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A B S T R A C T

The rapid spread of COVID-19 worldwide led to the implementation of various non-pharmaceutical interven-
tions to limit transmission and hence reduce the number of infections. Using telecom-operator-based mobility
data and a spatio-temporal dynamic model, the impact of mobility on the evolution of the pandemic at the
level of the 581 Belgian municipalities is investigated. By decomposing incidence, particularly into within-
and between-municipality components, we noted that the global epidemic component is relatively more
important in larger municipalities (e.g., cities), while the local component is more relevant in smaller (rural)
municipalities. Investigation of the effect of mobility on the pandemic spread showed that reduction of mobility
has a significant impact in reducing the number of new infections.
1. Introduction

The rapid spread of COVID-19 worldwide led to various non-
pharmaceutical interventions being implemented by different countries
to limit transmission and hence reduce the number of infections (Ander-
son et al., 2020). Social distancing, mask and shield wearing mandates,
and case isolation, quarantine measures have been widely used to limit
local transmission and protect vulnerable groups (Liu et al., 2021).
The day after WHO declared COVID-19 a pandemic, Belgium went
into lockdown with strict measures implemented (Crisiscentrum, 2021).
This resulted in significant mobility reductions in the period of March–
April 2020 with non-essential business and offices closed. Working from
home also became the norm, and was mandatory when possible.

Previous studies evaluating the connection between human mobility
and transmission of SARS-CoV-2 have revealed a clear association
between mobility restrictions and lower COVID-19 incidence (Badr
et al., 2020; Gatalo et al., 2020; Kraemer et al., 2020; Nouvellet et al.,
2021). Reduced social contact patterns were also found to impact the
virus transmission (Coletti et al., 2021; Zhang et al., 2020). Although
these restrictions were found to be highly effective early in the pan-
demic (Gatalo et al., 2020), many countries are experiencing continued
or resurgent widespread transmission of SARS-CoV-2 (World Health
Organization, 2021). In Belgium, as in many countries, consecutive
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waves have been experienced in late 2020, 2021 and to a lesser extent
in 2022, which resulted into lockdown measures with time-varying
stringency.

Understanding how mobility, and especially the connectivity
amongst regions, impacts the COVID-19 spread and how it contributed
to the observed spatial dynamics is important in evaluating the effec-
tiveness of these lockdown measures. This has been studied in the past
— including, for example, for the 2009 H1N1 pandemic (Bajardi et al.,
2011) and the West Africa Ebola epidemic (Peak et al., 2018). For
the case of COVID-19, the use of mobile network data (Badr et al.,
2020; Gatalo et al., 2020; Pullano et al., 2020; Slater et al., 2022),
Google and Apple mobility data (Cot et al., 2021), and social media
data (Zeng et al., 2021) have been explored as a method to describe
the connectivity amongst regions and to induce spatial dependence.

In this paper, we use mobile phone data to describe the connectivity
amongst areas and study the impact of this connectivity on the spread
of COVID-19 during the second wave of the pandemic in 2020. We eval-
uate how connectivity amongst areas influenced the spatio-temporal
spread in Belgium by measuring the effect of between-municipality
transmission and simulating scenarios with different mobility levels.
The methods used for the spatio-temporal epidemic spread model are
vailable online 8 February 2023
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Fig. 1. Daily total COVID-19 cases in Belgium in 2020. The blue square represents the data for the second (Fall) wave used in this paper. R1–R4 shaded areas represent the
period of specific testing regulations.
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presented in Section 2. Section 3 summarizes the results of the analysis.
Section 4 concludes with a discussion.

2. Data and methods

In this section, we first describe the data sources used, and then
present a data-driven modeling approach to investigate the contribu-
tion of mobility on the spread of COVID-19.

