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Received: 5 December 2022

Revised: 14 January 2023

Accepted: 16 January 2023

Published: 19 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Rational Risk Policy? Why Path Dependence Matters
Hans Geboers * and Benoît Depaire

Quantitative Methods, Research Group Business Informatics, Hasselt University, 3500 Hasselt, Belgium
* Correspondence: hans.geboers@uhasselt.be

Abstract: The Kelly criterion determines optimal bet sizes that maximize long-term growth. While
growth is definitely an important consideration, the focus on growth alone can lead to significant
drawdowns, leading to psychological discomfort for a risk-taker. Path-dependent risk measures, such
as drawdown risk, provide a means to assess the risk of significant portfolio retracements. In this
paper, we provide a flexible framework for assessing path dependent risk for a trading or investment
operation. Given a certain set of profitable trading characteristics, a risk-taker who maximizes
expected growth can still be faced with significant drawdowns to the point where a strategy becomes
unsustainable. We demonstrate, through a series of experiments, the importance of path dependent
risks in the case of outcomes subject to various return distributions. Based on Monte Carlo simulation,
we analyze the medium-term behavior of different cumulative return paths and study the impact of
different return outcome distributions. We show that in the case of heavier tailed outcomes, extra
care is needed, and optimal might not be so optimal in the end.
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1. Introduction

In this article, drawdown risk is studied from a portfolio perspective. The first objective
is to develop a framework that can generate insights into possible drawdown characteristics
for a risk-taker’s portfolio. The second objective is to use this framework and show the
relationship between leverage, optimizing for long-term growth and drawdown risk.

In the landscape of risk and return there are two main paradigms within portfolio
theory: Markowitz’s parametric mean–variance framework [1] and the Kelly criterion (also
labeled the capital growth criterion or the growth optimal portfolio (GOP) Theory) [2,3],
which found its origin in information entropy. While the mean–variance theory initially
was a one-period static theory, Markowitz recognized the relevance of the geometric mean
return from the Kelly criterion [4]. The growth optimal portfolio (GOP) considers investor
behavior under multi-period dynamics with typically an infinite investment horizon. (For
a discussion of the Kelly criterion see for instance [5–10]).) Thorp [11] shows that under
certain circumstances, the optimal Kelly portfolio is approximately one of the Markowitz
efficient portfolios but that this approximation can break down badly in practice.

When presented with favorable opportunities over time, the most extreme is to risk
your entire wealth. However, it seems a bit like Russian roulette if you played the game
many times. One can also wager a small proportion of starting capital, which already
seems more reasonable than the first suggestion. In between these two propositions lies the
proportional solution presented by [2,3], who recommend optimizing the geometric mean
of outcomes. Their findings are consistent with those of [12] in 1738 in an influential paper
called “Exposition of a New Theory on the Measurement of Risk” in which he advises
maximizing the expected logarithmic utility of wealth.

Latane [3] advised using the Kelly approach for investment situations that concern a
significant portion of wealth which have a cumulative effect. (In the case of a large number
of independent trials, he advised using the simple arithmetic mean.) This approach [2]
starts from a probabilistic Markovian framework to determine the growth optimal portfolio.
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This is equivalent to the choice of strategy that has a greater probability of leading to as
much or more wealth than any other different strategy. The choice of this strategy equally
leads to the portfolio with the highest geometric mean.

As investment and risk always involve a time dimension, the concept of time plays a
crucial role in risk-taking. Multiplicative dynamics infer that the future change in the level
of wealth is dependent on the current level of wealth. The following example highlights
the impact of time on long-term results. Figure 1 shows the evolution of several GBM price
paths with a mean of 8% and a volatility of 25% over a period of 10 years. After 10 years
we notice a difference between the average level (red dot) and the median level (red
cross). This is explained by the fact that a couple of price paths, “the happy few”, are
realizing most of the gains. In this case, both the average outcome (2464) and the median
outcome (1570) are positive, but the difference is significant. This dynamic can have serious
implications for risk-taking and position sizing. (Peters [9] has researched the impact of
time on processes that are subject to multiplicative dynamics. For more background on this,
see, for example [10].)
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Figure 1. Evolution of wealth over a 10-year period.

The greater the volatility of a certain instrument, the bigger the difference between
the geometric and the arithmetic average. This concept has been labeled “volatility drag”
by [13]. Assuming portfolio returns follow a normal distribution with arithmetic return µ
and volatility σ, the geometric return is given by:

Geometric Mean = µ− σ2

2
(1)

The term σ2

2 is referred to as the volatility drag. It is the hidden tax on an investment
portfolio caused by the negative compounding of large investment losses. The higher the
volatility, the lower the long-term growth rate, assuming a similar yearly expected return.
Figure 2 illustrates this in a stochastic framework. Most of the volatile price paths have a
lower terminal value than the lower volatility price paths.

