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SUMMARY

The use of social contact rates is widespread in infectious disease modeling since it has been
shown that they are key driving forces of important epidemiological parameters. Quantification of
contact patterns is crucial to parameterize dynamic transmission models and to provide insights
on the (basic) reproduction number. Information on social interactions can be obtained from
population-based contact surveys, such as the European Commission project POLYMOD. Esti-
mation of age-specific contact rates from these studies is often done using a piecewise constant
approach or bivariate smoothing techniques. For the latter, typically, smoothness is introduced in
the dimensions of the respondent’s and contact’s age (i.e., the rows and columns of the social con-
tact matrix). We propose a smoothing constrained approach—taking into account the reciprocal
nature of contacts—introducing smoothness over the diagonal (including all subdiagonals) of the
social contact matrix. This modeling approach is justified assuming that when people age their con-
tact behavior changes smoothly. We call this smoothing from a cohort perspective. Two approaches
that allow for smoothing over social contact matrix diagonals are proposed, namely (i) reordering
of the diagonal components of the contact matrix and (ii) reordering of the penalty matrix ensuring
smoothness over the contact matrix diagonals. Parameter estimation is done in the likelihood frame-
work by using constrained penalized iterative reweighted least squares. A simulation study underlines
the benefits of cohort-based smoothing. Finally, the proposed methods are illustrated on the Belgian
POLYMOD data of 2006. Code to reproduce the results of the article can be downloaded on this
GitHub repository https://github.com/oswaldogressani/Cohort_smoothing.
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1. Introduction

Understanding the spread of infectious diseases in an epidemic context is a challenging task for
mathematical modelers. It is especially made difficult by the complexities and intricacies of demog-
raphy dynamics and rich social contact networks. Social contact mixing patterns play a key role in
assessing disease transmission and are known to be crucial determinants of important epidemiolog-
ical parameters such as the basic reproduction number and the force of infection (see e.g., Vynnycky
and White, 2010; Hens and others, 2009). One approach to account for mixing patterns is by the
use of the so-called “Who Acquires Infection From Whom” (WAIFW) matrix and the use of sero-
logical data to estimate the WAIFW parameters (Anderson and May, 1991; Greenhalgh and Dietz,
1994; Farrington and others, 2001; Van Effelterre and others, 2009). Another approach proposed
by Farrington and Whitaker (2005) is to model contact rates as a continuous surface and estimate
parameters from serologic survey data. The main limitations of both approaches are that they rely on
structural assumptions on the WAIFW matrix and on an arbitrary choice of the parametric model
used for the continuous contact surface.

Alternatively, over the last two decades or so, several studies have reported on ways of collecting
data on social mixing behavior relevant to the spread of close contact infections directly from indi-
viduals through self-reported number of contacts (Wallinga and others, 2006; Beutels and others,
2006; Edmunds and others, 1997, 2006; Mikolajczyk and others, 2007). The POLYMOD initiative
can arguably be counted among the most important studies in infectious disease epidemiology in
Europe, providing large and representative population-based surveys on social contacts (Mossong
and others, 2008).

The estimation of smooth age-specific contact rates from the POLYMOD project data is typi-
cally performed by applying a negative binomial model on the aggregated number of contacts. To
ensure enough flexibility, a bivariate frequentist smoothing method using a tensor product spline is
implemented (Mossong and others, 2008; Hens and others, 2009; Goeyvaerts and others, 2010). Esti-
mating social contact rates using the Bayesian paradigm, by means of Gaussian Markov Random
Fields using Integrated Nested Laplace Approximations (Rue and others, 2009) as the main tool for
inference, has been done as well (van de Kassteele and others, 2017).

The bivariate smoothing approach usually applies smoothing terms in the direction of the respon-
dent’s and contact’s ages of the social contact matrix. However, people age over time and their
contact behavior varies smoothly when aging, and applying smoothing terms on the diagonal com-
ponents (including all subdiagonals) of the social contact matrix would reflect this feature (e.g., the
number of contacts between individuals of age i and j will be highly related to the number of con-
tacts between individuals 1 year older of age i + 1 and j + 1). Note that, in addition, often a steady
state (time equilibrium) assumption is made when using social contact data to inform mathemat-
ical modeling of infectious diseases meaning that the number of people in different disease states
and thus also the rate at which people move states do not depend on time but only on age. This
implies that cohorts, i.e., groups of people born in the same year, change disease states with age,
and thus leading to a cohort interpretation of the diagonals of the social contact matrix. We opt
to smooth from a cohort perspective and propose a new smoothing constrained modeling approach
where contact rates are assumed to be smooth over the diagonals (and all subdiagonals) of the social
contact matrix. Under the likelihood framework, diagonal smoothing of social contact matrices is
achieved through two alternative approaches: (i) reordering of the diagonal components yielding a
rectangular grid and (ii) reordering of the penalty matrix to translate a penalization scheme over the
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diagonal components. Approach (i) builds further upon work published by two of the coauthors in
a proceedings paper (Camarda and others, 2013).

The article is organized as follows. Section 2 aims at presenting three competing approaches
to smoothly estimate social contact rates. Section 3 investigates the statistical performance of the
proposed approaches through a simulation study, and Section 4 illustrates the methodology on the
Belgian POLYMOD data. Finally, Section 5 concludes with a discussion and prospects for future
research.