2.1. Case data

The daily numbers of COVID-19 positive tests for each of the 581
municipalities in Belgium were obtained from Sciensano, the Belgian
institute for public health (Sciensano, 2021). The overall case time
series from 1 March until 13 December 2020 is shown in Fig. 1, which
shows a slight bump during the summer period and then a fast increase
in October. Note that the first wave in March–April 2020, in spite of its
severity, hardly shows up because of limited testing capacity and hence
restrictive testing (FOD Volksgezondheid, 2021). During this period,
testing was only performed for hospitalized patients and health-care
workers (denoted as regulation 1, R1 in Fig. 1). After this period, testing
capacity increased substantially as testing was free for anyone with
symptoms or who had made a high-risk contact (regulation 2, R2). In
the fall of 2020, at the moment that the number of cases was highest,
there was too much pressure on the testing capacity, and the testing
(R3) was temporarily limited to those with symptoms. After some
weeks, testing was again made available to anyone with symptoms, a
high-risk contact or for traveling (R4). Table S1 in the Supplemental
Materials specifies the periods over which each regulation was in place.

For the purpose of this paper, we use data from 29 June 2020 to
13 December 2020, which captures the Summer 2020 flare-up and the
second (Fall) wave of the epidemic. A weekend effect is apparent in the
plot. The spatial distributions of the cases during some selected weeks
in August, October, and November 2020 are shown in Fig. 2.

2.2. Mobility data

To examine connectivity between municipalities in Belgium, ag-
gregated data from mobile network activity was obtained as from 12
March 2020. For the purpose of this investigation, we use the data
from 29 June 2020 onwards. This provides data on the daily total
time customers registered with the telecom provider, while residing
in municipality 𝑗 and being active in municipality 𝑖 ≠ 𝑗. No activity
2

logged for 𝑗 to 𝑖 on a specific day means the two municipalities are
ot ‘connected’ on that day. Note that the data mainly reflect adults’
obility. Since most young children are accompanied by an adult, this
ata is implicitly taking into account some of the mobility of children.
et, the share of which is unknown.

Using the mobile network data, we calculated a daily 7-day moving
verage of the proportion of time spent in a municipality. This produces
matrix 𝑾 𝑡 for time 𝑡, of dimension 581 × 581, which is a non-

ymmetric matrix reflecting the commuting behavior of individuals.
igs. 3 and S1 show what the matrices look like for two particular
eeks. The 𝑦-axis in the plot reflects the municipality of origin (𝑗),
hile the 𝑥-axis corresponds to the destination municipality (𝑖).

.3. Spatial dynamic model

Let 𝑌𝑖,𝑡 be the number of confirmed COVID-19 cases in municipality 𝑖
on day 𝑡, which we model as a Poisson or negative binomial distributed
random variable with mean 𝜇𝑖,𝑡 (and overdispersion parameter 𝜓 , for
a negative binomial variable). Assuming that the current number of
new infections 𝑌𝑖,𝑡 depends on the (series of) past observations 𝑌𝑖,𝑡−𝑑 ,

= 1,… , 𝐷 with up to 𝐷 = 14 days being considered, our model is
ormulated as:

𝑌𝑖,𝑡|𝑌𝑡−1,… , 𝑌𝑡−𝑑 ] ∼ Poi(𝜇𝑖,𝑡)

r

𝑌𝑖,𝑡|𝑌𝑡−1,… , 𝑌𝑡−𝑑 ] ∼ NegBin(𝜇𝑖,𝑡, 𝜓),

ith 𝑌𝑡−𝑙 =
{

𝑌1,𝑡−𝑙 ,… , 𝑌𝑀,𝑡−𝑙
}

the set of confirmed cases at time 𝑡−𝑙. The
onditional variance for the negative binomial is given by 𝜇𝑖,𝑡(1+𝜇𝑖,𝑡𝜓)
ith an unknown overdispersion parameter 𝜓 > 0. The conditional
ean 𝜇𝑖𝑡 is modeled as in Held et al. (2005) as:

𝑖,𝑡 = 𝜖𝑖,𝑡 + 𝜆𝑖,𝑡
𝐷
∑

𝑑=1
𝑢𝑑𝑌𝑖,𝑡−𝑑 + 𝜙𝑖,𝑡

( 𝐷
∑

𝑑=1

∑

𝑗≠𝑖
𝑢𝑑𝑤

∗
𝑗,𝑖,𝑡−𝑑𝑌𝑗,𝑡−𝑑

)

, (1)

which is the sum of an endemic component 𝜖𝑖,𝑡, which captures in-
fections arising from sources other than past observed cases, a local
epidemic component 𝜆𝑖,𝑡, measuring the effect of within-municipality
transmission, and a global epidemic term 𝜙𝑖,𝑡 measuring the effect of
between-municipality transmission due to mobility. The three param-
eters 𝜖𝑖,𝑡, 𝜆𝑖,𝑡, and 𝜙𝑖,𝑡 are constrained to be non-negative and modeled
as a natural log-transformed linear combination of different covariates.

