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Abstract
Ordinal data in a repeated measures design of a crossover study for rare diseases
usually do not allow for the use of standard parametric methods, and hence,
nonparametric methods should be considered instead. However, only limited
simulation studies in settings with small sample sizes exist. Therefore, starting
from an Epidermolysis Bullosa simplex trial with the above-mentioned design,
a rank-based approach using the R package nparLD and different generalized
pairwise comparisons (GPC) methods were compared impartially in a simula-
tion study. The results revealed that there was not one single best method for
this particular design, because a trade-off exists between achieving high power,
accounting for period effects, and formissing data. Specifically, nparLD aswell as
the unmatched GPC approaches do not address crossover aspects, and the uni-
variate GPC variants partly ignore the longitudinal information. The matched
GPC approaches, on the other hand, take the crossover effect into account in
the sense of incorporating the within-subject association. Overall, the prioritized
unmatchedGPCmethod achieved the highest power in the simulation scenarios,
although thismay be due to the specified prioritization. The rank-based approach
yielded good power even at a sample size of 𝑁 = 6, whereas the matched GPC
method could not control the type I error.
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1 INTRODUCTION

Ordinal outcomes are frequently used in clinical practice and biomedical research, in order tomake decisions and outcome
assessments more patient-centered. Examples include the visual analog scale (VAS; e.g., Kristensen et al., 2021; Lange
et al., 2021) and quality of life (QOL) questionnaires (e.g., SF-36, Böhm et al., 2021), just to name a few. From a statistical
perspective, these outcomes should not be analyzed using classical parametric methods, because they are purely ordinal,
which renders location-shift effect measures inappropriate. Consequently, some well-established rank-based approaches
(e.g.,Wilcoxon–Mann–Whitney test [Mann&Whitney, 1947;Wilcoxon, 1945] Kruskal–Wallis test [Kruskal &Wallis, 1952])
are preferable in such a setting.
However, data from subjects with rare diseases pose several challenges: The low prevalence results in small patient

numbers that are eligible for inclusion in clinical trials (e.g., Zimmermann et al., 2019). Hence, statistical methods with
a good finite-sample performance are needed. Moreover, to compensate for the power loss due to small sample sizes,
crossover or, more generally, repeated measures designs are often employed. Yet, for these more complex longitudinal
designs, whichmay include between- aswell aswithin-subject factors, appropriate statisticalmethods for analyzing purely
ordinal outcomes are scarce. Especially the ANOVA-type test that is implemented in the R package nparLD might be a
promising approach (Noguchi et al., 2012). The underlying idea is an extension of the nonparametric rank-based method-
ology that has been developed for analyzing ordinal outcomes in general factorial designs (with between-subjects factors
only), which is, in turn, an extension of the Wilcoxon–Mann–Whitney test (for an overview, see Brunner et al., 2019).
The corresponding effect measure is not a location shift, but the so-called relative effect (or probabilistic index), which—
informally speaking—quantifies the tendency toward larger values of the outcome for each of the groups (e.g., treatment
groups, time points). Consequently, this type of effect measure and the corresponding tests are indeed appropriate for
analyzing purely ordinal outcomes. Alternatively, one may consider using the framework of generalized pairwise compar-
isons (GPC). The nonparametric GPC method is an extension of the Gehan test (Gehan, 1965) to the case of multivariate
outcomes (for a comparison of different approaches, see Verbeeck et al., 2019). Interestingly, this approach is related to
the above-mentioned rank-based methods: Assuming a univariate outcome and no missing data, the GPC/Gehan test is
a linear transformation of the Wilcoxon–Mann–Whitney test (Verbeeck et al., 2021).
However, the empirical evidence on the performance of these methods in small-sample size settings is limited, and

the GPC method has not been applied to longitudinal analyses of ordinal outcomes so far. On top of that, a simulation-
based comparison of these approaches has not been conducted yet. At this point, it should be noted that there might
be other promising methods, such as the well-known Friedman test (Friedman, 1937) or approaches based on ordinal
random-effects regressions (e.g., Hedeker & Gibbons, 1994; Hedeker & Mermelstein, 2000). However, the main aim of
the present manuscript is to compare the nparLD and GPC methodologies in a neutral way, due to the similarities of the
underlying concepts. By contrast, including the above-mentioned methodologies in the neutral comparison would have
been challenging if not impossible at all: it would have been very difficult to set up a common framework that does not
favor the one or the other method a priori, due to different underlying assumptions and methodological approaches.
Therefore, in the present manuscript, we performed a systematic empirical comparison of the above-mentioned meth-

ods that is informed by clinical considerations as well as the methodological expertise of a group of statisticians with
different yet complementary research interests. The authors of this manuscript are statistical and clinical experts who are
part of the EBStatMax project consortium (funded by the European Joint Programme on Rare Diseases, EU Horizon 2020
grant no. 825575), aimed at developing guidance regarding appropriate statistical methods for analyzing longitudinally
collected outcomes based on data from patients with Epidermolysis Bullosa as a motivating case study. Analogously to
comparing different interventions to each other in randomized clinical trials, statisticians should not only focus on devel-
oping “new” methods and generating the corresponding affirmative simulation evidence, but also conduct systematic
comparisons of existing approaches for analyzing data from particular study designs (Boulesteix et al., 2017). We follow
these “neutral comparison” principles that have been proposed in, for example, Boulesteix et al. (2013, 2018) as closely as
possible. This is reflected in the simulation setup (see Sections 3 and 4) as well as in the interdisciplinary composition of
the EBStatMax consortium that comprises statisticians whose respective research interests complement each other well.
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F IGURE 1 Illustration of the crossover study design of the EB trial.

In Section 2, we give a brief overview of a motivating example from Epidermolysis Bullosa, which forms the basis of
this manuscript as well as of the EBStatMax project as a whole. This part is followed by an outline of the key concepts
underlying the rank-basedANOVA-type approach and theGPCmethod (Section 3). The simulation settings and the corre-
sponding results are reported in Section 4, and the conduct of a real-life data analysis using the statistical methods under
consideration is demonstrated in Section 5. Finally, Section 6 contains a discussion of the key results and summarizes
the main conclusions. Together with simulation evidence from settings with other designs and outcomes, the conclu-
sions of the present manuscript constitute the basis for a guidance document and corresponding dissemination activities
(e.g., workshop materials) on analyzing longitudinal data in rare diseases. These will be developed as a next step in the
near future.

2 MOTIVATION

When investigating rare diseases, one frequently encounters small sample sizes due to the rarity of the disease. This is in
particular the casewithEpidermolysis Bullosa simplex (=EB),which is a rare genetic skin disease characterized by fragility
of epithelial-lined tissues and surfaces with recurrent mucocutaneous blistering for which there is no cure. Treatments
that address the pathophysiology of EB as well as accompanying symptoms such as burdensome pain and itch are needed
(Wally et al., 2018). A particular data set from this research area forms the basis of the EBStatMax project (see Section 1),
and hence, also serves as amotivating example of the present manuscript: In 2013, a randomized, placebo-controlled, two-
period crossover phase II/III trial was conducted at EB House Austria, Salzburg, Austria, which is a designated national
center of expertise for genodermatoses with a focus on EB and member of the European Reference Network for Rare
Skin Diseases (ERN Skin). The main aim of that study was to assess the impact of 1% Diacerein cream versus placebo in
reducing the number of blisters in EB. Diacerein is a rhein prodrug and anthraquinone that was shown to inhibit in vitro
and in vivo production and activity of interleukin-1 (IL-1) and other proinflammatory cytokines involved in the pathology
of EB. In total, 17 patients were randomized to either placebo or Diacerein for a 4-week treatment and a 3-month follow-
up in period 1. After a washout, patients were crossed over during period 2. Both periods consisted of four measurement
points each (see Figure 1).
The EBStatMax project’s aims are to reanalyze the data using various state-of-the-art methodologies, investigate the

