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Abstract

Let G be any group and let K(G) denote the multiplier Hopf algebra of complex

functions with finite support in G. The product in K(G) is pointwise. The comulti-

plication on K(G) is defined with values in the multiplier algebra M(K(G)⊗K(G))

by the formula (∆(f))(p, q) = f(pq) for all f ∈ K(G) and p, q ∈ G. In this paper

we consider multiplier Hopf algebras B (over C) such that there is an embedding

I : K(G) → M(B). This embedding is a non-degenerate algebra homomorphism

which respects the comultiplication and maps K(G) into the center of M(B). These

multiplier Hopf algebras are called G-cograded multiplier Hopf algebras. They are a

generalization of the Hopf group-coalgebras as studied by Turaev and Virelizier.

In this paper, we also consider an admissible action π of the group G on a G-cograded

multiplier Hopf algebra B. When B is paired with a multiplier Hopf algebra A, we

construct the Drinfel’d double Dπ where the coproduct and the product depend on

the action π. We also treat the ∗-algebra case.
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If π is the trivial action, we recover the usual Drinfel’d double associated with the

pair 〈A,B〉. On the other hand, also the Drinfel’d double, as constructed by Zunino

for a finite-type Hopf group-coalgebra, is an example of the construction above. In

this case, the action is non-trivial but related with the adjoint action of the group

on itself. Now, the double is again a G-cograded multiplier Hopf algebra.

Mathematics Subject Classification: 16W30, 17B37.

March 2004 (Version 1.0)

Introduction

Let A be an algebra over C. If A has no unit, we require that the product in A is non-

degenerate as a bilinear map. The multiplier algebra M(A) of A is the largest algebra

with unit in which A sits as a dense two-sided ideal. If A has a unit, then M(A) = A.

Consider a group G and let A be the algebra of complex valued functions with finite

support in G, with pointwise product. This algebra has no unit, except when G is finite.

The multiplier algebra M(A) is given by the algebra of all complex valued functions on G.

We define a comultiplication ∆ on A by (∆(f))(p, q) = f(pq) where f ∈ A and p, q ∈ G.

If G is finite, then ∆ maps A into A⊗A and makes A into a Hopf algebra. However, when

G is not finite, ∆(f) ∈ M(A⊗ A) for all f ∈ A. In this case (A, ∆) is a multiplier Hopf

algebra, as reviewed in Section 1. In this paper, the multiplier Hopf algebra A associated

with a group G as above, is denoted as (K(G), ∆).

Multiplier Hopf algebras are generalizations of Hopf algebras when the underlying algebra

is no longer assumed to have a unit. Integrals on multiplier Hopf algebras are defined as in

the Hopf algebra case, see Section 1. If A is a multiplier Hopf algebra with integrals, the

dual object can be defined within the same category. This duality generalizes the one for

finite-dimensional Hopf algebras, but applies to a much bigger class of (multiplier) Hopf

algebras. In fact, the theory of multiplier Hopf algebras is a theory that allows results
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which are not possible within the framework of usual Hopf algebras. Furthermore, this

theory is also a good model for an analytical theory of locally compact quantum groups.

The link between these two theories are the multiplier Hopf ∗-algebras with positive inte-

grals, see [VD2], [VD3] and especially [K-VD].

Let G be any group. In this paper we deal with G-cograded multiplier Hopf algebras in the

sense of Definition 2.1 (in Section 2 of this paper). Roughly speeking, a multiplier Hopf al-

gebra B is G-cograded if there is a central, non-degenerate embedding I : K(G) → M(B).

Furthermore, this embedding respects the comultiplication, i.e. ∆(I(f)) = (I ⊗ I)(∆(f))

for all f ∈ K(G). Remark that we give a meaning to this equation by extending the ho-

momorphism ∆ from B to M(B) and I⊗I from K(G)⊗K(G) to M(K(G)⊗K(G)) using

the fact that the homomorphisms are non-degenerate and hence have unique extensions.

It is shown in [A-D-VD] that a Hopf group-coalgebra, as introduced by Turaev in [T], is

a special case of a group-cograded multiplier Hopf algebra. Therefore, we can interpret

the results of Turaev, Virelizier and Zunino within the theory of cograded multiplier Hopf

algebras. This threws a new light on their results. More precisely, a lot of the results for

Hopf group-coalgebras follow from the more general results for multiplier Hopf algebras.

Moreover, we can apply the techniques from the theory of multiplier Hopf algebra in the

study of Hopf group-coalgebras. We refer to [A-D-VD] for details about this approach to

Hopf group-coalgebras.

The main goal of this paper is to apply this point of view when constructing the quantum

double for such G-cograded multiplier Hopf algebras. We recover and generalize the work

of Zunino on this subject as it is found in [Z].

Let us now summarize the content of this paper.

In Section 1, we recall the definition of a multiplier Hopf algebra and we review some

results which are used in this paper.

In Section 2, we first recall the notion of a group-cograded multiplier Hopf algebra as stud-

ied in [A-D-VD]. Then we consider an admissible action of the group G on a G-cograded
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multiplier Hopf algebra B. Using this action, we deform the comultiplication of B. This

gives rise to a new multiplier Hopf algebra B̃ = (B, ∆̃) where the underlying algebra

structure of B is unchanged but with a different comultiplication. If B is regular, so is

B̃. If it is a multiplier Hopf ∗-algebra and has positive integrals, then the same is true for

B̃, see Theorem 2.11.

In Section 3, we start with a multiplier Hopf algebra pairing 〈A,B〉 where B is a G-

cograded multiplier Hopf algebra. Let π be an admissible action of G on B. Then we

construct a twisted tensor product multiplier Hopf algebra (as reviewed in Section 1) of

the multiplier Hopf algebras (A, ∆cop) and (B, ∆̃). This twisted tensor product multiplier

Hopf algebra is denoted as Dπ = Acop ./ B̃. The main results on Dπ are given in Theorem

3.8 and Proposition 3.9. If π is the trivial action, we recover the usual Drinfel’d double of

the pair 〈A,B〉, as reviewed in Section 1. The Drinfel’d double, as constructed by Zunino

for a finite-type Hopf group-coalgebras in [Z] is considered in Example 3.14.

By the constructions in Section 2 and Section 3, we have further interesting, non-trivial

examples of multiplier Hopf (∗-)algebras with (positive) integrals.

Let us finish this introduction by mentioning some basic references. For multiplier Hopf

algebras, these are [VD1] and [VD-Z]. For multiplier Hopf algebras with integrals, we refer

to [VD2]. The Drinfel’d double of a pair of multiplier Hopf algebras is studied extensively

in [Dr-VD] and in [De-VD]. The Hopf group-coalgebras are introduced in [T]. The new

approach to Hopf group-coalgebras is studied and generalized to the case of multiplier

Hopf algebras in [A-D-VD].
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1 Preliminaries on multiplier Hopf (∗-)algebras

We begin this section with a short introduction to the theory of multiplier Hopf algebras.

Multiplier Hopf (∗-)algebras with (positive) integrals

As mentioned already in the introduction, throughout this paper, all algebras are al-

gebras over the field C of complex numbers. They may or may not have units, but always

should be non-degenerate, i.e. the multiplication maps (viewed as bilinear forms) are non-

degenerate. For an algebra A, the multiplier algebra M(A) of A is defined as the largest

algebra with unit in which A is a dense ideal, i.e. A has no (left and right) annihilators

in M(A).

Now, we recall the definition of a multiplier Hopf algebra (see [VD1] for details). Consider

the tensor product A⊗A which is again an algebra with a non-degenerate product. The

embedding of A⊗ A ↪→ M(A⊗ A) factors through M(A)⊗M(A) in an obvious way as

follows: A⊗A ↪→ M(A)⊗M(A) ↪→ M(A⊗A). A comultiplication on A is a homomor-

phism ∆ : A → M(A⊗ A) such that ∆(a)(1⊗ b) and (a⊗ 1)∆(b) are elements of A⊗ A

for all a, b ∈ A. We require ∆ to be coassociative in the sense that

(a⊗ 1⊗ 1)(∆⊗ ι)(∆(b)(1⊗ c)) = (ι⊗∆)((a⊗ 1)∆(b))(1⊗ 1⊗ c)

for all a, b, c ∈ A (where ι denotes the identity map).

1.1 Definition [VD1] A pair (A, ∆) of an algebra A with non-degenerate product

and a comultiplication ∆ on A is called a multiplier Hopf algebra if the linear maps

T1, T2 : A⊗ A → A⊗ A, defined by

T1(a⊗ b) = ∆(a)(1⊗ b) T2(a⊗ b) = (a⊗ 1)∆(b)

are bijections.
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The conditions in Definition 1.1 in fact imply that ∆ is a non-degenerate homomorphism.

For the convenience of the reader, we recall the notion of a non-degenerate homomorphism.

It is a homomorphism γ : A → M(B), where A and B are algebras with a non-degenerate

product, such that γ(A)B = Bγ(A) = B. So, e.g. every element b ∈ B is a sum of

elements of the form γ(a)b′ with a ∈ A and b′ ∈ B. An important property of such a

non-degenerate homomorphism γ is that it has a unique extension, to a unital homomor-

phism from M(A) to M(B). The extension is still denoted by γ. See the appendix in

[VD1]. The homomorphisms ι⊗∆ and ∆⊗ ι are also non-degenerate and so have unique

extensions to M(A⊗A) in a natural way. The coassociativity as formulated above means

nothing else but (∆⊗ ι)∆ = (ι⊗∆)∆ in M(A⊗ A⊗ A).