The first term, the endemic component 𝜖𝑖,𝑡, is modeled as

log(𝜖𝑖,𝑡) = 𝛼(𝜖) + 𝛽(𝜖)WE𝑡 + log
(

𝑁𝑖
)

, (2)

𝑁



Spatial and Spatio-temporal Epidemiology 45 (2023) 100568C. Ensoy-Musoro et al.
Fig. 2. Mean daily incidence per 100,000 individuals in Belgium for some selected weeks, for the 581 municipalities.
Fig. 3. Log-mean percentage time spent in a municipality for specific weeks based on a 7-day moving average. The 𝑦-axis represents the origin while the 𝑥-axis is the destination.
Different municipalities are grouped according to the 11 provinces in Belgium (An: Antwerp; BF: Brabant Flamand; Br: Brussels; BW: Brabant Wallon; EF: East Flanders; Ha:
Hainaut; Le: Liège; Lm: Limburg; Lu: Luxembourg; Na: Namur; WF: West Flanders).
where 𝛼(𝜖) is a constant baseline endemic coefficient and 𝛽(𝜖) is the
coefficient for the weekend effect, WE𝑡. The endemic term is weighed
by an offset, i.e., the population proportion 𝑁𝑖∕𝑁 of municipality 𝑖.

The second term, representing the local epidemic or within-
municipality component, 𝜆𝑖,𝑡, is modeled as

log(𝜆𝑖,𝑡) = 𝛼(𝜆)𝑖 +𝛽(𝜆)WE𝑡+𝛾 (𝜆) log(𝑁𝑖)+
∑

𝑘
𝛿(𝜆)𝑘 𝟏{𝑡 is under regulation 𝑘}(𝑡). (3)

Here, we assume either a constant baseline epidemic effect 𝛼(𝜆)0 or
a municipality-specific effect 𝛼(𝜆) ∼ N(𝜆 , 𝜏2), allowing some mu-
3

𝑖 0
nicipalities to be above or below the national average in terms of
the ongoing infection risk. It may capture such effects as population
density or socio-economic composition, that do not explicitly enter the
model’s covariate function. The population size was used as a covariate
along with two time-dependent covariates: the indicator for weekend
day and indicators for the testing regulations (𝟏{𝑡 is under regulation 𝑘}).
Testing regulation (regulation) came into the model as a covariate to
account for the variability in the number of recorded cases due to
different testing strategies that Belgium has implemented throughout
the pandemic.
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The third term represents the mobility component, 𝜙𝑖,𝑡, and is
odeled as

log(𝜙𝑖,𝑡) = 𝛼(𝜙)𝑖 + 𝛽(𝜙)WE𝑡 + 𝛾 (𝜙) log(𝑁𝑖) +
∑

𝑘
𝛿(𝜙)𝑘 𝟏{𝑡 is under regulation 𝑘}(𝑡).

(4)

Similar covariates to that of the second term are incorporated here.
The normalized Poisson weights 𝑢𝑑 in (1) represent the probability

for a serial interval of up to 𝐷 days, i.e., the average time in days
between symptom onset in an infectious individual and symptoms
emerging in a newly infected individual when both are in close contact.