impact that certain characteristics of the trial have on the statistical analysis, develop strategies and design recom-
mendations for future trials in rare diseases, and, as a means to ensure transferability and high dissemination of the
results, devise computational tools for practitioners in order to implement results in concrete trial analysis, and provide
educational material.
In this manuscript, the focus is on ordinal outcomes. Although the study protocol of the reference study considered

count outcomes as primary end point (Wally et al., 2018), there were also additional outcomes referring to pain and pru-
ritus (and QOL), which were assessed at each visit using a VAS. The VAS ranges from 0 (no pain/pruritus) to 10 (worst
pain/pruritus imaginable) with an increment of 0.5, and QOL was assessed by a questionnaire (Wally et al., 2018). For the
sake of simplicity, only the former will be considered in the present manuscript.
Note that the VAS score is usually assessed by using a line of 100 mm in length, with anchor descriptors such as “no

pain/pruritus” and “worst pain/pruritus imaginable.” The measurement can be done in 1-mm accuracy or 1-cm accuracy.
Thus, this is seemingly a metric scale; however, the VAS score is a specific type of a continuous ordinal scale, because
differences cannot be interpreted in a uniformway throughout the range of theVAS score. For example, in clinical practice,
there is an important qualitative difference between a decrease in VAS from 8 to 6 and a decrease from 3 to 1 (Heller et al.,
2016). Hence, since the VAS score is ordinal, this might imply the formulation of appropriate statistical models that allow
for analyzing longitudinally collected ordinal outcome variables. In the sequel, the above-mentioned variables will be
considered as truly ordinal, and therefore, we will not resort to quasi-metric modeling approaches (e.g., latent variable
modeling). Our aim is to examine the performance of rank-based nonparametric methods in comparison to different GPC
approaches, including a detailed evaluation of these methods in small sample size settings in a neutral way.
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Apart from that, the EBStatMax project is also focused on evaluating the advantages and drawbacks of statistical analysis
approaches for other types of outcomes (i.e., count and binary outcomes). Furthermore, one of the project’s main aims is
to provide advice regarding a study design that finds a trade-off between ensuring statistical power on the one hand, and
decreasing the burden due to frequent study visits for the EB patients on the other hand, by optimal design methodology.
However, the latter two aspects are outside the scope of this manuscript.

3 METHODS

In the present work, wherever appropriate and possible, we have paid attention to the key quality criteria of “neutral com-
parisons” along the lines of Boulesteix et al. (2013). Themethods that are subsequently employed in the simulation studies
(4) are first introduced theoretically, differences and similarities are examined neutrally, and a common basic framework
is defined. The main focus is then on the simulation study itself where the methods are compared. The emphasis is on
already existing and rationally well justifiable methods, without having a preferred analysis method specified in advance.
Moreover, a reference method is explicitly omitted in order to direct the focus only to the methods presented, and not to
compare them to conventional methods that are expected to be inferior “per construction” (e.g., because theymake overly
simplifying assumptions).
In addition, all simulation results are reported, even negative results, in order to be transparent, and to point out possible

problems and limitations in the application of the methods. Finally, it should be emphasized that the coauthors represent
a consortium with well-balanced research interests and areas of expertise. The fact that they are collaborating in the
EBStatMax project indicates their willingness to learn from each other, and to openly discuss advantages and drawbacks
of the respective methods.
In the motivating example on EB, we have a longitudinal crossover design (Section 2). Hence, every subject is observed

repeatedly at 𝑡 time points (e.g., in the motivating example, we have 𝑡 = 4 time points per period, namely, baseline, after 2
weeks, after 4weeks—end of treatment—and after 3months—end of follow-up)within each of the two periods. In the first
treatment period, the subjects were randomly assigned to either placebo or verum (= Diacerin treatment); in the second
period, the treatments were switched. To simplify notation, we assume without loss of generality that the first 𝑛1 subjects
were randomized to placebo in the first period, and the remaining 𝑛 − 𝑛1 subjects received verum. So, formally, we have
pairs (𝐗(1)

′

1𝑘
, 𝐗

(2)′

2𝑘
)′, 𝑘 ∈ {1, 2, … , 𝑛1}, and (𝐗

(1)′

2𝑘
, 𝐗

(2)′

1𝑘
), 𝑘 ∈ {𝑛1 + 1, 𝑛1 + 2,… , 𝑛} of random vectors 𝐗(𝑗)

𝑖𝑘
= (𝑋

(𝑗)

𝑖𝑘1
, … , 𝑋

(𝑗)

𝑖𝑘𝑡
)′,

where 𝑖 ∈ {1 = placebo, 2 = verum} denotes the group within a particular period 𝑗 ∈ {1, 2}, and 𝑘 ∈ {1, 2, … , 𝑛} is the sub-
ject index. Furthermore, we assume 𝑋(𝑗)

𝑖𝑘𝑠

𝑖𝑖𝑑
∼ 𝐹

(𝑗)

𝑖𝑠
, that is, we denote the marginal distribution of group 𝑖 ∈ {1, 2} within

period 𝑗 ∈ {1, 2} at time point 𝑠 ∈ {1, … , 𝑡} by 𝐹(𝑗)
𝑖𝑠
. It should be noted that no specific parametric assumptions are made

on 𝐹(𝑗)
𝑖𝑠

, other than that 𝐹 is nondegenerate. Moreover, the total number of observations is denoted by 𝑁 = 2𝑛𝑡. In the
EB example (Section 2), we have 𝑡 = 4; however, we would like to emphasize that all methodologies presented in the
remainder of this manuscript are also applicable to the more general case of an arbitrary number of 𝑡 repeated measures
per period.

3.1 A nonparametric rank-based approach—nparLD

The R package nparLD provides easy and user-friendly access to robust rank-basedmethods for the analysis of longitudinal
data in factorial settings. For model classification purposes, nparLD uses a notation system for frequently used factorial
designs depending on the number of factors. To this end, the factor that stratifies samples into independent groups is
called a whole-plot factor, while the factor coding for repeated measurements is called a subplot-factor (Noguchi et al.,
2012).
Accordingly, the particular designs are denoted by a name of the form

𝐹𝑥 − 𝐿𝐷 − 𝐹𝑦,

where 𝑥 and 𝑦 are the number of whole- and subplot factors, respectively, while “LD” stands for “longitudinal data.” In the
EB example, there is the subplot factor time (with four levels) and the whole-plot factor treatment group (with two levels).
This results in the “F1–LD–F1” design, and the corresponding R function is f1.ld.f1. Formally, it is an implementation
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of different rank-based hypothesis tests for the hypotheses of no main effect 𝐴 (i.e., the between-subject factor “group”
within a particular period), no main time effect 𝑇, and no interaction effect 𝐴𝑇 between 𝐴 and 𝑇. These hypotheses are
expressed in terms of marginal distribution functions as follows:

∙ 𝐻0(𝐴) ∶ �̄�
(𝑗)
1⋅
= �̄�

(𝑗)
2⋅
,

∙ 𝐻0(𝑇) ∶ �̄�
(𝑗)
⋅1
= ⋯ = �̄�

(𝑗)
⋅𝑡 ,

∙ 𝐻0(𝐴𝑇) ∶ 𝐹
(𝑗)

𝑖𝑠
= �̄�

(𝑗)

