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Abstract: To analyze multivariate outcomes in clinical trials, several authors have suggested general-
izations of the univariate Mann–Whitney test. As the Mann–Whitney statistic compares the subjects’
outcome pairwise, the multivariate generalizations are known as generalized pairwise comparisons
(GPC) statistics. For GPC statistics such as the net treatment benefit, the win ratio, and the win odds,
asymptotic based or re-sampling tests have been suggested in the literature. However, asymptotic
methods require a sufficiently high sample size to be accurate, and re-sampling methods come with
a high computational burden. We use graph theory notation to obtain closed-form formulas for
the expectation and the variance of the permutation and bootstrap sampling distribution of the
GPC statistics, which can be utilized to develop fast and accurate inferential tests for each of the
GPC statistics. A simple example and a simulation study demonstrate the accuracy of the exact
permutation and bootstrap methods, even in very small samples. As the time complexity is O(N2),
where N is the total number of patients, the exact methods are fast. In situations where asymptotic
methods have been used to obtain these variance matrices, the new methods will be more accurate
and equally fast. In situations where bootstrap has been used, the new methods will be both more
accurate and much faster.

Keywords: bootstrap test; generalized pairwise comparisons; graph theory; multivariate outcome;
net treatment benefit; permutation test; win odds; win ratio
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1. Introduction

In randomized clinical trials, often multiple outcome measures are selected to assess
the effect of a treatment on two groups of subjects. In clinical areas, such as cardiology,
oncology, psychology, and infectious disease, the combination of several clinical meaningful
outcome measures is very common [1–4]. The standard method of analysis for multivariate
survival outcomes is a time-to-first event analysis, which uses only the first event per
subject [5]. However, this approach has been criticized, since it ignores subsequent events
and the clinical relevance of the events. To remediate the shortcomings of the time-to-first
event analysis, a new class of non-parametric methods has been proposed that allows for
the analysis of multiple events per subject and allows for prioritizing the events by clinical
relevance [6–8]. These methods are a generalization to multivariate prioritized outcomes
of the classical univariate Mann–Whitney [9] and Gehan–Wilcoxon test [10,11]. Similar to
the univariate outcome statistic, the generalized statistics compare the outcome per pair of
subjects and hence are named generalized pairwise comparisons (GPC) statistics [7], while
others use the term win statistics [12].

GPC is based on a prioritization of a number of k outcome measures, usually according
to a decreasing level of clinical relevance. For each outcome measure, every subject is
compared to every other subject in a pairwise manner. Per pair and per outcome, a score,
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uijk, is assigned, which is chosen to reflect whether subject i or subject j has the more
favorable outcome k. The concept of more favorable can involve censoring, missing data,
and can include a threshold of clinical relevance [7,13]. The score uijk that is most often
used is the score proposed by Gehan [10] for censored observations:

uijk =


1, if subject i has a more favorable outcome k than subject j
0, if the subjects cannot be compared on outcome k or are tied
−1, if subject i has a less favorable outcome k than subject j

The scores can be computed separately for each outcome measure k, and the score uij
for a pair in the prioritized GPC is the first non-zero score uijk, where the first is defined
by the prespecified priority list of outcomes. It is quite possible that for many pairs of
subjects, the overall comparison will remain 0. It is also possible to have non-transitive
comparisons, such as three patients where uij = 1, ujk = 1, and uki = 1 [13]. Alternatively,
if prioritization of the outcome measures is not feasible or appropriate, a non-prioritized
GPC sums the scores uijk over all outcome measures [13,14]. Additionally, the scores of the
pairs that are uninformative due to censored observations, and thus cannot be compared,
can be corrected by estimating the chance of a favorable outcome using Kaplan–Meier
estimates [15–18]. The Kaplan–Meier corrected score matrix will consist of scores |uij| < 1.
The score matrix resulting from the pairwise comparisons is a skew-symmetric N × N
matrix, with entries in the set {−1, 0,+1} for the prioritized GPC without the censoring
corrections and entries in R otherwise. Although scores in a non-prioritized GPC can be > 1
per pair, most GPC statistics will adjust the scoring by dividing by k outcomes. Because of
the summing, this adjustment can be performed at the level of the scores or after summing
all scores. In the former, scores will be |uij| < 1, while in the latter, scores will be |uij| > 1.