The weights 𝑤∗
𝑗,𝑖,𝑡 describe the connective strength for all pairs of

municipalities. Note that we can distinguish between two types of
connectivity, related to the movement of a visitor and of someone
returning home. The visitor movement is given by the matrix 𝑽 𝑡 =

𝑡 with elements 𝑤𝑗,𝑖,𝑡 described by the mobility data, taking the
origin municipality as 𝑗 and the destination municipality as 𝑖, while
the movement of someone returning home is given by the transpose of
this matrix: 𝑹𝑡 = 𝑾 𝑇

𝑡 , thereby assuming that a customer spotted in the
destination municipality will travel back to the origin municipality at
the end of the day. For 𝑖 = 𝑗, 𝑤𝑗,𝑖,𝑡 = 0. Based on this, the following
choices are made for the weights 𝑤∗

𝑗,𝑖,𝑡:

• Time varying connectivity. Using the visitor mobility 𝑊 ∗
𝑡 = 𝑉𝑡

or the sum of the visitor and return mobility 𝑊 ∗
𝑡 = 𝑉𝑡 +𝑅𝑡. While

the first is an asymmetric connectivity matrix, the second version
is symmetric.

• Fixed connectivity. A constant weight by taking the mean across
the investigated time points. Both the visitor mobility and visitor
and return mobility as above are investigated.

• Smoothed connectivity. A daily, 7-day average weight:

𝑤∗
𝑗,𝑖,𝑡 =

1
7

6
∑

𝑑=0
𝑤𝑗,𝑖,𝑡−𝑑

based on either the visitor mobility matrix or the visitor and
return mobility. This matrix smooths out the mobility trend across
a 7-day period.

• Transformed connectivity. A transformation of the weights is
also investigated assuming a power transformations of the weight,
𝑤∗
𝑗,𝑖,𝑡 = 𝑤𝑝𝑗,𝑖,𝑡−𝑑 , with 𝑝 ∈ (0, 3]. A fine grid of powers 𝑝 with a bin

width of 0.05 was used to select the best transformation.

Our approach to construct the mobility weight is novel because
t can reflect the change in connectivity between municipalities over
ime. In addition, while the traditional approach bases the weights on
he distance (or order) amongst areas, we define weights based on the
bserved knowledge of actual connectivity amongst regions.

.4. Inference

Models were selected based on the lowest Akaike’s Information
riteria (AIC) (if random effects were not present) or the lowest log-
rithmic score (if random-effects are present). The logarithmic score
easures the predictive performance of our model and is calculated

s minus the logarithm of the predictive distribution evaluated at the
bserved count (Czado et al., 2009).

Parameter inference is performed using maximum likelihood esti-
ation in the R package surveillance (version 1.18, Meyer et al.,
017; Bracher and Held, 2020) and R package gnm (version 1.1-
, Turner and Firth, 2020) under R version 4.0.2. This allows us to
alculate the contribution to the incidence in each region owing to the
ntrinsic, within-region and between-region autoregressive terms.

Model predictions were carried out by plugging parameter estimates
nto the fitted model. A one-day-ahead prediction and a two-week
orecast was investigated to assess model fit and the impact of mobility.
4

ynamic stochastic simulation was done wherein we used the one-day
ahead forecast (𝜇𝑖,𝑡+1) to sample from the Negative Binomial distribu-
tion and use this sampled count as input for forecasting the next time
point (𝜇𝑖,𝑡+2).

3. Results

3.1. Model selection of epidemic model

A comparison of different lag values (𝑑 = 1,… , 𝐷 with up to 𝐷 = 14
days) and different formulations of the mobility weight indicates a
lag of 7 days to fit best, along with using a fixed mobility weight,
instead of a 7-day moving average mobility weight. To further improve
model fit, a power transformation was applied to the weight matrix.
Fig. 4 shows that the 0.9 power-transformed non-symmetric visitor
weight matrix fits the data best. Using the symmetric 𝑉 + 𝑅 matrix
did not improve model fit. Note that, while the model can account
for time-varying connectivity amongst regions, the simpler constant
connectivity matrix is better in this analysis. This is in line with the
limited impact of restriction measures on mobility during the study
period (Fig. 3), while much stronger restriction measures in April 2020
reduced the connectivity of more distant regions much more (Figure
S1). In addition, this indicates that small day to day fluctuations in
mobility are not of importance for the spread of the epidemic, but
rather the overall connectivity amongst regions.

