systems. Instead we use an argument inspired by algebraic
De Rham cohomology.
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1. Introduction and motivation

This paper has grown out of an attempt to understand [26, 38]. These papers
deal with deformation quantization in an algebraic setting. After some consider-
ation we decided no harm would be done by writing down our own account. For
simplicity we restrict ourselves to infinitesimal deformations. The extension to
formal deformations is routine.

Kontsevich’s fundamental idea is that quantization of Poisson brackets should
take place in the setting of twisted presheaves. To explain this let X be a separated
quasi-compact scheme over a field k. Choose an affine covering U = {U1, . . . , Un} of
X . For J ⊂ {1, . . . , n} define UJ = ∩j∈JUj. A twisted presheaf of k-algebras on U
is a collection of k-algebras A(UJ ) together with restriction maps ρJ,J′ : A(UJ)→
A(UJ′) for J ⊂ J ′ which are compatible with compositions up to an explicit inner
automorphism. In addition the units defining these inner automorphisms should
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2 MICHEL VAN DEN BERGH

satisfy a natural cocycle conditions for triple compositions. The motivation is
that under suitable flatness conditions one may define a category of quasi-coherent
sheaves over a twisted presheaf.

Assume now thatX is a smooth and separated over k = C. For (l,m) an Artinian
local k-algebra with residue field k, Kontsevich constructs in [26] a “quantization”
arrow

(1.1)

{Poisson brackets on X with coefficients in m}/ ∼=

→

{Flat l-deformations of OX in the category of twisted presheaves}/ ∼=

To make the connection with the deformation theory of abelian categories [29, 30]
note that in [28] Tor Lowen constructs a natural bijection

{Flat l-deformations of OX in the category of twisted presheaves}/ ∼=

↔

{Flat l-deformations of Qch(OX)}/ ∼=

Our aim is to explain (1.1). This explanation will make it clear what the obstruction
is against reversing the arrow.

Let us recall some basic constructions. The complex of sheaves of poly-differential

operators Dpoly,·
X is defined as follows. For an open U of X , Dpoly,n

X (U) is given by

the multilinear mapsO⊗n
U → OU which are differential operators in each argument.1

Dpoly,·
X is equipped with the standard Hochschild differential and Gerstenhaber

bracket. In this way Dpoly
X [1] becomes a sheaf of DG-Lie algebras.

Likewise T poly,·
X is defined as the graded sheaf on X whose sections of degree n

on an open U are given by the multilinear maps O⊗n
U → OU which are fully anti-

symmetric and derivations in each argument. When equipped with the Schouten-

Nijenhuis bracket and trivial differential T poly
X [1] also becomes a DG-Lie algebra.

The key result in algebraic deformation quantization is the following

Theorem 1.1. [38, Thm 0.2] There is an isomorphism

(1.2) T poly,·
X [1] ∼= D

poly,·
X [1]

in the homotopy category of sheaves of DG-Lie algebras. Furthermore if X has a
system of parameters (xi)i then the resulting map on homology

T poly,·
X → H ·(Dpoly,·

X )

is given by the HKR-formula.

∂i1 ∧ · · · ∧ ∂in 7→
1

n!

∑

σ∈Sn

(−1)σ∂iσ(1)
⊗ · · · ⊗ ∂iσ(n)

where ∂i = ∂xi
.

We will give a self contained proof of this result in this paper. We mimic to
some extent Yekutieli’s arguments and we use many of his technical contributions.
However there is a substantial simplification that we do not have to choose (local)
sections of the bundle of affine coordinate systems and thus we avoid the machinery

1Note that we do not include the usual shift by one (e.g. [27]) in the definition of the complex
of poly-differential operators.
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of simplicial sections. Instead we use an argument inspired by algebraic De Rham
cohomology (see §6.6 below). We believe this idea is new even in the classical
case of Fedosov quantization. It follows in particular that (1.2) is compatible with
automorphisms of X .

An analogue of Theorem 1.1 has been proved in the complex analytic case in
[9]. The proof in loc. cit. does not extend immediately to the algebraic case as it
depends on the choice of a global connection. In [13] the authors prove a version of
Theorem 1.1 using operadic methods which is uniformly valid for the C∞, algebraic
and complex analytic cases. In [10] we will give yet another approach to these
results.

Let us now explain how Proposition 1.1 is relevant to deformation theory. For
a sheaf of DG-Lie algebras G on a topological space X one may take its derived
global sections RΓ(X,G)tot which is also a DG-Lie algebra and which is canoni-
cally quasi-isomorphic to RΓ(X,G) as complexes. In particular the formation of
RΓ(X,G)tot is compatible with quasi-isomorphisms. One possible construction us-
ing pro-hypercoverings is outlined in Appendix B. A different construction follows
from Hinich’s model structure on the category of presheaves of algebras over an
operad [22]. See §B.10. If G is quasi-coherent and X is separated then RΓ(X,G)tot

is given by applying the Thom-Sullivan normalization (see Appendix A) to the
cosimplicial DG-Lie algebra associated to an affine covering of X (see [23, 24]). We
note that it will be clear below that only the properties of the functor RΓ(X,−)tot

matter, not its actual construction.

Applying RΓ(X,−)tot to (1.2) we obtain in particular an isomorphism in the
homotopy category of DG-Lie algebras

(1.3) RΓ(X, T poly,·
X [1])tot ∼= RΓ(X,Dpoly,·

X [1])tot

Let g be a DG-Lie algebra. The Maurer-Cartan equation in m⊗k g1 is given by

(1.4) dπ +
1

2
[π, π] = 0

There is a a natural action on the solutions of this equation by the “gauge” group
exp(m⊗ g0). It is well known that the set of equivalence classes of solutions to the
Maurer-Cartan equation is invariant under quasi-isomorphisms.

If A is a k-algebra then it is well known that the flat l-deformations of A cor-
respond to solutions of the Maurer-Cartan equation in m⊗k C(A)[1] where C(A)
is the Hochschild complex of A (equipped with the Gerstenhaber bracket). Similar
results for abelian and linear categories were proved in [29, 30].

Let U be as above and let u be the linear category with objects ∅ ( J ⊂ {1, . . . , n}
and

u(J, J ′) =

{
HomOX

(j∗OUJ
, j∗OUJ′ ) = OX(UJ′) if J ⊂ J ′

0 otherwise

where j : UJ → X denotes the inclusion map. We prove (Theorem 3.1 below)

(1.5) RΓ(X,Dpoly,·
X [1])tot ∼= C(u)[1]

Since deformations of u are readily seen to correspond to deformations of OX as
twisted presheaf, and vice versa (see [28]), it follows from (1.3) and (1.5) that we
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have bijections.

(1.6)

{Solutions to the MC equation in RΓ(X, T poly,·
X [1])tot ⊗k m}/ ∼=

↔

{Solutions to the MC equation in RΓ(X,Dpoly,·
X [1])tot ⊗k m}/ ∼=

↔

{Flat l-deformations of OX in the category of twisted presheaves}/ ∼=

By Proposition B.8.1 below there is a canonical map

(1.7) Γ(X, T poly,·
X )[1]→ RΓ(X, T poly,·

X [1])tot

and this is an isomorphism provided

(1.8) Hi(X,∧jTX) = 0 for i > 0

The solutions to the Maurer-Cartan equation in Γ(X, T poly,·
X ) are the global Poisson

brackets on X . Thus combining (1.6) with (1.7) we now obtain the arrow (1.1) and
we see that it is a bijection if (1.8) holds.

Using similar ideas (see Proposition 4.1) one proves that if X is proper there is
a bijection

{Solutions to the MC equation in ⊕i,jΓ(Xan, T i,0Xan ⊗O∞
Xan

Ω0,j
Xan)[1]⊗k m}/ ∼=

↔

{Flat l-deformations of OX in the category of twisted presheaves}/ ∼=

thereby making the connection with the work of Barannikov and Kontsevich [4].
The last bijection allows one, through the work of Gualtieri [17, §5.3], to associate
a category of coherent sheaves to an infinitesimal deformation of Xan as generalized
complex manifold. Generalized complex manifolds form a common generalization of
complex and symplectic manifolds and as such are important for mirror symmetry.
It is not known in general how to define a (derived?) category of coherent sheaves
over a generalized complex manifold. In the case of a symplectic manifold this
should be some variant of the Fukaya category.

Other papers relevant for algebraic deformation quantization are [7, 6, 31]. [6] is
especially interesting as it discusses Fedosov quantization in positive characteristic.
This falls totally outside the reach of methods based on DG-Lie algebras and the
Maurer-Cartan equation.

We now give a quick outline of the current paper. In §3 we explain the connection
between poly-differential operators and the Hochschild complex of schemes. In §4
we discuss the application to the analytic case mentioned above.

The proof of Theorem 1.1 uses crucially infinite dimensional formal schemes. We
discuss the relevant topological notions in §5.

In §6 we use formal schemes to give an account of formal geometry in the alge-
braic case. See also [38, §5]. Theorem 6.6.1 is our crucial acyclicity result for the
bundle of affine coordinate systems.

In §7 we present a reminder on DG-Lie and L∞-algebras. An important notion is
the twist of an L∞-morphism by a solution of the Maurer-Cartan equation (which
I learnt from Yekutieli). We also discuss descent for L∞-morphisms under an
algebraic group action and its compatibility with twisting. This is used to descend
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constructions on the bundle of local coordinate systems to the bundle of affine local
coordinate systems.

In §8 we have a new look at poly-differential operators and poly-vector fields.
We introduce Kontsevich’s local L∞-quasi-isomorphism and remind the reader of
its properties. An interesting remark is that the linearity property (P3) thought to
be essential for globalization actually follows from (P5).

Finally in §9 we prove Theorem 1.1.

Acknowledgment The author is very grateful to Damien Calaque, Gilles Hal-
bout, Vladimir Hinich, Bernhard Keller, Tor Lowen and Amnon Yekutieli for many
helpful discussions.

2. Notations and conventions

For simplicity of exposition we assume throughout that our base field is alge-
braically closed of characteristic zero (and usually C). It is clear that with sufficient
care one can get by with weaker hypotheses.

Many of the objects we use are equipped with some kind of topology, but if an
object is introduced without a specified topology we assume that it is equipped
with the discrete topology.

If an object carries a natural grading then all constructions associated to it are
implicitly performed in the graded context. This implies in particular to comple-
tions.

3. Going from poly-differential operators to the Hochschild

complex

The main result of this section (Theorem 3.1) was used in the introduction.
Let k be a field. If u is a k-linear category then the Hochschild complex of u is

defined as

(3.1) Cn(u) =
∏

U0,...,Up∈Ob(u)

Homk(u(Up−1, Up)⊗k · · · ⊗k u(U0, U1), u(U0, Up))

with the usual differential.
It is well-known that the Hochschild complex of a linear category has a lot of

“higher structure”. In particular it is a DG-Lie algebra when equipped with the
Gerstenhaber bracket. This is the structure we will use below.

The Hochschild complex of a linear category is contravariantly functorial for
fully faithful functors v → u. The resulting map C(u) → C(v) will be called the
restriction map.

Assume now that k has characteristic zero and let X be a smooth separated

scheme over k. It will be convenient to use the notations Dpoly,·(U) = Dpoly,·
X (U)

for U ⊂ X open and Dpoly,·(R) = Dpoly,·(X) for X = SpecR, and similarly for
poly-vector fields.

Assume first that X = SpecR is affine. We obtain an inclusion of complexes

(3.2) Dpoly,·(R)[1]→ C(R)[1]

which is compatible with the DG-Lie algebra structures on both sides. In [37] it is
shown that (3.2) is a quasi-isomorphism.
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We have isomorphisms

(3.3) Dpoly,·(R)[1] ∼= Dpoly,·(X)[1] ∼= RΓ(X,Dpoly,·
X )tot[1]

The first isomorphism is a tautology and the second one follows from Proposition
B.8.1 below.

Now we drop the restriction that X is affine. Select an affine open covering
U = {U1, . . . , Un} of X and let the associated notations be as in the introduction.

Theorem 3.1. (1) There is an isomorphism in the homotopy category of DG-
Lie algebras

(3.4) RΓ(X,Dpoly
X )tot[1] ∼= C(u)[1]

(2) If X = SpecR is affine and U = {X} then (3.4) coincides with the compo-
sition of (3.2) and the inverse of (3.3).

Proof. If p : h→ g is a map of cosimplicial DG-Lie algebras then as in §B.7 below
we say that p is a weak equivalence if p induces a quasi-isomorphism between the
cochain complexes C∗(h) and C∗(g).

We first prove (1). Let Cho(U ,Dpoly
X )[1] be the ordered Čech cosimplicial DG-

Lie algebra associated to Dpoly
X [1] and the cover U (see §B.9). We will construct a

cosimplicial DG-Lie algebra C[1] together with weak equivalences

(3.5) Cho(U ,Dpoly
X )[1]→ C[1]← C(u)[1]

where we view C(u)[1] as a constant cosimplicial DG-Lie algebra.
Applying the Thom-Sullivan normalization functor N(−)TS (see Appendix A)

we obtain isomorphisms in the homotopy category of DG-Lie algebras

(3.6) RΓ(X,Dpoly
X )tot[1]

(1)
−−→ N(Cho(U ,Dpoly

X )[1])TS →

N(C[1])TS ← N(C(u)[1])TS (2)
←−− C(u)[1]

Here arrow (1) is obtained from §B.9 below and (2) is obtained from (A.1). The
composed isomorphism in (3.6) yields part (1) of the theorem. Part (2) will follow
from the construction of C.

So now we concentrate on (3.5). For clarity we will sometimes omit the shift [1]
in the formulas. For ∅ 6= J ⊂ I let uJ be the full subcategory of u spanned by J ′,
J ′ ⊃ J . Since uJ′ → uJ is fully faithful it follows that there are restriction maps

(3.7) C(uJ )→ C(uJ′)

for J ′ ⊃ J . Furthermore it follows from [30, Lemma 7.5.2] that the restriction map

(3.8) C(uJ )→ C(OUJ
)

is a quasi-isomorphism.
Define

Cm =
∏

j0≤···≤jm

C(u{j0,...,jm})

We make C = (Cm)m into a cosimplicial DG-Lie algebra using the restriction maps
(3.7).

Consider C(u) as a constant cosimplicial DG-Lie algebra. We claim that the
restriction map

C(u)→ C
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is a weak equivalence. To this end it is sufficient to check that we obtain a quasi-
isomorphism on the corresponding (totalized) normalized cochain complexes.

The normalized cochain complex of C it the total complex of a double complex
with columns

C(m) =
∏

j0<···<jm

C(u{j0,...,jm})

Write u∅ = u and C(−1) = C(u). We have to show that the total complex associated
to the double complex

(3.9) 0→ C(−1) → C(0) → · · · → C(n) → 0

is acyclic. We do this by showing that it is a long exact sequence of complexes.
C(uJ ) is a direct product of abelian groups of the form

(3.10) Homk(OX(UJ1)× · · · × OX(UJt
),OX(UJt

))

for J ⊂ J0 ⊂ · · · ⊂ Jt. It follows that the summands in (3.9) corresponding to
a given sequence J0, · · · , Jt are parametrized by J ⊂ J0. Since the signs are the
usual alternating ones it follows easily that for the horizontal differential (3.9) is a
sum of acyclic complexes. This proves what we want.

Our next aim is to construct a cosimplicial map

c : Cho(U ,Dpoly
X )→ C

We do this by combining maps

(3.11) cJ : Dpoly(UJ)→ C(uJ)

If d ∈ Dpoly,t(UJ) then d is a differential operator in

Hom(OX(UJ)t,OX(UJ))

It follows that d extends uniquely to a differential operator with t arguments in
(3.10). We define cJ(d) as this extension.

Now we claim that c is a weak equivalence. To do this it is sufficient to show
that the maps cJ are quasi-isomorphisms. Then it is sufficient that the composition

Dpoly(UJ )→ C(uJ )→ C(OUJ
)

of cJ with the quasi-isomorphism (3.8) is a quasi-isomorphism.
This composition in nothing but (3.2) for R = O(UJ ) and hence we are done. �

Remark 3.2. It seems quite likely that the fact that RΓ(X,DX)tot controls the
deformation theory of OX in the category of twisted presheaves follows also from
Vladimir Hinich’s descent theorem [20] given the fact that this is true if X is affine.
One has to check that the global deformation functor is given by gluing the local
deformation fuctors. Note that for this to work one should view these deformation
functors as taking values in 2-groupoids. One should also use the fact, first observed
by Deligne, that the solutions to the Maurer-Cartan equation in a DG-Lie algebra
concentrated in degrees ≥ −1 form naturally a 2-groupoid as well. See [16] and the
reference to a downloadable copy of Deligne’s letter contained therein.
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4. The analytic case

The main result in this section (Proposition 4.1) was used in the introduction.
Assume now that k = C and X is a separated smooth proper scheme over k. Let
O∞
Xan be the sheaf of C∞-functions on Xan and let T i,0Xan and Ω0,j

Xan be the C∞-
vector bundles respectively generated by the holomorphic vector fields and by the
anti-holomorphic differential forms. Below we consider the sheaf of DG-Lie algebras

(4.1)
⊕

i,j

T i,0Xan ⊗O∞
Xan

Ω0,j
Xan [1]

where the differential is obtained by linearly extending the differential on Ω0,·
Xan and

the Lie bracket is obtained by linearly extending the Lie bracket on T ·,0
Xan .

Proposition 4.1. There is an isomorphism

RΓ(X, T poly,·
X )tot[1] ∼=

⊕

i,j

Γ(Xan, T i,0Xan ⊗O∞
Xan

Ω0,j
Xan)[1]

in the homotopy category of DG-Lie algebras.

Proof. We first prove that there is an isomorphism

(4.2) RΓ(X, T poly,·
X )tot[1]→ RΓ(Xan, T poly,·

Xan )tot[1]

Choose an affine covering U = {U1, . . . , Un} for X . By Lemma B.9.1 and the fact
that affine varieties are Stein we have

RΓ(X, T poly,·
X )tot = N(Cho(U , T poly,·

X ))TS

RΓ(Xan, T poly,·
Xan )tot = N(Cho(U , T poly,·

Xan ))TS

The obvious map

Cho(U , T poly,·
X )→ Cho(U , T poly,·

Xan )

yields (4.2). To prove that (4.2) is an isomorphism it is sufficient to prove that it
induces an isomorphism on cohomology. The cohomology on the left and on the
right are respectively given by

Hi(X,∧jTX) and Hi(Xan,∧jTXan)

These are are equal because of GAGA.
We now note that the sheaf of DG-Lie algebras (4.1) is an acyclic resolution for

T poly,·
Xan (the ∂̄-resolution). Using Lemma B.9.1 we have

(4.3) RΓ(X, T poly,·
Xan )tot[1] ∼=

⊕

i,j

Γ(Xan, T i,0Xan ⊗O∞
Xan

Ω0,j
Xan)[1]

This concludes the proof. �

Remark 4.2. In [4] Barannikov and Kontsevich show that if X is Calabi-Yau then⊕
i,j Γ(Xan, T i,0Xan⊗O∞

Xan
Ω0,j
Xan)[1] is isomorphic in the homotopy category of DG-Lie

algebra to the vector space
⊕

i,j

Hi(X,∧jTX)[1]
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with zero differential and Lie bracket. It follows that for (l,m) an Artinian local
ring with residue field k the l-deformations of Qch(OX) correspond to elements of

m⊗k

( ⊕

i+j=2

Hi(X,∧jTX)

)

5. Topological notions

Below we will naturally encounter topological rings and modules. Rather than
using Yekutieli’s category of Dir Inv-abelian groups [38] we work in the classical
setting of filtered topological abelian groups. Below we list the few facts we need.