2. Smoothing social contact data

In this section, we present the general modeling framework and three competing Smoothing
Constrained Approaches (SCAs) to infer social contact rates. First, we describe the classic approach
where smoothing is performed in the dimensions of the respondent’s and contact’s ages. The latter
baseline model will be referred to as M0. Second, we present the new competing models, namely
the SCA where contact rates are assumed smooth from a cohort perspective. Two approaches are
investigated both in terms of performance and computational speed, namely model M1, where a
reordering of the diagonal components is considered to reproduce a rectangular contact matrix;
and model M2, where a reordering of the components of the penalty matrix yields a penalization
scheme targeting the diagonal components of the social contact matrix.

2.1. Modeling framework

Let Y = (yij) be a square (m×m) matrix, where the ijth entry is the total number of contacts made by
the respondents of age i − 1 with individuals of age j − 1, with indices i = 1, …, m and j = 1, …, m.
This information can be extracted from the self-reported contact diaries of the participants for the
Belgian POLYMOD data. Note that for children aged 0–8 years parental proxy reporting was used
whereas children aged 9–17 reported contacts themselves as was the case for 18+. For more details,
we refer to Supplementary Table 1 in Mossong and others (2008). Furthermore, let the m × 1 vector
r = (ri) contain the total number of respondents of age i − 1. Define the m × m matrix E = r1m,
where 1m is a 1 × m vector of ones. Let the m × 1 vector p = (pi) denote the population size of
individuals of age i − 1 and define the m × m matrix P = p1m. Supplementary material available at
Biostatistics online provides examples of how to construct these vectors and matrices for the specific
case m = 4.

The expected number of contacts made by participants of age i − 1 with contacts of age
j − 1 equals the number of respondents of age i − 1 (ri) multiplied with the average number of
contacts an individual of age i − 1 makes with an individual of age j − 1 (γij), thus E(yij) =
μij = riγij. The so-called social contact matrix � is defined as the m × m matrix with elements γij

(see Figure 1A).
Finally, define the m2 × 1 vectors y, e, and γ by arranging Y, E, and � by row order into a vector,

respectively. Note that the expected number of contacts can be written as E(y) = μ = e � γ , where
� denotes component-wise multiplication (also known as Hadamard product).

The interest lies in estimating the unknown parameters γij from data y. Because of the overdis-
persion in the reported contact counts, we assume that the observed contacts are realizations from
a negative binomial distribution, i.e., yij ∼ NegBin(μij, αij). This implies that E(Yij) = μij and
Var(Yij) = μij +μ2

ijα
−1
ij . We consider two alternative parameterizations. First, assuming αij = μijφ

−1,
where φ > 0 denotes the dispersion parameter, implies that the variance is given by Var(Yij) =
μij(1 +φ). In the limiting case where φ tends to zero, the mean and variance will be equal. Note that
the variance term resembles the error term of an overdispersed Poisson distribution, also known
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A

B

Fig. 1. Schematic representation of the original data structure of � over ages of respondents and ages of con-
tacts (A) and the restructured matrix �̆ over cohorts of the respondents and age differences of the contacted
persons (B). Cells with nuisance parameters in �̆ are depicted with gray squares.

as quasi-Poisson (Nelder and Lee, 1992). Second, the alternative parameterization with αij = φ−1,
implying that Var(Yij) = μij(1+φμij) was also explored. The first and second parameterizations are
further referred to as NB1 and NB2, respectively.

For modeling purposes, a log-link function is specified so that log(μ) = log(e)+log(γ ) = log(e)+
η, where log(γ ) = η. Let H be the m × m matrix with ijth element ηij (the log contact rates). The
parameters ηij are penalized (Sections 2.2, 2.3, and 2.4) such that a smooth contact rate surface is
obtained. Further, the proposed modeling approach ensures that estimated social contact rates are
reciprocal. Reciprocity of contacts means that the total number of contacts on the population level
from age i to age j must equal the total number of contacts from age j to age i.

Reciprocity of contacts can be expressed mathematically as γijpi = γjipj. This can be written as
the difference log(γij) − log(γji) = log(pj) − log(pi) and thus:

ηij − ηji = log(pj) − log(pi). (2.1)

In matrix form:

Lη = ν, (2.2)
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where L is a m(m−1)

2 × m2 allocation matrix with entries +1 and −1 to suit the left-hand side of (2.1)
and vector ν is given by:

νT =(
log (p2) − log (p1), log (p3) − log (p1), …, log (pm) − log (p1),

log (p3) − log (p2), log (p4) − log (p2), …, log (pm) − log (p2),

, …,

log(pm) − log(pm−1)
)
.

In case the dispersion parameter φ is fixed, estimation of the parameters η that satisfy the
reciprocal constraints is performed through constrained penalized iterative reweighted least squares
(C-PIRLS) (Nelder and Wedderburn, 1972; McCullagh and Nelder, 1989; Eilers and Marx, 1996;
Wood, 2006). Given current estimates η̂

[k] at iteration k, parameter estimates η̂
[k+1] at iteration k + 1

are obtained by solving the set of linear equations:(
W[k] + P∗ LT

L 0

) (
η̂

[k+1]

ζ [k+1]

)
=

(
W[k]z[k]

ν

)
. (2.3)

In (2.3), ζ [k+1] is a m(m−1)

2 × 1 vector of Lagrange multipliers, W[k] is a m2 × m2 diagonal matrix with
entries W [k]

ll = μ
[k]
l /(1 + φ) (for NB1) and W [k]

ll = μ
[k]
l /(1 + φμ

[k]
l ) (for NB2), P∗ will be introduced

in later sections, and z[k] is a m2 × 1 vector of so-called pseudodata given by:

z[k]
l = η

[k]
l +

(
yl

μ
[k]
l

− 1

)
. (2.4)