The bijectivity of the two maps in Definition 1.1 is equivalent with the existence of a

counit ε and an antipode S satisfying (and defined) by

(ε⊗ ι)(∆(a)(1⊗ b)) = ab m((S ⊗ ι)(∆(a)(1⊗ b))) = ε(a)b

(ι⊗ ε)((a⊗ 1)∆(b)) = ab m((ι⊗ S)((a⊗ 1)∆(b))) = ε(b)a

where ε : A → C is a homomorphism, S : A → M(A) is an anti-homomorphism and m

is the multiplication map, considered as a linear map from A ⊗ A to A and extended to

A⊗M(A) and M(A)⊗ A.

A multiplier Hopf algebra is called regular if (A, ∆cop) is (also) a multiplier Hopf algebra,

where ∆cop denotes the co-opposite comultiplication defined as ∆cop = σ ◦∆ with σ the

usual flip map from A⊗A to itself (and extended to M(A⊗A)). In this case, we also have

that ∆(a)(b⊗1) and (1⊗b)∆(a) are in A⊗A for all a, b ∈ A. A multiplier Hopf algebra is

regular if and only if the antipode is a bijection from A to A (see [VD2, Proposition 2.9]).

Any Hopf algebra is a multiplier Hopf algebra. Conversely, a multiplier Hopf algebra with

unit is a Hopf algebra.

In [Dr-VD], the use of the Sweedler notation for regular multiplier Hopf algebras has been

introduced. We will also use this notation in this paper. We will e.g. write
∑

a(1)⊗ a(2)b

for ∆(a)(1⊗ b) and
∑

ab(1) ⊗ b(2) for (a⊗ 1)∆(b).
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1.2 Definition [VD1] If A is a ∗-algebra, we require the comultiplication ∆ to be

also a ∗-homomorphism. Then, a multiplier Hopf ∗-algebra is a ∗-algebra with a comul-

tiplication, making it into a multiplier Hopf algebra. For a multiplier Hopf ∗-algebra,

regularity is automatic.

Recall that a ∗-algebra A over C is an algebra with an involution a 7→ a∗. An involution

is a antilinear map satisfying a∗∗ = a and (ab)∗ = b∗a∗ for all a and b in A. The multiplier

algebra M(A) is again a ∗-algebra.

1.3 Example Let G be any group and let A be the ∗-algebra K(G) of complex,

finitely supported functions on G. In this case M(A) consists of all complex functions on

G. Moreover A⊗A can be naturally identified with finitely supported complex functions

on G×G so that M(A⊗A) is the space of all complex functions on G×G. If we define

∆ : A → M(A ⊗ A) by (∆(f))(p, q) = f(pq) for f ∈ A and p, q ∈ G, we clearly get a

∗-homomorphism. If f, g ∈ A, then (p, q) 7→ f(pq)g(q) and (p, q) 7→ g(p)f(pq) have finite

support and so belong to A ⊗ A. The coassociativity condition on ∆ is a consequence

of the associativity of the multiplication on G. So ∆ is a comultiplication. To obtain

that the pair (A, ∆) is a multiplier Hopf algebra in the sense of Definition 1.1, we notice

that the bijectivity of the linear maps T1 and T2 follows from the fact that the maps

(p, q) 7→ (pq, q) and (p, q) 7→ (p, pq) are bijective from G × G to itself (because G is as-

sumed to be a group).

This is a very simple example. Interesting examples of multiplier Hopf algebras are found

among the discrete quantum groups (i.e. the duals of compact quantum groups), see e.g.

[VD2].

We now discuss the notion of an integral on a multiplier Hopf (∗-)algebra. It is like

the integral on a Hopf algebra. We will restrict to the case of a regular multiplier Hopf

algebra (in particular to a multiplier Hopf ∗-algebra). We first observe the following. If
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f is a linear functional on a multiplier Hopf algebra A, we can define for all a ∈ A, the

multipliers (ι⊗ f)∆(a) in M(A) in the following way

((ι⊗ f)∆(a))b = (ι⊗ f)(∆(a)(b⊗ 1)) b((ι⊗ f)∆(a)) = (ι⊗ f)((b⊗ 1)∆(a))

where b ∈ A. This is well-defined as both ∆(a)(b⊗ 1) and (b⊗ 1)∆(a) are in A⊗ A and

we can apply ι⊗ f mapping A⊗A to A⊗C (which is naturally itendified with A itself).

Similarly, we can define (f ⊗ ι)∆(a) in M(A). Then, the following definition makes sense.

1.4 Definition [VD2] A linear functional ϕ on A is called left invariant if

(ι⊗ϕ)∆(a) = ϕ(a)1 for all a ∈ A. A left integral is a non-zero left invariant functional on

A. Similarly, a non-zero linear functional ψ satisfying (ψ ⊗ ι)∆(a) = ψ(a)1 for all a ∈ A

is called a right integral.

In Example 1.3, a left integral is given by the formula ϕ(f) =
∑

q∈G f(q) (the sum is

well-defined as only finitely many entries are non-zero). In this example the left inte-

gral is also right invariant. This however is no longer true in general. Multiplier Hopf

(∗-)algebras with integrals are studied intensively in [VD2]. There are various data (and

many relations among them) about left and right integrals. We collect some important

results of [VD2].

1.5 Theorem [VD2] Let (A, ∆) be a multiplier Hopf (∗-)algebra with left integral ϕ.

Any other left integral is a scalar multiple of ϕ. There is also a right integral ψ, unique

up to a scalar. The left integral is faithful in the sense that when a ∈ A, then a = 0 if

ϕ(ab) = 0 for all b or ϕ(ba) = 0 for all b. Similarly, the right integral is faithful. There

is an automorphism σ of A such that ϕ(ab) = ϕ(bσ(a)) for all a, b ∈ A. There is an

invertible multiplier δ in M(A) such that (ϕ⊗ ι)∆(a) = ϕ(a)δ and (ι⊗ψ)∆(a) = ψ(a)δ−1

for all a ∈ A. ¥

One of the main features of a multiplier Hopf algebra A with integrals is the existence of
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the dual multiplier Hopf algebra (Â, ∆̂). It is constructed in the following way.

1.6 Definition [VD2] Let (A, ∆) be a multiplier Hopf (∗-)algebra with left integral

ϕ. Denote by Â the space of linear functionals on A of the form x 7→ ϕ(xa) where a ∈ A.

The product (respectively the coproduct) of Â is dual to the coproduct (respectively the

product) of A.

This dual object (Â, ∆̂) is again a regular multiplier Hopf algebra with integrals. More-

over, the dual of (Â, ∆̂) is canonically isomorphic with the orginial multiplier Hopf algebra

(A, ∆). For a finite-dimensional Hopf algebra A, we notice that Â equals the usual dual

Hopf algebra of A. It is possible to generalize many aspects of harmonic analysis in this

general framework. One can define the Fourier transform, one can prove Plancherel’s

formula, ... . For details, see [VD2].

In the case that (A, ∆) is a multiplier Hopf ∗-algebra, a left integral is called positive

if ϕ(a∗a) ≥ 0 for all a ∈ A. We mention that, when there is a positive left integral, there

is also a positive right integral. Multiplier Hopf ∗-algebras with positive integrals, give

rise to dual multiplier Hopf ∗-algebras with positive integrals. In [K-VD] is explained

how any multiplier Hopf ∗-algebra with positive integrals gives rise to a locally compact

quantum group as introduced and studied by Kustermans and Vaes in [K-V].

Pairing and Drinfel’d double of multiplier Hopf algebras

We now recall how the Drinfel’d double is constructed from a pair of multiplier Hopf

algebras.

Start with two regular multiplier Hopf algebras (A, ∆) and (B, ∆) together with a non-

degenerate bilinear map 〈·, ·〉 from A×B to C. This is called a pairing if certain conditions

are fulfilled. The main property is that the coproduct in A is dual to the product in B

and vice versa. There are however certain regularity conditions, needed to give a correct
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meaning to this statement. The investigation of these conditions is done in [Dr-VD]. We

recall some important aspects here.

1.7 Definition For a ∈ A and b ∈ B, define a I b, b J a, b I a and a J b as

multipliers in the following way. Take a′ ∈ A, b′ ∈ B and define

(b I a)a′ =
∑〈a(2), b〉a(1)a

′

(a J b)a′ =
∑〈a(1), b〉a(2)a

′

(a I b)b′ =
∑〈a, b(2)〉b(1)b

′

(b J a)b′ =
∑〈a, b(1)〉b(2)b

′.

The regularity conditions on the pairing say (among other things) that the multipliers

b I a and a J b in M(A) (resp. a I b and b J a in M(B)) actually belong to A (resp.

B).

Then it is possible to state that the product and the coproduct are dual to each other:

〈a, bb′〉 = 〈b′ I a, b〉
= 〈a J b, b′〉

〈aa′, b〉 = 〈a, a′ I b〉
= 〈a′, b J a〉.

There are four modules involved. All these modules are unital. By definition, e.g. B is a

left A-module for the action A I B. That B is unital means that any element b ∈ B is

a linear combination of elements of the form a I b′ with a ∈ A and b′ ∈ B. A stronger

result however is possible here, coming from the existence of local units, see [D-VD-Z].

Take e.g. b ∈ B. Then there are elements {a1, a2, . . . , an} in A and {b1, b2, . . . , bn} in B

such that b =
∑

ai I bi. Because of the existence of local units, there is an e ∈ A such

that eai = ai for all i. It follows easily that e I b = b. So, we have that for all b ∈ B

there exists an element e ∈ A such that b = e I b.

As an important consequence of this last result, we can use the Sweedler notation in the

framework of dual pairs in the following sense. Take a ∈ A and b ∈ B, and e.g. the

element b I a =
∑〈a(2), b〉a(1). In the right hand side of this equation, the element a(2)

is covered by b through the pairing because b = e I b for some e ∈ A and therefore
∑〈a(2), b〉a(1) = 〈a(2), e I b〉a(1) =

∑〈a(2)e, b〉a(1).