As mentioned in [14,15] it is a reasonable assumption that risk-takers are less concerned
with portfolio variations than with the drawdown and path they may face over a time
window. While many papers related to bet sizing focus on final outcomes, this paper zooms
in on the path that a risk-taker experiences. The objective is to show the importance of
randomness in the domain of risk-taking in the case of repeated opportunities subject to a
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favorable edge. We study path dependent risks starting from the philosophy behind the
Kelly growth optimality framework. We therefore develop a framework for measuring
portfolio performance under multi-period dynamics. We do not restrict ourselves to the
growth optimal bet sizes but also consider fractional Kelly sizing and its implications on
portfolio drawdowns.
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Figure 2. Impact of σ on the long-term growth rate in a stochastic process: 2 different volatility levels
(10% and 35%) with a similar expected return of 6% and 10 random price paths for each scenario.
The low volatility paths are shown in grey.

By means of the drawdown risk measure, we look at the entire account path. Visual-
izing the impact of different return distributions can give the risk-taker an indication of
the type of financial storm to expect. This study shows in general that a higher variance
within the return distribution leads to lower levels of optimal risk. This result can also be
derived by considering a geometric Brownian motion and calculating the optimal leverage
over different levels of variance. The study performed here, however, goes one step further.
We show that heavy-tailed return outcomes not only have a big influence on the ultimate
growth rate but also have a major influence on the drawdowns experienced by an investor.

This paper is structured as follows: Section 2 provides a review of the literature.
In Section 3, we first develop a framework for assessing path-dependent behavior for a
trading or investment operation and develop a methodology for the Monte Carlo simulation.
We analyze a single performance path and highlight relevant characteristics. In Section 4,
we set up a thought experiment. We show how a risk-taker with a positive edge can
experience very different outcomes, considering leverage and returns, which are based
on a specific probability distribution. Throughout this series of experiments, we show the
impact of heavier tails in the return distribution on the drawdown-related performance of
a risk-taking operation. We zoom in on the different experiments and study the drawdown
behavior based by looking at the maximum loss that is experienced versus a previous high
watermark. Section 5 concludes the paper.

2. Background and Related Studies

While the Kelly criterion has many merits as an investment paradigm, one of the major
downsides related to this “optimal risk-taking” concept is that it can lead to significant
drawdowns [8,16]. An overview of the path-dependent drawdown measures can be found
in [17]. The most intuitive approach looks at the maximum loss that a risk taker could have
realized versus the high watermark in a specified investment horizon. Within this category,
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the conditional drawdown (CDD) measure and the conditional expected drawdown (CED)
have been distinguished [18]. The CDD measure proposed by [19] includes the maximum
drawdown and the average drawdown, which are often used in practice and suitable
for portfolio allocation, optimization, and as an input for the βCDD measure described
in [20,21]. The CED measure developed by [22] allows for a study of the distribution of
possible future drawdowns. Thorp [23] worked out several formulas related to drawdowns
using the Kelly framework. Assuming a GBM, he came up with an analytical solution for
determining the probability of experiencing a drop of X% under full Kelly and fractional
Kelly investing. Considering a full Kelly position, the probablity of experiencing a 50%
drawdown is 50%. Assuming a half Kelly position, the probability of experiencing a loss
of 50% drops to 12.5%, while at the same time, the investor’s long-term growth rate only
drops by 25%. These concepts are illustrated in Figure 3. A review of these formulas can be
found in Appendix A.1.
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Figure 3. (Left): Impact of fractional Kelly on the probability of experiencing a 50% drawdown.
(Right): Impact of fractional Kelly on relative long-term growth rates.

Thorp [23] concludes that most people strongly prefer the increased safety and comfort
of a fractional Kelly position in exchange for giving up 25% of their growth rate. While
there are many assumptions underlying this method, such as the normal distribution of
returns and the assumption of the reinvestment of profits, it does show an interesting
relationship between risk and growth over time. Several researchers [24,25] also discuss
the relationship between Kelly optimal trading and drawdown risks.

Other research on drawdowns related to bet sizing has been performed by [26], who
show that for an investor taking Kelly optimal exposure, the average drawdown is just
about to diverge. Poundstone [27] refers to the 1/n-rule for an infinite series of serial Kelly
bets: the chance of ever dropping to 1/nth of your accumulated capital equals 1/n. (This
rule is derived from [23] and is based on the assumption that the optimal Kelly fraction = 1).
Several papers have addressed the issue of excessive losses related to the Capital Growth
Criterion. MacLean et al. [7] provide methods to minimize the probability of ruin and show
that, by utilizing fractional Kelly methods, investors can develop a complete trade-off of
growth versus security. Lopez de Prado [28] considers growth optimality under a finite
time horizon and shows that leverage suggested by growth-optimal portfolio theory needs
to be adjusted down considerably. Despite the critiques, the Kelly criterion is still often
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used as a starting foundation within portfolio selection and optimization. Recent examples
can be found in [29,30]. The interesting part about using a theory like the growth optimality
criterion, which is linked to information theory, is its intrinsic sensitivity to the non-linear
behavior present in financial markets [31].