Inferential tests and confidence intervals for GPC are then constructed from the scoring
matrix, utilizing statistics such as the Finkelstein–Schoenfeld statistic [6], the net treat-
ment benefit [7], the win ratio [8] and win odds [19]. Suppose there are N subjects in a
two-arm trial, with m subjects in the experimental group from a distribution F1 and n
subjects in the control group from a distribution F2. Moreover, let the indicator Di = 1
for subjects in the experimental group, and Di = 0 for patients in the control group.
The Finkelstein–Schoenfeld statistic [6] is then the sum of the scores for the experimental
group. If Ui = ∑j uij, the Finkelstein–Schoenfeld statistic is:

FS =
N

∑
i=1

DiUi, (1)

which can be interpreted as the difference between the favorable outcomes in the experi-
mental arm, WT = ∑N

i=1 DiUi with uij > 0, and the favorable outcomes in the control arm,
WC = ∑N

i=1 DiUi with uij < 0. If the score entries are restricted to {−1, 0,+1}, WT and WC
merely count the number of wins per treatment arm, and FS = WT −WC.

It is easy to show (Appendix A) that E(FS) = 0. The variance suggested by Finkelstein
and Schoenfeld [6] is based on a permutation test

Var(FS) =
mn

N(N − 1)

N

∑
i=1

U2
i , (2)

following [10,11,20]. Although Finkelstein and Schoenfeld presented the formula for
Var(FS), they did not give expectations and variances for WT and WC separately. For many
of the GPC models considered below, those separate variances are needed.

The permutation test assumes exchangeability between observations and tests the null
hypothesis: H0 : F1 = F2. Gehan [10], Gilbert [11] and Mantel [20] derived a closed-form
expression of the mean and variance of the exact null distribution, which means that no re-
sampling permutation is actually required. Consequently, the asymptotic null distribution
of the test statistic FS/

√
Var(FS) is shown to be standard normal [10,11], and the p-values
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computed from this null distribution are valid, even for very small sample sizes of only
10 observations [10]. Alternatively, inference can be based on the proportion of re-sampling
permutation samples with a test statistic greater than or equal to the observed statistic.
Even though the permutation test is formulated under the H0 null hypothesis, the test
statistic is only consistent under alternatives of the form FS 6= 0 [10,11]. The permutation
test is thus not consistent against all alternatives of the form F1 6= F2 [21,22].

Other GPC statistics include the net treatment benefit (NTB) [7], which is a U-statistic [23]
transformation of the Finkelstein–Schoenfeld statistic, by dividing it by the total number
of pairs possible between the two treatment arms, (WT −WC)/(nm). It has been shown
that the NTB and its transformations are unbiased and efficient estimators for univariate
and uncensored observations [24]. The win ratio (WR) is defined as the ratio of the number
of times a subject has a favorable outcome in the treatment arm and in the control arm,
WT/WC [8]. Finally, the win odds adds half of the number of tied outcomes (W0) to both
the numerator and denominator, (WT + 1/2W0)/(WC + 1/2W0) [25]. Since the win odds
(WO) is a transformation of the net treatment benefit, WO = (1 + NTB)/(1− NTB), any
test proposed for the net treatment benefit or Finkelstein–Schoenfeld statistic can also be
applied to the win odds, and we will not focus further on the win odds.