𝑖⋅
− �̄�

(𝑗)
⋅𝑠 + �̄�

(𝑗)
⋅⋅ , 𝑖 = 1, 2 ; 𝑠 = 1, .., 𝑡,

where �̄�(𝑗)
𝑖⋅
denotes the cumulative distribution function (CDF) for group 𝑖 averaged across the time points, �̄�(𝑗)⋅𝑠 the average

CDF at time point 𝑠 across the two groups within a particular period, and �̄�(𝑗)⋅⋅ the overall average CDF across all group
and time levels. In the context of the motivating epidermolysis bullosa example, we are primarily interested in answering
the research question whether the longitudinal profiles of the VAS scores differ between verum and placebo; therefore, we
will only consider 𝐻0(𝐴𝑇) in Sections 4 and 5 below. It should be noted that within this framework, the period 𝑗 ∈ {1, 2}
cannot be included as an additional factor into the model. Consequently, the empirical evaluations in Sections 4 and 5
have been conducted for each period 𝑗 ∈ {1, 2} separately. However, since the analyses have adopted exactly the same
approach for both periods, we will drop the period index in the sequel for sake of simplicity.
For testing the above-mentioned hypotheses, one may use the Wald-type statistic (WTS) or the ANOVA-type statistic

(ATS). In the manuscript, we only focus on the latter, because the WTS would need considerably larger sample sizes to
maintain the prespecified type I error level (Brunner et al., 2002). The ATS is defined as

𝐴𝑛(𝐶) =
𝑛

𝑡𝑟(𝑇�̂�)
�̂�𝑇𝑇�̂�, (1)

where 𝐶 is a suitable contrast matrix, 𝑇 = 𝐶𝑇[𝐶𝐶𝑇]−𝐶 the projection matrix, and 𝑡𝑟 denotes the trace of the respective
matrices. A suitable contrast matrix 𝐶 for this setting (i.e., for testing for an interaction effect) would thereby be 𝐶 =
𝐏𝑎 ⊗ 𝐏𝑏, where𝐏𝑎 = 𝐈𝑎 −

1

𝑎
𝐉𝑎 and𝐏𝑏 = 𝐈𝑏 −

1

𝑏
𝐉𝑏 denote the a- and b-dimensional centeringmatrices, respectively, and⊗

denoting the Kronecker product (for more details on contrast matrices, see Brunner et al., 2019). The quantity �̂� represents
the vector of estimated relative effects �̂�11, … , �̂�1𝑡, �̂�21, … , �̂�2𝑡, and �̂� is the corresponding empirical covariance matrix.
These estimators are obtained by replacing the CDFs by their empirical counterparts in the following definition of the
relative effect:

𝑝𝑖𝑠 ∶= ∫ 𝐻𝑑𝐹𝑖𝑠 (2)

for 𝑖 ∈ {1, 2}, 𝑠 ∈ {1, … , 𝑡}, where 𝐻 denotes the average over the marginal distribution functions 𝐹11, … , 𝐹2𝑡 . Hence, the
period index 𝑗 ∈ {1, 2} has been omitted, since the periods have to be considered separately for the methods under consid-
eration. By rewriting (2) using probabilities, one can show that 𝑝𝑖𝑠 quantifies the tendency that a subject in group 𝑖 at time
point 𝑠 has a higher VAS score (i.e., feels more severe pain/pruritus) than on average. Moreover, by doing some algebra,
an expression of the above-mentioned estimators �̂�𝑖𝑠 of 𝑝𝑖𝑠 that is based on ranks can be derived. Therefore, the relative
effect estimators and the corresponding empirical covariance matrix �̂� are rank-based estimators. Consequently, also, the
ATS defined in (1) is considered a rank-based hypothesis testing approach. Note that in this manuscript, emphasis rests
on specifying appropriate hypotheses to simulate the power and the type I error. That is, estimation is not discussed in
the present manuscript; for more details on the relative effect, its estimators, and corresponding theoretical results, see
Brunner et al. (2019, Ch. 2). In order to obtain a 𝑝-value, an approximation to the sampling distribution of 𝐴𝑛(𝐶) by a
𝐹(𝑓,∞) distribution is used, where

𝑓 =
(𝑡𝑟(𝑇�̂�))2

𝑡𝑟(𝑇�̂�𝑇�̂�)
.

For theoretical details on longitudinal rank-based estimation and hypothesis testing approaches, see Brunner et al. (2002)
and Noguchi et al. (2012).
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3.2 Generalized pairwise comparisons

The nonparametric GPC method is an extension of the Gehan test (Gehan, 1965) for multivariate outcomes (Buyse,
2010; Finkelstein & Schoenfeld, 1999; Pocock et al., 2012; Verbeeck et al., 2019). With a single outcome and no
missing data, the GPC test is a linear transformation of the Mann–Whitney test (Mann & Whitney, 1947; Ver-
beeck et al., 2021). Using the notations introduced at the beginning of Section 3, we consider within subject pairs
(𝐗

(1)′

11
, 𝐗

(2)′

21
)′, … (𝐗

(1)′

1 𝑛1
, 𝐗

(2)′

2 𝑛1
)′, (𝐗

(1)′

2 𝑛1+1
, 𝐗

(2)′

1 𝑛1+1
)′, … (𝐗

(1)′

2 𝑛
, 𝐗

(2)′

1 𝑛
)′ of random vectors𝐗(𝑗)

𝑖𝑘
= (𝑋

(𝑗)

𝑖𝑘1
, … , 𝑋

(𝑗)

𝑖𝑘𝑡
)′, where 𝑖 ∈ {1, 2}

denotes the group within a particular period, 𝑘 is the subject index, and 𝑗 ∈ {1, 2} denotes the period.
The GPCmethod evaluates the longitudinally collected VAS scores,𝐗(𝑗)

𝑖𝑘
, by constructing all possible pairs between and

within subjects, thus taking one subject from each treatment group, and subsequently assigning a score to each pair. As
pairs are constructed between treatment arms, period effects are ignored in GPC and the period index 𝑗 is omitted in the
notation related to GPC. So, formally, we set 𝐹𝑖𝑠 ∶= 𝐹

(1)
𝑖𝑠
= 𝐹

(2)
𝑖𝑠

for 𝑖 ∈ {1, 2}, 𝑠 ∈ {1, 2, … , 𝑡}. In the longitudinal crossover
design of the EB example (Section 2), there are several options of constructing pairs of the longitudinally collected VAS
scores. A summarymeasure per period can be constructed, which is compared per pair (formore details, see Section 3.2.1).
Alternatively to this univariate evaluation, the longitudinal VAS scores can be compared in amultivariate way by compar-
ing the VAS scores per time point between pairs (formore details, see Section 3.2.2). Often, in GPC, the components within
a pair are considered as independent, but this ignores the crossover design. Alternatively to this unmatchedGPC, pairs can
be restricted to compare treatment arms only within subjects, in a matched GPC (Pocock et al., 2012). This matched GPC
approach takes the crossover effect into account in the sense of incorporating the within-subject association. Either way,
per pair, a score 𝑈𝑘𝓁 corresponding to the comparison of the univariate or multivariate VAS scores, denoted by 𝑉1𝑘, for
patient 𝑘 under verum and𝑉2𝓁 for patient 𝓁 under placebo is assigned as follows (with 𝑘, 𝓁 ∈ {1, … , 𝑛} for the unmatched
GPC and 𝑘 = 𝓁 for the matched GPC):

𝑈𝑘𝓁 =

⎧⎪⎨⎪⎩

1, if 𝑉1𝑘 > 𝑉2𝓁
−1, if 𝑉1𝑘 < 𝑉2𝓁
0, if 𝑉1𝑘 = 𝑉2𝓁.