The asset allocation primer by [32] connects the work of Markowitz, Kelly, and Risk
Parity in order to provide a comprehensive overview of different investment strategies
and the underlying concepts of portfolio optimization. They explore the specifics of each
approach and provide numerical examples to compare asset allocations for the various
approaches. Carta and Conversano [33] developed a framework to apply the Kelly criterion
to European stock market data and portfolio optimization and showed that the use of the
Kelly criterion produced results consistent with the literature.

3. Formal Description of the Framework

We model a risk-taking operation based on a Monte Carlo simulation, taking into
account the following parameters (These parameters could, for example, be derived from a
historical track record of trades.):

• TRi refers to a trade event occurring at time i. The first trade event occurs at the
moment i = 1.

• N refers to the total number of risks taken over the considered period. For example,
N equals 250 if we model an operation over 5 years with 50 risk events per year.

• Vi: The cumulative account value at point i. V0 refers to the initial account value,
which equals 1. The cumulative account value Vi is considered to be equal to the risk
taker’s wealth at point i in the setup of our experiment.

• IRi: Initial risk on trade i is expressed as a fraction (in %) of the account value Vi−1
under the assumption of multiplicative dynamics. For example, if the account value is
1000 and a stock is bought at 100 with a predetermined stop-loss at 90, we consider the
IR to be 1% (equivalent to the loss of 10 relative to the account value of 1000). (Under
the assumption of additive dynamics, the initial risk on trade i, (IRi), is expressed as a
fraction of the initial account value V0.)

• PWin refers to the probability of winning.
• PLoss: refers to the probability of losing and is equal to 1− PWin.
• RFWin: The return factor in case of a Win. This return factor is modeled by a specific

distribution.
• RFLoss: The return factor in case of a Loss. This return factor is modeled by a specific

distribution.

Figure 4 presents the process of a trade event. At first, a trade opportunity presents
itself, and an initial risk allocation is assigned to the event. Pre-defining the initial risk is
done through a stop-loss at the risk-taker’s discretion and is a function of different variables
such as the market under consideration, the volatility, and the liquidity of the product that
is being traded. Along with a stop-loss, the risk-taker can assign a target to the position.
These are all factors under the control of the risk-taker. The moment the risk is taken,
randomness enters the process.

The trade will lead to a profit or a loss. The size of the profit or the loss is determined
by the return factor, which is based on a certain probability distribution. One could state
that the trade either results in a loss equal to the initial risk, which was determined by the
ex-ante stop-loss, or a profit determined by the ex-ante determined target. By assigning a
distribution to the return factor, we allow for additional flexibility during a specific trade.
For example, a trade might gap through a specific stop-loss, leaving the risk-taker with a
much larger loss than expected; a stop-loss may be trailing, leading to a much smaller loss
than anticipated by the initial risk; a profit might be taken at a lower level than the target
based on certain time or market conditions. Applying a specific distribution function to the
return factor provides flexibility in terms of trade outcomes, which in reality might not be
the same as the pre-defined risk levels.
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After each trade event, the account value V is checked. In the event the value is greater
than 0, the process of exploiting new trading opportunities is continued. In the event the
value is below or equal to 0, the risk taker faces ruin, and risk-taking operations are stopped.

Trade Opportunity

P(Win)=Pw

P(Loss)=1-Pw

RFWin RFLoss

Vi+1 =
Vi ∗ (1 +

IR ∗ RFWin)

Vi+1 =
Vi ∗ (1 +

IR ∗ RFLoss

Vi+1 > 0Ruin

Yes

No

Figure 4. Process of a trade event.

As we are interested in the dynamics of the entire account path, we apply a Monte
Carlo simulation to study these dynamics. We consider this path to be a sequence of N
trading outcomes subject to a random probability distribution. We analyze path-dependent
risk by studying the maximum drawdown of the cumulative return path V. The maximum
drawdown is defined as the maximum peak-to-trough decline of the account value V over
the course of N trading events:

MDD(V) = sup
i∈[0,N]

sup
s∈[0,i]

{(Vs −Vi)/Vs} (2)

The conditional expected drawdown (CED) is a risk measure that is derived from
these maximum drawdowns. The CED is a practically useful measure of risk as it addresses
the expected maximum cumulative asset drop within a given investment horizon. The CED
is defined as the tail mean of the maximum drawdown distribution:

CEDα = E(MDD(V)|MDD(V) > DTα), (3)

with DTα being the α-quantile of the maximum drawdown distribution. A CED.10, for
example, refers to the average of the 10% worst drawdowns.