5.1. Topological abelian groups. Below we will encounter exclusively linear
topological abelian groups. I.e. topological abelian groups equipped with a topology
such that 0 has a system of open neighborhoods consisting of subgroups.

The following trivial lemma is often used implicitly.

Lemma 5.1.1. Assume that V is a linear topological abelian group and W is an
open subgroup. Then W is also closed and the quotient topology on V/W is discrete.

Proof. W is the complement of the open set
⋃
w 6∈W (w+W ) and hence W is closed.

�

From now on we assume in addition that there is a countable basis of neigh-
borhoods of 0. It is convenient to take for such a basis a descending chain of
subgroups V = F0V ⊃ F1V ⊃ · · · , constructed by taking successive intersections
in an arbitrary linear basis indexed by the natural numbers.

We define the completion of a linear topological abelian group V as

V̂ = proj lim
p

V/FpV

It is easy to see that this is the same as the usual completion using Cauchy se-
quences. V̂ is a linear topological abelian group with neighborhood basis of 0 given
by the (FpV )̂ . V is complete if the map V → V̂ is an homeomorphism.

If V , W is are linear topological abelian groups then we make V ⊗Z W into a
linear topological abelian group by selecting as system of neighborhoods for 0 the
images of the abelian groups FpV ⊗ZW+V ⊗ZFpW . The completed tensor product
V ⊗̂Z W is the completion of V ⊗Z W for this topology.

Since now the categories of linear topological abelian groups and complete linear
topological abelian groups are tensor categories we can define vector spaces, rings,
modules etc. . . in them.

5.2. Filtered linear topological abelian groups. It will be necessary to use
filtered linear topological abelian groups. A filtered linear topological abelian group
is by definition an abelian group V , equipped with a filtration F · such that each
FmV is equipped with a linear topology with the property that the inclusion maps
FmV → Fm+1V are continuous. The filtration is F · is considered part of the
structure of a filtered linear topological abelian group.

We say that V is complete if each FmV is complete. The completion of V is
defined as

⋃
(FmV )̂. The category of filtered and complete filtered linear topological

abelian groups have the obvious structure of a monoidal category, so we can define
rings, modules etc. . . in them.



10 MICHEL VAN DEN BERGH

Example 5.2.1. The ring of differential operators of k[[t]], which is equal to
k[[t]][∂t] has an obvious structure of complete filtered linear topological ring.

5.3. Finite adic rings. In this section all rings are commutative. We will need
to complete non-noetherian rings. This is a somewhat dangerous operation for the
following reason. Let T be a ring with an ideal I and put T̂ = proj limT/In. If

we equip all T/In with the discrete topology then T̂ becomes a topological ring.

However in general we will not have T/I ∼= T̂ /IT̂ . The reason for this is that IT̂ is

not closed, i.e. IT̂ 6= (IT̂ )̂ = Î. So we should replace IT̂ by Î. Unfortunately this

does not resolve all our problems since in general În 6= (Î)n. So we still don’t have

an isomorphism R/In ∼= R/(Î)n. The following example clarifies this.

Example 5.3.1. Let T = k[x1, x2, . . .] be the polynomial ring in infinitely many

variables over k and let I = (x1, x2, . . .). Then T̂ = T [[x1, x2, . . .]].
The ideals (In)̂ are topologically generated by the monomials xi1 · · ·xin with

i1 ≤ i2 ≤ · · · ≤ in. The following element shows

x1 + x2x3 + x4x5x6 + · · ·

that Î is not generated by x1, x2, . . . as an ordinary ideal.
We now show that Î2 6= (I2 )̂. If f ∈ Î2 then the partial derivatives fi = ∂f/∂xi

are in a finitely generated ideal in Î (exercise). Consider the element

f = x2
1 + x3

2 + x4
3 + · · ·

By working modulo xm for m > n we see by looking at heights that an ideal
containing the fi needs at least n generators. Since n is arbitrary this means that
the fi cannot be contained in a finitely generated ideal.

Luckily all problems go away if we consider completions at finitely generated
ideals.

Definition 5.3.2. An adic ring [11, 0.7.1.9] is a linear topological ring such that

(5.1) T = proj lim
n

T/In

where of course T/In is equipped with the discrete topology.

An alternative way of stating (5.1) is by saying that In is a fundamental system
of open neighborhoods of 0 and that the topology on T is separated and complete.
An ideal I with this property is called an ideal of definition of T . Note that if T
has the discrete topology then T is adic and the zero ideal is an ideal of definition.

The following definition is non-standard but convenient.

Definition 5.3.3. A finite adic ring is an adic ring with a finitely generated ideal
of definition.

If T is an adic ring with ideal of definition I and M is a topological T module
then we say that M is adic if

M = proj lim
n

M/InM

where as usual M/InM is equipped with the discrete topology. It is clear that this
definition does not depend on the choice of I.
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Theorem 5.3.4. Assume that T is a ring with an ideal I such that I/I2 is finitely

generated and let M be a T -module. Let T̂ and M̂ be respectively the completions
of T and M for the I-adic topology. Then we have the following:

(1) T̂ is an adic ring with ideal of definition IT̂ .
(2) If f1, . . . , fd are lifts in I of generators of I/I2 then the images of f1, . . . , fd

in T̂ are generators of IT̂ . In particular T̂ is finite adic.
(3) M̂ is adic.

(4) We have (InM )̂ = InM̂

(5) The canonical map M/InM → M̂/InM̂ is an isomorphism.

Proof. This is a slight refinement of [11, Prop. 0.7.2.7]. �

The category of adic topological rings has tensor products. More concretely let
C → A, C → B be continuous maps of linear topological rings such that A,B have
finitely generated ideals of definition I, J . Then it is easy to see that the topology
on A⊗CB induced from A⊗B has a finitely generated defining ideal which is given
as the image of K = I⊗B+A⊗J . We define A ⊗̂CB as the completion of A⊗CB
for this topology. Note that for this definition the topology on C does not have to
be adic. Also note that if A,B are finite adic then so is A ⊗̂C B.

Convention 5.3.5. Let A,B be k-algebras. It will often happen below that there
is given some finitely finitely generated ideal I ⊂ A⊗B and that we are interested
in the I-adic completion of A ⊗ B at I. To avoid confusion we will write this
completion as A ⊠̂ B. A we use a similar convention for modules. If M , N are
respectively A, B-modules then M ⊠̂ N denotes the I-adic completion of M ⊗ N
at I.

If T is an adic ring then we will write Adic(T ) for the additive category of adic T -
modules. Note that any T -linear map between objects in Adic(T ) is automatically
continuous. If T has a finitely generated defining ideal then completion defines a
left adjoint to the forgetful functor

Adic(T )→ Mod(T )

5.4. Differentials. If M is a T -module then the symmetric group acts on M⊗n

(the n-fold tensor product of M over T ) by permuting the factors.
We put

∧i

T
M = coker

(⊕

σ∈Sn

M⊗n
∑

σ
φσ

−−−−→M⊗n

)

where φσ acts by 1− (−1)sign(σ)σ on the summand indexed by σ. It follows imme-

diately that
∧i
T M is compatible with base change in T .

If T is an R-algebra then as usual we write

ΩiT/R =
∧i

T
ΩT/R

and we call the collection of T -modules ΩiT/R, together with its natural differential

the relative De Rham complex Ω·
T/R of T/R.

If T is an adic R-algebra then we write.

Ωi,cont
T/R = (ΩiT/R )̂
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As derivations are automatically continuous with respect to the I-adic topology
(for I an ideal of definition of T ) the differential on Ω·

T/R lifts to Ω·,cont
T/R . We call

the resulting complex the continuous relative De Rham complex of T/R.

Assume now that T is finite adic. By Theorem 5.3.4 the Ωi,cont
T/R are adic T -

modules.
The following formula is convenient

Proposition 5.4.1. We have

Ωi,cont
T/R = proj lim

n
Ωi(T/In)/R

Proof. We have a standard exact sequence

In/I2n → ΩT/R/I
nΩT/R → Ω(T/In)/R → 0

Hence modulo essentially zero systems we have an isomorphism between the in-
verse systems (ΩT/R/I

nΩT/R)n and (Ω(T/In)/R)n. It is easy to see that we ob-

tain from this an isomorphism between the inverse systems (ΩiT/R/I
nΩiT/R)n and

(Ωi(T/In)/R)n, modulo essentially zero systems. Taking the inverse limit proves what

we want. �

Example 5.4.2. (A. Yekutieli) Consider T = k[[t]]. As ΩT/k is compatible with
localization we have (ΩT/k)t = ΩTt/k. Since Tt = k((t)) is a field of infinite tran-
scendence degree over k, it follows that ΩT/k is a very large object. On the other

hand Ωcont
T/k is equal to Tdt.

For M ∈ Mod(T ) let us denote by DeriR(T,M) the set of anti-symmetric multi-
linear maps T ⊗R · · · ⊗R T → M with i arguments, which are derivations in each
of their arguments.

Clearly ΩiT/R represents the functor

DeriR(T,−) : Mod(T )→ Mod(R) :

Similarly Ωi,cont
T/R also represents DeriR(T,−) but now considered as a functor Adic(T )→

Mod(R).

Proposition 5.4.3. Assume that T is a ring with a finitely generated ideal I. Let

(̂−) stand for I-adic completion. Then the canonical map

ΩiT/R/I
nΩiT/R → Ωi,cont

T̂ /R
/InΩi,cont

T̂ /R

is an isomorphism. In particular

(ΩiT/R )̂ = Ωi,cont

T̂ /R

Proof. ΩiT/R/I
nΩiT/R represents the functor

DeriR(T,−) : Mod(T/In)→ Mod(R)

and likewise Ωi,cont

T̂ /R
/InΩi,cont

T̂ /R
represents the functor

DerR(T̂ ,−) : Mod(T̂ /InT̂ )→ Mod(R)

It is easy to see that these functors are naturally isomorphic if we make the iden-
tification Mod(T/In) ∼= Mod(T̂ /InT̂ ) (using Theorem 5.3.4). �
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5.5. Formal schemes. A standard reference for the basic material on formal
schemes is [11]. Since the formal schemes we use are not noetherian, we recall

the basics. Let I be an ideal in a ring T . For f ∈ T/I let f̃ ∈ T stand for an
arbitrary lift of f . Then it is easy to see that the completion of Tf̃ with respect to

the ideal If̃ is (canonically) independent of the choice of f̃ . We will write T̂f for

this completed localization. If M is a T -module then M̂f can be define likewise.

If T is finite adic then follows from Theorem 5.3.4 that all T̂f are finite adic as

well and furthermore all M̂f are adic T̂f -modules.

An alternative definition for M̂f is the following. f defines an open subset D(f)

of SpecT/In = Spec T/I. Then M̂f is given by the global sections of

proj lim
n

(M/InM )̃ | D(f)

(where as usual (−)̃ denotes the quasi-coherent sheaf associated to a module).
Now we sheaffify these constructions. Recall the technically useful fact that an

inverse limit of sheaves can be computed as presheaves.
If T is a finite adic ring with finitely generated ideal of definition we define

SpcT = (SpecT/I, proj lim
n

(T/In)̃ )

for an ideal of definition I. So SpcT is a topologically ringed (T ,OT ) with T =
SpecT/I. It is clear that the definition of Spc T is independent of I and

(D(f),OT |D(f)) = Spc T̂f

We use a special type of formal scheme. For the full definition see [11].

Definition 5.5.1. An finite adic affine formal scheme is a topologically ringed
space which is isomorphic to Spc T for a finite adic ring T .

Let T now be a finite adic ring with finitely generated ideal of definition I. Put
(T ,OT ) = Spc T . If M is an adic T -module then we define

M△ = proj lim
n

(M/InM )̃

Thus M△ is a sheaf of topological OT -modules such that

M△ | D(f) = (M̂f )
△

OT itself contains a sheaf of ideals I = I△ such that

proj lim
n

OT /I
n = OT

We call I an ideal of definition of OT . Being an ideal of definition is a local property
(see [11, Prop 10.3.5]).

Chaining the various definitions and using Proposition 5.4.3 we also find

(Ωi,cont
T/R )△ | D(f) = (Ωi,cont

T̂f/R
)△

Definition 5.5.2. Let (X ,OX ) be a topologically ringed space. We say that X is
a finite adic formal scheme if X is locally a finite adic affine topologically ringed
space.
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As usual we call OX the structure sheaf of X . We say that a topological OX -
module is adic if it is locally of the form M∆. If X → Y is a map of a finite adic
formal scheme to a scheme then we define Ωi,cont

Y/X as the OX -module is which is

locally, on open affine formal subschemes Spc(T ), of the form Ωi,cont
T/R .

Morphisms between formal schemes are by definition morphisms of locally topo-
logically ringed spaces [11, Def 10.4.5]. If S, T are finite adic rings then

Homformal schemes(SpcS, Spc T ) = Homtopological rings(T, S)

[11, Prop 10.2.2].
Clearly the category of (affine) schemes is a full subcategory of the category of

finite adic (affine) formal schemes.
The category of finite adic formal schemes has fibered products [11, Prop 10.7.3].

As usual it is sufficient to construct these for affine formal schemes. If C → A,
C → B are continuous maps of adic rings then we put

SpcA×SpcC SpcB = Spc(A⊗̂CB)

Suppose X is a scheme and Y is a closed subscheme defined by a quasi-coherent

ideal I which is (locally) of finite type. Then X̂Y (or simply X̂) is the finite adic
formal scheme whose underlying space is Y and whose structure sheaf is

OX̂Y
= ÔX,Y = proj lim

n
OX/I

n

6. Formal geometry

Many ideas in this section are taken from [38, §5]. However we put more emphasis
on the language of formal schemes.

6.1. Basic definitions. Everything will be over an algebraically closed base field
k of characteristic zero. Fix an integer d. For a finite adic scheme Y with locally
finitely generated ideal of definition I we let Y [[t1, . . . , tn]] be the finite adic for-
mal scheme which is the completion of Y × Adk at the ideal I + (t1, . . . , td). The
inclusion/projection Y = Y × {0} →֒ Y × Adk → Y yields a canonical projection
map

(6.1) pY : Y [[t1, . . . , tn]]→ Y

with section

(6.2) iY : Y → Y [[t1, . . . , tn]]

If Y = SpcS is affine then

Y [[t1, . . . , td]] ∼= SpcS[[t1, . . . , td]]

We like to view (6.1) as an infinite dimensional vector bundle over Y with zero-
section given by (6.2).

Let FSch /k be the category of finite adic formal schemes over k.

Proposition 6.1.1. The functor

FSch /k→ FSch /k : Y 7→ Y [[t1, . . . , td]]

has a right adjoint.
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Proof. Let X ∈ FSch /k. We need to show that the contravariant functor

(6.3) Φ : FSch /k→ Set : Y 7→ HomFSch /k(Y [[t1, . . . , td]], X)

is representable.
Since maps of finite adic formal schemes are compatible with gluing we reduce

to Y = SpcS, X = SpcR. So we may work with the category of finite adic affine
formal schemes, or equivalently, the category of finite adic rings. Thus

Φ(S) = Hom(R,S[[t1, . . . , td]])

Let Rd,◦ be the k-algebra generated by symbols fi for f ∈ R and i = (i1, . . . , id)
with relations

(f + g)̃ = f̃ + g̃

(fg)̃ = f̃ g̃

λ̃ = λ (for λ ∈ k)

where f̃ is the generating function
∑

i fit
i with ti = ti11 · · · t

id
d . In particular there

is a ring homomorphism

R→ Rd,◦ : f 7→ f(0,...,0)

Let I be a finitely generated defining ideal for R and consider the ideal J ⊂ Rd,◦

the ideal generated by f(0,··· ,0) for f ∈ I. Then clearly J is also finitely generated.

Let Rd be the completion of Rd,◦ at J .
It is easy to see that we have a functorial isomorphism for any finite adic k-

algebra S:

(6.4) µ : Hom(R,S[[t1, . . . , td]])→ Hom(Rd, S)

where µ is defined by ∑

i

µ(φ)(fi) t
i = φ(f)

Hence Rd represents Φ. �

Below we denote the right adjoint to Y 7→ Y [[t1, . . . , td]] by X 7→ Xd. The proof
of the previous proposition shows that if X is affine then so is Xd.

Now assume that φ : Y → X is a map between k-schemes such that X is
separated and of finite type. Then the graph Γφ = (φ, idY ) : Y → X × Y of φ is
closed and its defining ideal is of finite type. We let Jetφ,∞ be the completion of
Y ×X along Γφ. Thus Jetφ,∞ comes equipped with a map of formal schemes

Jetφ,∞ → X × Y

An interesting special case is when φ is the inclusion of a closed point x in X . In
that case

(6.5) Jetφ,∞ = Spc ÔX,x

It is easy to see that Jetφ,∞ is compatible with base extension in the sense that
if there is a commutative diagram

Z −−−−→ Y

θ

y
yφ

X X
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then

(6.6) Jetθ,∞ = Z ×Y Jetφ,∞

We will write

JetX,∞ = JetidX ,∞

We obtain in particular

Y ×X JetX,∞ = Jetφ,∞

Now let Y be a an arbitrary k-scheme. Fix a map

φ : Y [[t1, . . . , td]]→ X

We then get a commutative diagram

(6.7)

Y Y

iY

y
y(φ◦iY ,idY )

Y [[t1, . . . , td]] −−−−→
(φ,pY )

X × Y

pY

y
ypr2

Y Y

where the composition of the vertical arrows is the identity. Put φ0 = φ ◦ iY .
If we complete the middle arrow at Y we get a map.

(6.8) φ̂0 : Y [[t1, . . . , td]]→ Jetφ0,∞

Definition 6.1.2. Let the notations be as above. We say that φ is a local coordi-

nate system parametrized by Y if φ̂0 is an isomorphism of formal schemes.

Assume that φ is a local system of parameters and fix a k-point y : Spec k → Y .
Pulling back (6.8) in the category of formal schemes and using (6.5)(6.6) we get an

isomorphism of k[[t1, . . . , tn]] and ÔX,x where x = (φ ◦ iY )(y). In particular X is
smooth at the image of x.