The parameter estimates γ̂
[k+1] are obtained by exponentiation (i.e., γ̂

[k+1] = exp
(
η̂

[k+1])).
Rather than fixing φ at a certain value, the interest is in a data-driven estimate of φ as well. For

this, a two-stage iteration scheme is undertaken, namely by iterating and cycling between holding φ

fixed and holding η fixed at its current estimate. More specifically, by holding φ fixed at the current
estimate φ̂[k], estimates η̂

[k+1] are obtained through C-PIRLS. Next, η is fixed at η̂
[k+1] and an updated

estimate φ̂[k+1] is obtained using the moment estimator (Breslow, 1984). This process is iterated until
convergence. Moment estimation of φ is based on the Pearson’s chi-squared statistic (Breslow, 1984),
namely:

m∑
i,j=1

(
yij − μ

[k]
ij

)2

(1 + φ)μ
[k]
ij

= m2 − ÊD, (2.5)

where ÊD is the trace of the matrix given in (2.10). This leads to a straightforward estimate of φ̂[k]:

φ̂[k] = 1

m2 − ÊD

m∑
i,j=1

(
yij − μ

[k]
ij

)2

μ
[k]
ij

− 1. (2.6)

For NB2, the denominator of the left-hand side of (2.5) is (1 + φμ
[k]
ij )μ

[k]
ij . The updated estimate of

φ̂[k] can be obtained by a root-finding algorithm.
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The above iterative process is repeated until convergence, namely until max | η̂
[k+1] − η̂

[k] |< 10−4

and | φ̂[k+1] − φ̂[k] |< 10−4.

2.2. Absence of smoothing over cohorts (M0)

Smoothing of the contact rates is performed in the dimensions of the respondent’s and contact’s
ages (vertical and horizontal dimension, respectively, of the matrix in Figure 1A). For this, a second-
order difference penalty (Eilers and Marx, 1996) is assumed between adjacent log contact rates ηij.
The penalty in the horizontal dimension is therefore given by:

m∑
j=3

(ηi,j − 2ηi,j−1 + ηi,j−2)
2. (2.7)

This implies that a log contact rate is penalized by its two preceding (ηi,j−2, ηi,j−1) and succeeding
(ηi,j+1, ηi,j+2) log contact rates. The penalty in the vertical dimension is created in a similar manner.

Using this second-order penalty (2.7) for the horizontal and vertical direction, the penalty term
P∗ in (2.3) is a m2 × m2 matrix given by (see Marx and Eilers, 2005):

P∗ = λ1Im ⊗ (DT
h Dh) + λ2(DT

v Dv) ⊗ Im, (2.8)

where ⊗ denotes the Kronecker product and λ1 and λ2 are smoothing parameters for, respectively, the
horizontal and vertical dimension in Figure 1A. The matrices Dh and Dv are second-order difference
matrices, and I is the identity matrix.

The optimal smoothing parameters λ1 and λ2 are chosen based on minimization of the Akaike
Information Criterion (AIC) (Akaike, 1973) via grid search:

AIC = −2 log(L̂) + 2(ÊD + 1), (2.9)

where L̂ is the maximized value of the likelihood function and the effective degrees of freedom, ÊD,
is the trace of the hat matrix given by (see Wood, 2006):

A = W1/2 (W + P∗)−1 W1/2. (2.10)

Note that adding 1 to ÊD accounts for the estimation of the overdispersion parameter φ.
In addition, the Bayesian Information Criterion (BIC) (Schwarz, 1978) is calculated, namely:

BIC = −2 log(L̂) + log(m2)(ÊD + 1) . (2.11)

Note that for the AIC the effective degrees of freedom are less penalized than in BIC. Therefore,
a less smooth model (higher degrees of freedom) is preferred for AIC, whereas the BIC selects a
smoother surface (lower degrees of freedom).

2.3. Cohort smoothing by reordering the contact matrix (M1)

We now describe a new approach where contact rates are smoothed over the diagonal components
(and all subdiagonals) and thus smoothing from a cohort perspective. For example, assuming again
a second-order difference penalty implies that the contact rate γii is penalized by the two preceding
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contact rates γi−2,i−2 and γi−1,i−1, and the two succeeding contact rates γi+1,i+1 and γi+2,i+2. Note that
in approach M0, the contact rate γii is not penalized by other values on the diagonal.

The smoothing over the dimension of the contact’s age is kept, since the distribution of the age of
(grand)parents can in general be assumed smooth (e.g., children will meet their parents and grand-
parents who are, e.g., ± 30 and ±60 years older). Thus, the contact rate γij is penalized by the contact
rates γi,j−2, γi,j−1, γi,j+1, and γi,j+2. We describe how this can be achieved by restructuring the data and
contact matrix over the cohorts and the contacts’ ages.

For this purpose, the contact matrix � is restructured in such a way that each diagonal (the main
diagonal and all subdiagonals) is present as a row in the restructured matrix. A graphical represen-
tation of this restructured matrix is given in Figure 1B. The restructured matrix �̆ has dimension
(2m − 1) × m and is constructed by entering row i of � in column i of �̆ at positions m − i + 1 to
2m − i. In that manner, all subsequent (sub)diagonal elements are present in the same row.

By construction, matrix �̆ contains nuisance contact rate parameters that are not of interest (gray
squares in Figure 1B). A weight matrix will be included in the estimation step (see below), to avoid
that these nuisance parameters influence parameter estimation. We note that the nuisance parameters
will also not be included in the calculation of the effective degrees of freedom.