We also mention that 〈S(a), b〉 = 〈a, S(b)〉 and as expected, 〈a, 1〉 = ε(a) and 〈1, b〉 = ε(b)
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where a ∈ A and b ∈ B. For these formulas, one has to extend the pairing to A×M(B)

and to M(A)×B. This can be done in a natural way using the fact that the four modules

A I B, B I A, A J B and B J A are unital.

If A and B are multiplier Hopf ∗-algebras. A pairing 〈A,B〉 is called a multiplier Hopf

∗-algebra pairing if additionally 〈a∗, b〉 = 〈a, S(b)∗〉 for all a ∈ A and b ∈ B.

A pairing of two multiplier Hopf algebras is the natural setting for the construction of the

Drinfel’d double and it turns out that the conditions on the pairing 〈A,B〉 are sufficient

to make this construction. This is done in a rigorous way in the papers [Dr-VD], [D] and

[De-VD]. We recall some essential ideas.

The main point is that there is (as in the case of finite-dimensional Hopf algebras) an

invertible twist map.

1.8 Definition For a ∈ A and b ∈ B, we set

R(b⊗ a) =
∑

(b(1) I a J S−1(b(3)))⊗ b(2).

It is proven in [Dr-VD] that this map is well-defined and bijective. Let D = A ./ B

denote the algebra with the tensor product A⊗ B as the underlying space and with the

twisted product given by the twist map R as follows:

(a ./ b)(a′ ./ b′) = (mA ⊗mB)(ιA ⊗R⊗ ιB)(a⊗ b⊗ a′ ⊗ b′)

with a, a′ ∈ A and b, b′ ∈ B. The maps A → M(D) : a 7→ a ./ 1 and B → M(D) : b 7→
1 ./ b are non-degenerate algebra embeddings. The embedding of A in M(D) gives rise to

the embedding of A⊗A in M(D⊗D). Similarly, B⊗B can be embedded in M(D⊗D).

These embeddings can be extended to the multiplier algebras. The comultiplication on

D can then be given by the formula ∆D(a ./ b) = ∆cop(a)∆(b).

The main result is the following.
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1.9 Theorem With the notations and definitions above, the pair (D, ∆D) is a mul-

tiplier Hopf algebra, called the quantum double (or Drinfel’d double). If A and B have

integrals, then D has integrals too.

More precisely, let ϕA denote a left integral on A and let ψB denote a right integral on

B, then ψD = ϕA ⊗ ψB is a right integral on D.

If 〈A,B〉 is a multiplier Hopf ∗-algebra pairing of two multiplier Hopf ∗-algebras, then

D = Acop ./ B is again a multiplier Hopf ∗-algebra. Suppose that ϕA (resp. ψB) is a

positive left integral on A (resp. right integral on B). In [De-VD] it is shown that there es-

ists a complex number ρ such that ρ(ϕA⊗ψB) is a positive right integral on D = Acop ./ B.

Twisted tensor product construction of multiplier Hopf (∗-)algebras

The Drinfel’d double construction, as reviewed above, is a special case of a twisted tensor

product of multiplier Hopf (∗-)algebras. General twisted tensor products of multiplier

Hopf algebras are studied in [D]. Also here, we recall some ideas.

1.10 Assumptions Let A and B be two algebras and suppose that there is given

a bijective linear map R : B ⊗ A → A⊗B such that

R(mB ⊗ ιA) = (ιA ⊗mB)(R⊗ ιB)(ιB ⊗R)

R(ιB ⊗mA) = (mA ⊗ ιB)(ιA ⊗R)(R⊗ ιA).

Recall that mA denotes the product in A, considered as a linear map mA : A ⊗ A → A

and similarly for the product mB on B.

One can consider the twisted tensor product algebra A ./ B in the following way. As a

vector space A ./ B is A⊗B. The product in A ./ B is defined by

(a ./ b)(a′ ./ b′) = (mA ⊗mB)(ιA ⊗R⊗ ιB)(a⊗ b⊗ a′ ⊗ b′)

for a, a′ ∈ A and b, b′ ∈ B. As before, we use ι to denote the identity map, in particular

we have ιA and ιB for the identity maps on A and B respectively.
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The above assumptions on R are necessary for the associativity of the product in A ./ B.

Because the the products in A and B are assumed to be non-degenerate, one can prove

that the bijectivity of R guaranties that the product in A ./ B is again non-degenerate.

1.11 Remarks For details, see [D].

(i) By using the conditions on R and the bijectivity, one can prove that the product in

A ./ B is also given by the following expressions

(a ./ b)(a′ ./ b′) = ((ιA ⊗mB) ◦R12 ◦ (ιB ⊗mA ⊗ ιB) ◦ (R−1)12)(a⊗ b⊗ a′ ⊗ b′)

(a ./ b)(a′ ./ b′) = ((mA ⊗ ιB) ◦R34 ◦ (ιA ⊗mB ⊗ ιA) ◦ (R−1)34)(a⊗ b⊗ a′ ⊗ b′)

for all a, a′ ∈ A and b, b′ ∈ B. Recall that we use the leg-numbering notation for the

maps R. When we write e.g. R12, we consider R as acting on the first two factors

in the tensor product. Similarly R34 is the map R as acting on the 3th and the

4th factor. These formulas will be used to justify that the decompositions of the

comultiplications in A and in B are well covered when we use the Sweedler notation.

(ii) The maps

A → M(A ./ B) : a 7→ a ./ 1 B → M(A ./ B) : b 7→ 1 ./ b

are non-degenerate algebra embeddings and therefore extend, in a natural way,

to unital algebra embeddings from M(A) and M(B) respectively to M(A ./ B).

Therefore, we have the non-degenerate algebra embeddings

A⊗ A → M((A ./ B)⊗ (A ./ B)) : a⊗ a′ 7→ (a ./ 1)⊗ (a′ ./ 1)

B ⊗B → M((A ./ B)⊗ (A ./ B)) : b⊗ b′ 7→ (1 ./ b)⊗ (1′ ./ b′).

Also these embeddings extend to the multiplier algebras in a natural way.

(iii) Let A and B be *-algebras with non-degenerate products. Suppose that the twist

map R : B ⊗ A → A ⊗ B is bijective and satisfies the above conditions. If fur-

thermore (R ◦ ∗B ⊗ ∗A ◦ σ)(R ◦ ∗B ⊗ ∗A ◦ σ) = ιA ⊗ ιB, then there is a ∗-operation
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on A ./ B given as follows: (a ./ b)∗ = R(b∗ ⊗ a∗) for all a ∈ A, b ∈ B. Now the

embeddings in Remark (ii) become ∗-embeddings.

The comultiplications on A and B can be used to define the comultipication on A ./ B

as usual:

1.12 Definition [D] Let A and B be multiplier Hopf algebras. Let R : B⊗A→A⊗B

be a bijective map satisfying the Assumptions 1.10. For a ∈ A and b ∈ B, define

∆(a ./ b) = ∆(a)∆(b) ∈ M((A ./ B)⊗ (A ./ B)).

In the next theorem, we formulate sufficient conditions for (A ./ B, ∆) to be a regular

multiplier Hopf algebra.

1.13 Theorem [D] Let A and B be multiplier Hopf algebras with a bijective twist

map R, satisfying the following conditions

(1) R(mB ⊗ ιA) = (ιA ⊗mB)(R⊗ ιB)(ιB ⊗R)

R(ιB ⊗mA) = (mA ⊗ ιB)(ιA ⊗R)(R⊗ ιA)

(2) ∆(R(b⊗ a)) = ∆(b)∆(a) in M((A ./ B)⊗ (A ./ B)) for all a ∈ A and b ∈ B.

Then (A ./ B, ∆, ε, S) is a regular multiplier Hopf algebra with, ε and S given as ε =

εA ⊗ εB and S = R ◦ (SB ⊗ SA) ◦ σ.

Let A and B be multiplier Hopf ∗-algebras and (R◦(∗B⊗∗A)◦σ)(R◦(∗B⊗∗A)◦σ) = ιA⊗ιB.

Then (A ./ B, ∆) is made into a multiplier Hopf ∗-algebra, if the ∗-operation is defined

by (a ./ b)∗ = R(b∗ ⊗ a∗). ¥
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2 Actions of G on a G-cograded multiplier Hopf al-

gebra

Throughout this section, G is an arbitrary group. Let K(G) be the multiplier Hopf alge-

bra of the complex valued functions with finite support in G, see Example 1.3.

Group-cograded multiplier Hopf algebras

Recall the following definition given in [A-D-VD].

2.1 Definition A G-cograded multiplier Hopf (∗-)algebra is multiplier Hopf (∗-)algebra

B so that the following hold:

(1) B =
⊕
p∈G

Bp with {Bp}p∈G a family of (∗-)subalgebras such that BpBq = 0 if p 6= q,

(2) ∆(Bpq)(1⊗Bq) = Bp ⊗Bq and (Bp ⊗ 1)∆(Bpq) = Bp ⊗Bq for all p, q ∈ G.

We say that the comultiplication of B is G-graded.

2.2 Proposition The data of a Hopf group-coalgebra, as introduced by Turaev in

[T], give an example of a cograded multiplier Hopf algebra.

For the proof of this propisition, we refer to [A-D-VD].

In order to characterize the coalgebra structure of a general G-cograded multiplier Hopf

algebra, we first need the following lemma.