It follows that it is meaningless to talk about local coordinate systems for non-
smooth schemes. So we now assume that X is smooth of dimension d over k.

Assume in addition that X has a system of parameters x1, . . . , xd. Let I ⊂
OX×X be the defining ideal of the diagonal ∆. Then the sections x′i = xi⊗1−1⊗xi
of I form a generating regular sequence of the ideal of definition Î of JetX,∞ (we are
in the context of noetherian schemes and noetherian formal schemes so there are
no subtleties). Invoking Proposition 6.1.3 below (for affine open subsets of JetX,∞)
we find:

JetX,∞ ∼= ∆[[x′1, . . . , x
′
d]]

and hence by base extension

(6.9) Jetφ,∞ ∼= Γφ[[x
′
1, . . . , x

′
d]]

Proposition 6.1.3. Assume that we have a map R→ T where R is a ring and T
is finite adic. Assume that T has a defining ideal I generated by a regular sequence
x1, . . . , xn such that T/I ∼= R and such that the composition R → T → R is an
isomorphism. Then T ∼= R[[x1, . . . , xn]].



ON GLOBAL DEFORMATION QUANTIZATION IN THE ALGEBRAIC CASE 17

Proof. Putting φ(xi) = xi defines a continuous map

φ : R[[x1, . . . , xn]]→ T

Since in both rings the (xi)i form a regular sequence this map becomes an isomor-
phism after taking associated graded rings. And since the topologies involved are
separated and complete, this easily implies that φ is an isomorphism. �

Theorem 6.1.4. The subfunctor

Φ0 : Sch /k→ Set : Y 7→ {local coordinate systems on X}

of Φ (as in (6.3)) is representable by an open subscheme Xcoord of Xd which is still
affine over X.

Proof. As usual this is a local statement on X . Hence we may assume that X has
a system of parameters x1, . . . , xd.

Assume given a local coordinate system on X , indexed by Y :

φ : Y [[t1, . . . , td]]→ X

Thus by the above discussion we obtain a map

(6.10) φ̂0 : Y [[t1, . . . , td]]→ Γφ[[x
′
1, . . . , x

′
d]]

We may write the pullbacks of the x′i as
∑

j aijtj + · · · for functions aij on Y . Put

detφ0 = det aij . Then φ̂0 is an isomorphism if and only if detφ0 is a unit. Note
that detφ0 is well defined up to a unit.

Since it is easy to see that the formation of (6.10) is compatible with pullbacks
this implies that Φ0 is an open subfunctor of Φ. So it is representable by an open
subscheme Xcoord of Xd. It is in fact represented by the open subset defined by
det θ0 for θ : Xd[[t1, . . . , td]] → X the universal map. From the fact that Xd is
affine over X , we deduce that Xcoord is affine as well. �

Let θ : Xcoord[[t1, . . . , td]] → X be the universal local coordinate system on X .
From Definition 6.1.2 we obtain a canonical isomorphism

(6.11) θ̂0 : Xcoord[[t1, . . . , td]]→ Jetθ0,∞

of finite adic Xcoord-schemes.
If X = SpecR for a d-dimensional smooth k-algebra we write Rcoord for the

coordinate ring of Xcoord. We obtain an isomorphism

(6.12) Rcoord
⊠̂R→ Rcoord[[t1, . . . , td]] : r ⊗ f 7→ rf̃

where following Convention 5.3.5 we let Rcoord
⊠̂R be the completion of Rcoord⊗R

at the kernel of the multiplication map

(6.13) Rcoord ⊗R→ Rcoord : r ⊗ f 7→ rf̃

Example 6.1.5. It is instructive to understand the isomorphism (6.12) in the
simplest possible case, namely when R = k[x]. In that case

Rcoord = k[x0, x1, . . . ]x1

and (6.12) is given by

(6.14) (k[x, x0, x1, . . . ]x1 )̂ → (k[t, x0, x1, . . . ]x1 )̂ : xi 7→ xi, x 7→
∑

i≥0

xit
i
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where the first completion is at the ideal (x− x0) and the second completion is at
the ideal (t). To see directly that (6.14) is an isomorphism we look at associated
graded rings. Putting δ = (x− x0) the associated graded map to (6.14) is given by

(k[x0, x1, . . . ]x1)[δ]→ (k[x0, x1, . . . ]x1)[t] : xi 7→ xi, δ 7→ x1t

This is clearly an isomorphism.

6.2. Groups and actions. Recall that by definition for R a smooth d-dimensional
k-algebra we have

Hom(Rd, S) ∼= Hom(R,S[[t1, . . . , td]])

where S is an arbitrary finite adic k-algebra. According to Definition 6.1.2 a map
φ : Rd → S represents a local coordinate system on SpecR, parametrized by SpcS
(i.e. an element of Hom(Rcoord, S)) if the corresponding map φ : R→ S[[t1, . . . , td]]
induces an isomorphism

(6.15) S ⊠̂R→ S[[t1, . . . , td]]

where S ⊠̂ R is the completion of S ⊗ R at the kernel of the ideal S ⊗ R → S :
s⊗ r 7→ sφ0(r) where φ0 is the kernel of the composition

R
φ
−→ S[[t1, . . . , td]]

ti 7→0
−−−→ S

Lemma 6.2.1. The functor which sends a finite adic k-algebra S to the group

(6.16) AutS(S[[t1, · · · , td]])

is representable by an affine finite adic formal k-scheme.

Proof. We sketch the proof which is similar to the proof of Proposition 6.1.1. Let A
be the k-algebra generated by variables zi,j1,...,jd for i = 1, . . . , d, jl ≥ 0, localized
at the determinant of the matrix zi,ej

where ej = (0, . . . , 1, . . . , 0) has its 1 in the
j’th position.

Let Â be the completion of A at the ideal generated by (zi,0,...,0)i. There is a
bijection

µ : Hom(Â, S)→ AutS(S[[t1, . . . , td]])

defined by

µ(φ)(ti) =
∑

j1,...,jd

φ(zi,j1,...,jd)tj11 · · · t
jd
d

Thus Â represents (6.16) (as finite adic ring). Hence Spc Â represents (6.16) in the
category of finite adic formal schemes. �

Below we denote the representing object of (6.16) by G. It is a group object in
the category of formal schemes.

The canonical action of G(S) on Hom(R,S[[t1, . . . , td]]) now defines an action
on Hom(Rd, S). Since this action is functorial in S we obtain an action of G on
Rd. Since G(S) also acts on local coordinate systems it is clear that we obtain in
addition an action of G on Rcoord. Finally since everything is compatible with base
change these actions globalize to the case of not necessarily affine d-dimensional
smooth k-schemes.
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Proposition 6.2.2. Let X be a separated d-dimensional smooth k-scheme. Then
the action of G on Xcoord is free in the sense that

(6.17) G×Xcoord → Xcoord ×Xcoord : (g, x)→ (x, gx)

is a monomorphism.

Proof. For S finite adic we have to show that (6.17) induces an injection

G(S)×Xcoord(S)→ Xcoord(S)×Xcoord(S)

As usual we may reduce to the case that X = SpecR is affine. Then the statement
amounts to proving that G(S) acts freely on morphisms

R→ S[[t1, . . . , td]]

defining a local coordinate systems parametrized by SpcS. This follows from the
existence of the isomorphism (6.15). �

The Lie algebra of G is defined as the kernel G(k[ǫ])→ G(k). It can be naturally
identified with the Lie algebra g of derivations of k[[t1, · · · , td]].

The following remarkable result is the main result of “formal geometry” [15]. It
says that in a suitable sense Xcoord is a principal homogeneous space over G. We
will not explicitly use it however.

Proposition 6.2.3. As before let X be a separated smooth k-scheme of dimen-
sion d. For x ∈ Xcoord let Tx(X

coord) be the tangent space at x, i.e. the set of
maps Spec k[ǫ]/(ǫ2)→ Xcoord such that the composition Spec k → Spec k[ǫ]/(ǫ2)→
Xcoord is x. Then the map g → Tx(X

coord) induced by the G-action on Xcoord is
an isomorphism of vector spaces.

Proof. Since (6.17) is a monomorphism we obtain an injection

g× Tx(X
coord)→ Tx(X

coord)× Tx(X
coord)

we have to prove that this is a bijection. That is, if x1, x2 are k[ǫ]/(ǫ2)-points of
Xcoord mapping x then there is an g ∈ G(k[ǫ]/(ǫ2)), mapping to the identity in
G(k) such that gx1 = x2.

We may assume that X = SpecR is affine. Let x◦ be the image of x in X . Then
x is given by a map

x : R→ k[[t1, . . . , td]]

inducing an isomorphism

R̂→ k[[t1, . . . , td]]

where R̂ is the completion of R at the maximal ideal of R defining x◦.
Then x1, x2 are maps maps making the following diagram commutative

(6.18) R
x1 //

x

))TTTTTTTTTTTTTTTTTTT

x2

��

k[ǫ]/(ǫ2)[[t1, . . . , td]]

��
k[ǫ]/(ǫ2)[[t1, . . . , td]] // k[[t1, . . . , td]]

Both x1, x2 induce k[ǫ]/(ǫ2)-linear isomorphisms

R̂⊗ k[ǫ]/(ǫ2)→ k[ǫ]/(ǫ2)[[t1, . . . , td]]
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From this it follows we can complete the diagram (6.18) with a k[ǫ]/(ǫ2)-linear
diagonal arrow k[ǫ]/(ǫ2)[[t1, . . . , td]] → k[ǫ]/(ǫ2)[[t1, . . . , td]]. This is the required
element of G(k[ǫ]/(ǫ2)). �

The action of G on Rd may be differentiated to an action of g on Rd. The
following proposition describes the nature of this action.

Proposition 6.2.4. Let R be a smooth affine k-algebra of dimension d. For f ∈ R
let f̃ ∈ Rd[[t1, . . . , td]] be as in the proof of Proposition 6.1.1. For v ∈ g let Lv
be the action v on Rd[[t1, . . . , td]] obtained by linearly extending the action of v on
k[[t1, . . . , td]] (recall that g = Derk(k[[t1, . . . , td]])). Let Lv̄ be the action of v on
Rd[[t1, . . . , td]] by linearly extending the action of v on Rd. Then we have

(6.19) Lv̄(f̃) = −Lv(f̃)

Proof. We have the universal map

R→ Rd[[t1, . . . , td]] : f 7→ f̃

which which is easily seen to be G-invariant (for G-acting trivially on R). Formula
(6.19) expresses the fact that the differentiated G-action, given by Lv̄ + Lv acts

trivially on f̃ for f ∈ R. �

Example 6.2.5. It is again interesting to consider the simple case R = k[x]. We
have

Rd = k[x0, x1, . . .]

and

g = k[[t]]∂t

To compute the action of g we note that g has a k-linear topological basis given by
δi = ti∂t. We have

[δi, δj ] = (j − i)δi+j−1

To compute the action of δi we use the method of proof of Proposition 6.2.4. Thus
we use

0 = δi(
∑

j

xjt
j)

=
∑

j

δi(xj)t
j +

∑

j

xjjt
i+j−1

=
∑

j

δi(xj)t
j +

∑

j≥i−1

(j − i+ 1)xj−i+1t
j

=
∑

j<i−1

δi(xj)t
j +

∑

j≥i−1

(δi(xj) + (j − i+ 1)xj−i+1)t
j

Thus it follows

δi(xj) =

{
0 if j < i− 1

−(j − i+ 1)xj−i+1 if j ≥ i− 1

or simply

(6.20) δi(xj) = −(j − i+ 1)xj−i+1

using the convention xj = 0 for j < 0.
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We obtain for αi ∈ k(∑

i≥0

αiδi

)
· xj = −

∑

i≥0

αi(j − i+ 1)xj−i+1

This is a finite sum so the action of g on Rd is indeed well defined.

It is clear from (6.20) that the action of δ0 of Rd cannot be exponentiated (i.e.
the action of eδ0 on xi does not yield a finite sum). So the g-action cannot be
exponentiated to a group action on Rd. However the results in this section show
that g can be exponentiated to a group G in the category of finite adic schemes.

6.3. Affine coordinate systems. By restricting ourselves to linear coordinate
changes we may view GLd as a subgroup of G. The action (6.17) now restricts to
a free action

GLd×X
coord → Xcoord

Since Xcoord/X is affine we may define the scheme Xaff = Xcoord/GLd. Following
our usual practice we write Raff for the coordinate ring of (SpecR)aff .

The advantage of Xaff over Xcoord is the following property.

Proposition 6.3.1. Xaff is a bundle of (∞-dimensional) affine spaces over X.

Proof. Assume that X = SpecR is affine and that R has a system of parameters
x1, . . . , xd. Consider the closed subscheme Y of Xcoord whose S-points are given
by maps

φ : R→ S[[t1, . . . , td]]

such that φ(xi) = ai + ti + · · · for certain ai ∈ S. It is clear that the obvious map
GLd×Y → X defines a bijection on S-points and hence is an isomorphism. Thus
Y ∼= X/GLd.

Using the fact that R/k[x1, . . . , xd] is etale (and hence formally etale) we see
that any diagram

R −−−−→ S
x

xti→0

k[x1, . . . , xd] −−−−→ S[[t1, . . . , td]]

may be completed uniquely with a diagonal arrow R→ S[[t1, . . . , td]].
It is now clear that sending φ to φ0 together with the coefficients of φ(xi) of the

terms of degree ≥ 2 defines a bijection between Y and the S-points of the product
of SpecR with an infinite dimensional affine space. This proves what we want. �

6.4. The abstract formalism of Maurer Cartan forms. This is an abstract
section whose results will be employed in the next section. We consider

g = Derk[[t1,...,xd]](k[[t1, . . . , td]])

together with its natural topological Lie algebra structure. Let T be a finite adic
k-algebra. Then the DG-Lie algebra

Ω·
T/k ⊗̂k g

may be written as
∑

i

Ω·
T/k[[t1, · · · , td]]

[
∂

∂ti

]
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and hence its action on
Ω·
T/k[[t1, . . . , td]]

is clearly faithful.
We want to classify the derivations of degree one on Ω·

T/k[[t1, . . . , td]] such that

the natural map of algebras

Ω·
T/k → Ω·

T/k[[t1, . . . , td]]

becomes a map of DG-algebras. Below d is such a differential.
Clearly d is determined by the values ωi = dti ∈ Ω1

T/k[[t1, . . . , td]] or equivalently

by the restriction of d to k[[t1, . . . , td]]. This yields us a derivation

δ : k[[t1, . . . , td]]→ Ω1
T/k[[t1, . . . , td]]

such that δ(ti) = ωi.
Put

ω =
∑

i

ωi
∂

∂ti
∈ Ω1

T/R ⊗̂k g

Then with a slight abuse of notation d may be written as

d = d0 + ω

where d0 is the extension of the differential on Ω·
T/R. The fact that d2 = 0 translates

into the identity

(6.21) d0 ◦ ω + ω ◦ d0 + ω ◦ ω = 0

as operations on Ω·
T/R[[t1, . . . , td]]. The left hand side of this identity is the image

of

d0ω +
1

2
[ω, ω]

in Ω·
T/k ⊗̂ g. Hence (using faithfulness) (6.21) is nothing but the Maurer-Cartan

equation

d0ω +
1

2
[ω, ω] = 0

in the DG-Lie algebra Ω·
T/k ⊗̂ g (compare with (1.4)).

6.5. The Maurer-Cartan form on coordinate spaces. Tensoring (6.12) on the
left by the graded Rcoord-module Ω·

Rcoord and completing we obtain an isomorphism
of graded commutative algebras.

(6.22) Ω·
Rcoord ⊠̂R ∼= Ω·

Rcoord [[t1, . . . , td]] : η ⊗ f 7→ ηf

The DG-algebra structure on Ω·
Rcoord ⊠̂ R now induces a DG-algebra structure on

Ω·
Rcoord [[t1, . . . , td]] and thus according to the abstract discussion in §6.4 there is an

associated Maurer-Cartan form

ωMC ∈ Ω1
Rcoord ⊗̂ g

such that for η ∈ ΩiRcoord , f ∈ R

(dη)f̃ = (d+ ωMC)(ηf̃)

which is equivalent to

(6.23) (d+ ωMC)(f̃) = 0

The following lemma will be used below.
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Lemma 6.5.1. For v ∈ g let iv̄ be the contraction on Ω·
Rcoord with the derivation on

Rcoord induced by v (cfr (6.19)). Extend iv̄ to a map of degree −1 from Ω·
Rcoord ⊗̂ g

to itself. Then we have

(6.24) iv̄ωMC = 1⊗ v

where both sides are elements of Rcoord ⊗̂ g.

Proof. It is easy to see that for any ω ∈ Ω1
Rcoord ⊗̂ g we have (iv̄ω)(f̃) = iv̄(ω(f̃)).

Applying iv̄ to (6.23) and using this fact we obtain

(Lv̄ + iv̄ωMC)(f̃) = 0

Or using (6.19)

(iv̄ωMC)(f̃) = Lv(f̃)

The operators on both sides are Rcoord-linear. Since Rcoord[[t1, . . . , td]] is topologi-

cally generated by the f̃ , f ∈ R and Rcoord (by the isomorphism (6.12)) we obtain
as operators on Rcoord[[t1, . . . , td]]

(6.25) iv̄ωMC = Lv

Then (6.24) is the same equation as (6.25) but interpreted in Ω·
Rcoord ⊗̂ g using

faithfulness (see §6.4). �

6.6. An acyclicity result. Assume that X is a separated smooth k-scheme of
dimension d. Let θ0 : Xaff → X be the canonical map. If Xaff were finite dimen-
sional then the following result would follow trivially from the theory of algebraic
De Rham cohomology [19] together with Proposition 6.3.1.

Theorem 6.6.1. Put J = Jetθ0,∞. Then the canonical map

OX → π∗Ω
·,cont

J/X

is a quasi-isomorphism where π : J → X is the composition of the map J →
X ×Xaff with the projection on the first factor.

Proof. Since this result is local on X we may assume X = SpecR and R has a
system of parameters x1, . . . , xd. Put x′i = θ0(xi)⊗ 1− 1⊗ xi and

Let I ⊂ Raff⊗R be the kernel of the multiplication map Raff ⊗R→ Raff . Then
J = SpcRaff

⊠̂R where Raff
⊠̂R is the completion of Raff ⊗R at the ideal I and

Γ(X,π∗Ω
·,cont
J/X ) = Ω·,cont

Raff ⊠̂R/R

We have an R-linear isomorphism Raff ∼= (Raff ⊗ R)/I (where on the right hand
side R acts on the nose and on the left hand side it acts via the map θ0). By
Proposition 6.3.1 Raff/R is formally smooth. Using formal smoothness we obtain a
(non-canonical) R-linear splitting of the map (Raff⊗R)/In → (Raff⊗R)/I ∼= Raff .