Restructured matrices Y̆ and Ĕ, are created from Y and E similarly as �̆. Missing cell entries are
present for Y̆ and Ĕ at the same cells where the nuisance parameters are present for �̆. To handle
these missing entries, we impute arbitrary values (e.g., 9999) in Y̆ and Ĕ and construct a (2m−1)×m
weight matrix W̆, where the ijth entry of W̆ equals zero if the ijth entry in �̆ is a nuisance parameter
and equals one otherwise.

For parameter estimation, define y̆, ĕ, w̆, and γ̆ be the (2m2 −m)×1 vectors obtained by arranging
the matrices Y̆, Ĕ, W̆, and �̆ by column order into a vector. We have that E(y̆) = μ̆ = ĕ � γ̆ � w̆.
The reciprocity assumption of the contacts, can again be written in matrix form as Lη̆ = ν, where L
is an (m(m−1)

2 ) × (2m2 − m) allocation matrix to accommodate the reciprocity constraints.
Estimation of the smoothed parameters η̆ is again performed through C-PIRLS. Updated param-

eter estimates are obtained by solving the set of linear equations given in (2.3), where η is replaced
by η̆. Further, we now have that W[k] is an (2m2 − m) × (2m2 − m) diagonal matrix with entries
W [k]

ll = μ̆
[k]
l /(1 + φ) (for NB1) and W [k]

ll = μ̆
[k]
l /(1 + φμ̆

[k]
l ) (for NB2) and z[k] is an (2m2 − m) × 1

vector of pseudovalues given by:

z[k]
l = η̆

[k]
l +

(
y̆l

μ̆
[k]
l

− 1

)
. (2.12)

Although 2m2 − m parameters η̆ are estimated in this case, the interest is only in the m2 parameters
of η̆ corresponding to the non-nuisance parameters.

Again, a second-order difference penalty is assumed between adjacent log contact rates in the
horizontal and vertical direction of Figure 1B. Therefore, the (2m2 − m)× (2m2 − m) penalty matrix
P∗ is:

P∗ = λ1Im ⊗ (DT
v Dv) + λ2(DT

h Dh) ⊗ I2m−1, (2.13)

where λ1 and λ2 are smoothing parameters for, respectively, the vertical and horizontal dimension
in, i.e., age and cohort of the original data structure.

Due to the inclusion of the weight matrix W̆ the nuisance parameters do not contribute in the
calculation of the effective degrees of freedom (i.e., all nuisance parameters contribute a value of 0
in effective degrees of freedom).
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2.4. Cohort smoothing by reordering the penalty matrix (M2)

The second approach to smooth from a cohort perspective is to rearrange the penalty matrix in
such a manner that smoothing is performed on the diagonal elements (and all subdiagonals) of the
contact matrix. The contact matrix itself is not rearranged and thus has the form of the Figure 1A.

The methodology is similar as described in Section 2.1. The m2 × m2 penalty matrix P∗ is given
by:

P∗ = λ1Im ⊗ (DT
h Dh) + λ2P∗

d , (2.14)

where λ1 and λ2 are smoothing parameters for, respectively, the horizontal (smoothing in the dimen-
sion of the contact’s ages) and the diagonal dimension in Figure 1A. The m2 × m2 matrix P∗

d is
responsible for the penalization of the contact rates in the diagonal (and subdiagonal) direction.
Thus, similar as in Section 2.3, the contact rate γii is penalized by the two preceding contact rates
γi−2,i−2 and γi−1,i−1, and the two succeeding contact rates γi+1,i+1 and γi+2,i+2.

The penalty matrix P∗
d is less trivial to construct and has no easy mathematical formulation. An

algorithmic approach is needed for the construction of P∗
d . For example, in the specific case where

� is a 4 × 4 matrix (i.e., γ = {γ11, γ12, γ13, γ14, γ21, …, γ44}), the penalty matrix P∗
d is a 16 × 16 matrix

(see Section A of the supplementary material available at Biostatistics online).
A major advantage of using the penalty matrix P∗

d to achieve smoothing from a cohort perspective
is the absence of nuisance parameters in the matrix � (cf. the approach in the previous section using
�̆). This is a non-negligible computational gain, since only m2 parameters in � need to be estimated,
whereas the M1 approach requires estimation of 2m2 − m parameters in �̆ (and thus including
m(m − 1) nuisance parameters).

2.5. Kink on the main diagonal of the social contact matrix

The use of smoothing approaches for estimating social contact rates can lead to estimates that are
oversmoothed for individuals of the same age, meaning that the estimated contact rate is smaller than
the true one in the population. For example, students make an above average number of contacts
with individuals of their own age (e.g., in school, sport clubs, etc.). Smoothing approaches thus,
potentially, lead to an underestimation of the social contact rates on the main diagonal of the contact
matrix, especially for children and young adults. To take this into account, we introduce the use of a
so-called kink on the main diagonal of the social contact matrix for M1 and M2. The kink allows for
a sudden increase (or decrease) of the estimated social contact rates for children and young adults
of the same age.