2.3 Lemma Let A and B be multiplier Hopf algebras. Let f : A → M(B) be a

non-degenerate algebra homomorphism which respects the comultiplication in the sense

that ∆B ◦ f = (f ⊗ f) ◦∆A. Then f preserves the unit, the counit and the antipode in

the following way. For any a ∈ A and b ∈ B, we have

f(1A) = 1B, εB(f(a)) = εA(a) and SB(f(a)) = f(SA(a)).
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2.4 Proposition A multiplier Hopf (∗-)algebra B is G-cograded if and only if there

exists an injective, non-degenerate (∗-)homomorphism I : K(G) → M(B) so that

(i) I(K(G)) ⊂ Z(M(B)) when Z(M(B)) is the center of M(B),

(ii) ∆(I(f)) = (I ⊗ I)∆(f) for all f ∈ K(G).

We have I(δp) = 1p, where δp is the complex valued function on G, given by δp(q) = 0 if

p 6= q and δp(p) = 1 and where 1p is the unit in M(Bp).

Again, for the proof of these two results, we refer to [A-D-VD].

An immediate consequence of these two results is the following.

2.5 Proposition Let B be a G-cograded multiplier Hopf (∗-)algebra in the sense of

Definition 2.1. So B has the form B =
⊕
p∈G

Bp. Then we have

(i) ε(a) = 0 whenever a ∈ Bp and p 6= e (where e is the identity in G),

(ii) S(Bp) ⊆ M(Bp−1) for all p.

Now that we have discussed the notion of a group-cograded multiplier Hopf algebra in

general, we are ready to study a special type of actions on these objects.

Admissible actions on group-cograded multiplier Hopf algebras

Here is the main definition.

2.6 Definition Let B be a G-cograded multiplier Hopf (∗-)algebra. So B has the

form B =
⊕
p∈G

Bp. Let Aut(B) denote the group of algebra automorphisms on B. By an

action of the group G on B, we mean a group homomorphism π : G → Aut(B). If B is a

multiplier Hopf ∗-algebra we assume that πp is a ∗-automorphism for all p ∈ G. Further,

we require that for all p ∈ G
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(1) πp respects the comultiplication on B in the sense that ∆(πp(b)) = (πp ⊗ πp)(∆(b))

for all b ∈ B.

We call this action admissible if there is an action ρ of G on itself so that

(2) πp(Bq) = Bρp(q),

(3) πρp(q) = πpqp−1 .

for all p, q in G.

The action ρ of G on itself determines an action ρ̃ of G on K(G) by the formula

(ρ̃p(f))(q) = f(ρp−1(q)) when f ∈ K(G) and p, q ∈ G. This is an action of G on the

multiplier Hopf algebra K(G) (in the sense of the above definition). Condition (2) says

that I ◦ ρ̃p = πp ◦ I for all p ∈ G where I is the canonical imbedding of K(G) in M(B).

So, for an action to be admissible, we first of all need that, on the level of K(G), it comes

from an action of G on itself.

If this action is the adjoint action, that is, if ρp(q) = pqp−1 for all p, q, then condition (3)

is automatically fulfilled. If this is not the case, then we want π itself to take care of ρ

not being the adjoint action. The other extreme therefore is obtained when π is simply

the trivial action. Then we can take for ρ also the trivial action in order to satisfy (1)

while (2) is again automatically satisfied, now however for a completely different reason.

Condition (2) seems to be quite natural. We will indicate further why we need condition

(3). In any case, as we saw above, we have the following example.

2.7 Example Let B be a G-cograded multiplier Hopf algebra with canonical de-

composition B =
∑

p∈G⊕Bp. Let π be an action of G on B. If πp(Bq) = Bpqp−1 for all

p, q ∈ G, then we have an admissible action.

Also the trivial action is admissible and it is not hard to construct examples combining

these two extreme cases.
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Deformation of a group-cograded mutliplier Hopf algebra

Let G be a group. Let B be a G-cograded regular multiplier Hopf algebra and let π

be an admissible action of G on B. We will construct a new regular multiplier Hopf alge-

bra on B by deforming the comultiplication, while the algebra structure on B is kept. The

deformation of the comultiplication of B, as defined in the following definition, depends

on the action π.

2.8 Definition Take B and π as above. For b ∈ B, we define the multiplier ∆̃(b)

in M(B ⊗B) by the following formulas. Take b′ ∈ Bq, then we define

∆̃(b)(1⊗ b′) = (πq−1 ⊗ ι)(∆(b)(1⊗ b′))

(1⊗ b′)∆̃(b) = (πq−1 ⊗ ι)((1⊗ b′)∆(b))

in B⊗B. By the associativity of the product in B⊗B, we have that ∆̃(b) is a multiplier

in M(B ⊗B).

2.9 Proposition Take the notations as in Definition 2.8. For all b ∈ Bp and b′ ∈ Bq,

we have

(b′ ⊗ 1)∆̃(b) =
∑

b′πqp−1(b(1))⊗ b(2)

∆̃(b)(b′ ⊗ 1) =
∑

πqp−1(b(1))b
′ ⊗ b(2)

in B ⊗B. The map ∆̃ : B → M(B ⊗B) is a non-degenerate homomorphism.

Proof. To prove the first formula, take r ∈ G and b′′ ∈ Br. Then we have

((b′ ⊗ 1)∆̃(b))(1⊗ b′′) = (b′ ⊗ 1)(∆̃(b)(1⊗ b′′)) =
∑

b′πr−1(b(1))⊗ b(2)b
′′.

As b′ ∈ Bq, we must have πr−1(b(1)) ∈ Bq and so b(1) ∈ πr(Bq) = Bρr(q) (using condition

(2) in Definition 2.6). As b′′ ∈ Br we must have b(2) ∈ Br. Finally, because b ∈ Bp we
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need p = ρr(q)r. It follows that πpr−1 = πρr(q) = πrqr−1 (using condition (3) in Definition

2.6). Therefore, πp = πrq and πr−1 = πqp−1 . This proves the first formula. Similarly, the

second one can be proven.

Further, ∆̃ : B → M(B⊗B) is a homomorphism because ∆ : B → M(B⊗B) is a homo-

morphism and (πp ⊗ ιB) is a non-degenerate homomorphism on B ⊗B for all p ∈ G. For

all p, q ∈ G we have that Bp⊗Bq = ∆̃(Bρq(p)q)(1⊗Bq) and Bp⊗Bq = (1⊗Bq)∆̃(Bρq(p)q).

Therefore, ∆̃ : B → M(B ⊗ B) is a non-degenerate homomorphism in the sense that

∆̃(B)(B ⊗B) = B ⊗B = (B ⊗B)∆̃(B). This completes the proof. ¥

2.10 Lemma Take the notations as above. Then ∆̃ is coassociative.

Proof. As ∆̃ can be extended to M(B) in a natural way, to show that ∆̃ is coasso-

ciative we need (∆̃⊗ ι)(∆̃(x))
(∗)
= (ι⊗ ∆̃)(∆̃(x)) in M(B ⊗B ⊗B) for all x ∈ B .

Let 1p and 1q denote the units in M(Bp) and M(Bq) respectively. Then the equation (∗)
will be satisfied if for all p, q ∈ G we have

((∆̃⊗ ι)(∆̃(x)))(1⊗ 1p ⊗ 1q) = ((ι⊗ ∆̃)(∆̃(x)))(1⊗ 1p ⊗ 1q).

For the left hand side of the above equation we set

((∆̃⊗ ι)(∆̃(x)))(1⊗ 1p ⊗ 1q) = ((∆̃⊗ ι)(∆̃(x)(1⊗ 1q)))(1⊗ 1p ⊗ 1q)

= ((∆̃⊗ ι)(πq−1 ⊗ ι)(∆(x)))(1⊗ 1p ⊗ 1q)

= ((πp−1 ⊗ ι⊗ ι)((∆⊗ ι)(πq−1 ⊗ ι)(∆(x))))(1⊗ 1p ⊗ 1q)

= ((πp−1πq−1 ⊗ πq−1 ⊗ ι)((∆⊗ ι)(∆(x))))(1⊗ 1p ⊗ 1q).

Observe that 1p ⊗ 1q = ∆̃(1ρq(p)q)(1p ⊗ 1q) because πq−1(Bρq(p)) = Bp. For the right hand

side of the above equation we set

((ι⊗ ∆̃)(∆̃(x)))(1⊗ 1p ⊗ 1q) = ((ι⊗ ∆̃)(∆̃(x)))(1⊗ ∆̃(1ρ
q(p)q))(1⊗ 1p ⊗ 1q)

= ((ι⊗ ∆̃)(∆̃(x)(1⊗ 1ρq(p)q)))(1⊗ 1p ⊗ 1q)

= ((ι⊗ ∆̃)((πq−1ρq(p−1) ⊗ ι)(∆(x))))(1⊗ 1p ⊗ 1q).
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As π is an admissible action of G on B, we have πq−1ρq(p−1) = πp−1q−1 . Therefore, we

obtain that the right hand side equals

((πp−1πq−1 ⊗ ι⊗ ι)((ι⊗ ∆̃)(∆(x))))(1⊗ 1p ⊗ 1q)

= ((πp−1πq−1 ⊗ ι⊗ ι)((ι⊗ πq−1 ⊗ ι)((ι⊗∆)(∆(x)))))(1⊗ 1p ⊗ 1q)

= ((πp−1πq−1 ⊗ πq−1 ⊗ ι)((ι⊗∆)(∆(x))))(1⊗ 1p ⊗ 1q).

We see that both expressions are the same. ¥

We now prove that the comultiplication ∆̃ makes B into a regular multiplier Hopf al-

gebra. We also calculate the counit and the antipode for this new multiplier Hopf algebra.

2.11 Theorem Let B be a regular G-cograded multiplier Hopf algebra. So, as an

algebra, B has the form B =
⊕
p∈G

Bp. Assume that π is an admissible action of G on

B. Let ∆̃ denote the comultiplication as defined in Definition 2.8. Then we have the

following.

(1) (B, ∆̃) is a regular multiplier Hopf algebra. The counit ε̃ is the original counit ε.