Taking the inverse limit over n we obtain a commutative diagram

(6.26)

Raff
⊠̂R

r⊗f 7→rθ0(f)
−−−−−−−−→ Raff

1⊗idR

x
xθ0

R R

where the top map in (6.26) is (non-canonically) split as R-algebras.
Using Proposition 6.1.3 we obtain an isomorphism

(6.27) Raff
⊠̂R ∼= Raff [[x′1, . . . , x

′
d]]
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of R-algebras.
According to Theorem 6.7.1 below the canonical map

Ω·
Raff/R → Ωcont,·

Raff [[x′
1,...,x

′
d
]]/R

is a quasi-isomorphism. Hence the left inverse of this map (coming from the map
Raff [[x′1, . . . , x

′
d]]→ Raff given by sending x′i → 0)

Ωcont,·
Raff [[x′

1,...,x
′
d
]]/R
→ Ω·

Raff/R

is also a quasi-isomorphism.
Combining this with (6.27) we see that the top map in (6.26) induces a quasi-

isomorphism on relative De Rham complexes.
Using the proof of Proposition 6.3.1 we see that Raff is a direct limit of finitely

generated polynomial rings Ri over R. Thus we have Ω·
Raff/R = inj limiΩ

·
Ri/R

and

since it is well-known that R→ ΩRi/R is a quasi-isomorphism (the Poincare lemma)
we obtain that θ0 induces a quasi-isomorphism

R = Ω·
R/R → ΩRaff/R

Thus the right most map in (6.26) also induces a quasi-isomorphism on relative De
Rham complexes. Therefore the left most one does as well. �

Example 6.6.2. As usual it is instructive to consider the case R = k[x]. As in
Example 6.1.5 we have

Rcoord = k[x0, x1, . . . ]x1

The one dimensional torus GL1 acts with weight −i on xi (this follows form the
fact that x̃ =

∑
i xit

i must be invariant). Hence

Raff = (k[x0, x1, . . . ]x1)
GL1 = k[y0, y2, . . .]

where yi = (x1)
−ixi. The map R → Raff is still given by x 7→ x0 = y0 and the

ideal I = ker(Raff ⊗R→ Raff) is generated by y0 − x.
We have

Ω·
Raff = k[y0, dy0, y2, dy2, . . .]

where deg dyi = 1. Put

∆
def
= Ω·

Raff ⊗R = k[y0, dy0, y2, dy2, . . . , x]

and thus

(6.28) Ω·
Raff ⊠̂R = k[y0, dy0, y2, dy2, . . . , x]̂

where the completion is graded completion with respect to the ideal y0−x. To prove
directly that the homology of (6.28) is R it is sufficient to construct a continuous
homotopy between the maps of DG-k[x]algebras

φ0 : ∆→ ∆ : yi 7→

{
x if i = 0

0 otherwise
, dyi 7→ 0

and
φ1 : ∆→ ∆ : yi 7→ yi, dyi 7→ dyi

(viewed as maps of complexes).
Introducing an auxiliary variable z, a functional homotopy between these two

maps is given by the map of DG-k[x]-algebras

H : ∆ 7→ ∆⊗ k[z, dz]
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H(yi) =

{
z(y0 − x) + x, if i = 0

zyi otherwise

and H(dyi) = d(H(yi)). By this we mean that φi = H |z=i,dz=0 .
The following formula then yields a continuous homotopy between φ0 and φ1

(6.29) h(ω) =

∫ z=1

z=0

H(ω)

The meaning of the right hand side of (6.29) is as follows. Write an element η of
∆⊗ k[z, dz] as η0(x, y, z) + η1(x, y, z)dz where η0 does not contain dz. Then

∫ z=1

z=0

η
def
=

∫ z=1

z=0

η1(x, y, z)dz

6.7. De Rham complexes of formal power series rings. The following ab-
stract result was used in the previous section.

Theorem 6.7.1. Assume that T0 is an R-algebra and that R is a k-algebra. Put
T̂ = T0[[x1, . . . , xn]]. Then the canonical map

Ω·
T0/R

→ Ω·,cont

T̂ /R

is a quasi-isomorphism of complexes of R-modules.

Proof. Put T = T0[t1, . . . , tn]. By Proposition 5.4.3 Ω·,cont

T̂ /R
is the (graded) comple-

tion of Ω·
T/R.

The latter is equal to Ω·
T0/R

⊗RΩ·
R[t1,...,tn]/R as graded commutative differential

graded R-algebras. We view Ω·
T/R as a first quadrant double complex with the

horizontal direction being given by Ω·
R[t1,...,tn]/R.

Hence it is sufficient to prove that for any T0-module M the completion of

(6.30) M ⊗R Ω·
R[t1,...,tn]/R

has homology in degree zero and is acyclic elsewhere. By the Poincare lemma for
polynomial rings this is true before completion. �

Now if we put deg ti = deg dti = 1 then (6.30) is a graded complex. Hence for
every n the part of degree n

(6.31) (M →M ⊗R Ω·
R[t1,...,tn]/R)n

in (6.30) is exact (with M in degree zero). Now since (6.30) is a complex with
positively graded components, its completion (augmented with M) is simply the
product of the complexes (6.31). Hence it is exact also.

7. Reminder on DG-Lie and L∞-algebras

7.1. Coderivations. Let V be a graded vector space and set SV = ⊕∞
n=0S

nV
considered as an augmented coalgebra such that

∆(v) = v ⊗ 1 + 1⊗ v

ǫ(v) = 0

for v ∈ V . Fix w = w1 · · ·wn where the wi are homogeneous elements of V . Let
N = {1, . . . , n}. For I ⊂ N put wI =

∏
i∈I wi. For a disjoint decomposition
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N = I1 ∪ · · · ∪ Ip we define ǫ(I1, . . . , In) as the sign which makes the following
formula formally correct

wI1 · · ·wIp
= ǫ(I1, . . . , Ip)w

A coderivation Q of degree one on SV is determined by its “Taylor coefficients”
(∂nQ)n≥0 which are the compositions

SnV
inclusion
−−−−−→ SV

Q
−→ SV

projection
−−−−−−→ V

Q can be computed from its Taylor coefficients by a kind of Leibniz rule. One has

(7.1) Q(w) =
∑

I⊂N

ǫ(I,N − I)(∂|I|Q)(wI)wN−I

The Taylor coefficients of Q2 are thus given by

(7.2) (∂nQ2)(w) =
∑

I⊂N

ǫ(I,N − I)(∂n−|I|+1Q)((∂|I|Q)(wI)wN−I)

We assume throughout that Q is compatible with the augmented structure. I.e.
Q(1) = 0, or equivalently ∂0Q = 0. If ∂nQ = 0 for n > 1 then (7.1) implies that Q
is a derivation for the canonical algebra structure on SV .

7.2. Coalgebra maps. If V,W are graded vector spaces then an augmented coal-
gebra map of degree zero ψ : SV → SW is determined its “Taylor coefficients”
(∂nψ)≥1 which are the compositions

SnV
inclusion
−−−−−→ SV

ψ
−→ SW

projection
−−−−−−→W

ψ can be computed from its Taylor coefficients as follows.

(7.3) ψ(w) =
∑

N=I1∪···∪Ip

1

p!
ǫ(I1, . . . , In)(∂|I1|ψ)(wI1 ) · · · (∂

|Ip|ψ)(wIp
)

Here N = I1 ∪ · · · ∪ Ip is an ordered partition of N into p disjoint subsets (with p
variable).

It follows from (7.3) that if ∂nψ = 0 for n > 1 then ψ is an algebra homomorphism
SV → SW .

Assume that SV and SW are equipped with a coderivation of degree one, de-
noted by Q. One may show that the condition

ψ ◦Q = Q ◦ ψ

is equivalent to the corresponding “first order condition”

∂n(ψ ◦Q) = ∂n(Q ◦ ψ)

The latter condition maybe expanded as

(7.4)
∑

I⊂N

ǫ(I,N − I)(∂n−|I|+1ψ)((∂|I|Q)(wI)wN−I) =

∑

N=I1∪···∪Ip

1

p!
ǫ(I1, . . . , In)(∂pQ)((∂|I1|ψ)(wI1 ) · · · (∂

|Ip|ψ)(wIp
)
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For further reference we note that in case ∂iQ = 0 for i 6= 1, 2 this formula special-
izes to

(7.5)
∑

1≤i≤n

ǫ(i, N − {i})(∂nψ)((∂1Q)(wi)wN−{i})+

∑

1≤i<j≤n

ǫ(i, j,N − {i, j})(∂n−1ψ)((∂2Q)(wiwj)wN−{i,j}) =

(∂1Q)((∂nψ)(w)) +
1

2

∑

N=I1∪I2

ǫ(I1, I2)(∂
2Q)((∂|I1|ψ)(wI1 )(∂

|I2|ψ)(wI2 ))

7.3. L∞-algebras and morphisms.

Definition 7.3.1. An L∞-structure on a vector space g is a coderivation Q of
degree one on S(g[1]) which has square zero.

One puts for a ∈ g

da = −∂1Q(a)

[a, b] = (−1)|a|∂2Q(a, b)
(7.6)

(where |a| is the degree of a ∈ g). It then follows from (7.2) that d2 = 0 and that d
is a derivation of degree one of g with respect to the binary operation of degree zero
[−,−]. If ∂iQ = 0 for i > 2 then g is a DG-Lie algebra. Conversely any DG-Lie
algebra can be made into an L∞-algebra by defining ∂1Q, ∂2Q according (7.6) and
by putting ∂iQ = 0 for i > 2.

A morphism of L∞-algebras g → h is by definition a coalgebra map of degree
zero S(g[1])→ S(h[1]) commuting with Q. It is customary to write ψi = ∂iψ where
ψi is considered as a map ∧ig → h of degree 1 − n. It follows from (7.4) that
dψ1 = ψ1d. Hence ψ1 defines a morphism of complexes.

7.4. The topological case. The above notions make sense in any symmetric
monoidal category. We will use them in the case of filtered complete linear topo-
logical vector spaces.

7.5. Twisting. Assume that ψ : g → h is a L∞-morphism between L∞-algebras
equipped with some type of topology and let ω ∈ g1 be a solution of the L∞-
Maurer-Cartan equation ∑

i≥1

1

i!
(∂iQ)(ωi) = 0

in g. Here and below we assume that we are in a situation where all occurring
series are convergent and standard series manipulations are allowed. This will be
the case in the application in §9.1 where the series will in fact be finite.

Define Qω, ψω and ω′ by [38]

(∂iQω)(γ) =
∑

j≥0

1

j!
(∂i+jQ)(ωjγ) (for i > 0)(7.7)

(∂iψω)(γ) =
∑

j≥0

1

j!
(∂i+jψ)(ωjγ) (for i > 0)(7.8)

ω′ =
∑

j≥1

1

j!
(∂jψ)(ωj)(7.9)
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for γ ∈ Si(g[1]). Yekutieli shows in [38] that ω′ is a solution of the Maurer-Cartan
equation on h and that furthermore g, h, when equipped with Qω, Qω′ are again
L∞-algebras. Let us denote these by gω and hω′ . Yekutieli also shows that ψω
is an L∞ map gω → hω′ . Variants of this principle occur at other places in the
literature. See e.g. [34, Corollary 4.0.3][12, §2.4]. Let us see what the definition
of Qω means in case g is a DG-Lie algebra. In this case the L∞-Maurer-Cartan
equation translates into the usual Maurer-Cartan equation

dω +
1

2
[ω, ω] = 0

Then

(∂1Qω)(γ) = (∂1Q)(γ) + (∂2Q)(ωγ)

(∂2Qω)(γ) = (∂2Q)(γ)

(∂iQω)(γ) = 0 (for i ≥ 3)

Or translated into differentials and Lie brackets

dω = d+ [ω,−]

[−,−]ω = [−,−]
(7.10)

7.6. Descent for L∞-morphisms. This is a somewhat abstract section. It is an
explicitation of [27, §7.3.3] (in particular the last paragraph). The result will be
used to descend a L∞-morphism under a rational group action.

We now assume that g is a DG-Lie algebra and s is a set. We assume there is an
“action” of s on g such that v ∈ s acts by a derivation of degree −1 on g, denoted
by iv. Put Lv = div + ivd. This is a derivation of g of degree zero.

By the discussion in §7.1 there exist unique coderivations ı̃v and L̃v on S(g[1])

such that ∂1ı̃v = jv
def
= −iv , ∂1L̃v = Lv and ∂iı̃v = ∂iL̃v = 0 for i 6= 1 (the sign

change on ı̃v occurs because of the fact that iv is an odd map g → g and ∂1ı̃v is
the corresponding map g[1]→ g[1]).

Lemma 7.6.1. One has

L̃v = [Q, ı̃v]

Proof. We know that [Q, ı̃v] is a coderivation. Hence we have to compute ∂i[Q, ı̃v].
Since ı̃v maps Si(g[1]) to Si(g[1]) we have ∂i[Q, ı̃v] = ∂iQ ◦ ı̃v + ı̃v ◦ ∂iQ. We
need only to consider the cases i = 1, 2. Assume first i = 2. Then (using the fact
that ı̃v is also a derivation on S(g[1]), equal to jv on g[1]) we compute for a, b ∈ g

(considered as elements of g[1])

(∂2Q ◦ ı̃v + ı̃v ◦ ∂
2Q)(a, b) = ∂2Q(jva, b) + (−1)|a|−1∂2Q(a, jvb) + jv ◦ ∂

2Q(a, b)

= (−1)|a|−1[jva, b]− [a, jvb] + (−1)|a|jv[a, b]

= 0

(note that |a|, |b| refer to the degrees of a, b in g).
Now assume i = 1. We have

(∂1Q ◦ ı̃v + ı̃v ◦ ∂
1Q)(a) = −djv(a)− jvd(a) = Lv(a) = L̃v(a) �

Put

(7.11) gs = {X ∈ g | ∀v ∈ s : ivX = LvX = 0}
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we call gs the reduction of g with respect to the s-action. It is clear that gs is a
DG-Lie algebra as well.

Remark 7.6.2. It is perhaps useful to point out that whereas the notion of an
s-action only depends on the graded structure of g, the construction of gs also
depends on the differential.

Proposition 7.6.3. Assume that ψ is an L∞-morphism g → h between DG-Lie
algebras equipped with a s-action as above. Assume that ψ commutes with the s

action in the sense that for all v ∈ s

∀v : [̃ıv, ψ] = 0

(where as above ı̃v stands for the induced coderivations on S(g[1]) and S(h[1])).
Then ψ descends to an L∞-morphism ψs : gs → hs.

Proof. By (7.11) we have to show that the restrictions of ı̃v ◦ ∂iψ and L̃v ◦ ∂iψ to

Si(gs[1]) are zero. Note that since L̃v = [Q, ı̃v] (by Lemma 7.6.1, the fact that ı̃v
commutes with ψ implies that L̃v commutes with ψ as well.

ı̃v ◦ ∂
iψ = ∂i(̃ıv ◦ ψ) = ∂i(ψ ◦ ı̃v)

L̃v ◦ ∂
iψ = ∂i(L̃v ◦ ψ) = ∂i(ψ ◦ L̃v)

Since ı̃v and L̃v are zero on S(gs[1]) this implies the desired result. �

7.7. Compatibility with twisting. Assume that g, h are topologicalL∞-algebras
and ψ is an L∞-morphism g→ h. We make the same assumptions as in §7.5 with
regard to convergence of series. Our aim to understand the behavior of s-actions
under twisting.

Proposition 7.7.1. Assume that g and h are equipped with a s-action and assume
that ψ commutes with this action (as in Proposition 7.6.3). Let ω ∈ g1 be a solution
to the Maurer Cartan equation. Since twisting does not change the Lie bracket (see
(7.10)), s acts on gω and hω as well.

Assume that for i ≥ 2 and all v ∈ s, γ ∈ Si−1(g[1]) we have

(7.12) (∂iψ)(ivω · γ) = 0

Then ψω is compatible with the s-action on gω and hω.

Proof. [̃ıv, ψω] is a “ψω-coderivation” which is the dual notion of a “φ-derivation”
for a map of algebras φ : A→ B. One verifies that in order to prove [̃ıv, ψω] = 0 it
is sufficient to show that ∂i [̃ıv, ψω] = ı̃v ◦ ∂iψω − ∂iψω ◦ ı̃v = 0.

We have for γ ∈ Si(g[1]), i > 0

(7.13) (∂iψω ◦ ı̃v)(γ) =
∑

j≥0

1

j!
(∂i+jψ)(ωj · ı̃vγ)

and

(̃ıv ◦ ∂
iψω)(γ) =

∑

j≥0

1

j!
(∂i+jψ)(̃ıv(ω

jγ))

=
∑

j≥1

(
1

(j − 1)!
(∂i+jψ)(jv(ω) · ωj−1γ)

)
+

(
1

j!
(∂i+jψ)(ωj · ı̃vγ)

)

(7.14)
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(recall that ω has degree zero in g[1]). The difference between (7.13) and (7.14) is
a linear combination of terms of the form (7.12) and hence it is zero. �

8. Poly-differential operators and poly-vector fields revisited

In this section we remind the reader about some facts on poly-differential opera-
tors and poly-vector fields. These notions were already introduced in the introduc-
tion but for the convenience of the reader we repeat some definitions. From now
on we assume k = C.

8.1. General definitions. Let R be a finite adic k-algebra. We view R as a R⊗n

module through the diagonal action. We put

Dpoly,n(R) = DiffR⊗n(R⊗n, R)

where “Diff” stands for differential operators.2 We also writeDpoly,n(X) = Dpoly,n(R)

if X = SpcR. If X is a finite adic scheme then we define Dpoly,n
X by gluing from

the affine case.
We may view the elements of Dpoly,n(R) as the set of multilinear maps R⊗n → R

which are differential operators in each of their arguments. With this interpretation
it is clear that Dpoly,·(R) is a DG-Lie subalgebra of C

·(R), the Hochschild complex
of R. In particular it is a DG-Lie subalgebra.

We say that R is formally of finite type [36] if R has a finitely generated ideal of
definition I such that R/I is finitely generated. This definition is clearly indepen-
dent of I. If R is formally of finite type then let us say that R is formally smooth if
Ω1,cont
R is projective. In that case following Yekutieli’s argument in [37] we see that

the map

Dpoly,·(R)→ C
·(R)

is a quasi-isomorphism.
For p ≥ 0 let F pDpoly,n(R) be the differential operators of degree ≤ p. It is then

easy to see that ifR is formally of finite type then F pDpoly,n(R) is a finite R-module.
In that case we will view Dpoly,n(R) as a filtered complete linear topological vector
space.

Similarly put

T poly,n(R) = DerR⊗n(R⊗n, R)S
n

The righthand side describes the set of poly-derivations which are anti-symmetric
in their arguments.3

If R is formally of finite type then T poly,n(R) is a finite R-module. In that
case we view T poly,n(R) as a filtered complete linear topological vector space with
filtration concentrated in degree n.

Convention-Warning 8.1.1. In this section and the next almost all our objects
will be considered as being (naturally) filtered. This has serious implications for the
meaning of completions and completed tensor products. See §5.2.