(3)

Using the calculated scores, various statistics can be constructed: For example, the net benefit (Δ) (Buyse, 2010), win ratio
(Pocock et al., 2012), or win odds (Brunner et al., 2021). The unmatched net benefit, for example, is the sum of the scores
divided by the total number of pairs:

Δ𝑢𝑛𝑚 =
1

𝑛2

𝑛∑
𝑘=1

𝑛∑
𝓁=1

𝑈𝑘𝓁,

and has values between −1 and 1, which is easy to interpret as the difference of probability that a random subject will do
better on active treatment than on placebo minus the reverse. Many inferential tests have been proposed for unmatched
GPC statistics (Verbeeck et al., 2020). Most inference is based on testing the null hypothesis:

𝐻0 ∶ 𝑃(𝑉1𝑘 < 𝑉2𝓁) = 𝑃(𝑉1𝑘 > 𝑉2𝓁),

but only the exact permutation test has good small sample properties (Anderson & Verbeeck, 2019). The inference of the
closed-form exact permutation test is based on the more restrictive null hypothesis:

𝐻0 ∶ �̄�1. = �̄�2.,

with �̄�𝑖. the distribution of the VAS in treatment group 𝑖. The test is based on the permutation distribution of the GPC
statistic, which has been empirically shown to be close to the standard normal distribution, even for data with as little as
five observations per arm (Verbeeck et al., 2020). Therefore, the test statistic 𝑧 = Δ∕

√
var(Δ)might as well be compared

to the appropriate standard normal quantile for obtaining a test decision.
Inference for the matched GPC was originally proposed for the win ratio summary measure and is based on the

asymptotic normality of a binomial distribution (Pocock et al., 2012). However, this inference method ignores ties, is inap-
propriate for small samples, and is based on a variance estimation under the alternative hypothesis. It is more appropriate
for small samples to resort to extensions of the exact paired test for ties. Of the extensions, the conditional sign test was
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GEROLDINGER et al. 7 of 17

found to be the uniformly most powerful test (Coakley & Heise, 1996; Dixon &Massey, 1951; Fagerland, 2012; Wittkowski,
1998), for sample sizes of 15–20 subjects. Since the matched net benefit, Δ𝑚, can be expressed as the difference of two
probabilities, namely, the probability of “wins,” 𝜋𝑤, estimated by 𝜋𝑤 =

1

𝑛
𝑁𝑤 =

1

𝑛

∑𝑛

𝑘=1
𝑈𝑘1(𝑈𝑘=1), and the probability of

“losses,” 𝜋𝑙, estimated by 𝜋𝑙 =
1

𝑛
𝑁𝑙 =

1

𝑛

∑𝑛

𝑘=1
𝑈𝑘1(𝑈𝑘=−1), the variance of this difference is:

var(Δ𝑚) = var(𝜋𝑤) + var(𝜋𝑙) − 2cov(𝜋𝑤, 𝜋𝑙)

=
1

𝑛
[𝜋𝑤(1 − 𝜋𝑤) + 𝜋𝑙(1 − 𝜋𝑙) + 2𝜋𝑤𝜋𝑙]

=
1

𝑛
[𝜋𝑤 + 𝜋𝑙 − (𝜋𝑤 − 𝜋𝑙)

2].

Under the null hypothesis of the conditional sign test,𝐻0 ∶ 𝜋𝑤 = 𝜋𝑙, the variance can be estimated by:

𝜎2(Δ𝑚) =
1

𝑛
(𝜋𝑤 + 𝜋𝑙) =

1

𝑛2
(𝑁𝑤 + 𝑁𝑙).

Using the normal approximation to the multinomial distribution, a large-sample test for𝐻0 is derived as:

𝑍 =
Δ𝑚

𝜎2(Δ𝑚)
=

𝑁𝑤 − 𝑁𝑙√
(𝑁𝑤 + 𝑁𝑙)

,

which is compared to the standard normal distribution.

3.2.1 Univariate generalized pairwise comparisons

One option to evaluate the repeated measures in the EB trial via GPC is by constructing one summary measure per sub-
ject and per treatment period and compare (univariately) these summary measures between pairs. So, using the notation
introduced in Section 3, we consider independent pairs (𝑆(1)

11
, 𝑆
(2)
21
), … , (𝑆

(1)
1𝑛1
, 𝑆
(2)
2𝑛1
), (𝑆

(1)
2 𝑛1+1

, 𝑆
(2)
1 𝑛1+1

), … , (𝑆
(1)
2 𝑛
, 𝑆
(2)
1 𝑛
) of ran-

dom variables, where 𝑆(𝑗)
𝑖𝑘
is an appropriate summary measure of the random vector 𝐗(𝑗)

𝑖𝑘
= (𝑋

(𝑗)

𝑖𝑘1
, … , 𝑋

(𝑗)

𝑖𝑘𝑡
)′. For example,

in this manuscript, we consider 𝑆(𝑗)
𝑖𝑘
=
∑𝑡

𝑠=1
𝑋
(𝑗)

𝑖𝑘𝑠
, because the sum of all VAS scores of a particular subject in period 𝑗

might be a good indication of the severity of pain/pruritus in that period. Of course, one may argue that one must not take
the sum of ordinally scaled measurements; yet, on the other hand, the analysis method that is described in what follows
indeed considers the outcome (i.e., the sum of the VAS scores) as truly ordinal. Moreover, taking the sum of ordinally
scaled variables as a new outcome measure does not do any harm as long as the resulting variable is not interpreted as a
metric quantity—actually, taking sums of ordinally scaled variables is frequently done with clinical scales (e.g., a clinical
score is often just the sum of different subitems or subscales).
Apart from that, analogously to the outline of the general GPC framework (see above), we drop the period index 𝑗 in

the sequel. So, in the pairwise comparison in (3), 𝑉𝑖𝑘 is replaced by the summary measures 𝑆𝑖𝑘, 𝑖 ∈ {1, 2}, 𝑘 ∈ {1, 2, … , 𝑛},
and both the matched and unmatched GPC can be applied to the univariate summary measure. It is important to note
that for a particular subject 𝑘, the summary measure 𝑆𝑖𝑘 has to be considered as missing if there is at least one missing
observation in this treatment group 𝑖 (clearly, taking only the sum of the remaining observations would be inappropriate).
Moreover, thematched GPC (i.e., the conditional sign test for the VAS summarymeasures) additionally requires complete
observations for both treatment conditions 𝑖 ∈ {1, 2} for a particular subject. The unmatched GPC thus allows for more
data to be used than the matched GPC, yet with the obvious drawback that the correlations between periods resulting
from the crossover design are not accounted for.

3.2.2 Multivariate generalized pairwise comparisons

Rather than summarizing repeated measures in a single summary measure, GPC also allows for evaluating repeated
measures by time point 𝑡 in a prioritized and nonprioritized analysis.
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8 of 17 GEROLDINGER et al.