The kink is introduced through a small adjustment in the penalty matrices (2.13) and (2.14). More
specifically, in the dimension of the contact’s age, the social contact rates that belong to the main
diagonal, i.e., ηii and γii, are not penalized. In (2.13), this is achieved by changing the (2m − 3) ×
(2m − 1) matrix Dv as follows:
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From the above matrix D∗
v , it is clear that the social contact rates that belong to the main diagonal,

namely, ηii and γii, are not penalized since column m only has zero values. The penalty matrix in (2.13)
is now reformulated as follows:

P∗ = λ1

(
I(1)

m ⊗ (D∗T
v D∗

v) + I(2)
m ⊗ (DT

v Dv)
) + λ2(DT

h Dh) ⊗ I2m−1, (2.15)

where I(1)
m and I(2)

m are diagonal indicator matrices given by:

I(1)
m = { 1, …, 1︸ ︷︷ ︸

× max.kink.age

, 0, …, 0︸ ︷︷ ︸
× m-max.kink.age

} and

I(2)
m = { 0, …, 0︸ ︷︷ ︸

× max.kink.age

, 1, …, 1︸ ︷︷ ︸
× m-max.kink.age

},

where max.kink.age indicates the maximum age at which a kink on the main diagonal is possible. In
penalty matrix (2.14), a similar adjustment is applied to the matrix Dh.

Here, we calibrate max.kink.age = 31 (i.e., {0, …, 30} years). A sensitivity analysis with higher
values for max.kink.age yielded quantitatively similar results.

It is worth noting that social contact rates on the main diagonal that are adjusted by the kink
are still penalized in the diagonal dimension and thus smooth contact rates are obtained on the
diagonals of the contact matrix. Models M1 and M2 offer a mathematical convenient way to allow
for this kink and still allow for parameter penalization over the main diagonal. This is, by design, not
achievable with model M0. The kink as defined above, acts through an adjustment of the penalty
matrix such that main diagonal parameters are only penalized in the diagonal dimension, and not
penalized in the horizontal and vertical directions. Such a penalization scheme is incompatible with
M0 as it would lead to main diagonal parameters that are not penalized at all.

Finally, we note that the introduction of this kink in M1 and M2 leads to a smoothed contact
surface that is nondifferentiable on the main diagonal in the dimension of the contact’s age.

2.6. Quantifying the uncertainty of estimates

In order to quantify the uncertainty of the estimate η̂, we need to compute its associated variance–
covariance matrix. For this purpose, we follow Wood (2006) and use a Bayesian approach to
determine the posterior variance–covariance matrix by:

Vη = (W + P∗)−1 . (2.16)

Moreover, as justified by large sample results, the corresponding posterior distribution is taken to
be multivariate normal:

η ∼ N
(
η̂, Vη

)
. (2.17)

The above (approximate) posterior distribution can be used to calculate confidence intervals for
parameters ηij or for nonlinear functions of these parameters (such as γij). An estimate of Vη

can be obtained by plugging in W at convergence together with the estimated optimal smoothing
parameters λ̂1 and λ̂2 in P∗.

The result in (2.17) can be used to generate social contact matrices by sampling from the obtained
multivariate Gaussian distribution. This can be useful to acknowledge the variability originating
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from social contact data in the estimation of epidemiological parameters and/or health economic
evaluations (Bilcke and others, 2011). Further computational and algorithmic considerations related
to C-PIRLS are given in Section B of the supplementary material available at Biostatistics online.

3. Simulation study

A comparison of the methods introduced in Section 2 is implemented via a simulation study. We
investigate both a scenario in which no kink is needed on the main diagonal, and a scenario in which
a kink is specified. In the simulation study, the NB1 distribution will be considered.

3.1. Simulation setup

Our data-generating process is based on a so-called true social contact matrix, denoted by �∗, from
which data are simulated. To obtain such a matrix, a nonparametric regression is applied to the
Belgian social contact data. More specifically, the observed contacts rates (see Figure 2B), yij/ri

are smoothed using local linear regression. Using a local linear regression approach, there is no
guarantee that K∗ ≡ �∗ �P is symmetric. Therefore, we derive a symmetric matrix from K∗, denoted

by K̃∗, computed as
(

K̃∗
)

ij
=

(
K̃∗

)
ji

= (K∗)ij+(K∗)ji
2 . The true contact surface, �̃

∗
that is used for

data simulation is obtained by �̃∗
ij = K̃∗

ij/Pij. Finally, we denote the log-transformed matrix by H∗
ij =

log
(
�̃∗

ij

)
.

In Figure 3, the true social contact matrices used to generate the data for the simulation study
�̃

∗
and H∗ are shown. To account for a kink in the simulation study, we proceed as follows. Let

�̃
†

denote the true social contact matrix with a kink on the main diagonal. Matrix �̃
†

is similar as
matrix �̃

∗
, with the exception that the values of �̃

†
ii, for i = 1, …, 24, are artificially increased in the

following manner:

�̃
†
ii =

⎧⎪⎨⎪⎩
�̃∗

ii

(
1 + 1

11 (i − 1)
)

i ∈ {1, …, 12},
�̃∗

ii

(
2 − 1

11 (i − 13)
)

i ∈ {13, …, 24},
�̃∗

ii i > 24.