2Note that since differential operators are continuous with respect to any adic topology, we
don’t have to worry about continuity.

3In §5.4 the notation Dern(R, R) was used. The current notation is more convenient for this
section



ON GLOBAL DEFORMATION QUANTIZATION IN THE ALGEBRAIC CASE 31

If R formally of finite type and formally smooth then there is an isomorphism

∧nRT
poly,1(R)→ T poly,n(R) : γ1 ∧ · · · ∧ γn 7→

∑

σ∈Sn

(−1)σγσ(1) ⊗ · · · ⊗ γσ(n)

where γi ∈ T poly(R) = Derk(R,R) and γ1 ⊗ · · · ⊗ γn acts on R⊗n via

(γ1 ⊗ · · · ⊗ γn)(r1 ⊗ · · · ⊗ rn) = γ1(r1) · · · γn(rn)

8.2. The formal case. In this section we consider R = k[[t1, . . . , td]]. Write ∂i
for ∂/∂ti. In this case we can give very concrete descriptions of T poly,·(R) and
Dpoly,·(R). First we have

T poly,1(R) = R∂1 ⊕ · · · ⊕R∂d

Dpoly,1(R) = R[∂1, · · · , ∂d]
(8.1)

and then

T poly,n(R) = ∧nRT
poly,n

Dpoly,n(R) = ⊗nRD
poly,

(8.2)

These descriptions reflect the algebra structure on T poly,·(R) and Dpoly,·(R). It
is also easy to get the Lie algebra structure on T poly,·(R) using the fact that the
product satisfies the Leibniz property with respect to the Lie bracket. In Dpoly,·(R)
this Leibniz property holds only up to homotopy and therefore the situation is much
more complicated.

Kontsevich (over the reals) constructs in [27] an L∞-quasi-isomorphism

(8.3) U : T poly,·(R)[1]→ Dpoly,·(R)[1]

If we write Ui = ∂i U then U1 is given by the HKR formula

(8.4) U1(∂i1 ∧ · · · ∧ ∂ip) =
1

p!

∑

σ∈Sp

(−1)σ∂iσ(1)
⊗ · · · ⊗ ∂iσ(p)

The higher Un are matrices of differential operators when expressed in the natural
R-bases of T poly,n(R) and Dpoly,n(R) obtained from (8.1)(8.2).

The quasi-isomorphism constructed by Kontsevich has two supplementary prop-
erties which are crucial for its extension to the non-formal case.

(P4) Uq(γ1 · · · γq) = 0 for q ≥ 2 and γ1, . . . , γq ∈ T poly,1(R).
(P5) Uq(γα) = 0 for q ≥ 2 and γ ∈ gld(k) ⊂ T

poly,1(R).

Remark 8.2.1. In [33] Tamarkin constructs an L∞-quasi-isomorphism like (8.3)
over the rationals. Halbout has informed me that the methods in [18] show that
Tarmarkin’s quasi-isomorphism may be defined in such a way that it also satisfies
(P4) and (P5). Using this one may replace the complex numbers by the rational
numbers in this paper.

Remark 8.2.2. Another property which is usually being regarded as essential for
globalization is the fact that the Uq are GLd(k) equivariant (condition (P3) in [27]).
We will not explicitly use this condition below. The explanation for this is that
(P3) almost follows from (P5). To be more precise let (P3’) be the condition that
Uq is gld(k) equivariant. I.e.

(P3’) [γ,Uq(α1 · · ·αq)] =
∑
j Uq(α1 · · · [γ, αj] · · ·αq)

for γ ∈ gld(k), αi ∈ T
poly,·(R)[1].
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Then we have (P5) ⇒ (P3′). This easily follows from (7.5). In sufficiently nice
situations (P3) and (P3’) are of course equivalent.

9. Global formality

9.1. Lifting to coordinate spaces. It is easy to define relative poly-differential
operators with respect to a graded commutative base ring. Assume that A→ B is
a morphism of graded commutative algebras and let M be a graded B-module. We

define Dpoly,n
A (B,M) as the set of multilinear maps B ⊗A · · · ⊗A B →M (n copies

of B) which are relative B/A differential operators in each of their arguments and
which are finite sums of homogeneous maps.

We will use the following routine lemma to manipulate such relative poly-differential
operators.

Lemma 9.1.1. Assume that A is a graded commutative DG-algebra and let S be
a finitely generated smooth k-algebra. Let I be a finitely generated ideal in A0 ⊗ S
(A0 is the part of degree zero of A). Then the obvious map of DG-Lie algebras

(9.1) Dpoly,.(S)→ Dpoly,.
A (A ⊠̂ S)

(all completions are I-adic completions of filtered topological A0 ⊗ S-modules) ex-
tends to an isomorphism of double complexes of filtered complete linear topological
vector spaces

(9.2) A ⊠̂Dpoly,.(S)→ Dpoly,.
A (A ⊠̂ S)

if we define the vertical differentials as the Hochschild differentials (considering

A ⊠̂ S as a graded ring) and the horizontal differentials on the right as [dA ⊗ 1,−]
and on the left as dA ⊗ 1.

Proof. It is easy to see that the differentials are as indicated. So we only have to
show that (9.2) is an isomorphism.

Since differential operators are always continuous with respect to the I-adic
topology we have

F pDpoly,n
A (A ⊠̂ S) = F pDpoly,n

A (A⊗ S,A ⊠̂ S) = F pDpoly,n(S,A ⊠̂ S)

where as in §8.1 F · denotes the filtration by degree of differential operators.
From the standard theory of differential operators it follows that there exists a

finitely generated projective S⊗n module Jp such that

F pDpoly,n(S,−) = HomS⊗n(Jp,−)

Hence

F pDpoly,n(S,A ⊠̂ S) = HomS⊗n(Jp, A ⊠̂ S)

= HomS⊗n(Jp, proj lim
m

(A⊗ S)/Im)

= proj lim
m

HomS⊗n(Jp, (A⊗ S)/Im)

= proj lim
m

(A⊗HomS⊗n(Jp, S))/Im

= A ⊠̂ F pDpoly,n(S)

In the third line we have used the fact that Jp is finitely generated projective. This
allows us to replace Jp by S⊗n. �



ON GLOBAL DEFORMATION QUANTIZATION IN THE ALGEBRAIC CASE 33

Assume now that R is smooth of dimension d. Using the previous lemma first
with A = Ω·

Rcoord , S = R and I = ker(Rcoord ⊗ R → Rcoord) and then with
A = Ω·

Rcoord , S = k[t1, . . . , td], I = (t1, . . . , td) we have the following string of maps
between of filtered complete linear topological DG-Lie algebras.

Dpoly,·(R)→ Ω·
Rcoord ⊠̂Dpoly,·(R)

∼= Dpoly,·
Ω·

Rcoord
(Ω·

Rcoord ⊠̂R)

∼= Dpoly,·
Ω·

Rcoord
(Ω·

Rcoord [[t1, . . . , td]])

∼= Ω·
Rcoord ⊠̂Dpoly,·(k[t1, . . . , td])

∼= Ω·
Rcoord ⊗̂D

poly,·(k[[t1, . . . , td]])

(9.3)

In the third line we have used the isomorphism (6.22).

In §6.5 we have seen that the differential on Ω·,cont

Rcoord⊠̂R/R
= Ω·

Rcoord ⊠̂R induces

the differential d+ ωMC on Ω·
Rcoord [[t1, . . . , td]] with

(9.4)

ωMC ∈ Ω1
Rcoord ⊗̂Derk(k[[t1, . . . , td]]) = Ω1

Rcoord ⊗̂T poly,1(k[[t1, . . . , td]]) ⊂ Ω1
Rcoord ⊗̂Dpoly,1(k[[t1, . . . , td]])

This then induces the differential [d,−]+[ωMC ,−]+dHoch onDpoly,·
Ω·

Rcoord
(Ω·

Rcoord [[t1, . . . , td]]).

It is easy to see that this induces the differential d ⊗ 1 + [ωMC ,−] + dHoch on the
graded Lie algebra Ω·

Rcoord ⊗̂Dpoly,·(k[[t1, . . . , td]]).

As for differential operators, we can define relative poly-vector fields and there is
an obvious analog of lemma 9.1.1. We obtain maps of graded vector spaces which
we may employ to get the following string of maps between filtered complete linear
topological DG-Lie algebras.

T poly,·(R)→ Ω·
Rcoord ⊠̂ T poly,·(R)

→ T poly,·
Ω·

Rcoord
(Ω·

Rcoord ⊠̂R)

∼= T poly,·
Ω·

Rcoord
(Ω·

Rcoord [[t1, . . . , td]])

∼= Ω·
Rcoord ⊠̂T poly,·(k[t1, . . . , td])

∼= Ω·
Rcoord ⊗̂ T poly,·(k[[t1, . . . , td]])

(9.5)

On the first Lie algebra this differential is trivial and on the last it is d⊗1+[ωMC,−].

Now consider the following two DG-Lie algebra

(9.6) t = Ω·
Rcoord ⊗̂ T

poly,·
k[[t1,··· ,td]](k[[t1, . . . , td]])

(9.7) d = Ω·
Rcoord ⊗̂D

poly,·
k[[t1,...,td]](k[[t1, . . . , td]])

where the DG-Lie algebra structures are obtained by linearly extending the ones
on the second component. Looking at the second line and the last line in (9.3) and
(9.5) and the description of the differentials we obtain by (7.10)

tωMC
= Ω·

Rcoord ⊠̂ T poly,·(R)

dωMC
= Ω·

Rcoord ⊠̂Dpoly,·(R)
(9.8)
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We now extend the L∞ quasi-isomorphism

U : T poly,·(k[[t1, . . . , td]])→ Dpoly,·(k[[t1, . . . , td]])

Ω·
Rcoord -linearly to an L∞-map Ū : t→ d.
Property (P4) together with (9.4) implies that if we plug ωMC into (7.9) we

obtain ω′
MC = ωMC (taking into account that the right most inclusion in (9.4) is

simply Ū1).

Lemma 9.1.2. Assume that γ ∈ ΩaRcoord ⊠̂ T poly,b(R). Then the sum in (7.8) is
finite.

Proof. This follows by degree considerations. Indeed Ūi is obtained by extension of
the map of degree zero

Ui : Si(T poly,·(k[[t1, . . . , td]])[2])→ Dpoly,·(k[[t1, . . . , td]])[2]

It follows that Ūi considered as a map

Si(Ω·
Rcoord ⊗̂ T poly,·(k[[t1, . . . , td]]))→ Ω·

Rcoord ⊗̂Dpoly,·(k[[t1, . . . , td]])

has bidegree (0, 2 − 2i). One the other hand it follows from (9.4) that ωMC has
bidegree (1, 1). Assume that γ has bidegree (a, b). Then the j’th term in (7.8) has
bidegree (a, b)+ (j, j) + (0, 2− 2(i+ j)) = (a+ j, b− j+ 2− 2i). Since for j ≫ 0 we
have b− j + 2− 2i < 0 it follows that the sum in (7.8) is indeed finite (for a given
bihomogeneous γ). �

Hence we obtain that

(9.9) ŪωMC
: tωMC

→ dωMC

is defined. From the formula (7.8) it follows that ŪωMC
is still Ω·

Rcoord -linear.

9.2. Descent. If we let v ∈ g = Derk(k[[t1, . . . , td]]) act by iv̄ on Ω·
Rcoord,· (as in

Lemma 6.5.1) then this defines a g-action on Ω·
Rcoord in the sense of §7.6. We define

a corresponding g-action on t and d by linearly extension.

Lemma 9.2.1. Put s = Lie GLd = gld ⊂ g. The L∞-morphism (9.9) descends to
an L∞-morphism

(ŪωMC
)s : (tωMC

)s → (dωMC
)s

(where (−)s is defined by (7.11)).

Proof. According to Proposition 7.6.3 we need to show that the s action on tωMC

and dωMC
is compatible with ŪωMC

. By Proposition 7.7.1 it is sufficient to prove
the following two statements

(1) The s action on t and d is compatible with Ū .
(2) For j ≥ 2 the condition

Ūj(iv̄ω · γ) = 0

is satisfied.

Since Ū is a base extension of U , it is easy to see that it commutes with the action
of iv̄, v ∈ s (in the sense of Proposition 7.6.3). This proves (1).

Using Lemma 6.5.1 and expanding γ as a Ω·
Rcoord -linear combination of elements

γ′ of S(t[1]) it follows that for (2) it is sufficient to prove that

Uj(v · γ
′) = 0

But this is precisely property (P5). �
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Lemma 9.2.2. The formulas (9.8) descend to isomorphisms of filtered complete
linear topological DG-Lie algebras

(dωMC)s ∼= Ω·
Raff ⊠̂Dpoly,.(R)

(tωMC
)s ∼= Ω·

Raff ⊠̂ T poly,.(R)

where the completion is computed with respect to the ideal ker(Raff ⊗R→ Raff).

Proof. We will concentrate ourselves on d. The case of t is similar. By (9.8) we
have

(dωMC
)s =

(
Ω·
Rcoord ⊠̂Dpoly,·(R)

)s

Thus we have to understand how the s-action on Ω·
Rcoord ⊗̂Dpoly,·(k[[t1, . . . , td]]) is

transported under the isomorphisms of (9.3) to a s-action on Ω·
Rcoord ⊠̂Dpoly,·(R).

We will do this for the g-action. Since s ⊂ g this does what we want.

We claim that the transported g-action is just the extension of the g-action on
Ω·
Rcoord . To prove this we observe that the isomorphism (6.12)

Ω·
Rcoord ⊠̂R→ Ω·

Rcoord [[t1, . . . , td]] : ω ⊗ f 7→ ωf̃

commutes with the g-actions on both sides (obtained from extending the g action

on Ω·
Rcoord ). To see this note that since iv̄ has degree −1, iv̄ is Rcoord

⊠̂R-linear on

the left and Rcoord[[t1, . . . , td]]-linear on the right.

If v ∈ g then iv̄ acts as a derivation on Ω·
Rcoord ⊠̂R and Ω·

Rcoord [[t1, . . . , td]] which
preserves Ω·

Rcoord and this implies that [iv̄,−] acts on

(9.10) Dpoly,·
Ω·

Rcoord
(Ω·

Rcoord ⊠̂R)

and

(9.11) Dpoly,·
Ω·

Rcoord
(Ω·

Rcoord [[t1, . . . , td]])

and of course these actions are compatible with the isomorphism between (9.10)
and (9.11).

It follows that we obtain compatible g-actions on

ΩRcoord,· ⊠̂Dpoly,·(R)

and

ΩRcoord,· ⊗̂Dpoly,·(k[[t1, . . . , td]])

and it is easy to see that these are obtained from the g-actions on ΩRcoord,· .

It remains to show

(ΩRcoord,· ⊠̂Dpoly,·(R))s = ΩRaff,· ⊠̂Dpoly,·(R)

This meant to be an isomorphism of filtered objects so we first consider (ΩRcoord,· ⊠̂

F pDpoly,·(R))s which can be rewritten as

((ΩRcoord,· ⊠̂R)⊗R F
pDpoly,·(R))s = (ΩRcoord,· ⊠̂R)s ⊗R D

poly,·(R)

since the F pDpoly,·(R) are finitely generated projective R-modules.
So now we have to show

(Ω·
Rcoord ⊠̂R)s = Ω·

Raff ⊠̂R
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We use the easily proved fact that Ω·
Rcoord ⊠̂R = Ω·,cont

Rcoord⊠̂R/R
. Let I be the kernel

of Rcoord ⊗R→ Rcoord. Using Proposition 5.4.1 and Lemma 9.2.3 below we have

(
Ωm,cont

Rcoord⊠̂R/R

)s

=

(
proj lim

n
Ωm(Rcoord⊗R)/In/R

)s

= proj lim
n

(
Ωm(Rcoord⊗R)/In/R

)s

= proj lim
n

(
Ωm((Rcoord⊗R)/In)GLd/R

)

Now let J be the kernel of Raff ⊗R→ Raff . From the fact that GLd acts freely on
Rcoord (Proposition 6.2.2) and its invariants are defined as Raff we easily deduce
that ((Rcoord ⊗R)/In)GLd = (Raff ⊗R)/Jn. Hence

(
Ωm,cont

Rcoord⊠̂R/R

)s

= proj lim
n

(
Ωm((Raff⊗R)/Jn)/R

)

= Ωm,cont

(Raff ⊠̂R)/R

where we have used Proposition 5.4.1 once again. �

The following lemma was used.

Lemma 9.2.3. Let S be a connected reductive algebraic group over k with Lie
algebra s acting rationally, R-linearly and freely on a R-algebra T . For v ∈ s we
denote by iv the derivation of degree −1 on Ω·

T/R which is the contraction with the

derivation corresponding to v. Then

Ω·
TS/R = {ω ∈ Ω·

T/R | ∀v ∈ s : iv(ω) = iv(dω) = 0}

= (Ω·
T/R)s

Proof. We use a fragment of the Cartan model for equivariant cohomology. Let
(ej)j be a basis for s and let (e∗j )j be the corresponding dual basis. Since S acts

freely on T , T/T S is smooth. We obtain an exact sequence

0→ Ω1
TS/T ⊗TG T → Ω1

T/R

∑
j
iej

⊗e∗j
−−−−−−−→ T ⊗ s∗ → 0

This sequence is split and hence we may transform into a Koszul type long exact
sequence

(9.12) 0→ ΩiTS/R ⊗TS T → ΩiT/R
δ
−→ Ωi−1

T/R ⊗ s∗
δ
−→ Ωi−2

T/R ⊗ S
2s∗

δ
−→ · · ·

where

δ(ω ⊗ f) =
∑

j

iej
(ω)⊗ e∗jf

Taking invariants we obtain in particular

Ω·
TS/R = {ω ∈ (Ω·

T/R)S | ∀v ∈ s : iv(ω) = 0}

The differentiated S action of Ω·
T is given by Lv = div + ivd. Hence we obtain

Ω·
TS/R = {ω ∈ (Ω·

T/R) | ∀v ∈ s : iv(ω) = Lv(ω) = 0}

which yields the desired result. �
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9.3. Quasi-isomorphisms.

Theorem 9.3.1. The canonical maps

T poly,.(R)→ ΩRaff ⊠̂ T poly,.(R)

Dpoly,.(R)→ ΩRaff ⊠̂Dpoly,.(R)

obtained by linearly extending Raff → Ω·
Raff , are filtered quasi-isomorphisms.