In a prioritized GPC, which is the most commonly applied method in a multiple outcome setting, outcomes are priori-
tized by severity (the worst outcome ranked first). Per pair a score is assigned according to (3) on the first ranked outcome.
Only when the score results in a tie, the next ranked outcome is evaluated in the pair, continuing until the last outcome
(Buyse, 2010; Finkelstein & Schoenfeld, 1999; Pocock et al., 2012; Verbeeck et al., 2019). For repeated measures, the time
points can be prioritized according to the clinical importance of a treatment effect. Specifically for the EBStatMax study,
the VAS score after 4 weeks of treatment is most important, followed by the 3 months follow-up visit, the 2 week, and the
baseline visit. Although the prioritized GPC handles missing data in a natural way, by assigning a score 0 for the miss-
ing outcome comparison and moving to the next outcome, we will use the same data for all methods in our simulations,
thus excluding periods with missing VAS scores. Both the unmatched and the matched analysis can be applied to the
prioritized GPC, which tests the null hypotheses and uses the test statistics as described in Section 3.2, with the important
difference that the distributions being compared are nowmultivariate distributions (i.e., the first component corresponds
to the distribution of the outcome at the top-prioritized time point, the second component is the conditional distribution
of the outcome at the second-ranked time point, given that there is a tie at the top-ranked time point, and so forth).
In a nonprioritized GPC, all pairs are evaluated according to (3) on each repeated measure 𝑠, resulting in scores 𝑈𝑘𝓁𝑠.

The unmatched net benefit is then the sum of these scores divided by the total number of pairs and the number of repeated
measures:

Δ =
1

𝑛2𝑠

𝑛∑
𝑘=1

𝑛∑
𝓁=1

𝑡∑
𝑠=1

𝑈𝑘𝓁𝑠,

which again has an easily interpretable value between −1 and 1 (Ramchandani et al., 2016; Verbeeck et al., 2019). While
the univariate GPC for repeated measures first sums up observations and then compares, the nonprioritized GPC first
compares and then sums. Since the probability of “wins” and “losses” is not straightforward to calculate from 𝑈𝑘𝓁𝑠, we
will not perform matched analyses for the nonprioritized GPC. Inference of the unmatched nonprioritized GPC is based
on the exact permutation test, where the null hypothesis is formulated using the distribution functions under verum and
placebo, that is, the joint distributions of the outcomes at the different time points (Ramchandani et al., 2016; Verbeeck
et al., 2019).
The correlation between repeated measures within a period is accounted for by both the prioritized as well as the

nonprioritizedGPC in a differentway. The correlation is reflected in thenet benefit statistic in the prioritizedGPC,whereas
it is reflected in the variance of the net benefit distribution in the nonprioritized GPC (Verbeeck et al., 2019).

4 SIMULATION STUDY

4.1 Description of the simulation setting

Different approaches were considered for the simulations. Primarily, it was decided to compare the longitudinal measure-
ments of the raw values between the treatment groups. However, an alternative approach using the change of baseline
was also considered and is briefly described in the end of Section 4.2. Further results of this second simulation approach
can be found in the Supporting Information.
The EB trial data set (see Section 2) was used for the simulations. Recall that this is a longitudinal data set from a

crossover study with 𝑛 subjects and 2 periods, with 𝑡 = 4 time points (baseline, 2 weeks, 4 weeks (= posttreatment) and 3
months (= follow-up)) for VAS measures per period. In our simulations, observations were not considered at individual
time point levels, but rather grouped into blocks of 𝑡 = 4 time points each. Hence, adopting the notation from Section 3, for
each subject 𝑘 ∈ {1, 2, … , 𝑛}, we have a pair (𝐗1𝑘, 𝐗2𝑘) of vectorswith four components each, corresponding to the repeated
measures under treatment conditions 1 = placebo and 2 = verum (for notational simplicity, without loss of generality, we
have dropped the index 𝑗 denoting the trial period, because we did not simulate any period effects, see below), that is,
every patient has a “placebo” and a “verum” block. Now, in each simulation run, the blocks𝐗𝑖𝑘 were randomly permuted
across all subjects and treatment conditions. The reason for adopting this approachwas that by sampling from the EB data
set, we kept original data characteristics, thus avoiding any additional (parametric) assumptions. For power simulations,
however, we, of course, had to implement some additional steps to the above-mentioned permutation approach, in order
to simulate different effect scenarios. These steps were implemented as follows:
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GEROLDINGER et al. 9 of 17

F IGURE 2 Flowchart showing numbers of subjects who were analyzed in the simulation study..

1. Random variables 𝑍𝑘
𝑖𝑖𝑑
∼ , 𝑘 ∈ {1, 2, … , 𝑛}, were generated, where  was either a normal distribution  (𝜇norm, 1)

or a lognormal distribution 𝐿𝑁(𝜇log, 1), with 𝜇norm ∈ {2, 3, 4} and 𝜇log ∈ {0.2, 0.6, 0.9}, respectively. Negative values
(which possibly occur with normally distributed 𝑍𝑘) were replaced with zeroes.

2. These random variables (𝑍𝑘)𝑛𝑘=1 were subsequently added to the observations from the placebo group. More precisely,
two different scenarios were considered:
∙ Scenario 1: The random variables were added to the VAS scores under placebo at the third time point (i.e., the
posttreatment visit) only.

∙ Scenario 2: The random variables were added to the VAS scores under placebo at the third time point (i.e., the post-
treatment visit), and additionally, (𝑍𝑘∕2)𝑛𝑘=1 were added to the VAS scores under placebo at the fourth time point
(i.e., the follow-up visit).

3. The corresponding “new” observations resulting from step 2 were appropriately cut off (maximum VAS value is 10.0)
and rounded to one decimal place, if required, in order to adequately represent VAS scores.

This setup for the power simulations is closely aligned with clinical expertise in several ways. First, the distributions have
been selected such that a symmetric (i.e., normal) as well as an asymmetric setting (i.e., lognormal) is covered. Second,
the parameters of these distributions have been chosen such that the expected values (i.e., the shift effects) are equal to 2,
3, and 4, respectively (or at least very close to these values after truncation and rounding). An average difference in VAS
scores of 3 between placebo and verum conditions would be regarded as a clinically meaningful effect; the scenarios with
shift effects 2 and 4 have been added in order to have a broader range of different settings for the power simulations at
hand. Third, the two above-mentioned scenarios in step 2 correspond to the assumptions of no and some long-term effects,
respectively; both scenarios are clinically plausible, taking into account that the Diacerein cream is an intervention—like
many others in EB—which has no curative, but mainly a symptom-relieving effect.
For each combination of the distribution/parameter settings and effect scenarios described above, 𝑅 = 5000 simula-

tion runs were performed. The resulting empirical power values are based on using the two-sided level 𝛼 = 0.05. All
simulations were carried out using the statistical software R (Version: 4.0.3, R Core Team (2021)).
It is important to note that the inclusion and exclusion criteria (see Figure 2) for the data underlying the simulations

were intended to resemble the setting of the original study of Wally et al. (2018) as closely as possible, and to avoid preop-
timizing effects for a specific setting or sample size in which the methods may work better than existing approaches, as
Boulesteix et al. (2013) point out as a criterion for a neutral comparison. Therefore, 24 observations (i.e., six blocks of four
longitudinally collected VAS measurements each) were excluded from the initial set of 136 observations (4 time points
× 2 periods × 17 subjects) for clinical and study-related reasons. In addition, as our proposed methods require complete
observations within periods, blocks with NAs had to be excluded as well. This led to a further reduction of the number
of observations to 112 − 8 = 104 observations, which formed the core data set for the simulations. Furthermore, since for
the matched GPC method, those subjects that have one single block only (i.e., either the placebo or the verum block is
missing) had to be excluded completely, the actual number of observations for that particular method was reduced to 80

 15214036, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200236 by U
niversiteit H

asselt, W
iley O

nline L
ibrary on [24/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 17 GEROLDINGER et al.

TABLE 1 Power simulation result for the ordinal outcome “pruritus” and “pain” with varying log-normal effects and normal effects
(with 𝜎log and 𝜎norm = 1 ) and scenarios 1 and 2 using the method nparLD for treatment period 1.