Thus, for ages between 0 and 23 a higher number of contacts is obtained on the main diagonal.
Data are simulated using the same participant distribution as in the Belgian social contact data with
sample size n = 745 (see Figure 2A). The observed number of contacts are simulated from the NB1
distribution (with φ = 2):

y∗
ij ∼ NegBin

(
μij = ri�̃

∗
ij, αij = μijφ

−1
)

. (3.18)

We simulate S = 100 data sets for each setting and fit models M0, M1, and M2 without kink,

and models M1 and M2 with kink to each data set. This yields estimated social contact matrices �̂
(s)

and Ĥ(s), for s = 1, …, S. The estimation performance of the different methods are compared using
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A

B

Fig. 2. The number of respondent per age (A) and the observed log-contact rates (log(yij/ri)) (B) of the Belgian
social contact data. A white cell indicates that there were no contacts observed for those particular ages of the
respondents and contacts.

the squared bias and mean square error (MSE). These scalar measures of performance are given by:

Bias2
� =

m∑
i=1

m∑
j=1

(
1
S

S∑
s=1

(
�̃∗

ij − �̂
(s)
ij

))2

and (3.19)

MSE� =
m∑

i=1

m∑
j=1

(
1
S

S∑
s=1

(
�̃∗

ij − �̂
(s)
ij

)2
)

, (3.20)

with similar definitions for Bias2
H and MSEH .
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Fig. 3. True social contact matrices �̃
∗

(A and C) and H∗ (B and D) without a kink (A and B) and with kink
(C and D) used for the data-generating process in the simulation study. The true social contact surfaces are
obtained from a nonparametric regression using a local linear fit to the Belgian social contact data.

Besides the performance of pointwise estimators, we also assess the accuracy with which uncer-
tainty is quantified by looking at the coverage performance of 95% pointwise confidence intervals
(CIs) of ηij. Using the approximate posterior distribution in (2.17), 95% pointwise CIs are easily
calculated (i.e., ±1.96× the square root of the Bayesian posterior variance). The reported nominal
coverages of the CIs are calculated by averaging over all entries of the social contact matrix.

3.2. Simulation results

Results for the squared bias and MSE are presented in Tables 1 and 2, respectively. For all settings,
we observe that models that smooth over cohorts (M1 and M2) are performing better in terms of
MSE than M0, and this holds for both H∗ and �̆

∗
. The squared bias results are somewhat less clear,

but overall model M2 is performing better. When comparing models M1 and M2, we observe that
the latter model has better performance.

In the simulation settings in which no kink is introduced on the main diagonal, we observe that
models with a kink on the main diagonal perform slightly worse than those without a kink. How-
ever, in the simulation settings with a kink, a more pronounced difference is observed in favor of
the models with a kink on the main diagonal, especially for �̆

∗
. The better performance of models

including a kink is mainly due to the better estimation of the main diagonal components of the
social contact matrix. No meaningful differences are observed outside the main diagonal region.
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Table 1. Squared bias of the social contact matrices H∗ and �̆
∗

over S = 100 simulations using
M0,M1 and M2 with and without a kink on the main diagonal

Squared bias Models without kink on main diagonal

bias2 of H∗ (H†) bias2 of �̆
∗

(�̆
†
)

Simulation setting M0 M1 M2 M0 M1 M2

Without kink 93.16 91.53 77.76 2.50 2.63 2.52
With kink 96.52 82.14 70.44 4.77 4.38 4.31

Squared bias Models with kink on main diagonal

bias2 of H∗ (H†) bias2 of �̆
∗

(�̆
†
)

Simulation setting M0 M1 M2 M0 M1 M2

Without kink – 93.64 79.42 – 3.05 2.92
With kink – 80.70 68.63 – 2.62 2.53

Table 2. Mean square error of the social contact matrices H∗ and �̆
∗

over S = 100 simulations using
M0,M1 and M2 with and without a kink on the main diagonal

MSE Models without kink on main diagonal

MSE of H∗ (H†) MSE of �̆
∗

(�̆
†
)

Simulation setting M0 M1 M2 M0 M1 M2

Without kink 154.73 130.41 123.72 4.79 3.99 3.96
With kink 156.94 123.59 120.50 7.11 5.86 5.87

MSE Models with kink on main diagonal

MSE of H∗ (H†) MSE of �̆
∗

(�̆
†
)

Simulation setting M0 M1 M2 M0 M1 M2

Without kink – 133.15 126.00 – 4.57 4.51
With kink – 122.71 119.25 – 4.41 4.40

In general, the overdispersion parameter φ is estimated well across all simulation settings. For
example, in the simulation setting without a kink, model M2 without a kink has an average estimate
for φ of 1.92 with 95% of the estimated overdispersion parameters between 1.74 and 2.22. For the
simulation setting with a kink, we have 1.93 (1.71–2.20) for model M2 with a kink.

Table 3 highlights the nominal coverage results for H∗ (H†) for the different settings. We observe
that all models produce pointwise CIs with close to 95% nominal coverage. In the simulation setting
with a kink, a slight overcoverage is observed for models M1 and M2. In this latter scenario, the
average lengths of the 95% CIs are 0.65, 0.61, and 0.60, for M0 without a kink, M1 with a kink and
M2 with a kink, respectively. This implies that the overcoverage is not directly associated with wider
CIs. The results in Table 3 indicate that the large sample result in (2.17) can be used to construct CIs
with appropriate nominal coverage.

4. Application: Belgian social contact data

The proposed smoothing methods are illustrated on the POLYMOD social contact data of Belgium,
obtained through a population-based contact survey carried out over the period of March to May
2006. Participants kept a paper diary with information on their contacts over 1 day. A contact was
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Table 3. Nominal coverage of 95% pointwise confidence intervals of the social contact matrices
H∗ (H†) over S = 100 simulations using M0,M1, and M2 with and without a kink on the main
diagonal. The nominal coverage is calculated by averaging over the entire social contact matrix

Models without kink Models with kink
on main diagonal on main diagonal

Simulation setting M0 M1 M2 M0 M1 M2

Without kink 95.10 94.51 95.92 – 93.90 95.36
With kink 95.01 96.26 97.26 – 96.22 97.26

defined as a two-way conversation of at least three words in each other’s proximity. The gathered
information included the age of the contact, gender, location, duration, frequency, and whether or
not touching was involved. Sampling weights—the inverse of the probability that a participant is
included because of the sampling design—are based on official age and household size data of the
year 2000 census published by Eurostat (Mossong and others, 2008). These sampling weights are
included in the analysis.