Proof. By acyclicity (Theorem 6.6.1) we have a quasi-isomorphism

R→ Ω·,cont

Raff⊠̂R/R

and since
Ωcont,·

Raff⊠̂R/R
∼= Ω·

Raff ⊠̂R

we obtain a quasi-isomorphism

R→ Ω·
Raff ⊠̂R

Tensoring on the right by the finitely generated projective R-modules F pT poly,·(R)
and F pDpoly,·(R) gives what we want. �

9.4. Tying it all together. We have a commutative diagram of DG-Lie algebras
and (vertical) L∞-maps
(9.13)

T poly,.(R) −−−−→ ΩRaff ⊠̂ T poly,.(R) −−−−→ ΩRcoord ⊠̂ T poly,.(R)
∼=

−−−−→ ΩRcoord ⊗̂ T poly,.(k[[t1, . . . , td]])

Vs

y V

y
yUωMC

Dpoly,.(R) −−−−→ ΩRaff ⊠̂Dpoly,.(R) −−−−→ ΩRcoord ⊠̂Dpoly,.(R) −−−−→
∼=

ΩRcoord ⊗̂Dpoly,.(k[[t1, . . . , td]])

where V is obtained from UωMC
using the horizontal isomorphisms and Vs is ob-

tained from (UωMC
)s (see Lemmas 9.2.1,9.2.2). By Theorem 9.3.1 we know that

the left most horizontal maps are quasi-isomorphisms.

Theorem 9.4.1. The induced map

µ : T poly,.(R)→ H ·(Dpoly,.(R))

is an isomorphism. If R has a system of parameters (xi)i then

(9.14) µ(∂i1 ∧ · · · ∧ ∂in) =
1

n!

∑

σ∈Sn

(−1)σ∂iσ(1)
⊗ · · · ⊗ ∂iσ(n)

where ∂i = ∂/∂xi.

Proof. Since everything is local on R we may assume that R has a system of pa-
rameters. Denote the map defined by (9.14) by µ′. Since µ′ is a quasi-isomorphism
[37] it is sufficient to prove that µ = µ′.

Let us regard the complexes occurring in the (9.13) as double complexes such
that the rows are obtained from the De Rham complexes. Assume γ ∈ (ΩRaff ⊗̂
T poly,.(k[[t1, . . . , td]]))pq where p is the column index.

According to (7.8) ŪωMC ,1 is given by

ŪωMC ,1(γ) =
∑

j≥0

1

j!
Ūj+1(ω

j
MCγ)
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and one checks

(9.15) Ūj+1(ω
j
MCγ) ∈ (ΩRcoord ⊗̂Dpoly,.(k[[t1, . . . , td]]))p+j,q−j

(see for example the proof of Lemma 9.1.2). Since the horizontal maps in (9.13) are

inclusions we obtain that Vs
1 maps (Ω·

Raff⊠̂T
poly,.(R))pq to ⊕j(Ω·

Raff ⊠̂D
poly,.(R))p+j,q−j .

We claim that the component corresponding to j = 0 of Vs
1 is equal to (the linear

extension of) µ′. To prove this we look at the component of ŪωMC ,1 corresponding
to j = 0, which is equal to Ū1. As discussed in §9.1 the vertical arrows in (9.13)
are linear for the action of the De Rham complexes. Hence it suffices to prove that
the following diagram is commutative

(9.16)

T poly,n(R)
i

−−−−→ Rcoord ⊗̂ T poly,n(k[[t1, . . . , td]])

µ′

y
yŪ1

Dpoly,n(R) −−−−→
j

Rcoord ⊗̂Dpoly,n(k[[t1, . . . , td]])

For convenience we have denoted the horizontal arrows by i and j. They are
obtained from the “expansion in local coordinates” isomorphism (6.12)

Rcoord
⊠̂R

∼=
−→ Rcoord ⊗̂ k[[t1, . . . , td]]

Thus a poly-differential operator or vector field on R is linearly extended to one on
Rcoord

⊠̂R and then transported to an operator on Rcoord ⊗̂ k[[t1, . . . , td]]. Clearly
i and j are compatible with cup-product.

To avoid confusion we write ∂xi
for ∂/∂xi and ∂tj for ∂/∂tj. According to for

example the proof of Theorem 6.1.4 the matrix (∂xi/∂tj)ij is an invertible matrix
over Rcoord[[t1, . . . , td]]. Denote the inverse matrix by (∂tj/∂xi)ij . Then

i(∂xi1
∧ · · · ∧ ∂xin

) =
∑

j1,...,jn

∂tj1
∂xi1

· · ·
∂tjn
∂xin

∂tj1 ∧ · · · ∧ ∂tjn

j(∂xi1
⊗ · · · ⊗ ∂xin

) =
∑

j1,...,jn

∂tj1
∂xi1

· · ·
∂tjn
∂xin

∂tj1 ⊗ · · · ⊗ ∂tjn

Comparing the formulas (8.4) and (9.14) (which we have taken to define µ′) we see
that (9.16) is indeed commutative.

The first component of an L∞-map always commutes with the differential thus
we have a map of complexes

Vs

1 : Ω·
Raff ⊠̂ T poly,·(R)→ Ω·

Raff ⊠̂Dpoly,·(R)

We filter the two complexes according to the column index. By (9.15) this filtration
is compatible with Vs

1 and the graded map associated to Vs
1 is (Vs

1)j=0, which we
have shown to be equal to the linear extension of µ′.

Denote by Hcolumns the homology of the columns of a double complex. We
clearly have

Hcolumns(Ω·
Raff ⊠̂ T poly,·(R)) = Ω·

Raff ⊠̂ T poly,·(R)

and sinceDpoly,·(R) consists of filtered projectiveR-modules with filtered projective
homology we also have

Hcolumns(Ω·
Raff ⊠̂Dpoly,·(R)) = Ω·

Raff ⊠̂H ·(Dpoly,·(R))

Taking homology for the rows (and using Theorem 9.3.1) we see that Vs induces
indeed µ′ on homology. �
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9.5. The global case.

Theorem 9.5.1. There exists a sheaf of DG-Lie algebras l[1] on X together with
L∞ morphisms

T poly,·
X [1]→ l[1]← Dpoly,·

X [1]

Furthermore

(1) l as well as the given quasi-isomorphisms do not depend on any choices.4

(2) If X has a system of parameters (xi)i then the resulting map on homology

T poly,·
X → H ·(Dpoly,·

X )

is given by the HKR-formula.

∂i1 ∧ · · · ∧ ∂in 7→
1

n!

∑

σ∈Sn

(−1)σ∂iσ(1)
⊗ · · · ⊗ ∂iσ(n)

where ∂i = ∂xi
.

Proof. Since all our constructions are canonical we may assume that X = SpecR
where R is smooth of dimension d.

The diagram (9.13) in combination with Theorem 9.4.1 furnishes us with L∞-
quasi-isomorphisms

T poly,·(R)→ ΩRaff ⊠̂ T poly,.(R)
Vs

−−→ ΩRaff ⊠̂Dpoly,.(R)← Dpoly,·(R)

We now take l to be equal to ΩRaff ⊠̂Dpoly,.(R). (2) follows directly from Theorem
9.4.1. �

Proof of Theorem 1.1. Given Theorem 9.5.1 we only need to prove that if we have
a L∞ quasi-isomorphism

ψ : G → H

between sheaves of DG-Lie algebras then G and H are isomorphic in the homotopy
category of DG-Lie algebras. This is done in the standard way using the bar-cobar
construction [21, 25, 32].

The bar-cobar construction may be performed in any symmetric abelian monoidal
category, in particular it can be done in the categories of presheaves and sheaves
of vector spaces. Since the bar-cobar construction involves only colimits it is com-
patible with sheaffification.

Considering ψ first as a morphism of presheaves there is a commutative diagram
of L∞-morphisms of presheaves of DG-Lie algebras

ΩpreBpreG

c

zzuu
uu

uu
uu

uu
φ

$$I
II

II
II

II
I

G
ψ

// H

where c, φ′ are morphism of presheaves of DG-Lie algebras and c is a quasi-isomorphism.

4Except for the choice of the L∞-quasi-isomorphism in the formal case satisfying the properties
(P4)(P5)
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Sheaffifying we obtain an analogous diagram of sheaves of DG-Lie algebras

ΩBG

c̃

}}{{
{{

{{
{{ φ̃

!!D
DD

DD
DD

D

G
ψ

// H

Since sheaffication is exact c̃ is still a quasi-isomorphism. Since ψ is a quasi-
isomorphism by assumption we obtain that φ̃ is a quasi-isomorphism as well. We
conclude that G and H are isomorphic in the homotopy category of sheaves of
DG-Lie algebras. �

Appendix A. Reminder on the Thom-Sullivan normalization

The material in this section is standard. See e.g. [20]. Let k be a field. Let S be
a small category and let M,N : S → Mod(k) be respectively a contravariant and
a covariant functor. We define M⊗SN as the subset of

∏
P∈Ob(S)M(P ) ⊗k N(P )

consisting of (cP )P such that for all φ : P → Q we have

(M(φ)⊗ 1)(cQ) = (1⊗N(φ))(cP )

inside M(P ) ⊗k N(Q). We extend the bifunctor −⊗− in the obvious way to the
case where M,N take values in complexes.

We will now consider the case where is S is the simplicial category ∆. If N(∆[n])
denotes the normalized (combinatorial) cochain complex of ∆[n] then

N(−) : ∆[n] 7→ N(∆[n])

is a contravariant functor from ∆ to C(k).
If now A is a cosimplicial k-vector space then we may consider

N(−)⊗∆A

The following is well-known

Proposition A.1. N(−)⊗∆A is canonically isomorphic to the normalized cochain
complex N(A) (given by the common kernels of the degeneracies) of A.

Now fix a k-linear DG-operad O. If A is a cosimplicial O-algebra then N(A) will
in general not have the structure of an O-algebra. The Thom-Sullivan construction
repairs this defect. The idea is to replace the complexes N(∆[n]) in Proposition
A.1 by quasi-isomorphic complexes which have the structure of a commutative
DG-algebra.

We now assume that k has characteristic zero. Think of ∆[n] as the affine space

Spec k[t0, . . . , tn]/(t0 + · · ·+ tn − 1)

Taking the algebraic De Rham complex of ∆[n] yields a contravariant functor Ω·(−)
from ∆ to commutative DG-algebras. The Thom-Sullivan normalization of a cosim-
plicial O-algebra A· is defined as

N(A)TS = Ω·(−)⊗∆A

From the commutativity of Ω·(∆[n]) it easily follows that N(A)TS has a canonical
structure as an O-algebra.
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Proposition A.2. [8] There is a canonical quasi-isomorphism (as complexes of
k-vector spaces)

N(A)TS → N(A)

The quasi-isomorphism is constructed using functorial homotopy equivalences
Ω·(∆[n])→ N(∆[n]). The latter are obtained by integrating differential forms.

If A is a complex of k-vector spaces then we may consider A as a constant
cosimplicial object. One easily checks that

(A.1) A ∼= N(A)TS ∼= N(A)

Appendix B. Derived global sections of sheaves of algebras

B.1. Introduction. Let X be a topological space and fix a k-linear DG-operad O
for a field of characteristic zero. If A is a sheaf of O-algebras on X then it is easy
to see that H ·(X,A) has the structure of an H ·(O)-algebra. However one would
like to give RΓ(X,A) the structure of an O-algebra as well.

In [22] Hinich constructs a model structure on the presheaves of O-algebras on X
which is such that a presheaf ofO-algebras is weakly equivalent to its sheaffification.

It follows from Hinich’s construction thatRΓ(X,A) is quasi-isomorphic to Γ(X,A′)
for an arbitrary fibrant resolution A → A′. In this way we obtain indeed an actual
O-algebra representing RΓ(X,A).

Note however that the choice of A′ is not functorial5 and furthermore it depend
on the operad O. In this appendix we give an alternative construction for the alge-
bra structure on RΓ(X,A) (if A has left bounded cohomology) which is functorial
and whose outcome does not depend on O. More precisely: for a complex of sheaves
A on X we construct a complex RΓ(X,A)tot which is functorial in A and which
inherits any algebra structure present on A.

Our construction is a generalization of a construction originally due to Hinich
and Schechtman which first replaces A by a (DG-)cosimplicial algebra [23, 24] using
the Čech construction. The Thom-Sullivan normalization (see Appendix A) is then
used to transform this cosimplicial algebra into a genuine algebra over O. It is clear
that this procedure has the properties mentioned in the previous paragraph.

The Hinich-Schechtman construction works well for quasi-coherent sheaves but
must be modified in more general situations. This issue is not entirely academic
as non-quasi-coherent sheaves do occur in nature. Examples in this paper are l

(Theorem 9.5.1) and ΩBG (the proof of Theorem 1.1).
Our initial idea was to replace Čech cohomology by a colimit over all hypercov-

erings of X but as the category of hypercoverings is only filtered in a homotopy
theoretic sense [2], this creates rather unpleasant technical difficulties. Luckily it
seems we can make at least some of these difficulties go away by replacing hyper-
coverings with pro-hypercoverings, which is what we will do in this section.

Although below we will work in an arbitrary Grothendieck topos, for simplic-
ity we will, in this introduction, continue to use the topological space X . Let
Alg+(X,O) the category of O-algebra objects in Sh(X) with left bounded coho-
mology and let Alg(O) be the category of O-algebras. We equip both categories
with weak equivalences given by quasi-isomorphisms. We will construct a functor
(see §B.8)

Σ : Alg+(X,O)→ ∆Alg(O)

5It is of course functorial in a homotopy theoretic sense
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such that the cochain complex associated to Σ(A) for A ∈ Alg+(X,O) is canoni-
cally isomorphic to the derived global sections of A when viewed as a complex of
sheaves of abelian groups. This part does not require the presence of a basefield of
characteristic zero.

For the benefit of the reader we indicate how Σ is defined. We will construct
a pro-object F = (Fα)α in the category of hypercovering of X which is homotopy
projective (a suitable lifting property, see (B.12)) and we put

(B.1) Σ(A) = inj lim
α

Hom(Fα,A)

We show in Proposition B.6.3 that F is unique up to unique isomorphism in a
homotopy theoretic sense. This implies that Σ is defined up to a unique natural
isomorphism when viewed as a functor between homotopy categories.

It follows from Proposition A.2 that if O is k-linear for k a field of characteristic
zero and we put

RΓ(X,−)tot = N(Σ(−))TS

then we obtain a functor

RΓ(X,−)tot : Alg+(X,O)→ Alg(O)

such that the underlying complex of vector spaces of RΓ(X,A)tot is isomorphic to
RΓ(X,A) in D(k).

In the last section of this appendix we outline the connection of our construction
with that of Hinich in [22].

B.2. Simplicial objects. In this section we recall some standard constructions
on simplicial objects. Let P be a category with arbitrary limits and colimits. We
consider the category ∆◦P of simplicial objects in P . If F ∈ P then we denote by
F̂ the associated constant simplicial object. F 7→ F̂ is a left adjoint to the functor
F 7→ F0.

We may define a bifunctor

(B.2) −×− : ∆◦P ×∆◦ Set→ ∆◦P : (F, S) 7→ (Fn × Sn)n

where Fn × Sn is the |Sn|-fold coproduct of Fn. If F ∈ P then we define F × S as

F̂ × S. It is easy to see that any object F ∈ ∆◦P is a coequalizer of the form

(B.3)
∐

[i]→[j]∈∆ Fj ×∆[i]
//
//
∐
i Fi ×∆[i] // F

The functor P ×∆◦ Set→ ∆◦P : (F, S) 7→ F̂ × S has a right adjoint in its second
argument given by a bifunctor.

(B.4) (∆◦ Set)◦ ×∆◦P → P : (S, F ) 7→ Hom(S, F )

which is the unique functor such that Hom(−, F ) sends colimits to limits and
Hom(∆[n], F ) = Fn.

The associated derived functor

(∆◦ Set)◦ ×∆◦P → ∆◦P : (S, F ) 7→ Hom(S, F )

defined by

Hom(S, F )n = Hom(∆[n]× S, F )

is the right adjoint in the second argument to (B.2).
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For F ∈ ∆◦P write F × I = F × ∆[1] (the cylinder object of F ) and F I =
Hom(∆[1], F ) (the path object of F ).

The category ∆◦P is enriched in simplicial sets (it is a so-called simplicial cate-
gory). Let F,G ∈ ∆◦P . Then the simplicial set Hom∆◦P(F,G) is defined by

Hom∆◦P(F,G)n = Hom∆◦P(F ×∆[n], G)

Define the homotopy category Ho(∆◦P) of ∆◦P by

(B.5) HomHo(∆◦P)(F,G) = connected components of Hom∆◦P(F,G)

In the sequel we will use the terminology exhibited in the next definition.

Definition B.2.1. (1) Two maps f0,1 : F → G in ∆◦P are strictly homotopic
if there is a map f ′ : F × I → G such that the fi is the composition of

F = F ×∆[0]
∂i

−→ F ×∆[1] = F × I
f ′

−→ G.
(2) Two maps f0,1 : F → G in ∆◦P are combinatorially homotopic if they

can be connected by a chain of strict homotopies and their inverses, or
equivalently if they represent the same maps in Ho(∆◦P).

(3) A map f : F → G in ∆◦P is a combinatorial homotopy equivalence if there
is a map g : G → F such that fg and gf are combinatorially homotopy
equivalent to the identity, or equivalently if f is invertible in Ho(∆◦P).

Lemma B.2.2. Let F ∈ ∆◦P. Then the functors

F ×− : ∆◦ Set→ ∆◦P

Hom(−, F ) : ∆◦ Set→ ∆◦P

preserve strict homotopy equivalent maps (and hence also combinatorially homo-
topic maps and combinatorial homotopy equivalences).

Proof. Let us consider the second functor. Let f ′ : S × I → T be a homotopy
between maps f0, f1 : S → T between simplicial sets. Let f̃ ′, f̃0, f̃1 be the maps
obtained applying Hom(−, F ). Since

Hom(S × I, F ) = Hom(S, F )I

we obtain that f̃ ′ is a map Hom(T, F )→ Hom(S, F )I which yields a map Hom(T, F )×

I → Hom(S, F ). It is easy to see that this is a homotopy between f̃0 and f̃1. �

Corollary B.2.3. The “constant path” map F → F I is a combinatorial homotopy
equivalence.

Proof. This follows from the fact that it is obtained from the combinatorial homo-
topy equivalence ∆[1]→ ∆[0] in ∆◦ Set. �

The following is standard.

Lemma B.2.4. Assume that Q is abelian. For F ∈ ∆◦Q let C∗(F ) be the usual
(unnormalized) chain complex of F . If f, g : F → G are strictly homotopic maps
in ∆◦P then C∗(f) and C∗(g) are homotopic.

The following is standard as well.

Lemma B.2.5. Let f0, f1 : F → G be strictly homotopic maps in ∆◦P. Then the
induced maps Zf0,Zf1 : ZF → ZG are strictly homotopic as well.
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Proof. f0, f1 are induced from a homotopy f ′ : F × I → G. Since the functor
W 7→ ZW is a left adjoint it commutes with coproduct. Hence Z(F×I) = (ZF )×I.
Thus f ′ yields a homotopy in ∆◦PZ, Zf ′ : (ZF ) × I → ZG. It is easy to see that
Zf ′ induces Zf0, Zf1. �

Definition B.2.6. Let f : F → H , g : G → H be in ∆◦P . The homotopy fiber

product F
h
×H G is the limit of the following diagram.