The antipode S̃ is given by the formula S̃(b) = πp−1(S(b)) for b ∈ Bp.

(2) If B is a G-cograded multiplier Hopf ∗-algebra, then (B, ∆̃) is again a multiplier

Hopf ∗-algebra.

(3) If ϕ is a left integral on B, then ϕ is also a left integral on (B, ∆̃). However, if ψ is

a right integral, it is in general not right invariant on (B, ∆̃). It has to be modified.

For b ∈ Bp, define ψ̃(b) = ψB(πp−1(b)). Then ψ̃ is a right integral. In the ∗-case, we

have that a positive left integral on B is again a positive left integral on (B, ∆̃). A

positive right integral ψ on B gives rise to a positive right integral ψ̃ on (B, ∆̃).

Proof.

(1) We will make use of [VD2, Proposition 2.9] to prove that (B, ∆̃) is a regular mul-

tiplier Hopf algebra. Recall that, as an algebra, B =
⊕
p∈G

Bp. The comultiplication
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∆̃ : B → M(B⊗B) is defined as in Definition 2.8 and we will also use the formulas

of Proposition 2.9.

Moreover, we will use that πp is an isomorphism of B for all p ∈ G which respects

the comultiplication in the sense that ∆(πp(b)) = (πp ⊗ πp)(∆(b)) for all b ∈ B.

We first consider the counit. We will show that the original counit ε on B is also

the counit for B̃. Take b ∈ Bp and b′ ∈ Bq. Then we have

(ε⊗ ι)(∆̃(b)(1⊗ b′)) =
∑

ε(πq−1(b(1)))b(2)b
′ =

∑
ε(b(1))b(2)b

′ = bb′

(ι⊗ ε)((b′ ⊗ 1)∆̃(b)) = (ι⊗ ε)((b′ ⊗ 1)∆̃(b)(1⊗ 1e)) =

(ι⊗ ε)((b′ ⊗ 1)(πe ⊗ ι)(∆(b)(1⊗ 1e))) = (ι⊗ ε)((b′ ⊗ 1)∆(b)) = b′b.

Recall that e denotes the identity in G.

Next, we prove the existence of the antipode. Define S̃ by the formula S̃(b) =

πp−1(S(b)) for all b ∈ Bp. Let m denote the multiplication in the algebra B. Take

b ∈ Bp and b′ ∈ Bq. Then we have

m((S̃ ⊗ ι)(∆̃(b)(1⊗ b′))) = m(S̃ ⊗ ι)(
∑

πq−1(b(1))⊗ b(2)b
′).

As b(2) ∈ Bq, we calculate that πq−1(b(1)) ∈ Bρq−1 (pq−1). Notice that πρq−1 (qp−1) =

πq−1πqρq−1 (qp−1) = πp−1q.

Therefore, we get

m((S̃ ⊗ ι)(∆̃(b)(1⊗ b′))) =
∑

πp−1(S(b(1)))b(2)b
′.

If ρp−1(qp−1) 6= q (and hence p 6= e), then the last expression equals zero. Remark

that also ε̃(b)b′ = 0. If ρp−1(qp−1) = q, then πq = πρp−1 (qp−1) = πp−1q. Therefore we

have that in this case πp−1 = πe and the expression in the right hand side becomes
∑

S(b(1))b(2)b
′ = ε(b)b′ = ε̃(b)b′.

We now prove the second equation for S̃. Take b ∈ Bp and b′ ∈ Bq, then we have

m((ι⊗ S̃)((b′ ⊗ 1)∆̃(b))) = m((ι⊗ S̃)(
∑

b′πqp−1(b(1))⊗ b(2))).
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In this formula we calculate that b(2) ∈ Bρpq−1 (q−1)p. Notice that πp−1ρpq−1 (q) = πqp−1 .

Therefore, we obtain

m((ι⊗ S̃)((b′ ⊗ 1)∆̃(b))) =
∑

b′πqp−1(b(1)S(b(2))) = ε̃(b)b′.

By using [VD2, Proposition 2.9], we conclude that (B, ∆̃) is a regular multiplier

Hopf algebra.

(2) Now assume that B is a G-cograded multiplier Hopf ∗-algebra and for all p ∈ G,

πp is furthermore a ∗-isomorphism on B. We prove that (B, ∆̃) is also a multiplier

Hopf ∗-algebra. Therefore, we have to show that ∆̃ is a ∗-homomorphism. Take

b ∈ Bp and b′ ∈ Bq, then we have

∆̃(b∗)(1⊗ b′) = (πq−1 ⊗ ι)(∆(b∗)(1⊗ b′)) = (πq−1 ⊗ ι)(∆(b)∗(1⊗ b′))

= (πq−1 ⊗ ι)(((1⊗ b′∗)∆(b))∗) = ((πq−1 ⊗ ι)((1⊗ b′∗)∆(b)))∗

= ((1⊗ b′∗)∆̃(b))∗ = ∆̃(b)∗(1⊗ b′).

(3) Let ϕ be a left integral on B, as reviewed in Section 1. We prove that ϕ is also a

left integral on (B, ∆̃). Take b ∈ Bp and b′ ∈ Bq. Then, we have ((ι⊗ ϕ)∆̃(b))b′ =

(ι⊗ϕ)(∆̃(b)(b′⊗1)) =
∑

πqp−1(b(1))b
′ϕ(b(2)) = ϕ(b)b′. Therefore, (ι⊗ϕ)∆̃(b) = ϕ(b)1

in M(B) for all b ∈ B.

Let ψ be a right integral on B. Define ψ̃ on B by the formula ψ̃(b) = ψB(πp−1(b))

when b ∈ Bp. We will now show that ψ̃ is a right integral on (B, ∆̃). Take b ∈ Bp

and b′ ∈ Bq, then we have

((ψ̃ ⊗ ι)∆̃(b))b′ = (ψ̃ ⊗ ι)(∆̃(b)(1⊗ b′)) = (ψ̃ ⊗ ι)(
∑

πq−1(b(1))⊗ b(2)b
′).

As πq−1(b(1)) ∈ Bρq−1 (pq−1), the last expression is given as

∑
ψ(πρq−1(qp−1)πq−1(b(1)))b(2)b

′ =
∑

ψ(πp−1(b(1)))b(2)b
′

= πp(
∑

ψ(πp−1(b(1)))πp−1(b(2))πp−1(b′))

= πp(ψ(πp−1(b))πp−1(b′)) = ψ̃(b)b′.
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If B is a G-cograded multiplier Hopf ∗-algebra as in (2), then a positive left integral

ϕ on B stays a positive left integral on (B, ∆̃) because the ∗-algebra structure of B

and (B, ∆̃) is the same. If ψ is a positive right integral on B, then it is easily shown

that ψ̃ is a positive right integral on (B, ∆̃). ¥

2.12 Notation We will use B̃ for the deformed multiplier Hopf algebra (B, ∆̃). Of

course, if π is the trivial action of G on B, we have that (B, ∆̃) equals B.

In Proposition 3.12 we will refine the structure of B̃ in the case where π is a admis-

sible action such that πp(Bq) = Bpqp−1 for all p, q ∈ G. This case is like the mirror

construction for a Hopf group-coalgebra as introduced in [T, Section 11].

3 Pairing and Drinfel’d double construction with G-

cograded multiplier Hopf (∗-)algebras

In this section, we will apply the ’twisted tensor product’ construction of multiplier Hopf

(∗-)algebras as we have explained in Section 1.

Let G be a group and let B be a regular G-cograded multiplier Hopf algebra in the sense

of Definition 2.1. We suppose that π is an admissible action of G on B in the sense of

Definition 2.6. In Proposition 3.1 below we study a multiplier Hopf algebra pairing 〈A,B〉
when B is G-cograded. Further in this section, we define Drinfel’d double constructions

Dπ = Acop ./ B̃ where the product as well as the coproduct are depending on the action π.

3.1 Proposition Let 〈A,B〉 be a pairing of two regular multiplier Hopf algebras. Sup-

pose that B is G-cograded. Then there exist subspaces {Ap}p∈G of A such that

(1) A =
⊕
p∈G

Ap and ApAq ⊆ Apq,

(2) 〈Ap, Bq〉 = 0 whenever p 6= q,
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(3) 〈∆(Ap), Bq ⊗Br〉 = 0 if q 6= p or r 6= p,

where p, q, r ∈ G.

Proof. As B is a G-cograded multiplier Hopf algebra, B has the form B =
⊕
p∈G

Bp.

Recall from Section 1, that there are four module algebra structures associated to the

pairing 〈A, B〉, denoted as A I B, B I A, A J B, B J A. We have seen that these

actions are unital and therefore extend to the multiplier algebras. One can show that

A J Bp = Bp I A = A J 1p = 1p I A for all p ∈ G where 1p denotes the unit in M(Bp).

Then we define a subspace Ap in A by Ap = 1p I A for any p ∈ G. We now prove that

these subspaces satisfy the 3 requirements.

(1) Take a ∈ A. Then there exists an element b ∈ B so that a = b I a. As B =
⊕
p∈G

Bp,

it easily follows that A =
⊕
p∈G

Ap. Furthermore ApAq = (1p I Ap)(1q I Aq) = 1pq I

(ApAq). Therefore, ApAq ⊆ Apq.

(2) This second property follows from the definition of Ap and the multiplication struc-

ture of B.

(3) Take a ∈ Ap, b ∈ Bq and b′ ∈ Br. Then we have that 〈∆(a), b⊗ b′〉 = 〈a, bb′〉. Now

the result follows from the algebra structure on B and the fact that Ap is also given

by Ap = Bp I A. ¥

3.2 Remark Take a pairing 〈A,B〉 as in Proposition 3.1.

(1) It easily follows from the definition that b I a = 0 if a ∈ Aq, b ∈ Bp and p 6= q.