Figure 5 provides an example to illustrate the concepts identified above. It shows a
simulated cumulative performance path, assuming 250 trading events over a 5-year period,
an IR of 1%, a win rate of 50%, and a return outcome of +1.25% in case of a win and −1%
in the case of a loss. Panel (a) shows a single simulated initial cumulative return path.
Panel (b) shows the returns for each consecutive risk event over time. As defined before,
approximately half of the outcomes are wins and half are losses. Another critical metric
highlighted in panel (c) is the drawdown path. The drawdown refers to the difference
between the highest cumulative performance over a given period and its subsequent
value. The maximum drawdown is the largest of all these drawdown values. A thorough
analysis of drawdowns provides a comprehensive review of the risks inherent in a trading
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operation. Finally, we count streaks of consecutive wins and losses in panel (d). There
are no surprises in the middle, as there is an almost equal amount of alternating wins and
losses. The tails show some interesting observations, such as two sequences of 7 consecutive
losses and wins.
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(a) Cumulative return path
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(b) Return factor for the first 50 events
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Figure 5. Simulation of one cumulative return path: Panel (a) shows the cumulative return path for
this specific simulation. Panel (b) shows the individual return events: either a win of 1.25% or a loss
of −1%. Panel (c) shows the drawdown path, with the maximum drawdown, in red, reaching almost
20%. Panel (d) is based on an analysis of winning and losing streaks. We note, for example, two
occurrences of 7 consecutive losses and two occurrences of 7 consecutive gains. The winning streaks
are shown in green, whereas the losing streaks are shown in blue.

4. Impact of the Outcome Distribution on Drawdown Risks

Analyzing various outcomes through Monte Carlo simulation can assist in building a
rational risk policy that can avoid psychological and financial headaches. Starting from a
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positive edge, we analyze performance paths based on various risk-taking considerations
related to the risk taken per trade, the distribution of trade outcomes, and the probability
of winning or losing. We set up several experiments based on a Monte Carlo simulation,
keeping the expected return constant. However, the different experiments experience
different forms of randomness based on their specific outcome distribution function.

4.1. Setup of the Experiment

Starting from the same parameters used in Figure 5 (IR of 1%, win rate of 50%, and
a return outcome of +1.25% in case of a win and −1% in case of a loss), we simulate
and analyze 1000 different cumulative performance paths in Figure 6. This figure shows
that the exact same risk-taking abilities can lead to various outcomes over a 5-year time
frame, purely based on randomness. Each path is made up of N individual risk events.
The simulation of several entire paths, based on historical performance statistics, allows
us to study different path dynamics that have an impact on the financial and emotional
well-being of the risk-taker. Panel (a) shows the cumulative return paths linked to the
simulation. Panel (b) shows the distribution of the final performance after 250 events. Panel
(c) shows the distribution of the maximum drawdown values of each path and the CED
measure, which refers to the tail mean of the maximum drawdown distribution. Panel (d)
provides an overview of winning and losing streaks.

In this study, four different scenarios for the distribution function of the return out-
comes are considered. Table 1 provides an overview of the distribution of the return
outcomes are considered. For each scenario, we study the different return paths by looking
at several drawdown and growth statistics for different levels of leverage (measured by IR).

The expected return factor equals 0.125 and will be kept constant throughout this
series of experiments. In each scenario, additional uncertainty around the return factor is
added by modifying the distribution for the return factor. The probability of winning Pw is
50% and equals the probability of losing Pl for each experiment.

The first experiment assumes two possible outcomes for the return factor. It is equiv-
alent to the two-point distribution mentioned in the previous section: RFWin = 1.25 and
RFLoss = −1. In the second experiment, we assign a uniform distribution to the return
factors: RFWin ∼ U(0, 2.5) and RFLoss ∼ U(0,−2). In the third experiment, the uniform
distribution is replaced by the exponential distribution.

In the final experiment, we consider a Lomax distribution with shape parameter α and
scale parameter λ for the return factor. The shape parameter α of 3 means that the first
and second moments are still defined for this distribution. This distribution can be used
to model Black Swan events: unexpected and extreme. Lleo and Ziemba [34] provide an
example of such an event and discuss the decision of the Swiss National Bank to abandon
the peg against the Euro, leading to an increase in the Swiss Franc of more than 20% versus
the Euro. These types of events have a significant impact on international investors, banks,
and hedge funds.

Table 1. Distributions used in the different experiments.

Exp. Distribution Pw RFWin Pl RFLoss

I 2-point 0.5 1.25 0.5 −1
II 1 Uniform 0.5 ∼ U(0, 2.5) 0.5 ∼ U(0,−2)
III Exponential 0.5 ∼ Exp(0.8) 0.5 ∼ −Exp(1)
IV 2 Lomax 0.5 ∼ Lomax(3, 2.5) 0.5 ∼ −Lomax(3, 2)

1 In a variation to this experiment, we add additional randomness by assigning 47% of the outcomes to RFWin ∼
U(0, 2.5) and 3% of the outcomes to RFWin ∼ U(2.5, 6); 47% of the outcomes to RFLoss ∼ U(0,−2) and 3% of
the outcomes to RFLoss ∼ U(−2,−6) while keeping the expected return factor constant. 2 Lomax((α, λ): The
Cumulative Distribution Function for the Lomax distribution is given by: 1− [1 + x

λ ]
−α, with shape parameter α

and scale parameter λ.
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(a) Cumulative return path
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(c) Histogram of Maximum Drawdown in %
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Figure 6. Simulation of 1000 cumulative return paths: Panel (a) shows the cumulative return path for
each specific simulation. Panel (b) shows the distribution of the final outcomes of each simulated
process, with most of the final performances ranging between 0 and 80%. Panel (c) shows the
distribution of the maximum drawdowns related to each performance path; after visual inspection,
we note that most of the drawdowns are between 5 and 20%. The red line shows the 10% CED-level.
Panel (d) is based on an analysis of winning and losing streaks over the entire set of simulations.
For each simulation, we count the occurrence and length of losing (blue color) and winning streaks
(green color).