Power
Pain Pruritus
Scenario 1 Scenario 2 Scenario 1 Scenario 2

nparLD
𝜇log = 0.2 0.2402 0.2604 0.2846 0.3124

𝜇log = 0.6 0.3476 0.3566 0.3642 0.3796

𝜇log = 0.9 0.4522 0.4534 0.4418 0.4430

𝜇norm = 2 0.2800 0.2874 0.3000 0.3246
𝜇norm = 3 0.5112 0.4862 0.4532 0.4532
𝜇norm = 4 0.7322 0.6846 0.6040 0.5692

(4 time points × 2 periods × 10 subjects). Since the matched GPC variants had considerably fewer observations for the
analysis, an additional simulation was also performed using the unmatched GPC variants based on the reduced number
of 80 observations (see Supporting Information: Tables S7 and S8).

4.2 Results

In what follows, the results of the above-mentioned simulation scenarios based on the EB trial data are reported for
the nparLD approach as well as for five variants of the GPC method (univariate unmatched and matched, prioritized
unmatched and matched, and nonprioritized unmatched). It should be mentioned that for nparLD, the hypothesis tests
had to be conducted separately for periods 1 and 2, whereas the GPC methods did not require such a split. However,
since the simulation setup has been designed such that there is no period effect, only the nparLD results for the first
period are reported, and the analogous tables for period 2 (which are very similar, yet with a somewhat more liberal type
I error) are provided in the Supporting Information (see Tables S9 and S10). Moreover, for nparLD, only the interaction
effect is considered, and therefore, only the null hypothesis𝐻𝐹

0
(𝐴𝑇) is used (see Section 3). Apart from that, note that the

GPC variants allow for both one- and two-sided testing. In order to ensure consistency of the presentation and compa-
rability of the methods under consideration, only the simulation results for the two-sided case are reported in the main
body of the manuscript; their one-sided counterparts can be found in the Supporting Information (see Tables S9, S11, and
S12). Additionally, as mentioned before, a second simulation scenario was also performed using a change from baseline
approach. A short summary is provided at the end of this section, and the tables and numerical results can be found in the
Online Appendix (see Supporting Information Tables S14–S18). Besides, the simulation results for the data set reduced to
80 observations for the unmatched GPC variants are also presented in the Online Appendix in order to provide additional
information for comparison (see Supporting Information Tables S7 and S8). Finally, note that all simulations were run
twice, considering the VAS score for pruritus and pain as outcomes, respectively.
Regarding the type I error, almost all considered methods exhibit an adequate type I error control (rank-based non-

parametric ANOVA-type test from nparLD: 𝛼pain = 0.0560 , 𝛼pruritus = 0.0586 ; univariate unmatched GPC: 𝛼pain =
0.0492, 𝛼pruritus = 0.0468 ; prioritized unmatchedGPC: 𝛼pain = 0.0490, 𝛼pruritus = 0.0472 ; nonprioritized unmatched
GPC: 𝛼pain = 0.0508, 𝛼pruritus = 0.0496 ). However, possibly due to the reduction in sample size in the analysis with
matched GPC, conservative type I error rates occurred in both the univariate ( 𝛼pain = 0.0344, 𝛼pruritus = 0.0240 ) and
the prioritized matched GPC ( 𝛼pain = 0.0252, 𝛼pruritus = 0.0214 ). It is also interesting to note here that due to the aim
of neutral comparability, only two-sided tests have been used.However, for the one-sided counterpart of thematchedGPC,
one would see a somewhat liberal type I error rate (see Supporting Information Table S9). Violations of the target type I
error level were also observed for nparLD applied to data from period 2 (see Supporting Information Table S9). This could
be caused by the underlying original data, because there was a considerable effect in period 2 (see Section 5). Perhaps, due
to the very limited sample size, maybe, this effect has not fully “disappeared” in the permutation-based simulations.
Regarding the power simulationwith themethod nparLD, as shown in Table 1, it can be observed that the power is larger

with normal effects than with asymmetric log-normal effects. Moreover, it can be seen that for 𝜇norm = 4, the power is
already above 0.6 in almost every case. It is interesting to note that there is a pronounced difference in the magnitude of
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GEROLDINGER et al. 11 of 17

TABLE 2 Power simulation result for the ordinal outcome “pruritus” and “pain” with varying log-normal effects and normal effects
(with 𝜎log and 𝜎norm = 1 ) and scenarios 1 and 2 using the two-sided univariate matched and unmatched GPC method (caution is needed in
interpreting the matched GPC results, due to an uncontrolled type I error; therefore, these rates are marked with †).

Power
Pain Pruritus
Scenario 1 Scenario 2 Scenario 1 Scenario 2

Univariate matched GPC
𝜇log = 0.2 0.0450† 0.0650† 0.0516† 0.0764†

𝜇log = 0.6 0.0614† 0.1074† 0.0786† 0.1318†

𝜇log = 0.9 0.0948† 0.1628† 0.1084† 0.1910†

𝜇norm = 2 0.0504† 0.0798† 0.0542† 0.0856†
𝜇norm = 3 0.0814† 0.1536† 0.0914† 0.1688†
𝜇norm = 4 0.1280† 0.2750† 0.1508† 0.2776†
Univariate unmatched GPC
𝜇log = 0.2 0.1106 0.1794 0.1398 0.2196

𝜇log = 0.6 0.1768 0.3054 0.2024 0.3458

𝜇log = 0.9 0.2638 0.4618 0.2902 0.4984

𝜇norm = 2 0.1236 0.2218 0.1616 0.2636
𝜇norm = 3 0.2284 0.4374 0.2626 0.4658
𝜇norm = 4 0.3800 0.7016 0.4086 0.6752

the power between the effect sizes 𝜇norm = 2 and 𝜇norm = 3. However, the power is slightly smaller in some cases with
normal effects for the second scenario, where in addition to the posttreatment effect, there is also a (smaller) effect at the
follow-up visit (see above). At first sight, this seems counterintuitive; however, this is due to the fact that a group–time
interaction is tested here: Recall that differences between treatment and placebo regarding the VAS trajectories over time
are tested here. Now, since the change from posttreatment to follow-up is more pronounced in scenario 1, this leads to a
more pronounced interaction between group and time. and thus, to a higher power than for scenario 2. In general, it is
remarkable that the nparLD method yields quite large power values despite the fact that only one period, and thus, an
even smaller sample is considered.
Table 2 illustrates the power results of the two-sidedunivariatematched andunmatchedGPCmethod. It can be observed

that in scenario 1, the power is always lower than in the nparLDmethod and the maximum value reaches only 0.4086. On
the contrary, for scenario 2, while the power of the univariate matched GPC is always lower than nparLD, the power is
almost always higher than nparLD for the univariate unmatchedGPC. To sumup, comparing the results of the unmatched
GPC with nparLD reveals that overall, it cannot be determined which method shows consistently higher power. The
difference in power between scenarios 1 and 2 is larger in both univariate GPC methods compared to nparLD. Apart
from that, it can be observed that the power for the unmatched GPC is much higher than for the matched GPC, which
is possibly due to a larger sample size in the former case. Moreover, the conservative behavior of the univariate matched
GPC regarding type I error control might also play a role. Therefore, the power rates of thematched GPC variant in Table 2
were marked with †, because one might have to be careful with the interpretation here.
Tables 3 and 4 illustrate the power results of the nonprioritized unmatched GPC as well as the two-sided prioritized

matched and unmatched GPC method. It can be observed that the power is, particularly for the prioritized unmatched
GPC, higher than for any other method. Especially for the simulation with asymmetric log-normal effects, the power is
considerably higher in comparison to the othermethods and already takes 0.6404 as the smallest value. However, this high
power may also be due to the prioritization of the time points (see Section 6). Furthermore, again, the power is higher
for the second scenario in each case, as already seen for the univariate GPC methods, but the difference between the two
scenarios is now much smaller. Additionally, the power of the nonprioritized unmatched GPC is smaller in scenario 1,
while it is much higher in scenario 2. Having multiple visits with a treatment effect thus obviously increases the power
of the nonprioritized GPC much. Yet, again, any power values of the matched GPC variant were flagged using †, as one
must be cautious in interpretation due to the conservative type I error rate.
In summary, it can be concluded for the comparisons that the prioritized unmatched GPC method was consistently

achieving a greater power, even with log-normal effects. Of course, this is not a surprise, because the prioritization is
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12 of 17 GEROLDINGER et al.