Indeed, when a ∈ Aq and b ∈ B, we have b I a = (b1q) I a and b1q = 0 if b ∈ Bp

and p 6= q. Furthermore, if a ∈ Aq then b I a ∈ Aq for all b ∈ B. Similar results

hold for the module A J B.

(2) The antipode S of A maps Ap to Ap−1 .
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Again take a pairing 〈A,B〉 as in Proposition 3.1 and now let π be an admissible action of

G on B. We will construct a twisted tensor product multiplier Hopf algebra, as reviewed

in Section 1. The twist map, defining the non-trivial product structure on A ⊗ B, will

depend on the pairing as well as on the action π. The comultiplication, which is compat-

ible with this product on A⊗B, will also depend on the action π.

We first prove the following lemma.

3.3 Lemma Take the notations and the assumptions as above. Define linear maps R1

and R2 on A⊗B by the formulas

R1(a⊗ b) =
∑

(πqp−1(b(1)) I a)⊗ b(2)

R2(a⊗ b) =
∑

(a J b(2))⊗ b(1)

when a ∈ Aq and b ∈ Bp. Then R1 and R2 are bijections on A ⊗ B and the inverses are

given by

R−1
1 (a⊗ b) =

∑
(πp−1(S−1(b(1))) I a)⊗ b(2)

R−1
2 (a⊗ b) =

∑
(a J S−1(b(2)))⊗ b(1)

when b ∈ Bp.

Proof. We remark that in all the formulas above, the decompositions are well-covered

because the modules B I A and A J B are unital.

The proof for the map R2 is easy and the result is known. Here, we do not really need

these restrictions on a and b.

We give the proof for the map R1. Take a ∈ Aq and b ∈ Bp. First remark that, when

looking closer at the definition of R−1
1 , we see that πp−1(S−1(b(1))) is forced to lie in Bq as

it acts on the element a in Aq; see Remark 3.2 (1). Then b(1) must be in Bρp(q−1). Because

we assume that b ∈ Bp it follows that that b(2) is forced to lie in Bρp(q)p. This is used
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when we apply the map R1 in the following calculation. We have

(R1 ◦R−1
1 )(a⊗ b) = R1(

∑
(πp−1(S−1(b(1))) I a)⊗ b(2))

=
∑

((πqp−1ρp(q−1)(b(2))πp−1(S−1(b(1))) I a)⊗ b(3)

=
∑

(πp−1(b(2)S
−1(b(1))) I a)⊗ b(3) = a⊗ b.

Remark that we have used that πqp−1ρp(q−1) = πqp−1pq−1p−1 = πp−1 in the above calculation.

A similar argument will give

(R−1
1 ◦R1)(a⊗ b) = R−1

1 (
∑

(πqp−1(b(1)) I a)⊗ b(2))

=
∑

((πp−1ρpq−1 (q)(S
−1(b(2)))πqp−1(b(1))) I a)⊗ b(3)

=
∑

(πqp−1(S−1(b(2))b(1)) I a)⊗ b(3) = a⊗ b. ¥

We now define the twist map R : B ⊗ A → A⊗B.

3.4 Definition Take a pairing 〈A,B〉 as in Proposition 3.1. Let π be an admissible

action of G on B. We define the twist map R : B ⊗ A → A ⊗ B by the composition

R = R1 ◦ R−1
2 ◦ σ, where σ is the flip map from B ⊗ A to A⊗ B. So, for all a ∈ Aq and

b ∈ Bp we have, using arguments as in the proof of the previous lemma,

R(b⊗ a) =
∑

(πp−1(b(1)) I a J S−1(b(3)))⊗ b(2).

As a composition of bijections, R is a bijection.

We see from this formula, that it will be true for all a ∈ A when b ∈ Bp. When a ∈ Aq

and b ∈ Bp then b(2) is forced in Bρp(q−1)pq in the above formula. This will be used, in

particular, in the proof of the following lemma where we obtain that R behaves well with

respect to the multiplications of A and B.

3.5 Lemma Take the notations and assumptions as before. The twist map R satisfies

the following equations

(1) R(mB ⊗ ιA) = (ιA ⊗mB)(R⊗ ιB)(ιB ⊗R) on B ⊗B ⊗ A,

(2) R(ιB ⊗mA) = (mA ⊗ ιB)(ιA ⊗R)(R⊗ ιA) on B ⊗ A⊗ A,
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where, as before, mA and mB are the multiplications in A and B and where ιA and ιB

are the identity maps on A and B respectively.

Proof. (1) Take b ∈ Bp, b′ ∈ Bq and a ∈ Ar. Let the right hand side of the first equation

act on b⊗ b′ ⊗ a. We get

((ιA ⊗mB)(R⊗ ιB)(ιB ⊗R))(b⊗ b′ ⊗ a)

=
∑

(πp−1(b(1))πq−1(b′(1)) I a J S−1(b′(3))S
−1(b(3)))⊗ b(2)b

′
(2).

By the remark preceding this lemma, we find that b(2) ∈ Bρp(r−1)pr and b′(2) ∈ Bρq(r−1)qr.

Therefore, ρp(r
−1)pr = ρq(r

−1)qr and we obtain that πp = πq. The above equation can

now be written as

((ιA ⊗mB)(R⊗ ιB)(ιB ⊗R))(b⊗ b′ ⊗ a)

=
∑

(πp−1(b(1)b
′
(1)) I a J S−1(b(3)b

′
(3)))⊗ b(2)b

′
(2).

• If p 6= q, this expression equals zero because bb′ = 0. Clearly the operator R(mB⊗ιA)

applied on (b⊗ b′ ⊗ a) also equals zero in this case.

• If p = q, then b, b′ ∈ Bp and also bb′ ∈ Bp. The above equation now becomes

((ιA ⊗mB)(R⊗ ιB)(ιB ⊗R))(b⊗ b′ ⊗ a) = (R(mB ⊗ ιA))(b⊗ b′ ⊗ a).

This completes the proof of the first statement.

(2) To prove the second statement, take b ∈ Bp, a ∈ Aq and a′ ∈ Ar. Let the right hand

side of the second equation act on b⊗ a⊗ a′. We get

((mA ⊗ ιB)(ιA ⊗R)(R⊗ ιA))(b⊗ a⊗ a′)

= (mA ⊗ ιB)(ιA ⊗R)(
∑

(πp−1(b(1)) I a J S−1(b(3)))⊗ b(2) ⊗ a′).

Recall that b(2) ∈ Bρp(q−1)pq. We also have πq−1p−1ρp(q) = πp−1 . Therefore, the above

expression can be written as

(mA ⊗ ιB)(
∑

(πp−1(b(1)) I a J S−1(b(5)))⊗ (πp−1(b(2)) I a′ J S−1(b(4)))⊗ b(3))

=
∑

(πp−1(b(1)) I a J S−1(b(5))(πp−1(b(2)) I a′ J S−1(b(4)))⊗ b(3).
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As B I A and A J B are module algebras, this expression equals

∑
(πp−1(b(1)) I (aa′) J S−1(b(3)))⊗ b(2) = R(b⊗ aa′) = (R(ιB ⊗mA))(b⊗ a⊗ a′). ¥

As reviewed in Section 1 (Twisted tensor product construction of multiplier Hopf

(∗-)algebras), the map R defines a non-trivial product on A⊗B which is non-degenerate.

The algebra defined in this way is denoted as A ./ B. Recall that the product in A ./ B

is given by the formula

(a ./ b)(a′ ./ b′) = (mA ⊗mB)(ιA ⊗R⊗ ιB)(a⊗ b⊗ a′ ⊗ b′)

for all a, a′ ∈ A and b, b′ ∈ B. In Section 1, Remarks 1.11, other expressions are given for

the right hand side.

We now consider these algebras with their comultiplications. Let Acop = (A, ∆cop) and

B̃ = (B, ∆̃). In Definition 1.12, we saw that ∆cop(a)∆̃(b) is a multiplier in M((A ./

B) ⊗ (A ./ B)) for all a ∈ A and b ∈ B and that we get a comultiplication. So, the

following definition is possible here.

3.6 Definition Take the notations and assumptions as above. For a ∈ A and b ∈ B,

we define the multiplier ∆(a ./ b) in M((A ./ B)⊗ (A ./ B)) by the formula

∆(a ./ b) = ∆cop(a)∆̃(b).

As we reviewed in Theorem 1.13, for ∆ to be a homomorphism on A ./ B, we need to

prove the following compatibility relation between R and ∆.

3.7 Proposition Take the notations and assumptions as above. Then, we have

∆(R(b⊗ a)) = ∆̃(b)∆cop(a)
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in M((A ./ B)⊗ (A ./ B)) for all a ∈ A and b ∈ B.

Proof. Take a ∈ Aq, a′ ∈ Aq′ , and b ∈ Bp, b′ ∈ Bp′ . Then the product in the twisted

tensor product algebra A ./ B is given by the formula

(a ./ b)(a′ ./ b′) =
∑〈a′(1), S

−1(b(3)〉〈a′(3), πp−1(b(1))〉aa′(2) ./ b(2)b
′.

Observe that in the right hand side, all the decompositions are covered. Recall also that

∆(a ./ b) = ∆cop(a)∆̃(b).