4.2. Results
4.2.1. CASE I: Two-Point Distribution

The results of the simulation for the 2-point distribution for different levels of initial
risk can be found in Table 2. Unsurprisingly, we note that the highest median value is
achieved at an initial risk of 10%. As the expected value of the return factor is positive,
the average level keeps increasing with the amount of leverage or initial risk applied; this
happens because there is a very small number of paths that contribute to the majority of the
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average wealth. For illustration purposes, we consider the expected return at an IR of 25%:
0.5∗0.25∗1.25+0.5∗0.25∗ (−1) = 3.125%. The expected growth rate over time, also labeled the
time-average growth rate, equals: (1+ 0.25 ∗ 1.25)0.5 ∗ (1+ 0.25 ∗ (−1)0.5)− 1 = −0.78433%.
(This explains our focus on the median level rather than the average level of the final wealth
outcomes for the remaining experiments. Peters [35] provides a thorough discussion on the
difference between expected return and time-average growth).

Table 2. Final strategy statistics by leverage: two-point distribution.

Strategy Returns Strategy Maximum Drawdowns

Lev MinL MedL AvgL MaxL Min Avg Max CED >10% >20% >30% >40% >50%

0.5% 0.86 1.16 1.17 1.54 0.02 0.06 0.19 0.11 59 0 0 0 0
1.0% 0.73 1.35 1.36 2.36 0.05 0.12 0.35 0.21 661 46 2 0 0
2.0% 0.52 1.75 1.85 5.39 0.09 0.23 0.59 0.38 999 614 165 24 2
5.0% 0.16 3.21 4.60 52.69 0.22 0.49 0.91 0.72 1000 1000 966 751 428

10.0% 0.01 4.72 20.33 1250.63 0.43 0.76 0.99 0.94 1000 1000 1000 1000 989
15.0% 0.00 3.21 80.76 13,706.78 0.60 0.90 1.00 0.99 1000 1000 1000 1000 1000
25.0% 0.00 0.14 415.65 166,350.13 0.84 0.99 1.00 1.00 1000 1000 1000 1000 1000

This approach yields results that are mathematically equivalent to the results obtained
via the Kelly criterion [2] and the long-term performance criteria suggested by [3]. Applying
this criterion to the return factors of 1.25 and −1 yields an optimal initial risk of 10%.
As highlighted by [23], this level of initial risk provides a useful upper bound on risk-
taking. While this level determines an upper bound for sensible risk-taking, we also
show the results if a risk-taker risks more than the upper bound suggested by the growth
optimal criterion.

Figure 7 zooms in on the 1% initial risk level. Panel (a) shows the highest, lowest,
and 50th percentile path (ranked based on final outcomes) along with a range of different
simulated paths. Panel (b) provides the empirical distribution function of the maximum
drawdown of each individual path. The red line shows the CED0.1 level of 21%. This
means that the average of the 10% worst maximum drawdowns equals 21%. The ensemble
average of maximum drawdowns is 12% in this case.
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(a) Cumulative return paths
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Figure 7. Simulation based on Bernoulli trials assuming a leverage factor of 1%. Panel (a) shows the
highest (blue color), lowest (green color), and 50th percentile final wealth (red color) trajectory. Panel
(b) shows the maximum drawdown distribution and the corresponding CED0.1 (in red).
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4.2.2. CASE II: Uniform Distribution

The results of the simulations for different levels of initial risk in the case of a uniform
distribution can be found in Table 3 and Figure 8. At first sight, we note the median
levels compared to the previous experiment drop slightly, and the maximum drawdown
figures deteriorate.
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Figure 8. Simulation based on a uniform distribution for the return factor assuming an initial risk
of 1%. Panel (a) shows the highest (in blue), lowest (in green), and 50th percentile final wealth
trajectory (in red). Panel (b) shows the maximum drawdown distribution and the corresponding
CED0.1 (in red).

Table 3. Final strategy statistics by leverage: uniform returns.