F
f // H

HI

∂0

>>||||||||

∂1

  B
BB

BB
BB

B

G g
// H

If p0 : F
h
×H G → F , p1 : F

h
×H G → G are the resulting projection maps then

clearly f ◦ p0 and g ◦ p1 are strictly homotopic.

Definition B.2.7. Similarly if f, g : F → G are maps in ∆◦P then we define the
homotopy equalizer of f and g as the limit of the following diagram

F
f //

g
AA

  A
AA

AA

G

GI
∂1

//
∂0}}

>>}}}}

G

Let ∆≤n be the simplicial category truncated in dimension n and let (−)≤n
denote the truncation functor ∆◦P → ∆≤n,◦P . The right adjoint to (−)≤n is the
coskeleton functor denoted by coskn. Concretely

(cosknG)m = Hom(∆[m]≤n, G)

The truncation functor also has a left adjoint which is denoted by skn. If F ∈
∆≤n,◦P then using the truncated version of (B.3) we see that skn F is the coequal-
izer in ∆◦P of

∐
[i]→[j]∈∆≤n Fj ×∆[i]

//
//
∐
i≤n Fi ×∆[i]

As is customary we will also use the the notations skn, coskn for the compositions
skn ◦(−)≤n, coskn ◦(−)≤n.

B.3. Grothendieck topoi. From here on P is a Grothendieck topos [2]. This
means that P has properties very reminiscent of those of the category of sets. By
Giraud’s theorem [2] P may be realized as the category of sheaves on a small site
C. Therefore we sometimes we refer to the objects of P as “sheaves”. Recall that a
site is a category C equipped with a so-called Grothendieck topology. I.e. for every
A ∈ C there is a collection TA of subfunctors of C(−, A) (called coverings) satisfying
the axioms of [2, Def I.1.1].

We recall the following standard result (see e.g. [29, Prop. 6.20]).
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Lemma B.3.1. Let C be a small site and let Pre(C) and Sh(C) be respectively
the categories of presheaves and sheaves on C. Let a : Pre(C) → Sh(C) be the
sheaffification functor. For F ∈ Pre(C) define |F | =

∑
C∈C |F (C)|. Let |C| be the

sum of the cardinalities of the Hom’sets in C. Then we have the following bound

(B.6) |aF | ≤ |C|(2|F |)|C|

If a = 2b where b ≥ max(|C|, |N|) then |F | ≤ a implies |aF | ≤ a.

Proof. To prove (B.6) we may assume that F is separated. Indeed if we identify
sections in F which are locally identical then we only reduce |F |.

So assume that F is separated. For any P ∈ C we have

(aF )(P ) = inj lim HomR∈TP
(R,F )

Thus

|aF | ≤
∑

P∈C

|HomR∈TP
(R,F )|

Since the existence of identities implies |Ob(C)| ≤ |C| we deduce from this

|aF | ≤ |C|2|C||F ||C|

which yields (B.6).
Thus if |F | ≤ a with a as in the statement of the lemma.

(B.7) |aF | ≤ a|C| = 2b|C| = 2b = a �

Lemma B.3.2. Let P be the category of sheaves over a small site C. Put

Pa = {F ∈ P | |F | ≤ a}

where a is as in Lemma B.3.1. Then Pa is closed under finite limits, finite colimits,
epimorphisms and monomorphisms.

Furthermore Pa satisfies the following cofinality property. For any epimorphism
f : F → G0 with G0 ∈ Pa there exists a map F0 → F such that F0 ∈ Pa and the
composed map F0 → G0 is an epimorphism

Proof. This follows easily from Lemma B.3.1 and the corresponding results for
presheaves. �

Let PZ be the category of abelian group objects in P .

Lemma B.3.3. (1) PZ is a Grothendieck category.
(2) The forgetful functor PZ → P has a left adjoint.
(3) If F,G ∈ PZ then the functor of bilinear maps Bilin(F × G,−) is repre-

sentable by an object F ⊗G. In this way PZ becomes a symmetric monoidal
category.

Proof. These facts may be proved by realizing P as the category of sheaves on a
small site C. Then PZ is precisely the category of sheaves of abelian groups and the
statements are standard. �

We will denote the left adjoint to CZ → C by F 7→ ZF . If e is the final object of
P then we write Z for Ze.
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B.4. Hypercoverings. We recall briefly some results about hypercoverings. An
object F in ∆◦P is a hypercovering if for all m the the canonical morphism

(B.8) Fm+1 → (coskm F )m+1

is an epimorphism (see e.g. [14, §1.1]) and if the map of F0 to the final object e or
P is an epimorphism as well. Similarly F ∈ ∆≤n◦P is a truncated hypercovering if
(B.8) holds for m ≤ n− 1.

There are many equivalent characterizations for the notion of a hypercovering.
Put ∂∆[n] = skn−1 ∆[n]. The following is a direct translation of the definition. F
is a hypercovering if and only if for all n the morphism

(B.9) Hom(∆[n], F )→ Hom(∂∆[n], F )

is an epimorphism and if F0 → e is an epimorphism. This is called the local lifting
property. From this way of writing the definition we see that if P has enough points
[2] then F is a hypercovering if and only for every point p the simplicial set (p∗Fn)n
is non-empty, acyclic and Kan.

Remark B.4.1. The definition of hypercovering we use is in fact a slight modification
of the one used by Verdier (which depends on a site representing P). For the original
definition see §B.10 below.

The following result follows from [2, Lemma V.7.2.1].

Proposition B.4.2. Let F ∈ ∆◦P be a hypercovering. Then the chain complex
C∗(ZF ) associated to ZF is acyclic in degrees > 0 and its cohomology is equal to
Z in degree zero.

Note that this result is clear if P has enough points since in that case we may
check it on stalks (see [3]).

We will frequently use the following results which are proved in the same way
as for acyclic Kan simplicial sets. In case P has enough points, they can also be
checked on stalks.

Proposition B.4.3. (1) Let F be a hypercovering and S a finite simplicial
set (i.e. S has only a finite number of non-degenerate simplices). Then
Hom(S, F ) is a hypercovering. In particular the path object of F is a hy-
percovering.

(2) Homotopy fiber products and homotopy equalizers of hypercoverings are hy-
percoverings.

We quote some results from [3].

Proposition B.4.4. [3] Let G be a hypercovering and let ψ0 : F0 → G≤n be a
morphism of hypercoverings trunctated in degree n. Then there is a hypercovering
F and a morphism of hypercoverings ψ : F → G such that ψ≤n is equal to ψ0.

If F ∈ ∆◦P then Dn(F ) = ∪σ:[n]→[m] surj,m<nσFm ⊂ Fn. We call Dn(F ) the
degenerate part of Fn. We say that F is split in degree n if Dn(F ) has a (necessarily
unique) complement Nn(F ) in P . Nn(F ) (if existing) is the non-degenerate part of
Fn.
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If F is split up to degree n then one may write

Fn =
∐

σ:[n]→[m] surj

σNm(F )

The following proposition shows that we may restrict ourselves to split hypercov-
erings, if necessary.

Proposition B.4.5. [3] Assume that G is a hypercovering in P split up to degree
n. Then there exists a map ψ : F → G where F is a split hypercovering in P and
ψ≤n is the identity.

The next propositions shows that we may arbitrarily refine the non-degenerate
part of a split hypercovering.

Proposition B.4.6. [3] Let G be a split hypercovering in P and let φ : N ′ → Nn(G)
be an epimorphism. Then there exists a map ψ : F → G of split hypercoverings in
P such that ψ≤n−1 is the identity and furthermore Nn(F ) = N ′ in such a way that
ψn restricts to the map φ.

Throughout we fix a full small subcategory P0 of P which is closed under finite
limits, finite colimits, monomorphisms and epimorphisms and which satisfies the
cofinality condition of Lemma B.3.2. Such a P0 may be constructed by taking P0

to be a skeletal subcategory of some Pa where Pa is as in Lemma B.3.2.
H(P) is the category of hypercoverings in P and H(P0) is the full subcategory

of hypercoverings F such that Fn ∈ P0 for all n.

Lemma B.4.7. If G ∈ H(P) then there exists F ∈ H(P0) together with a morphism
F → G.

Proof. We construct F step by step. Our first step is to select a map F ′
0 → G such

that the composition F ′
0 → G0 → e is an epimorphism using Lemma B.3.2. We

then extend F ′
0 to a map of hypercoverings F ′ → G using Proposition B.4.4. Using

Proposition B.4.5 we may assume that F ′ is split.
Assume now that we have constructed a map of hypercoverings F ′ → G such

that F ′
i ∈ P0 for i ≤ n. Assume in addition that F ′ is split.

Consider the epimorphism F ′
n+1 → (coskn F

′)n+1. We have (coskn F
′)n+1 ∈ P0

since the construction of the coskeleton involves only finite limits. Let N be the
image of Nn+1(F

′) in coskn F
′ and choose N0 ∈ P0 together with a map N0 →

Nn+1(F
′) such that the composition N0 → Nn+1(F

′)→ N is an epimorphism. Put

F ′′
n+1 = N0

∐ ∐

σ:[n+1]→[m] surj,m≤n

σNm(F )

and extend the truncated hyperovering F ′′
n+1, Fn, . . . , F0 to a hypercovering F ′′

mapping to F ′ using Proposition B.4.4. Then F ′′ coincides with F ′ in degrees ≤ n
and is in P0 in degrees ≤ n+ 1. Using Proposition B.4.5 we may assume that F ′′

is split. Repeating this procedure we ultimately construct the desired F . �

B.5. Pro-objects. Recall that if D is any category then ProD is the category with
objects denoted by formal symbols ′′ proj lim′′

α∈I Ai where I◦ is a (small) filtered
category and A is a functor I → D. The Hom-sets are given by

HomProD(′′proj lim′′
α∈I Aα,

′′ proj lim′′
β∈I Bβ) = proj lim

β
inj lim

α
HomD(Aα, Bβ)
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Below we will omit the quotes around proj lim.
By [3, §A.4.4] ProD is closed under filtered inverse limits. By [3, Cor. 3.3]

any finite diagram D → ProD where D is directed (“contains no loops”) is the
image of an object in ProFun(D,D). Informally we say that the diagram can be
constructed “levelwise”. [3, Prop. A.4.1] states that limits and colimits of finite
levelwise defined limits of pro-object can be computed levelwise as well.

Let L(D) be the category of left exact covariant functors D → Set. Then there
is fully faithful embedding

(B.10) ProD → L(D)◦ : (Aα)α 7→ inj lim
α

HomD(Aα,−)

The construction of filtered inverse limits in ProD in [3, Prop. A.4.4] shows that
the functor (B.10) commutes with filtered inverse limits. In particular the objects
in D are “cofinitely presented”. Let (Fi)i∈I be a filtered inverse system of objects
in ProD and F ∈ D. Then

(B.11) HomProD(proj lim
i

Fi, F ) = inj lim
i

HomProD(Fi, F )

Below we will work in (full) subcategories of Pro∆◦P . It is clear that Pro∆◦P is
a simplicial category (it may be enriched in simplicial sets). The functors − × S
and Hom(S,−) for S ∈ ∆◦ Set may be extended to Pro∆◦P and they remain
adjoints. In particular cylinder and path objects exist in Pro∆◦P and we may
define homotopy fiber products and equalizers in Pro∆◦P .

It also clear that the Definition B.2.1 make sense in this context and furthermore
we can define HoPro∆◦P using the formula (B.5).

B.6. Pro-hypercoverings. We consider the full subcategory ProH(P) of Pro∆◦P .
We refer to the objects in ProH(P) as pro-hypercoverings.

We note the following generalization of Proposition B.4.3.

Proposition B.6.1. (1) Let F be a pro-hypercovering and S a finite simplicial
set (i.e. S has only a finite number of non-degenerate simplices). Then
Hom(S, F ) is a pro-hypercovering. In particular the path object of F is a
pro-hypercovering.

(2) Homotopy fiber products and homotopy equalizers of pro-hypercoverings are
pro-hypercoverings.

Proof. (1) follows directly from Proposition B.4.3(1) and (2) follows from Proposi-
tion B.4.3(1) and the fact that the diagrams for computing homotopy fiber products
and equalizers can be constructed levelwise (see §B.5). �

We say that F ∈ ProH(P) is homotopy projective (with respect to H(P)) if
every diagram of solid arrows

(B.12) F

~~ ��
C′ // C

in ProH(P) with C,C′ ∈ H(P) can be completed with a dotted arrow in ProH(P)
such that the resulting diagram is commutative in Ho ProH(P). Let us denote the
category of projective pro-hypercoverings by ProjH(P).

The following is our main technical result.
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Proposition B.6.2. For every pro-hypercovering F there exists a map of pro-
hypercoverings F ∗ → F such that F ∗ is homotopy projective.

Proof. The proof is adapted from the proof of [5, Thm 2.7]. Let P0 ⊂ P be as in
§B.3 but choose P0 large enough such that F ∈ ProH(P0) (up to isomorphism).
This may be done by choosing the cardinal a in Lemma B.3.2 large enough.

We will temporarily work in ProH(P0). We start by well-ordering the diagrams
in ProH(P0)

F

��
C′ // C

with C, C′ ∈ H(P0).
We construct an ordinal sequence

(B.13) · · · → Fω → · · · → F1 → F0

in ProH(P0) as follows: F0 = F ; at a limit ordinal λ let Fλ = proj limµ<λ Fµ. To
define Fλ for a successor cardinal λ = µ+ 1 let C′ → C ← F be the least diagram
(if existing) for the well ordering such that the diagram of solid arrows

Fµ //

��

F

��
C′ // C

cannot be completed with the dotted arrow.

Put Fλ = C′
h
×C Fµ. Then the resulting diagram

Fλ //

  A
AA

AA
AA

A
Fµ // F

��
C′ // C

is commutative in ProH(P0) up to a strict homotopy.
Since H(P0) is small it follows that this procedure has to stop for some ordinal

σ. Put F ♯ = Fσ Then it follows that any diagram of solid arrows

F ♯ //

��

F

��
C′ // C

can be completed with the dotted arrow up to a strict homotopy.

Now define a sequence

· · · → F ′
1 → F ′

0 = F ♯
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where F ′
n+ = (F ′

n)♯ and put F ∗ = proj limn F
′
n. We claim that any diagram of solid

arrows

(B.14) F ∗

}} ��
C′ // C

with C, C′ ∈ H(P0) can be completed with the dotted arrow up to a strict homo-
topy. Indeed by (B.11) the vertical map is obtained from some map F ′

n → C. But
then by construction we may factor F ′

n+1 through C′.

We now claim that F ∗ is homotopy projective. So we consider a solid diagram as
in (B.14) but now we only require C, C′ ∈ H(P). We have F ∗ = proj lim(F ∗

α)α∈A
with F ∗

α ∈ H(P0). So the vertical map in (B.14) is obtained from some map
F ∗
α → C. Put D = F ∗

α. By Lemma B.4.7 we can construct a map of hypercoverings

D′ → C′
h
×C D with D′ ∈ H(P0). We may then construct a diagram in ProH(P)

F ∗

}}{{
{{

{{
{{

��
D′ //

��

D

��
C′ // C

which is commutative in Ho ProH(P). This finishes the proof. �

Let W be the set of maps in HoProH(P) between homotopy projectives. We
have the following result:

Proposition B.6.3. For any F,G ∈ ProH(P) with F homotopy projective there
is precisely one map F → G in W−1 Ho ProH(P).

Proof.

Step 1. If f, g : F → G are maps in ProH(P) and F is homotopy projective then
the images of f and g are the same in W−1 Ho ProH(P).

To see this letK ′ → F be the homotopy equalizer of f and g and letK → K ′ be a
homotopy projective object mapping to K (constructed using B.6.2). If k : K → F
is the composed map then fk and gk are the same in Ho ProH(P) . Since k is in
W this implies that f and g are the same in W−1 Ho ProH(P)

Step 2. Any map f : F → G in W−1 Ho ProH(P) with F homotopy projective
can be written as vu−1 where u, v fit in a diagram in ProH(P)

U
v

��@
@@

@@
@@

u

��~~
~~

~~
~

F G

with U homotopy projective.



ON GLOBAL DEFORMATION QUANTIZATION IN THE ALGEBRAIC CASE 51

It is easy to see that it is sufficient to prove that if f is of the indicated form then
so is w−1f with w : H → G in W . To see this we make the following commutative
diagram in HoProH(P).

K

��
k1

����
��
��
��
��
��
��

k2

��0
00

00
00

00
00

00
0

K ′

~~}}
}}

}}
}}

  B
BB

BB
BB

B

U
v

  B
BB

BB
BB

B
u

��~~
~~

~~
~

H
w

~~||
||

||
||

F G

where K ′ = U
h
×G H and K is homotopy projective. Then in HoProH(P) we

have wk2 = vk1 and thus in W−1 Ho ProH(P): w−1v = k2k
−1
1 . Hence w−1f =

w−1vu−1 = k2(uk1)
−1.

Step 3. If F,G ∈ ProH(P) with F homotopy projective then there is at most one
map F → G in W−1 HoProH(P).

Assume that there are two maps vu−1, v′u′−1 with “middle objects” U and U ′ as
in Step 2. Let U ′′ be a homotopy projective mapping to U ×U ′ (using Proposition
B.6.2) . Using Step 1 we have a commutative diagram in W−1 HoProH(P)

U
v

  B
BB

BB
BB

B
u

~~||
||

||
||

F U ′′ v′′ //u′′oo

��

OO

G

U ′

v′

>>}}}}}}}}u′

``AAAAAAAA

from which we obtain vu−1 = v′′u′′−1 = v′u′−1.

Step 4. If F,G ∈ ProH(P) with F homotopy projective then there is precisely
one map F → G in W−1 Ho ProH(P).

By Step 3 we only have to show that there is a map F → G. Let K be a
homotopy projective mapping to F ×G. Denote the maps of K to F and G by u
and v. Then vu−1 is the required map. �

Let ProjHoProH(P) be the full subcategory of Ho ProH(P) consisting of ho-
motopy projective objects. The same proof as the previous proposition, replacing
HoProH(P) by ProjHo ProH(P) yields the following result.

Corollary B.6.4. The category W−1 ProjHoProH(P) is equivalent to the single-
ton category. I.e. the category with one object and one (identity) arrow.
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B.7. Complexes of sheaves of abelian groups. For an abelian category A let
C(A) be the category of cochain complexes over A.

Let us say that contravariant functor H : P → Ab is weakly effaceable if for
every G ∈ P and for every h ∈ H(G) there exists an epimorphism φ : F → G in P
such that H(φ)(h) = 0.

We say that a contravariant functor H : H(P) → Ab is weakly effaceable if for
every G ∈ H(P) and for every h ∈ H(G) there exists a map of hypercoverings
φ : F → G such that H(φ)(h) = 0.

We will need the following result.