We consider the contact data of all participants aged between 0 and 76 years (both included).
We also restrict to contacts made with individuals between 0 and 76 years (both included). Thus,
m = 77. In total, we have information on 745 participants with 399 (53.6%) females and 345 (46.3%)
males (one participant with missing sex information). The mean age of the participants is 31 years.
A total of 13 493 contacts were reported, giving a crude mean of 18.1 contacts per participant. The
age structure of the general population in which the contact survey is conducted in 2006 is obtained
from Eurostat (2017), where the population size in the 0–76 years interval is N = 9 777 488.

Let w∗
k denote the normalized sampling weight of participant k, with k = 1, . . . , 745. The ijth

input of Y is yij = ∑
k ∈ agei−1

w∗
k ×#contactsk,j−1 and corresponds to a weighted sum of the number

of contacts made by respondents of age i − 1 with contacts of age j − 1. Similarly, the inputs of the
vector r are given by ri = ∑

k ∈ agei−1
w∗

k. In Figure 2B, the observed log-contact rates log(yij/ri) are
shown.

Social contact rates are estimated applying models M0, M1, and M2 using both NB1 and NB2
distributional assumption. For M1 and M2, both models with and without a kink are investigated.
Table 4 provides the summary results of the fitted models.

It is observed that model M0 with the NB2 distribution provides the lowest AIC value (smaller
AIC is better). Whereas for the BIC, the lowest values are observed for the NB1 distribution and
using models M1 and M2 both with kink. For both NB1 and NB2, it is observed that models M1

andM2 with kink have lower AIC and BIC values than modelsM1 andM2 without kink. All models
with the NB2 distribution have higher effective degrees of freedom (ÊD from 303.4 to 318.0) than
the NB1 distribution models. For NB1, M0 has higher effective degrees of freedom (ÊD = 181.5)
than models M1 and M2 (ÊD from 54.3 to 55.4). From here, we focus on the results of the NB1
distribution since these models have smoother surfaces.

Regarding the estimated smoothing parameters λ̂1 and λ̂2, an interesting difference is observed
between M0 and models M1 and M2. In M0, the optimal values for λ̂1 and λ̂2 are of similar magni-
tude, while for the models accounting for cohort smoothing, the optimal value for λ̂2 is larger than
λ̂1, indicating that more penalization is performed in the direction of the cohorts.

In terms of computational speed, fitting model M2 is approximately 4 times faster as compared
to model M1, as for the latter model 2m2 − m = 11 781 parameters (including m2 − m nuisance
parameters) need to be estimated, as compared to m2 = 5929 parameters for M2. It is also observed
that fitting models M2 is somewhat faster than M0.
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Table 4. Summary results of the fitted models to the Belgian social contact data. Optimal smoothing
parameters, effective degrees of freedom, −2 log(L̂), AIC, BIC, φ, and computational time in seconds
(T) are provided

Model λ̂1 λ̂2 ÊD −2 log(L̂) AIC BIC φ̂ T (s)

Without kink
M0 NB1 15.17 16.64 181.5 20 732.7 21 097.7 22 318.0 3.08 93.7
M0 NB2 4.56 4.56 318.0 20 355.3 20 993.2 23 126.6 1.49 118.6
M1 NB1 22.76 1714.91 55.8 20 988.5 21 102.1 21 481.8 3.76 238.8
M1 NB2 4.16 5.0 307.0 20 471.6 21 087.6 23 147.5 1.59 377.2
M2 NB1 27.36 1564.02 59.5 20 994.2 21 115.2 21 519.5 3.76 50.5
M2 NB2 4.16 5.48 317.1 20 471.4 21 107.6 23 235.0 1.59 88.4

With kink
M1 NB1 30.00 1584.89 54.3 20 967.6 21 078.2 21 448.2 3.70 239.4
M1 NB2 4.37 5.25 303.4 20 473.1 21 081.8 23 117.2 1.60 375.6
M2 NB1 40.00 1584.89 55.4 20 973.2 21 086.0 21 463.4 3.70 48.4
M2 NB2 4.56 5.48 313.2 20 472.8 21 101.2 23 202.4 1.60 85.4

In Figure 4, the estimated log contact rate surfaces, Ĥ for models M0, M1 without a kink, and
M2 without a kink are shown for NB1. The figures for the mixing at the population level, �̂ � P,
are provided in the supplementary material available at Biostatistics online (Figure 2). Generally, the
surfaces are able to capture important features of human contact behavior. There is a clear difference
in the estimated surfaces for model M0 and models M1 and M2 in the sense that diagonal compo-
nents are more pronounced for the models accounting for cohort smoothing. The shifted diagonal
between children and parents is also more clearly visible.

The estimated social contact rates are very similar for models M1 and M2 (see Figure 4 and
Figure 3 of the supplementary material available at Biostatistics online). Further, based on the con-
clusions of the simulation study and the fact that M2 is less computationally intensive, we prefer the
use of model M2 for the POLYMOD Belgian social contact.