Strategy Returns Strategy Maximum Drawdowns

Lev MinL MedL AvgL MaxL Min Avg Max CED >10% >20% >30% >40% >50%

0.5% 0.85 1.17 1.17 1.62 0.03 0.07 0.20 0.1313 153 0 0 0 0
1.0% 0.71 1.34 1.38 2.58 0.05 0.14 0.36 0.2480 795 125 13 0 0
2.0% 0.48 1.73 1.89 6.36 0.11 0.27 0.60 0.4429 1000 762 305 77 19
5.0% 0.12 2.89 4.92 72.57 0.26 0.56 0.91 0.7951 1000 1000 991 880 645

10.0% 0.01 2.93 22.10 1740.69 0.47 0.83 1.00 0.9748 1000 1000 1000 1000 998
15.0% 0.00 1.11 73.78 14,108.52 0.67 0.94 1.00 0.9985 1000 1000 1000 1000 1000
25.0% 0.00 0.00 105.79 49,825.25 0.89 1.00 1.00 1.0000 1000 1000 1000 1000 1000

Next, while keeping the expected return factor constant, we add extra randomness by
assigning a small probability to higher absolute values in terms of both gains and losses:

RFWin ∼
{

U(0, 2.5) with probability 0.47
U(2.5, 6) with probability 0.03

(4)

RFLoss ∼
{

U(−2, 0) with probability 0.47
U(−6,−2) with probability 0.03

(5)

The results, which can be found in Table A1 and Figure A3 in Appendix A.2, confirm
the trend of lower overall return values and worse drawdown characteristics.

4.2.3. CASE III: Exponential Distribution

Table 4 and Figure 9 show the results for the exponential distribution. In this case, we
notice the impact of heavier tails. On the one hand, the optimal leverage is lower than in
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the first experiment linked to the uniform distribution. On the other hand, this results in a
higher CED0.1 measure.
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(a) Cumulative return paths
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(b) Distribution of Maximum Drawdowns

Figure 9. Simulation based on an exponential return factor with an initial risk of 1%. Panel (a) shows
the highest (in green), lowest (in blue), and 50th percentile final wealth trajectory (in red). Panel (b)
shows the maximum drawdown distribution and the corresponding CED0.1 (in red).

Table 4. Final strategy statistics by leverage: exponential return factor.

Strategy Returns Strategy Maximum Drawdowns

Lev MinL MedL AvgL MaxL Min Avg Max CED >10% >20% >30% >40% >50%

0.5% 0.80 1.16 1.17 1.74 0.03 0.09305 0.25 0.1696 359 15 0 0 0
1.0% 0.62 1.33 1.38 2.98 0.06 0.17899 0.44 0.3151 929 331 55 4 0
2.0% 0.37 1.66 1.90 8.34 0.12 0.33112 0.71 0.5441 1000 908 562 245 78
5.0% 0.05 2.25 4.94 128.54 0.29 0.65636 0.97 0.8908 1000 1000 999 976 834

10.0% 0.00 0.98 20.94 4088.56 0.54 0.90833 1.00 0.9966 1000 1000 1000 1000 1000
15.0% 0.00 0.03 58.98 33,011.19 0.78 0.98362 1.00 nan 1000 1000 1000 1000 1000
20.0% 0.00 0.00 60.58 49,048.94 0.91 0.99842 1.00 nan 1000 1000 1000 1000 1000

4.2.4. CASE IV: Lomax Distribution

The results shown in Table 5 show that the moment the IRi exceeds 1%, the CED
measure quickly moves to 75%. Figure 10 describes the evolution in the case of an IRi of
1%: already at this low level of leverage, we see the presence of ruin in the case of some
extreme events.

Table 5. Final strategy statistics by leverage: Lomax distribution.

Strategy Returns Strategy Maximum Drawdowns

Lev MinL MedL AvgL MaxL Min Avg Max CED >10% >20% >30% >40% >50%

0.5% 0.37 1.16 1.18 2.17 0.03 0.12 0.73 0.26 612 100 14 4 3
1.0% 0.00 1.31 1.38 4.32 0.06 0.24 1.00 0.46 974 583 222 74 22
2.0% 0.00 1.54 1.92 14.67 0.13 0.43 1.00 0.75 1000 966 750 525 282
5.0% 0.00 1.30 5.14 259.34 0.31 0.78 1.00 1.00 1000 1000 1000 993 933

10.0% 0.00 0.00 24.94 5463.56 0.61 0.96 1.00 nan 1000 1000 1000 1000 1000
15.0% 0.00 0.00 37.31 11,016.51 0.84 1.00 1.00 nan 1000 1000 1000 1000 1000
25.0% 0.00 0.00 0.01 12.59 0.99 1.00 1.00 nan 1000 1000 1000 1000 1000
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(a) Cumulative return paths
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Figure 10. Simulation based on a Lomax distribution assuming a risk factor of 1%. Panel (a) shows
the highest (in blue), lowest (in green), and 50th percentile final wealth trajectory (in red). Panel (b)
shows the maximum drawdown distribution and the corresponding CED0.1 (in red).