TABLE 3 Power simulation result for the ordinal outcome “pruritus” and “pain” with varying log-normal effects and normal effects
(with 𝜎log and 𝜎norm = 1 ) and scenarios 1 and 2 using the two-sided nonprioritized unmatched GPC method.

Power
Pain Pruritus
Scenario 1 Scenario 2 Scenario 1 Scenario 2

Nonprioritized unmatched GPC
𝜇log = 0.2 0.1322 0.3244 0.2370 0.5854

𝜇log = 0.6 0.1672 0.4304 0.2590 0.6570

𝜇log = 0.9 0.1998 0.5376 0.2958 0.7236

𝜇norm = 2 0.1346 0.3256 0.2390 0.5868
𝜇norm = 3 0.1910 0.4858 0.2742 0.6942
𝜇norm = 4 0.2584 0.6724 0.3052 0.7718

TABLE 4 Power simulation result for the ordinal outcome “pruritus” and “pain” with varying log-normal effects and normal effects
(with 𝜎log and 𝜎norm = 1 ) and scenarios 1 and 2 using the two-sided prioritized matched GPC method (caution is needed in interpreting the
matched GPC results, due to an uncontrolled type I error; therefore, these rates are marked with †).

Power
Pain Pruritus
Scenario 1 Scenario 2 Scenario 1 Scenario 2

Prioritized matched GPC
𝜇log = 0.2 0.2358† 0.2372† 0.4056† 0.4176†

𝜇log = 0.6 0.3266† 0.3280† 0.4776† 0.4936†

𝜇log = 0.9 0.4254† 0.4288† 0.5496† 0.5652†

𝜇norm = 2 0.2534† 0.2552† 0.4254† 0.4284†
𝜇norm = 3 0.4218† 0.4276† 0.5294† 0.5308†
𝜇norm = 4 0.6186† 0.6236† 0.6016† 0.6050†
Prioritized unmatched GPC
𝜇log = 0.2 0.6404 0.6432 0.8808 0.8880

𝜇log = 0.6 0.7860 0.7888 0.9334 0.9402

𝜇log = 0.9 0.8826 0.8844 0.9642 0.9694

𝜇norm = 2 0.6702 0.6758 0.8890 0.8910
𝜇norm = 3 0.8834 0.8890 0.9500 0.9500
𝜇norm = 4 0.9778 0.9788 0.9528 0.9546

aligned with the simulation framework. Overall, however, it can be stated that each GPC method, except the univariate
matched GPC, achieves a higher power for the second scenario (i.e., effects added at two time points), while nparLD
mostly achieves higher power in the first scenario (i.e., effects added at one time point).
In addition, the unmatched GPC variants achieve higher power compared to thematched GPC counterparts, and prior-

itizing the time points (unmatched) has a big impact on power, which is close to 80% or 90% in most cases. When adding
a normally distributed treatment effect, nparLD shows a higher power, even with a quite limited sample size, than the
univariate GPC variants and the prioritized matched GPC method.
As mentioned at the beginning, an alternative simulation option was also considered by looking at the change from

baseline. In practice, this is reasonable because the variability is reduced and, in theory, itmay also increase the power. So, it
was decided to apply this approach to allmethods to see how the power values behave in this scenario. As a consequence of
considering change of baseline, the baseline time point was excluded for each period in this analysis approach. As a result,
it was found that the type I error rate remained approximately the same (see Supporting Information Table S14). However,
for all GPC variants in all scenarios, the power analysis revealed lower power values than in the original setup using the
raw values (see Supporting Information Table S6–S18). In comparison, the power of nparLD changed only slightly (see
Supporting Information Table S15).

 15214036, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202200236 by U
niversiteit H

asselt, W
iley O

nline L
ibrary on [24/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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F IGURE 3 Profile plot showing boxplots for the outcomes “pain” and “pruritus” for treatment periods I and II.

TABLE 5 Resulting interaction effect of time and group for the ordinal outcome “pruritus” and “pain” in the original data set using
nparLD with the ANOVA-type statistics.

Test statistic 𝒑-Value
Pruritus
nparLD Period 1 0.7193 0.5018
nparLD Period 2 3.9737 0.0172
Pain
nparLD Period 1 0.5769 0.5978
nparLD Period 2 0.5167 0.5596

5 ANALYSIS OF EPIDERMOLYSIS BULLOSA TRIAL

To ensure a neutral evaluation of the methods presented for the real-life data example, Boulesteix et al. (2013) were used
as a guidance again. Therefore, the data set used for the real-life data example fits into the application context of the
described disease EB. This data set also meets the requirement of being as representative as possible of the application
context and the domain of interest, given that crossover designs are frequently used as a remedy for small-sample size
issues in Epidermolysis Bullosa trials in particular, as well as in rare diseases studies in general. In addition, any cases
that were excluded in the original study are again explicitly excluded, to be in line with reality, and to avoid preoptimizing
effects. To visualize the results the following two time-profile plots for the outcomes “pain” and “pruritus” are provided
in Figure 3.
For theGPC variants, the𝑝-values are calculated in the sameway as described in Section 3.2, that is, based on calculating

the wins, losses, and ties as well as the net benefit (with a 95% confidence interval). These more detailed results can be
found in Supporting Information Table S13. In addition, the prioritization for the multivariate GPC is done as described
in Section 3.2.2.
From Tables 5 and 6, several trends that have already been observed in the simulation study (e.g., matched GPC tends to

have lower power than its unmatched counterpart; unmatched prioritized GPC is most powerful) are only partially seen
in the case study. Maybe this is due to the particular dependency structure in the real-life data that are induced by the
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14 of 17 GEROLDINGER et al.

TABLE 6 Resulting two-sided 𝑝-value and test statistic for the GPC variants applied to the original data set for the ordinal outcome
“pruritus” and “pain.”

Test statistic 𝒑-Value
Pruritus
matched univariate GPC 0.6325 0.5271
unmatched univariate GPC 0.3853 0.7000
matched prioritized GPC 0.6325 0.5271
unmatched prioritized GPC 0.8721 0.3832
unmatched nonprioritized GPC 0.6855 0.4931
Pain
matched univariate GPC 1.0000 0.3173
unmatched univariate GPC 0.0773 0.9384
matched prioritized GPC 0.0000 1.0000
unmatched prioritized GPC 0.6418 0.5210
unmatched nonprioritized GPC 0.2237 0.8230

crossover design. Another remarkable finding concerns the small 𝑝-value of nparLD for period 2. This points to the fact
that in a crossover design, one has to find a trade-off between taking specific effects within periods into account on the
one hand, and ignoring periods by pooling the data together in order to increase power on the other hand.