Take a ∈ Aq, a′ ∈ Aq′ , a′′ ∈ Aq′′ , b ∈ Bp, b′ ∈ Bp′ , b′′ ∈ Br and y ∈ Bs. Then we calculate

in (A ./ B)⊗ (A ./ B) that

((a′ ./ 1)⊗ (a′′ ./ y))(∆̃(b)∆cop(a))((1 ./ b′)⊗ (1 ./ b′′))

=
∑

((a′ ./ πs−1(b(1))⊗ (a′′ ./ yb(2)))((a(2) ./ b′)⊗ (a(1) ./ b′′))

=
∑

((a′ ./ πs−1(b(1)))(a(2) ./ b′))⊗ ((a′′ ./ yb(2))(a(1) ./ b′′))

Now, observe that πs−1(b(1)) ∈ Bρs−1 (ps−1) and πρs−1 (sp−1) = πp−1s. Then we apply the

commutation rules to commute the the elements πs−1(b(1)) and a(2) in the first factor of

the tensor product and the elements b(2) and a(1) in the second factor. Using the property

of the antipode, we finally obtain that the above expression equals

∑
〈a(4), πp−1(b(1))〉〈S−1(a(1)), b(4)〉(a′a(3) ./ πs−1(b(2))b

′)⊗ ((a′′ ./ y)(a(2) ./ b(3)b
′′)).

In the second factor of this tensor product, we deal with a product in A ./ B. This

product equals zero if r 6= ρs(q
−1)qs. If r = ρs(q

−1)sq, then πr−1 = πs−1 .

On the other hand, we also calculate in (A ./ B)⊗ (A ./ B) that

((a′ ./ 1)⊗ (a′′ ./ y))∆(R(b⊗ a))((1 ./ b′)⊗ (1 ./ b′′))

= ((a′ ./ 1)⊗ (a′′ ./ y))∆(
∑

(πp−1(b(1)) I a J S−1(b(3))) ./ b(2))((1 ./ b′)⊗ (1 ./ b′′))

=
∑

((a′ ./ 1)⊗ (a′′ ./ y))∆cop
A (πp−1(b(1)) I a J S−1(b(3)))∆̃(b(2))((1 ./ b′)⊗ (1 ./ b′′))

=
∑

(a′(πp−1(b(1)) I a(2)) ./ πr−1(b(2))b
′)⊗ ((a′′ ./ y)((a(1) J S−1(b(4))) ./ b(3)b

′′)

=
∑〈a(1), S

−1(b(4))〉〈a(4), πp−1(b(1))〉(a′a(3) ./ πr−1(b(2))b
′)⊗ ((a′′ ./ y)(a(2) ./ b(3)b

′′)).
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As before, we have a product in A ./ B in the second factor of this tensor product and if

r 6= ρs(q
−1)sq, this last expression equals zero. If r = ρs(q

−1)sq, we have πr−1 = πs−1 .

As both calculations give the same result in (A ./ B) ⊗ (A ./ B), we conclude that

∆̃(b)∆cop(a) = ∆(R(b⊗ a)) in M((A ./ B)⊗ (A ./ B)). ¥

We now formulate the main result of this section.

3.8 Theorem Let 〈A, B〉 be a pair of multiplier Hopf algebras and assume that B is a

(regular) G-cograded multiplier Hopf algebra. Let π be an admissible action of G on B.

(1) The space Dπ = Acop ./ B̃ becomes a (regular) multiplier Hopf algebra, called

the Drinfel’d double, with the multiplication, the comultiplication, the counit and

the antipode, depending on the pairing as well as on the action π, defined in the

following way:

• (a ./ b)(a′ ./ b′) = (mA ⊗mB)(ιA ⊗R⊗ ιB)(a⊗ b⊗ a′ ⊗ b′) where R(b⊗ a′) =
∑

(πp−1(b(1)) I a′ J S−1(b(3)))⊗ b(2) for all a′ ∈ A and b ∈ Bp,

• ∆(a ./ b) = ∆cop(a)∆̃(b) for all a ∈ A and b ∈ B where ∆cop(a) and ∆̃(b) are

considered as multipliers in M(Dπ ⊗Dπ),

• ε(a ./ b) = ε(a)ε(b) for all a ∈ A and b ∈ B,

• S(a ./ b) = R(πp−1(S(b))⊗ S−1(a)) for all a ∈ A and b ∈ Bp.

(2) If moreover A is a multiplier Hopf ∗-algebra, B a G-cograded multiplier Hopf ∗-

algebra and 〈A,B〉 a ∗-pairing, then Dπ is again a multiplier Hopf ∗-algebra with

the ∗-operation given by (a ./ b)∗ = R(b∗ ⊗ a∗) for all a ∈ A and b ∈ B.

Proof.

(1) Let R be the twist map, defined in Definition 3.4. Recall that for a ∈ A and b ∈ Bp,

R is given by the formula

R(b⊗ a) = Σ(πp−1(b(1)) I a J S−1(b(3)))⊗ b(2).
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This twist map R : B ⊗ A → A ⊗ B is bijective and satisfies the compatibility

conditions with the multiplications of the algebras A and B, see Lemma 3.5. As

reviewed in Section 1, we consider the twisted tensor product algebra A ./ B asso-

ciated with this twist map R. For all a ∈ A and b ∈ B, we consider the multiplier

∆(a ./ b) = ∆cop(a)∆̃(b) in M((A ./ B)⊗ (A ./ B)). Then ∆ satisfies the compat-

ibility condition with R as proven in Proposition 3.7. Following Theorem 1.13 we

can consider the twisted tensor product multiplier Hopf algebra associated to Acop,

B̃ and the twist map R. We denote this multiplier Hopf algebra as Dπ = Acop ./ B̃.

The counit and the antipode on Dπ are uniquely determined in this setting and

the formulas are given in the formulation of Theorem 1.13. Remember that the

antipode in Acop is S−1 while the antipode in B̃ is given by S̃(b) = πp−1(S(b)) when

b ∈ Bp, see Theorem 2.11.

(2) From the conditions on the multiplier Hopf ∗-algebra B, we have that the multiplier

Hopf algebra B̃ = (B, ∆̃) is again a multiplier Hopf ∗-algebra, see Theorem 2.11 (2).

Following Theorem 1.13 the twisted tensor product Dπ = Acop ./ B̃ is a multiplier

Hopf ∗-algebra via the formula (a ./ b)∗ = R(b∗ ⊗ a∗) if this operation defines an

involution on Dπ. To show that this is the case, take a ∈ Aq and b ∈ Bp. Then we

have that

((a ./ b)∗)∗ = (R(b∗ ⊗ a∗))∗ = (
∑

(πp−1(b∗(1)) I a∗ J S−1(b∗(3))) ./ b∗(2))
∗

=
∑

R(b(2) ⊗ (πp−1(b∗(1)) I a∗ J S−1(b∗(3)))
∗).

Because 〈A,B〉 is a ∗-pairing of multiplier Hopf ∗-algebras, we have that

(b I a J b′)∗ = S−1(b∗) I a∗ J S−1(b′∗) for all a ∈ A and b, b′ ∈ B. Therefore, we

have ((a ./ b)∗)∗ =
∑

R(b(2) ⊗ (πp−1(S−1(b(1))) I a J b(3))). Because a ∈ Aq, we

must have that b(2) ∈ Bρp(q)pq−1 . As π is an admissible action of G on B, we have

πqp−1ρp(q−1) = πp−1 . Now we easily obtain that ((a ./ b)∗)∗ = a ./ b. ¥

Take the notations and assumptions as in Theorem 3.8. Because Dπ = Acop ./ B̃ is a

twisted tensor product multiplier Hopf algebra of Acop and B̃, it is quite obvious that
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integrals on A and on B̃ compose to an integral on Dπ = Acop ./ B̃ in the following

way. Let ϕA be an left integral on A and let ψB be a right integral on B. Consider ψ̃,

defined on B by ψ̃(b) = ψ(πp−1(b)) when b ∈ Bp. Then ϕA ⊗ ψ̃B is a right integral on

Dπ = Acop ./ B̃, see also Theorem 2.11(3).

We now consider the ∗-situation. From [D, Remark 3.11] we know that in this case,

positive integrals on Acop and B̃ do not compose in a trivial way to a positive integral on

Dπ = Acop ./ B̃. In [De-VD, Theorem 3.4], the problem for the usual Drinfel’d double

D = Acop ./ B, which is associated to the multiplier Hopf ∗-algebra pairing 〈A,B〉, is

treated as follows. Let δA and δB denote the modular multipliers in M(A) and M(B) re-

spectively (see Theorem 1.5). In [De-VD] there is given a meaning to the complex number

〈δA, δB〉1/2. Furthermore, it is proven in [De-VD, Theorem 3.4] that 〈δA, δB〉1/2(ϕA ⊗ ψB)

is a positive right integral on D = Acop ./ B whenever ϕA is a positive left integral on A

and ψB is a positive right integral on B.

In the following proposition we obtain this result for the Drinfel’d double construction Dπ.

3.9 Proposition Let A and B be multiplier Hopf ∗-algebras as in Theorem 3.8(2).

Let ϕA be a positive left integral on A and ψB is a positive right integral on B. Define

as before ψ̃ by ψ̃(b) = ψ(πp−1(b)) when b ∈ Bp. Then 〈δA, δB〉1/2(ϕA ⊗ ψ̃B) is a positive

right integral on Dπ = Acop ./ B̃ .

Proof. A straightforward calculation shows that

(ιA ⊗ ψ̃B)(R(b⊗ a)) = ψ̃B(b)(δ−1
B I a)

for all a ∈ A and b ∈ B. Now, the proof of [De-VD, Theorem 3.4] can be repeated, with

the twist map R given by the formula R(b⊗ a) =
∑

(πp−1(b(1)) I a J S−1(b(3)))⊗ b(2) for

all a ∈ A and b ∈ Bp. ¥

Two special cases
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The first case is the one with the trivial action. We get the following (expected) re-

sult.

3.10 Proposition Take the notations as in Theorem 3.8. If the admissible action

π is the trivial action, then Dπ, constructed in Theorem 3.8, is nothing else but the usual

Drinfel’d double, D = Acop ./ B, associated with the pair 〈A,B〉 (as constructed and

studied in [Dr-VD] and [De-VD]).