Incorporation of random effects in the three components was also
investigated to capture municipality-specific differences in transmission
rate. Table S2 shows estimates of the best model from above (Model 1),
the best model with a random within-municipality effect (Model 2), and
the best model with a random between-municipality effect (Model 3).
The model with random endemic intercept was also fitted but did not
improve the fit and a model with random effects in the 3 components
simultaneously resulted in convergence and estimation issues.

Given that the best model (Model 3) consisted of a random between-
municipality effect signals the importance of the municipality-specific
propensity for disease transmission from importation of new cases.
Supplementary Figure S2 maps out the random effects estimates. While
it is clear that there is heterogeneity amongst areas, as some areas
have higher propensity than others, there is no clear spatial trend ob-
served. Indeed, transmission from imported cases is a complex interplay
between different factors that we have not studied in this analysis.

3.2. Component contributions and model fit

The choropleth maps (to be interpreted together) in Fig. 5 show
the contribution to disease incidence of the within- and between-
municipality autoregressive parts of the model (the endemic compo-
nent is not shown because of its negligible contribution). The within-
municipality map identifies areas for which the epidemic evolution was
primarily driven by a local epidemic process. The between-municipality
map indicates regions in which incidence is primarily driven by spread
of cases via mobility. This pertains to the susceptibility of each mu-
nicipality to transmission via importation of new cases. From these
maps, it can be observed that in the southern part of the country
(Walloon Region), the within-municipality spread is somewhat more
important that the between-municipality spread; while in northern part
of the country (Flemish Region) the importance of the two varies a lot
from municipality to municipality. This can be due to the fact that the
Walloon Region is less densely populated as compared to the Flemish
Region and to different contact patterns among their inhabitants.

Figs. S3 and S4 show how the within- and between- contribu-
tions change over time. It shows the important role of the between-
municipality transmission in the summer period and during the early
stage leading up to the second wave (from July until mid October),
while the within-municipality transmission was more important from
mid-October until end of November (which is the period of lockdown).
Time-series plots of the three model components are shown in Fig. 6
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Fig. 4. Model selection: Comparison of different power transformations for the mobility weight matrix. 𝑉 refers to visitor matrix, 𝑉 +𝑅 refers to the symmetric visitor + return
matrix.
Fig. 5. Contribution of the within- and between-municipality infection rates as a proportion of overall incidence.
for some selected municipalities. It shows that the importance of the
epidemic spread between municipalities as compared to within munic-
ipalities is more important in large cities, while the epidemic spread
within the municipality is more important in small municipalities.

Additionally, one-step ahead predictions (retrospective) and 2-week
forecasts for selected municipalities from the best model are made
to investigate the predictive performance of the model. These are
presented in Figure S5, and plots show good model fit.

3.3. Effect of mobility

Finally, to better understand the impact of mobility amongst mu-
nicipalities on the epidemic spread, different scenario analyses were
investigated. Three scenarios were investigated via stochastic simula-
tion as from October 19: (1) assuming the mobility pattern as observed
in October–December, (2) assuming a low mobility pattern (similar
as the mobility pattern in April during the first, and most strict,
lockdown (see Figure S1), and (3) no mobility between municipalities,
which means no connectivity at all between different municipalities.
Confirmed cases up to 18 October were used as initial values for the
simulation. Fig. 7 shows the results of the scenario analyses. The actual
observed mobility describes the time evolution of the epidemic well,
with the number of confirmed cases raising to around 500K (Figure S6).
Results of the second scenario, assuming a reduction of mobility similar
as to how it was during the lockdown period in April 2020, could have
greatly reduced the number of new infections, with a stabilization at
around 300K confirmed cases. The third scenario, assuming no mobility
among regions is an unrealistic scenario, but helps understanding the
importance of mobility in sustaining the pandemic, as this scenario
5

shows that without between-municipality mobility the epidemic spread
would quickly fade out.

Similar conclusions can be drawn based on the simulation results at
municipality level, but in addition show that the impact of reducing
the mobility would be largest for the more populated areas. Figure
S7 shows the simulation results for some selected (small, medium and
large) municipalities. In line with previous results, it is observed that
a stricter lockdown, reducing the mobility, would have largest impact
in the more populated areas such as in the cities of Antwerp, Brussels,
Charlerloi and Liège.