In Figure 5, estimated contact surfaces are shown for model M2 with kink for NB1 (95% confi-
dence intervals provided in Figure 4 of the supplementary material available at Biostatistics online).
It is observed that the main diagonal has higher values for younger ages for the model including the
kink and thus higher values on the main diagonal of Ĥ and �̂ � P. For the model without kink,
the values in the estimated matrix �̂ � P range from 1496.2 to 162 986.5, whereas for the model
with kink, the values range from 1608.4 to 375 371.5. The kink thus allows for a huge increase in
the estimated number of contacts for children and young adults with individuals of the same age.
These results enforce the fact that a kink can capture the effect of mixing with people of the same
age, especially for children and young adults.

5. Discussion

Quantifying contact behavior contributes to a better understanding of how infectious diseases
spread (Anderson and May, 1991; Edmunds and others, 1997). Social contact rates play a major role
in mathematical models used to model infectious disease transmission. In this article, we describe a
smoothing constrained approach to estimate social contact rates from self-reported social contact
data. The proposed approach assumes that the contact rates are smooth from a cohort perspective
as well as from the age distribution of contacts by following two alternative strategies.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article/25/2/521/7081285 by guest on 23 January 2025



536 Y. VANDENDIJCK AND OTHERS

A B

C

Fig. 4. The estimated log contact rates surface, Ĥ, for models M0 (A), M1 (B) without kink, and M2 without
kink (C) with the NB1 distribution.

The simulation study and the data application show that approach M2, in which the penalty
matrix is reordered (and penalization is performed over the diagonal components), is performing
better. It was observed that this method yielded the smallest MSE over all simulation settings. Addi-
tionally, confidence intervals with nominal coverage close to 95% were obtained. In the Belgian data
application, the computation time of method M2 is three to four times faster than method M1, and
so we recommend the use of the former approach for the estimation of social contact rates.

The true social contact surface used in the data-generating process of the simulation study was
obtained through local linear regression of the raw social contact rates of the Belgian POLYMOD
study. This approach is preferred for two reasons. First, by using the same data in the simulation
study as in the application presented in Section 4, a better view of the performance of the different
approaches can be obtained. Second, we are not aware of any easy applicable mathematical formula
or fully parametric model of a 2D surface that would be suitable to represent a contact rate surface.

A grid search is needed to calibrate the smoothing parameters λ1 and λ2. This is a disadvantage
compared to the approach by van de Kassteele and others (2017) in which the amount of smoothing
is directly estimated together with model parameters from the information in the data. However, with
the availability of fast parallel computing and multicore machines, the grid search can be performed
relatively fast.

In this article, the contact rates are assumed indifferent for men and women. Recently, van de
Kassteele and others (2017) presented a Bayesian model for estimating social contact rates for men
and women, with results suggesting that different contact patterns exist and thus that there is a
gender effect. Future work could investigate how the methodology proposed in this article can be
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A B

C

Fig. 5. The estimated log contact rates surface (A), Ĥ, and the mixing at the population level (B), �̂ � P, for
model M2 with the NB1 distribution including an additional kink on the main diagonal. The diagonal elements
of Ĥ for the model with and without a kink (C), together with the 95% confidence intervals based on 5000
simulation from (2.17). The dots indicate the observed log-contact rates and are proportional to the number of
respondents of age i − 1, ri.

extended to estimate social contact rates by subgroups. A comparison with other methods used to
smooth social contact data was not done in this article.

Future extensions could focus on the impact of social contact matrices obtained from different
methods on key epidemiological parameters. In general, age-specific contact rates are also used as an
input in the comparison and evaluation of vaccination schedules via future projections (Beutels and
others, 2013). Most evaluations assume a fixed social contact rate matrix and thus no uncertainty is
related to this input. The result derived in (2.17) offers a tool to account for the variability associated
with the estimation of social contact rates. By simulation of new contact matrices from (2.17), the
associated variability can be taken into account in the evaluation of vaccination strategies and related
health economic evaluations.

Finally, our proposed methodology does not employ any regression basis such as B-splines
because an exact link between the constraints and linear predictors is needed. We are exploring
whether the proposed methodology can be extended to make use of basis functions that will likely
lead to a reduction of the computational cost. Alternative ways of incorporating the reciprocal
nature of the phenomenon will thus be necessary.

To ensure enough flexibility, no ad hoc choices about the age categories are made in modeling the
contact matrices. Additionally, more and more mathematical models of infectious disease transmis-
sion use the high-dimensional 1-year matrices. The model-based approach as introduced here can
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deal with sparsity for certain cells in the matrix (i.e., cells for which few data/information is avail-
able). Nevertheless, if an age-stratified modeling approach is of interest, one can choose to directly
estimate the contact rates in the different age groups taking the constraint of reciprocity into account
(see Hens and Wallinga, 2019) or use our proposed diagonal smoothing approach on a social contact
matrix using age categories (see Mossong and others (2008) for an example without diagonal smooth-
ing). Alternatively, the smooth contact surface obtained from diagonal smoothing can still be used
to come up with estimates for each combination of age categories by collapsing cells, however, this
would surpass the goal of the proposed approach. Our method can be used for extrapolation to
provide estimates of contact rates outside the age range observed in the data. However, we warn
against doing this, as a more recent study for Belgium (anno 2010–2011) as opposed to the data
used here (anno 2006) looked at contact data for individuals up to 99 years of age, and has shown
that care needs to be taken when doing so given that contact rates still change substantially for older
age groups (Van Hoang and others, 2021).

6. Software

Code to reproduce the results of this article is available at the GitHub repository https://github.com/
oswaldogressani/Cohort_smoothing.

Supplementary material

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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