6 DISCUSSION AND OUTLOOK

The aim of this research was to neutrally compare differentmethods for longitudinally measured ordinal outcomes in rare
diseases. Due to the rarity of the diseases, one frequently has to face challenges related to small sample sizes, and often,
crossover designs are employed. One particular example is a data set from Epidermolysis Bullosa (EB) research, in which,
among other outcomes, ordinalmeasures of pain and pruritus were assessed on a VAS. Based on these data, we have set up
simulation scenarios enabling a neutral comparisons between a nonparametric rank-based approach using the R package
nparLD and various GPCs, including a univariate unmatched andmatched approach, as well as a multivariate prioritized
and nonprioritizedmethod. Key criteria for selecting thesemethods were that they could account for the longitudinal and
the crossover aspects as well as for the small sample size as well as possible. In addition, the methods considered in this
paper have not yet been investigated thoroughly for the present study design.Other potentially promisingmethods, such as
ordinal random-effects regressionmodels or thewell-knownFriedman test,might be investigated in futurework, although
defining a unified empirical framework for systematic, neutral comparisons might be substantially more difficult, then.
A challenge in the neutral comparison of these methods was presented by the different underlying approaches. Using

the nonparametric nparLD method, which is based on the relative effect, analyses could only be conducted for each
period separately. Thus, the crossover aspect was partially lost. This poses a problem for the analysis of crossover designs,
which are commonly used in clinical studies with rare diseases. In contrast, the univariate GPC method is based on
summary measures, and hence, leads to a partial loss of longitudinal information. Moreover, the GPC method has not
been studied yet for longitudinal data. In addition, there were also differences regarding the cases that had to be excluded.
For example, neither the univariate GPCmethod nor nparLD could handle missing values, and thus, any treatment arms
containing missing values had to be excluded. Only the prioritized GPC method can handle missing values. It should be
noted, however, that this problemmay no longer exist in the future with an updated version of nparLD, which is currently
being developed. Furthermore, for the matched GPC method, all single treatment arms had to be excluded, because the
method is based on a pairwise comparison between both periods. Of course, this additionally decreased the size of the
sample in our simulations for this method.
Due to the fact that the aim was to mimic the original data set as closely as possibly, we have only considered a limited

number of different simulation scenarios. In particular, we have not employed any sample size configurations that are
different from the ones used in the EB trial. However, on the other hand, we tried to be as exhaustive as possible, when
including several combinations of different scenarios regarding the effects over time, and distributional assumptions. Yet,
no “heavy-tailed” distribution, for example, t distribution with 3 or 4 degrees of freedom only, was included. However, it
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is questionable whether this heavy-tailed distribution would be clinically plausible, given that the VAS scores only take
values between 0 and 10.
When considering the results of the simulation study, only type I error and power were assessed. Thereby, the type I

error was well controlled by almost all methods, only for the matched GPCmethod, it appeared to be rather conservative;
and, for nparLD, we found a somewhat liberal behavior in period 2. This may be explained by looking at the effectively
used sample size for this matched GPC method: Since only 𝑁 = 10 subjects could be used, due to the above-mentioned
exclusion of the single treatment arm observations, this sample size setting could be possibly too small (for simulation
evidence regarding the conditional sign test, see Coakley & Heise, 1996 and Fagerland et al., 2013). The appropriateness of
inference with thematched GPCmay thus be limited to about𝑁 = 15. These findings are also supported by the additional
simulation for the unmatched GPC variants with the reduced data set of𝑁 = 10 subjects. The result for those unmatched
variants showed that the power decreased, but still remained at a high level (see Supporting Information Table S7). Also,
the type I error was not particularly conservative for the unmatched variants in this setting (see Supporting Information
Table S8).
Regarding the nparLD results for period 2, the effect seen for period 2 in the original datamight be an explanation. Since

the main aimwas to perform a neutral comparison, we deliberately refrained from a “cherry-picking search” for a specific
data set or simulation setup where the superiority of one particular method was expected to be more pronounced. Yet,
further research could investigate the impact of different sample size variations on the performance of the matched GPC
variants and nparLD. When reflecting upon the power simulation for the ANOVA-type method implemented in nparLD,
it seemed rather counterintuitive at first sight that scenario 2 yielded less power than scenario 1, because an additional
“long-term effect” was present in the former. However, this might be explained by the fact that the ANOVA-type test was
used to test for group–time interactions. Indeed, from the interaction perspective, a time profile that shows an effect at
the posttreatment time point and completely returns to the baseline levels at the follow-up visit (i.e., scenario 1) may be
regarded as a more pronounced change over time compared to a setting where some portion of the effect is still present at
the follow-up visit (thus rendering the change of the time profile under treatment relative to placebo less markedly).
The highest power overall is achievedwith the prioritized unmatchedGPCmethod. The prioritization of the time points

has therefore a big impact on power. This makes sense, because the prioritization that was specified in the GPC closely
corresponds to the simulation settings (i.e., in the simulations, the effect was added in each scenario at the posttreatment
visit, which was, on the other hand, evaluated first in the prioritized analyses). One may argue that this contradicts the
neutral comparison principle; however, we would like to emphasize that the reason for setting up the simulations as well
as the prioritization in the GPC method in this way was clinical reasoning, and not any intention to favor this particular
method. It should be highlighted that a different prioritization could also result in lower power. Apart from that, it is
noteworthy that nparLD has a high power that is quite close to the prioritized GPC at least in some cases, although the
simulations were performed with a smaller sample size (group sizes of 6 and 7), due to the separate testing of the periods.
Therefore, this indicates that nparLDprovides good results in terms of powerwith very small sample sizes. Apart from that,
it is noteworthy that the power of all methods stayed similar or even decreased when considering change from baseline
as outcome. So, obviously, the reduction in baseline variability did not translate into a gain in power. Nevertheless, the
fact that the power stayed quite the same for nparLD might be considered as an advantage of this method, because it is
invariant of the choice of the outcome. Further investigations are warranted to evaluate the above-mentioned findings
more thoroughly.
When considering the real-life data example, one notices that while several trends were observed in the simulation

study, none of them are necessarily recognizable in the selected data set example, which might be due to the particu-
lar data structure and the dependencies in the crossover design. It seems remarkable that by splitting the periods in the
nparLD method for the outcome pruritus, a very small 𝑝-value in period 2 is obtained as a result. This effect is not shown
by using the GPC methods. As a conclusion, this indicates that especially for longitudinal data in a small sample size
crossover study, a certain trade-off must be made between increasing power and analyzing period-specific effects. How-
ever, a modified approach of the GPCmethods could also consider the periods separately, so that potential period-specific
effects become evident. Further research regarding this issue is currently conducted by one of the coauthors.
Although the simulations in the present manuscript are based on one particular data set from Epidermolysis Bullosa

Research, the resultsmight be generalized to other rare diseases, given that the basic characteristics of the data (i.e., ordinal
outcomes obtained longitudinally in a two-period crossover trial) are similar. For example, in clinical trials on treatments
of rare epilepsies, the posttreatment seizure frequency is usually considered as the primary outcome. Seizure frequency
is often quantified using the Engel scale, which is an ordinal variable ranging from class I (seizure freedom) to class IV
(no worthwhile improvement). To take another example, in patients with spinal cord injury, ordinal outcome measures
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such as the ASIA classification or specific QOL scores are frequently used. Yet, to be on the safe side, before generalizing
our methodological recommendations, the simulation results presented in this manuscript would have to be reproduced
in several simulations based on data from the above-mentioned medical research areas.
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