4.3. Discussion

Figure 11 provides a summary of the different experiments for the median level
outcome, the average maximum drawdown, and the CED0.1. This graph shows why
cautiousness in the face of uncertainty is so important. First, we note that additional
randomness and more extreme possible return factors lower the expectation for the median
level outcome and lead to lower optimal IR taking. The blue arrow in panel (a) highlights
the critical impact of tail risk within the outcome distribution. At 10% initial risk (IR),
we obtain the highest median level for the 2-point distribution. For the uniform distribu-
tion with outliers, we note that the highest median level is achieved at an IR below 5%.
The heaviest tailed distribution, represented by the Lomax distribution, reaches its peak
growth at an IR level of around 2.5%. These observations are in line with the Kelly criterion
and a direct consequence of the impact of randomness on the ability to assume risk and
generate favorable outcomes.

Panels (b) and (c) in Figure 11 highlight the impact of different return distributions
on drawdown risk. As an illustration, we zoom in on the IR area of 2.5% in panel (b).
Assuming the risk-taker is conservative, we still observe a very big difference in terms
of average maximum drawdown (AMDD). Our 2-point distribution has an AMDD of
around 30%, whereas the more risky Lomax distribution has an AMDD of around 50%.
These effects become even more pronounced when considering the tail of the drawdown
distribution via the CED0.1 measure. Panel (c) shows how these differences are further
increased: the 2-point distribution has a CED0.1 slightly above 40%, whereas for the Lomax
distribution, the CED0.1 is slightly above 80%.

A trading operation that takes an IR of 2.5%, assuming a uniform distribution with
outliers for the return factor, would expect a resulting CED0.1 of around 50%. However,
in the case where the return factor follows a Lomax distribution, this would lead to a
CED0.1 measure of more than 80%. Assuming a distribution of outcomes and a maximum
drawdown level will provide the investor with a target level of IR to take. Ideally, this
would require a full understanding of the future return outcomes, which is not possible in
practice. However, risk-takers can apply the reasoning behind these charts to their own
investment process and consider what level of drawdown they are willing to bear.
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The results obtained through this simulation exercise can be used to establish a maxi-
mum drawdown corridor along the lines of [36]. The upper boundary on the maximum
drawdown can, for example, be defined as a level of maximum drawdown that can only
be exceeded with a 5% chance. Equally, the lower level of the drawdown corridor can be
defined as the maximum drawdown level that will not be reached with a probability of 5%.
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Figure 11. Comparison of the experiments: Panel (a) shows the median level outcome for the various
simulations at different levels of IR; panels (b) and (c) show the associated average maximum
drawdown levels and the conditional expected drawdown Level at a 10% confidence level.
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5. Conclusions

Long losing streaks can have a dramatic psychological impact. An awareness that
losing streaks of such length are to be expected could reduce the emotional impact when
they happen and make sure the risk-taker adheres to a predetermined risk policy. While
many papers related to bet sizing focus on final outcomes, we zoom in on the path that a
risk-taker experiences. More specifically, we demonstrate the importance of drawdown
risk in the case of repeated favorable opportunities. Rej et al. [36] point out that man-
agers and investors tend to underestimate the length and depth of perfectly normal and
acceptable drawdowns.

The occurrence of losing sequences and their magnitude plays a key role in the
drawdown characteristics of the portfolio or account. The literature shows various miscon-
ceptions related to random sequences. Kahneman and Tversky [37] analyzed judgment
under uncertainty and found through a series of empirical examples that people do not
follow the principles of probability theory in judging the likelihood of uncertain events.
A random unbiased coin-tossing process generates a similar amount of heads and tails over
the long run. Intuition leads people to believe that this should equally be the case for short
sequences (People, for example, judge sequences as more likely if there is some irregularity:
for example, HTTTTHHT is deemed more likely than HTHTHTHT. Other examples of
biases related to sequences are the “hot hand fallacy” and the “gambler’s fallacy”.).

Hahn and Warren [38] argue that people’s biases are reflective of their experience and that
it should come as no surprise that people also seem to respond well to corrective experience
in the form of training and feedback in generation and prediction tasks. These findings are
consistent with the Copenhagen experiment, in which tested individuals exhibited greater risk
aversion when shifting from additive to multiplicative dynamics [35,39].

Monte Carlo simulation allows for a comprehensive understanding of the impact of
randomness by mathematically modeling potential outcomes. This allows for a visualiza-
tion of how various paths can play out. In a thought experiment, we analyze performance
paths for an operation with a positive edge based on various risk-taking considerations
related to the risk taken per trade, the distribution of trade outcomes, and the probability
of winning or losing.

This experiment highlights why being cautious in investing is so relevant. First, we
show that the expected distribution function for return outcomes plays a major role in
determining the initial risk to target to achieve the highest median level outcome. Secondly,
we show the importance of tail risks for various drawdown metrics. A wrong assessment
of tail risks can lead to a significant underestimation of drawdown risk.

How does one assess the parameters for these distribution functions? A historical
record, which ideally went through different market regimes, can give a good first idea
of the variables discussed above. Even without having a historical record, the analysis
presented herein can be used to evaluate several possible risk-taking scenarios. Instead
of looking solely at median level outcomes, risk-takers should consider these drawdown
statistics and look at a combination of these metrics when determining ‘optimal’ risk in the
case of an edge.