For the inference of the GPC statistics, also re-sampling bootstrap [8], re-sampling
re-randomization [7] or U-statistic asymptotic methods have been proposed [14,26,27].
The asymptotic properties are used in two different ways:

• Asymptotic formulas for the mean and variances of the numbers of wins, WT and
WC, which are both U-statistics and thus asymptotically normal distributed [23]. Our
method avoids the errors in these asymptotic formulas, since we give exact formulas.

• Delta method derivations of results for the win ratio based on the computed approxi-
mate means and variances.

For larger trials, the asymptotic formulas may be satisfactory, but the re-sampling
methods require a large number of replications to be accurate. In contrast, the permutation
test (2) presented by Finkelstein and Schoenfeld [6] avoids the first step in the use of
asymptotic properties and the associated error. This would be important in smaller clinical
trials, such as in rare disease trials. Moreover, as the permutation test is an exact test in
finite sampling, it is more accurate than the re-sampling methods and less time-consuming.

While the permutation test, as derived by Gehan [10], can be easily extended to the
net treatment benefit and the win odds through their transformations, it is not obvious to
extend it to the win ratio. Moreover, the permutation test determines the variability under
the null hypotheses, making it unsuited for the determination of a confidence interval of
the GPC statistics. Therefore, we re-derive the closed-form expression of the expectation
and the variance of the permutation distribution using graph theory notation on the skew-
symmetric score matrix, which allows extension of these results to a two-sample bootstrap
distribution and to the win ratio. Additionally, we generalize the expression to allow scores
in the R field, generalizing the application to non-prioritized GPC algorithms and censoring
correcting scores. It will be shown that the algorithm complexity of our expressions is
O(N2) in both time and space, and thus, the exact permutation and bootstrap method will
be both faster and more accurate than re-sampling permutation and bootstrap tests.

This paper is organized as follows. In Section 2, the graphical model is presented that
will be used the derive the expected values and variances of the GPC statistic under the
permutation and bootstrap distribution. The exact permutation formulas for the mean and
variance are derived in Section 3, while the exact bootstrap formulas follow in Section 4.
The time complexity of the exact methods is evaluated in Section 5. Throughout the
development of the theory, a small example is used to demonstrate the new methodologies.
Additionally, a simulation shows the type I error and the 95% confidence interval coverage
in Section 6, and the methodology is demonstrated in an example in Section 7. Both Rr and
SAS code for the exact permutation, and bootstrap tests are presented in the Supplementary
Material as well as full detailed derivations and an extensive test of the algorithm.
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2. Graphical Model

Any pairwise comparison analysis of an outcome measure in N = n + m subjects,
that allows for non-prioritized analyses and censoring corrected scores to denote the more
favorable outcome, will result in a skew-symmetry N×N score matrix U with entries in the
R field. This will be the case when evaluating both a single outcome measure, by use of the
Mann–Whitney test, or the Gehan–Wilcoxon test, and when evaluating multiple outcomes,
by a GPC analysis. In the remainder of this manuscript, we consider that the score matrix
U has been produced by some further unspecified mechanism; the only restriction is the
skewness and symmetry. A small example (Figure 1) illustrates such a U matrix.

Figure 1. A small example of a score matrix U, resulting from a pairwise comparison. Here, Di,j = 1
represents the treatment subjects, Di,j = 0 represents the control subjects.

Since all GPC statistics can be constructed from WT and WC, it is our aim to compute
the expectations and the variances of WT and WC as well as their covariance for both the
permutation as the bootstrap distribution. These mean and (co)variances are computed
over all possible permutations of the treatment arms or all possible bootstrap samples.
For the net treatment benefit (∆),

E(∆) = E(WT)−E(WC)

nm
(3)

Var(∆) =
Var(WT) + Var(WC)− 2Cov(WTWC)

(nm)2 . (4)

For the win ratio (Ψ), it is known that the logarithm of the win ratio is approximately
normal distributed [24,26]. Its variance can then be approximated using the delta method:

E(Ψ) ≈ E(WT)

E(WC)
(5)