The other case is more interesting. Now, let π an admissible action such that for all

p, q ∈ G we have πp(Bq) = Bpqp−1 . This is the case with the adjoint action as in Example

2.7. In the framework of Hopf group-coalgebras, these actions are called crossings, see [T,

Section 11]. We generalize this definition here.

3.11 Definition Let B be a regular G-cograded multiplier Hopf algebra. An admissible

action π of G on B is called a crossing if for all p, q ∈ G we have πp(Bq) = Bpqp−1 .

In the following propositions, we describe the multiplier Hopf algebras B̃ and Dπ in

more detail for the case where the admissible action is a crossing. We prove that the

considered multiplier Hopf algebras are again G-cograded. Furthermore, we show that

there is again a crossing of G on B̃ and on Dπ, defined in a natural way.

The following proposition generalizes the mirror construction in the framework of crossed

Hopf group-coalgebras, see [T, Section 11].

3.12 Proposition Let B be a regular G-cograded multiplier Hopf algebra. Let π

be a crossing of G on B. The deformed multiplier Hopf algebra B̃ = (B, ∆̃) is again

G-cograded. Furthermore, π is also a crossing of G on B̃. The deformation
˜̃
B = (B,

˜̃
∆)
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equals the original G-cograded multiplier Hopf algebra B.

Proof. From Theorem 2.11 we have that B̃ = (B, ∆̃) is a regular multiplier Hopf

algebra. Put B̃p = Bp−1 . Then B̃ =
⊕
p∈G

B̃p and we have

∆̃(B̃p)(1⊗ B̃q) = ∆̃(Bp−1)(1⊗Bq−1) = (πq ⊗ ι)(∆(Bp−1)(1⊗Bq−1))

= (πq ⊗ ι)(Bp−1q ⊗Bq−1) = Bqp−1 ⊗Bq−1 = B̃pq−1 ⊗ B̃q.

Similarly,

(B̃q ⊗ 1)∆̃(B̃p) = (Bq−1 ⊗ 1)∆̃(Bp−1) = (Bq−1 ⊗ 1)((πq−1p ⊗ ι)∆(Bp−1))

= (πq−1p ⊗ ι)((Bp−1q−1p ⊗ 1)∆(Bp−1)) = (πq−1p ⊗ ι)(Bp−1q−1p ⊗Bp−1q)

= Bq−1 ⊗Bp−1q = B̃q ⊗ B̃q−1p.

As the algebra structure of B̃ is the same as the algebra structure of B, π is a crossing

on B̃ if for all p ∈ G we have that πp respects the comultiplication ∆̃ in the sense that

∆̃(πp(b)) = (πp ⊗ πp)(∆̃(b)) for all b ∈ B. To show this, take b ∈ B and b′ ∈ Bq, then we

have

∆̃(πp(b))(1⊗ b′) = (πq−1 ⊗ ι)(∆(πp(b))(1⊗ b′)) = (πq−1p ⊗ πp)(∆(b)(1⊗ πp−1(b′))

= (πp ⊗ πp)((πp−1q−1p ⊗ ι)(∆(b)(1⊗ πp−1(b′)))) = (πp ⊗ πp)(∆̃(b)(1⊗ πp−1(b′)))

= ((πp ⊗ πp)∆̃(b))(1⊗ b′).

So B̃ = (B, ∆̃) is a G-cograded multiplier Hopf algebra and π is a crossing of G on B̃.

Therefore we can consider the deformation
˜̃
B = (B,

˜̃
∆). We will now show that this is the

original G-cograded multiplier Hopf algebra B. Take b ∈ B and b′ ∈ B̃q = Bq−1 . Then

we have

˜̃
∆(b)(1⊗ b′) = (πq−1 ⊗ ι)(∆̃(b)(1⊗ b′)) = (πq−1 ⊗ ι)((πq ⊗ ι)(∆(b)(1⊗ b′)) = ∆(b)(1⊗ b′).

Therefore we have (B,
˜̃
∆) = B. ¥

Next we consider the Drinfel’d double construction Dπ = Acop ./ B̃ when π is a crossing.
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3.13 Proposition Take the notations and assumptions as in Theorem 3.8. Assume

furthermore that the admissible action π of G on B is a crossing. Then Dπ = Acop ./ B̃

is again a G-cograded multiplier Hopf algebra. Furthermore, there is a crossing of G on

Dπ, defined in a natural way.

Proof. Let Dπ
p = A ./ Bp−1 for any p ∈ G. Because π is assumed to be a crossing, one

can show, with the techniques used before, that R(Bp⊗A) = A⊗Bp for all p ∈ G. It fol-

lows easily that Dπ
p is a subalgebra of Dπ and that Dπ

p Dπ
q = 0 if p 6= q. Also Dπ =

⊕
p∈G

Dπ
p .

This gives the desired decomposition of the algebra Dπ.

Next we prove that ∆(Dπ
p )((1 ./ 1) ⊗ Dπ

q ) = Dπ
pq−1 ⊗ Dπ

q . Take a, a′ ∈ A and b ∈ Bp−1 ,

b′ ∈ Bq−1 . Then, we have

∆(a ./ b)((1 ./ 1)⊗ (a′ ./ b′)) =
∑

(a(2) ./ πq(b(1)))⊗ ((a(1) ./ b(2))(a
′ ./ b′)).

As π is a crossing of G on B, we have that b(2) ∈ Bq−1 and πq(b(1)) ∈ Bqp−1 . Similarly,

to prove that also (Dπ
p ⊗ (1 ./ 1))∆(Dπ

q ) = Dπ
p ⊗Dπ

p−1q, take a, a′, b and b′ as above and

write

((a ./ b)⊗ (1 ./ 1))∆(a′ ./ b′) =
∑

((a ./ b)(a′(2) ./ πp−1q(b
′
(1))))⊗ (a′(1) ./ b′(2))).

Now we find that b′(2) ∈ Bq−1p and πp−1q(b
′
(1)) ∈ Bp−1 . So, we have shown that Dπ is

G-cograded.

Next, we will define a crossing of G on Dπ. First consider the action π′ of G on A defined

in the following way. Take p ∈ G and define the linear map π′p on A by the formula

〈π′p(a), b〉 = 〈a, πp−1(b)〉 for all a ∈ A and b ∈ B. Clearly π′p is a linear isomorphism

such that (π′p)
−1 = π′p−1 . From the definition of π′p, it easily follows that π′p is an algebra

isomorphism on A and ∆(π′p(a)) = (π′p ⊗ π′p)(∆(a)). Furthermore we have π′pq = π′pπ
′
q for

all p, q ∈ G.

Next, for p ∈ G, consider the linear isomorphism π′p ⊗ πp on Dπ = Acop ./ B̃. It is not

difficult to see that π′p ⊗ πp is an algebra isomorphism on Dπ. Furthermore π′pq ⊗ πpq =

(π′p ⊗ πp)(π
′
q ⊗ πq) for all p, q ∈ G. Moreover (π′p ⊗ πp)(D

π
q ) = Dπ

pqp−1 for all p, q ∈ G.
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To complete the proof, we show that for all p ∈ G, the isomorphism π′p⊗πp on Dπ respects

the comultiplication of Dπ. For any a ∈ A and b ∈ B we have

∆((π′p ⊗ πp)(a ./ b)) = ∆cop(π′p(a))∆̃(πp(b))

= (π′p ⊗ π′p)(∆
cop(a))(πp ⊗ πp)(∆̃(b)) = ((π′p ⊗ πp)⊗ (π′p ⊗ πp))(∆(a ./ b)).

We conclude that the isomorphisms π′p⊗ πp, with p ∈ G, define a crossing of G on Dπ. ¥

3.14 Example Let G be any group. Consider a Hopf G-coalgebra as given in [T-

Section 11]. In Proposition 2.2 we saw that we can associate a regular G-cograded mul-

tiplier Hopf algebra. We use the notations and assumptions of this proposition and we

put B =
⊕
p∈G

Bp. We now suppose that each algebra Bp is finite-dimensional. Next let

B∗ =
⊕
p∈G

(Bp)
′ where (Bp)

′ the dual space of Bp. This is called the reduced dual space of

B and in general, B∗ is smaller than the (full) dual of B. It can be shown that B∗ is a

Hopf algebra. The product is defined dual to the coproduct as follows. Take f ∈ (Bp)
′

and g ∈ (Bq)
′, then fg in (Bpq)

′ is defined by the formula (fg)(x) = (f ⊗ g)∆p,q(x) for all

x ∈ Bpq. The unit in B∗ is ε (on B1). The coproduct is defined dual to the product. For

f ∈ (Bp)
′ we have ∆(f) ∈ (Bp)

′ ⊗ (Bp)
′ when ∆ is the dual to the multiplication in Bp.

For f ∈ (Bp)
′ we have ε(f) = f(1p) and S(f) = f ◦ S.

The evaluation map defines a pairing 〈B∗, B〉 between B∗ and B of the type considerd

in Proposition 3.1. A crossing in the sense of [T - Section 11] gives a crossing of G on B

in the sense of Definition 3.11. The Drinfel’d double Dπ = (B∗)cop ./ B̃ is a G-cograded

multiplier Hopf algebra, Dπ =
⊕
p∈G

Dπ
p with Dπ

p = B∗ ./ Bp−1 . For each p ∈ G, we define

the isomorphism π′p ∈ Aut(B∗) by the formula 〈π′p(f), b〉 = 〈f, πp−1(b)〉. From Proposition

3.12 we have that for all p ∈ G, the isomorphisms π′p ⊗ πp on Dπ = (B∗)cop ./ B̃ provide

a crossing of the group G on Dπ.

This Drinfel’d double Dπ is the same as the one constructed in [Z, Section 5] in the

framework of Hopf group-coalgebras.
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