Lemma B.7.1. Let H : P → Ab be a weakly effaceable functor which sends finite
coproducts to products and let G be a hypercovering. Let m ∈ Z and let a ∈ H(Gm).
Then there exists a map of hypercoverings ψ : F → G such that H(ψm)(a) = 0 in
H(Fm).

Proof. By Proposition B.4.5 we may assume that G is split. I.e.

Gm =
∐

σ:[m]→[p] surj

σNp(G)

and hence a =
∑

σ:[m]→[p] surj σaσ where aσ ∈ H
p(Np(G)).

Let N ′ → Np(G) is an epimorphism which effaces aσ. Using Proposition B.4.6
we may refine G to a split hypercovering G′ whose non-degenerate part is N ′ in
degree p and which is unchanged in lower degrees.

Starting with the maximal p such that ap 6= 0 and work our way down we
eventually find a hypercovering in which the image of all ap is zero. �

Corollary B.7.2. If H : P → Ab is weakly effaceable and sends finite coproducts
to products then for all m the functor H(P) → Ab : G 7→ H(Gm) is effaceable as
well.

Lemma B.7.3. For all acyclic complexes L ∈ C(PZ) the functor H0(Hom(−,L)) :
P → Ab is weakly effaceable.

Proof. Let a ∈ H0(Hom(G,L)) with G ∈ P . Thus a is represented by a map
G→ ker(L0 → L1) = im(L−1 → L0). Let F be the pullback of the diagram

L−1

��
G // L0

Then F → G is an epimorphism and the image of a in H0(Hom(F,L)) is zero. �

If A is a cosimplicial abelian group then as usual we denote by C∗(A) the (un-
normalized) cochain complex associated to A. If A is a cosimplicial object in the
category of complexes of abelian groups then by C∗(A) we will denote the total
(product) complex of the double complex with rows C∗(An).

If F ∈ ∆◦P and L is a complex in PZ then by Hom(F,L) we denote the cosim-
plicial object in the category of complexes of abelian groups defined by

Hom(F,L)n = Hom(Fn,L)

The following formula is clear

(B.15) Hom(C∗(ZF ),L) = C∗(Hom(F,L))
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where the left hand side is the usual differentially graded Hom of complexes.
For L ∈ PZ we define HL : H(P)→ Ab as the functor H0(C∗(Hom(−,L))).

Lemma B.7.4. If L ∈ PZ is acyclic then the functor HL is weakly effaceable.

Proof. Assume a ∈ HL(G) is represented by a morphism

a : C∗(ZG)→ L

Let N∗(ZG) be the normalized chain complex of G (i.e. the quotient of C∗(ZG) by
the images of the degeneracies). It follows from the proof of [35, Thm 8.3.8] that
the canonical map C∗(ZG)→ N∗(ZG) is a homotopy equivalence. Indeed the proof
shows that the kernel D of this map is of the form

⋃
pDp such that Dp+1/Dp is

contractible. Therefore D is itself contractible which is sufficient.
Hence up to homotopy we may view a as a map

b : N∗(ZG)→ L

Without loss of generality we may assume that G is split. Then N∗(ZG)n =
ZNn(G).

We must construct a map of hypercoverings φ : F → G and a homotopy h :
N∗(ZF )→ L[−1] such that b ◦ φ = dh+ hd.

We will construct F and h step by step. Suppose we have constructed a morphism
of split hypercoverings φ′ : F ′ → G and maps h′i : ZNi(F

′) → Li+1 for i < n such
that b′i = dh′i + h′i−1d for i = 0, . . . , n− 1 where b′ = b ◦ φ′ and h′−1 = 0.

Put c = b′n−h
′
n−1d. Then dc = 0. Thus c defines an element c̄ ofH0(Hom(Nn(F

′),L[−n])).
By Lemma B.7.3 there exists an epimorphism f : N ′ → Nn(F

′) in P which effaces
c̄.

By Proposition B.4.6 there is a map of split hypercoverings ψ : F ′′ → F ′ such
that ψ≤n−1 is the identity and furthermore Nn(F

′′) = N ′ in such a way that ψn
restricts to the map f .

Put h′′i = h′i ◦ ψ, b′′i = b′i ◦ ψ. Then still b′′i = dh′′i + h′′i−1d for i < n but now
b′′n−h

′′
n−1d is of the form dh′′n for some map h′′n : ZNn(F

′′)→ Ln+1. Repeating this
procedure we ultimately construct the desired F and h. �

Below a contravariant functor H : H(P) → Ab will be extended implicitly to a
contravariant functor ProH(P)→ Ab by putting

H(proj lim
α∈I

Fα) = inj lim
α∈I

H(Fα)

Let us say that a contravariant functor H : H(P) → Ab is homotopy insensitive
if it factors through HoH(P). This is equivalent with demanding that H inverts
constant path maps. Since this condition lifts to pro-objects it follows in particular
that H extends to a functor HoProH(P)→ Ab.

Lemma B.7.5. HL(−) is homotopy insensitive for any L ∈ C(PZ).

Proof. If F ∈ H(P) then according to Corollary B.2.3, the constant path map
F → F I is a combinatorial homotopy equivalence. It follows from Lemma B.2.5
that ZF → Z(F I) is a combinatorial homotopy equivalence in ∆◦PZ.

Hence by Lemma B.2.4 the induced map C∗(ZF ) → C∗(ZF
I) is a homotopy

equivalence. It follows that Hom(C∗(ZF
I),L)→ Hom(C∗(ZF ),L). is a homotopy

equivalence. Then formula (B.15) finishes the proof. �
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Lemma B.7.6. Let H : H(P) → Ab be a homotopy insensitive weakly effaceable
functor. Then for any homotopy projective F ∈ HoProH(P) we have H(F ) = 0.

Proof. We have F = proj limα∈A Fα with Fα ∈ H(P) and H(F ) = inj limαH(Fα).
Let h ∈ H(F ). Then h is represented by some hα ∈ H(Fα). Since H is weakly
effaceable there exists a map of hypercoverings F ′ → Fα such that the image of hα
in H(F ′) is zero. Since F is homotopy projective the map F → Fα factors through
F ′ in Ho ProH(P). This implies that h is zero. �

If F is the pro-object (Fα)α then we define

C∗(Hom(F,L))pro = inj lim
α

C∗(Hom(Fα,L))

and

C∗(Hom(F,L)) = C∗(inj lim
α

Hom(Fα,L))

We show below that C∗(Hom(F,L))pro is well-behaved in its first argument and
C∗(Hom(F,L)) is well behaved in its second argument. Furthermore there is an
obvious map

C∗(Hom(F,L))pro → C∗(Hom(F,L))

which is an isomorphism if L has left bounded cohomology (see Lemma B.7.9 be-
low).

Proposition B.7.7. If f : F → G is a map between homotopy projective pro-
hypercoverings then HL(f) is invertible for any L ∈ C(PZ).

Proof. Note first that

(B.16) HL(F ) = H0(C∗(Hom(F,L)pro)

As PZ is a Grothendieck category there is a quasi-isomorphism q : L → E where E
is homotopy injective [1]. I.e. HomPZ

(Q, E) is acyclic for every acyclic Q.
Using Proposition B.4.2 and formula (B.15) we obtain that for any hypercovering

E the canonical map

C∗(Hom(E, E))→ HomPZ
(Z, E)

is a quasi-isomorphism. Taking direct limits we obtain that for any pro-hypercovering
E we have a canonical quasi-isomorphism

(B.17) C∗(Hom(E, E))pro → HomPZ
(Z, E)

Let C be the cone of q. Then C is acyclic. We obtain a morphism of distinguished
triangles in K(Ab) (the homotopy category of Ab):

C∗(Hom(F,L))pro
// C∗(Hom(F, E))pro

// C∗(Hom(F, C))pro
//

C∗(Hom(G,L))pro
//

OO

C∗(Hom(G, E))pro
//

OO

C∗(Hom(G, C))pro
//

OO

By Lemmas B.7.4,B.7.5,B.7.6 and (B.16) C∗(Hom(F, C))pro and C∗(Hom(G, C))pro

are acyclic. By (B.17) the middle vertical map is a quasi-isomorphism. Hence it
follows that the left most vertical map is a quasi-isomorphism as well. �

Lemma B.7.8. Assume that F ∈ ProH(PZ)) is homotopy projective. If L ∈ C(PZ)
is acyclic then we have that C∗(Hom(F,L)) is acyclic.
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Proof. Let the index of L be denoted by q ∈ Z and let the index of an object in
H(P) be denoted by p ∈ N. Let H be the functor H(P)→ Ab given by

H(G) =
⊕

p,q

Hp(Hq(Hom(G,L)))

By Lemma B.7.3 and Corollary B.7.2 we see that U q = Hq(Hom(−,L)) is weakly
effaceable. Thus U = ⊕qU q is weakly effaceable as well. By an argument similar
to Lemma B.7.5 we deduce that Hp(U) is homotopy insensitive. Thus we conclude
that H is both weakly effaceable and homotopy insensitive. By Lemma B.7.6 we
conclude H(F ) = 0 for F ∈ H(P) and hence for F ∈ ProH(P).

Hence the E2 term of the spectral sequence computing the cohomology ofC∗(Hom(F,L))
vanishes. Either by invoking the correct convergence criterion or by a direct dia-
gram chase (which the author did) this implies that C∗(Hom(F,L)) is acyclic. �

Let C+(PZ) be the full subcategory of C(PZ) consisting of complexes with left
bounded cohomology.

Lemma B.7.9. Assume that L ∈ C+(PZ). Then the canonical map

C∗(Hom(F,L))pro → C∗(Hom(F,L))

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism L → E to a left bounded complex of injectives
E . Let C be the cone. Then we have the following morphism of distinguished
triangles in K(Ab)

C∗(Hom(F,L))pro
//

��

C∗(Hom(F, E))pro
//

��

C∗(Hom(F, C))pro
//

��
C∗(Hom(F,L)) // C∗(Hom(F, E)) // C∗(Hom(F, C)) //

By Lemmas B.7.5,B.7.4,B.7.6 and Lemma B.7.8 C∗(Hom(F, C))pro andC∗(Hom(F, C))
are acyclic. Furthermore since E is left bounded it is easy to see that the middle
map is an isomorphism. Hence the left most map is a quasi-isomorphism. �

For a homotopy projective F in ProH(P) let ΠF be the functor

ΠF : C(PZ)→ ∆C(Ab) : L 7→ Hom(F,L)

Lemma B.7.10. The functor C∗◦ΠF sends weak equivalences to quasi-isomorphisms.

Proof. By considering the cones of quasi-isomorphisms, it is sufficient to prove that
for any acyclic L ∈ C(PZ) we have that C∗(Hom(F,L)) is acyclic. This is precisely
Lemma B.7.8. �

The following proposition is the raison d’être for the functor ΠF .

Lemma B.7.11. When restricted to C+(PZ) the composition C∗◦ΠF is canonically
isomorphic to RHomPZ

(Z,−).

Proof. If E is a left bounded complex of injectives then

C∗(Hom(F, E)) = C∗(Hom(F, E))pro

and the latter is equal to HomPZ
(Z, E) by (B.17) �
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B.8. Sheaves of algebras. In addition to the above notations, in this section
O(n)n will be a fixed DG-operad of abelian groups. We write Alg(O) for the
category of O-algebras.

Since by Lemma B.3.3 PZ is a symmetric monoidal category we may speak of
O-algebra objects on P . We define Alg(P ,O) as the category of O-algebras in P .

We make the following definitions.

(1) A weak equivalence in Alg(P ,O) is a quasi-isomorphism.
(2) A map A → B in ∆Alg(O) is a weak equivalence if C∗(A) → C∗(B) is a

quasi-isomorphism.

Following custom the classes of weak equivalences will be denoted byW . Note that
if F ∈ P and A ∈ Alg(P ,O) then by construction Hom(F,A) ∈ ∆Alg(O). Let Π∗

be the bifunctor

Π∗ : ProH(P)×Alg(P ,O)→ ∆Alg(O) : A 7→ Hom(F,A)

Let Wcp be the constant path maps in ProH(P). Let Alg+(P ,O) be the full
subcategory of Alg(P ,O) whose objects have left bounded cohomology.

According to Lemma B.7.5 and Lemma B.7.10 we obtain a bifunctor

Π∗ :Wcp,−1 ProH(P)×Alg(P ,O)→W−1∆Alg(O) : A 7→ Hom(F,A)

and hence a bifunctor

Π∗ : HoProH(P)×Alg(P ,O)→W−1∆Alg(O) : A 7→ Hom(F,A)

Π∗ restricts to a bifunctor

Π∗ : ProjHo ProH(P)×Alg(P ,O)→W−1∆Alg(O) : A 7→ Hom(F,A)

Using Proposition B.7.7 we obtain a bifunctor

Π∗ :W−1 ProjHoProH(P)×Alg(P ,O)→W−1∆Alg(O) : A 7→ Hom(F,A)

By Corollary B.6.4 the first argument of Π∗ is now a singleton category.
Below we define Σ = Π∗(F,−) for an arbitrary pro-hypercovering F . It follows

from the above discussion that Σ is well defined up to a unique natural isomorphism.
It follows from Lemma B.7.11 that the following diagram is commutative

Alg+(P ,O)
Σ

−−−−→ ∆Alg(O)
y

yC∗

C(PZ) −−−−−−−−−→
RHomPZ

(Z,−)
D(Ab)

where the left arrow is the forgetful functor.

Let F ∈ ProH(P) and A ∈ Alg+(O). Choose an arbitrary projective pro-
hypercovering P . According to Proposition B.6.3 there is a unique map P → F in
W−1 ProH(P). In this way we obtain a canonical map

(B.18) Hom(F,A)→ Hom(P,A) ∼= ΣA

in W−1∆Alg(O).

Proposition B.8.1. Assume A ∈ Alg+(P ,O) and F ∈ H(P) is such that ExtiPZ
(ZFm,An) =

0 for all m ≥ 0, n ∈ Z and i > 0. Then (B.18) is an isomorphism inW−1∆Alg(O).
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Proof. We have to show that

C∗(Hom(F,A))→ C∗(Hom(P,A))

is a quasi-isomorphism. By formula (B.15) and our vanishing hypotheses we obtain
C∗(Hom(F,A)) ∼= RHomPZ

(Z,A). It follows from Lemma B.7.11 that C∗(Hom(P,A)) ∼=
RHomPZ

(Z,A) as well. �

B.9. Čech cohomology. In this section we discuss the important special case of
Čech cohomology. Let X be a topological space and let U = {Ui | i ∈ I} be an
open covering of X . As usual we identify U ∈ Open(X) with the representable
sheaf HomOpen(X)(−, U). Then the unordered Čech covering of X is the simplicial
sheaf on X which in degree m is equal to

C(U)m =
∐

i0,...,im

Ui0 ∩ · · · ∩ Uim

It is well-known and easy to see that this a hypercovering.
If given an ordering on I we may also define

Co(U)m =
∐

i0≤...≤im

Ui0 ∩ · · · ∩ Uim

Note that the inclusion map

Co(U)→ C(U)

is a map of simplicial sheaves.
Let A ∈ Alg+(P ,O). The unordered and ordered Čech complexes of A are

respectively defined as the cosimplicial complexes of O-algebras

Ch(U ,A) = Hom(C(U),A)

Cho(U ,A) = Hom(Co(U),A)
(B.19)

Lemma B.9.1. Assume that for all m ≥ 0, {i0, . . . , im} ⊂ I, j > 0 and n ∈ Z we
have

Hi(Ui0 ∩ · · · ∩ Uim ,A
n) = 0

Then

Ch(U ,A) ∼= Cho(U ,A) ∼= Σ(A)

in W−1C+(PZ).

Proof. Since Ch(U ,A) is a hypercovering the isomorphism Ch(U ,A) ∼= Σ(A) follows
from Proposition B.8.1.

The ordered Čech covering is not a hypercovering but nevertheless, by looking
at stalks, it is easy to see that C∗(ZCo(U)) is a resolution of the constant sheaf
ZX . From this we deduce that source and target of the map

C∗(Cho(U ,A))→ Ch(U ,A)

compute RHom(ZX ,A). Hence it is a quasi-isomorphism. �
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B.10. Relation to Hinich’s construction. We now assume that P = Sh(C) for
a small site C. A presheaf over C is said to be semi-representable if it is a coproduct
of representable presheaves. We will say that a simplicial presheaf F is a presheaf-
hypercovering if the associated simplicial sheaf aF is a hypercovering in the above
sense. We will say that F is a Verdier hypercovering if each Fn is semi-representable.
We denote the corresponding categories by HPre(C) and HV(C).

If U ∈ C then a simplicial presheaf F with an augmentation F → U will be
called a Verdier-hypercovering of U if F is a Verdier-hypercovering of U in the site
C/U .

Following [22] we say that a complex of presheaves is fibrant if if for any U ∈ C
and for any Verdier-hypercovering F → U we have that M(U)→ C∗(Hom(F,M))
is a quasi-isomorphism.

Hinich proves under some hypotheses on O (which hold if O is k-linear over a
field of characterstic zero) that for any presheaf of O-algebras A there is a map
of presheaves of O-algebras A → A′ with A′ fibrant which is a quasi-isomorphism
after sheaffication. The derived global sections ofA are then given by Hom(F,A′)TS

for a Verdier hypercovering F of e. If e itself is in C then we may consider it as
its own hypercovering and in this case we may dispense with the Thom-Sullivan
normalization. I.e. we may define the derived global sections of A as A′(e).

We will show that in case A is a sheaf of O-algebras with left bounded grading
this yields the same result as our construction. Mimicking the proof of Propo-
sition B.6.2 we may produce a pro-object P = (Pα)α in HV (C) mapping to the
hypercovering F such that any diagram of solid arrows

P

}} ��
H1

// H2

with H1, H2 in HPre(C) can be factored like the dotted arrow (up to homotopy). It
follows in particular that aP is a homotopy projective object in ProH(P). Hence
we need to prove that Hom(P,A) is weaky equivalent to Hom(F,A′).

We have now maps

Hom(P,A)→ Hom(P,A′)← Hom(F,A′)

and it it is sufficient prove that these are weak equivalences. By a suitable analogue
of Lemma B.7.10 the first maps is a weak equivalence. By an analogue of Lemma
B.7.9 we have that Hom(P,A′) is weakly equivalent to inj limα Hom(Pα,A

′). Hence
it is sufficient to show that

Hom(Pα,A
′)← Hom(F,A′)

is a weak equivalence. This follows from the fact that Hom(F,A′) is, up to weak
equivalence, independent of the Verdier hypercovering F . See [22, §1.4.3].
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[1] L. Alonso Tarŕıo, A. Jeremı́as López, and M. J. Souto Salorio, Localization in categories of

complexes and unbounded resolutions, Canad. J. Math. 52 (2000), no. 2, 225–247.

[2] M. Artin, A. Grothendieck, and J. L. Verdier, Theorie des topos et cohomologie étale des
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