4. Discussion

Using telecom-operator-based mobility data, ranging over 29 June
to 13 December 2020 and a spatio-temporal dynamic model, the im-
pact of mobility on the evolution of the epidemic at the level of
the 581 Belgian municipalities is investigated. The model allows for
separating the municipality-level case number evolution into relevant
components: (a) an endemic component, (b) a within-municipality local
epidemic component, and (c) a between-municipality mobility driven
component.

By decomposing incidence particularly into the within- and
between-municipality components, we show that the second-wave of
the COVID-19 epidemic in Belgium was highly driven by between-
municipality transmission. This was seen as one of the initial driving
forces of the epidemic, apart from other factors such as higher exposure
due to contact behavior, with some municipalities showing more sus-
ceptibility to this mobility-induced transmission. It is noteworthy that
this global epidemic component is relatively more important in larger
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Fig. 6. Contribution of Endemic, Within- and Between-Municipality infection rates for randomly selected small (<10k), medium (>25k and <100k), and large (>100k) municipalities
in terms of population size.
municipalities (e.g., cities), while the local component is more relevant
in smaller (rural) municipalities.

The use of mobility data in spatial models to describe the con-
nectivity amongst regions is gaining more and more attention in the
literature. It should be noted that there are different connectivity
matrices that can be defined based on mobile phone data, conditional
on availability of the data. For example, Slater et al. (2022) define
6

the spatial dependence through both physical proximity and mobility
effect (Slater et al., 2022), while we define the connectivity based on
the actual proportion of time spent in each municipality. A comparison
of different definitions would be interesting for future research to give
some guidance on best practices.

Incorporation of the mobility data in the spatio-temporal epidemic
model indicated a fixed mobility weight to fit better than a time-varying
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Fig. 7. Comparison of stochastic simulation predictions for the total number of infections using the actual observed mobility (Scenario 1), low mobility (Scenario 2), and assuming
no mobility (Scenario 3).
weight. This points to the possibility that the reduction in mobility
during the lockdown period was not significant enough to affect the
transmission dynamics. Stochastic simulation however revealed that if
the reduction of mobility during mid-October until December would
have been similar to that during the lockdown of April/May, then a
significant reduction in the number of new infections would have been
observed.

This is our first attempt to encompass mobility data to construct
spatial dependence in modeling epidemic spread. Our mobility data
came from one telecom provider. Even though it holds the third largest
market share in Belgium, its coverage is better in the Flemish Region
while more variation is observed in the Walloon Region. In future
projects, we will investigate whether additional data is available from
multiple providers to assess the stability of mobility matrices.

We implemented the spatio-temporal epidemic model under the
hhh4 framework supported in the package surveillance, where in-
ference is made via maximum likelihood estimation. It is also straight-
forward to fit such model with Hierarchical Bayesian Modeling, as
described in Wakefield et al. (2019). Based on the results from this
study and available literature, we can set up informative priors and
proceed in the Bayesian framework for future work.

The hhh4 model is also widely used for COVID-19 modeling. Exam-
ples can be found in Celani and Giudici (2022), Giuliani et al. (2020),
Grimée et al. (2022) and Ssentongo et al. (2021). We illustrated our ap-
proach on the period from 29 June 2020 to 13 December 2020, which
can easily be extended to longer periods and with the inclusion of other
covariates, e.g. vaccine coverage. Testing capacity before this period
was limited, and hence the observed epidemic curve did not reflect the
real situation. Nevertheless, it is also difficult to completely rule out
or precisely assess the impact of under-reporting within the considered
time frame, and this is a limitation of our study. For future research,
it would be interesting to study the impact of underreporting on the
different components in the model, especially when the underreporting
is time-varying (Bracher and Held, 2021).

The combination of mobility and social contact interventions im-
plemented in Belgium clearly had an effect on the COVID-19 transmis-
sion dynamics. Further work is still required not only to completely
disentangle the effect of different types of contacts in mobility and
transmission pattern, but also to find the optimal balance between the
negative effect of various interventions and the expected public health
gain. Next to the impact of within-country mobility on the spread of
COVID-19, investigation of the impact on incoming travel from other
countries is still important.
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