While we consider risk from a different perspective by studying drawdown behav-
ior, our results generally confirm previous research: MacLean et al. [40] studied value
at risk (VaR) constraints but also period-by-period drawdown constraints and found
that at low levels of risk control, the capital growth or Kelly strategy is optimal. How-
ever, as risk control requirements tighten, the strategy should become more conservative.
Lopez de Prado [28] shows that under a finite time horizon, the leverage suggested by the
growth-optimal portfolio theory, needs to be adjusted down considerably. Also, [14] show
how uncertainty about the true probability distribution of returns and the presence of left
tail constraints are sufficiently powerful to override considerations in conventional theory.
They therefore suggest using a “barbell portfolio” with one set of holdings with low risk
and one set of holdings with very high risk.



Entropy 2023, 25, 202 16 of 19

Analyzing various outcomes through Monte Carlo simulation can assist in building a
rational risk policy that can avoid psychological and financial headaches. The framework
developed in this paper can lead to better-informed decisions for the risk-taker. An overly
optimistic investor may dampen too high expectations by taking a look at a broad section
of possible outcome paths.

The framework presented in this paper can enable risk-takers to understand better the
possible maximum drawdown risks they face when following a certain investment strategy.
This in turn can lead to the identification of possible risk of ruin in case position sizing and
the resulting leverage is too large. A second advantage is that investors can compare the
real-life performance of their investments or trading strategies versus the model output and
can get an indication of whether their strategy is no longer performing. This could allow
them to differentiate between an unlucky streak and possibly more worrisome events.
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Appendix A

Appendix A.1. Drawdowns and the Kelly Criterion

Assuming a lognormal diffusion process, with drift m, variance s2, and risk-free rate
r = 0:

f ∗ = m/s2,

E(G∞( f )) = g∞( f ) = m f − s2 f 2/2, 1

g∞( f ∗) = m2/2s2,

Var((G∞( f )) = s2 f 2,

(A1)

where G measures the exponential rate of increase per trial, f ∗ is the optimal fraction to
invest, and g∞ is the expected asymptotic growth rate.

As the Kelly criterion and the optimal Kelly fraction f ∗ lead to big drawdowns,
the following formula shows the impact of fractional Kelly investing on the probability
of experiencing a drop to fraction x of the initial capital. Setting f = c f ∗ and V(t) the
investment value after time t:

Prob(V(t)/V0 ≤ x for some t) = x(2g∞/Var(G∞) (A2)

Assuming for simplicity that 2g∞/Var(G∞) = 1, the probability of halving in value
(x = 0.5) equals x1, so 50%.

To determine the impact of experiencing a big drawdown for a partial Kelly position,
one can set f = c f ∗, where c is a fraction of the optimal f ∗. For comparative risk and again
under the assumption that 2g∞/Var(G∞) = 1, the following formula can be used:

Prob(V(t)/V0 ≤ x for some t) = x(2/c−1) (A3)

Figure A1 shows the impact of reducing the Kelly fraction on the probability of having a
loss greater than 50%.
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Figure A1. Impact of fractional Kelly on the probability of experiencing a 50% drawdown.

The relationship between fractional growth (g∞(c f ∗)) and Kelly growth (g∞( f ∗)) is
given by:

g∞(c f ∗)/g∞( f ∗) = c(2− c) (A4)

This relationship is illustrated in Figure A2. It shows that by assuming a half Kelly position,
the investor’s long-term growth rate drops by 25%.
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Figure A2. Impact of fractional Kelly on relative long term growth rates.
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Appendix A.2. Uniform Distribution with Outliers
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(a) Cumulative return paths
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Figure A3. Simulation based on uniform distribution with outliers, assuming a leverage factor of 1%.
Panel (a) shows the highest (in blue), lowest (in green), and 50th percentile final wealth trajectory (in
red). Panel (b) shows the maximum drawdown distribution and the corresponding CED (in red).

Table A1. Final strategy statistics by leverage: uniform returns with outliers.

Strategy Returns Strategy Maximum Drawdowns

Lev MinL MedL AvgL MaxL Min Avg Max CED >10% >20% >30% >40% >50%

0.5% 0.74 1.16 1.17 1.76 0.03 0.10 0.29 0.18 431 20 0 0 0
1.0% 0.53 1.33 1.37 3.03 0.07 0.19 0.50 0.34 969 403 84 9 0
2.0% 0.26 1.65 1.89 8.50 0.13 0.35 0.77 0.58 1000 962 628 315 110
5.0% 0.02 2.04 5.08 122.00 0.32 0.69 0.99 0.91 1000 1000 1000 991 896

10.0% 0.00 0.69 23.34 2346.58 0.58 0.93 1.00 1.00 1000 1000 1000 1000 1000
15.0% 0.00 0.02 35.94 4763.24 0.78 0.99 1.00 1.00 1000 1000 1000 1000 1000
25.0% 0.00 0.00 1.51 686.72 0.98 1.00 1.00 nan 1000 1000 1000 1000 1000
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