Var(logΨ) ≈ Var(WT)

W2
T

+
Var(WC)

W2
C

− 2
Cov(WTWC)

WTWC
. (6)

In order to derive the expectations, variances, and covariance for the WT and WC, it
will be convenient to think of the score matrix U as the adjacency matrix of a directed graph
G [28] with N vertices, where a vertex represents a subject. A pair of subjects or vertices
can be joined by an edge e = (i, j). Since we are interested in the favorable outcomes,
an edge e = (i, j) is defined when uij > 0. When Di = 1 and Dj = 0, such an edge is called
a treatment edge and when Di = 0 and Dj = 1, it is called a control edge. The value uij is
called the weight of the edge, and it is denoted by we. Note that the score of the comparison
of subject i with subject j is exactly the opposite of the score of the comparison of subject j
with subject i. Hence, the edge e = (i, j) is an ordered pair of distinct vertices, where the
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head of e is vertex j and the tail is vertex i. In a pictorial representation, the edge e = (i, j)
is represented by an arrow going from vertex i to vertex j (Figure 2). Let then E denote the
total number of edges of G. In our small example (Figures 1 and 2), E = 6.

1 2 3

5 4
Figure 2. Small graph example.

Using the graph theory notation, the number of wins for the treatment, WT , and control
arm, WC, can be redefined as follows. For a subject or vertex v, let Nv denote the number of
times that the vertex v appears in the sample. In a permutation sample, each subject can
only appear once and Nv = 1 for all samples. In a bootstrap sample, subjects can appear
more than once and Nv can be zero or higher. To count the number of wins for the treatment
arm, the value Te is defined as the number of times that edge e is a treatment edge in the
sample, and similarly, the value Ce is the number of times that edge e is a control edge. If the
treatment edge e has subjects (v, w), the number of times this edge appears in the sample is
then Te = NvNw. For example, suppose that in a bootstrap sample of the five subjects in our
small example (Figure 1), subjects 1 and 2 appear twice, subject 3 appears once, and subjects
4 and 5 do not appear at all; then, N1 = N2 = 2, N3 = 1, and N4 = N5 = 0. Furthermore,
the pair or treatment edge (2,1) will appear Te(2,1) = N1 × N2 = 4 times, the treatment edge
Te(2,3) = 2 times and all other treatments edges Te = 0 times. The vectors T and C are the
E× 1 column vectors composed of the various Te and Ce and the vector W is the column
vector of the weights we.

WT and WC are then redefined as:

WT = WtT = ∑
e

weTe = [w1, w2, . . . , wE]T

WC = WtC = ∑
e

weCe = [w1, w2, . . . , wE]C

In our small example (Figure 1):

• Vector of edges = {(1,5),(2,1),(2,3),(3,4),(5,2),(5,4)};
• Vector W t = {1,2,3,4,5,1};
• Vector Tt = {1,0,1,0,0,0} and WT = 4;
• Vector Ct = {0,0,0,0,1,0} and WC = 5.

The development of the expectations and variances of WT and WC, and their covariance
for the permutation and the bootstrap distribution, then follow the same general pattern.

The expectation of WT is derived by:

E(WT) = E(WtT)

= [w1, w2, . . . , wE]E(T)
= ∑

e
weE(Te).

and similarly, E(WC) = ∑e weE(Ce).
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The variance is derived by

Var([WT , WC]) = Var
([

Wt, Wt][T
C

])
=
[
Wt, Wt]Var

([
T
C

])[
W
W

]
=
[
Wt, Wt](E([T

C

][
T
C

]t
)
−
(
E
[

T
C

])(
E
[

T
C

]t
))[

W
W

]
=
[
Wt, Wt](E([TTt TCt

CTt CCt

])
−
[
E(T)E(Tt) E(T)E(Ct)
E(C)E(Tt) E(C)E(Ct)

])[
W
W

]
(7)

=

[
VTT VTC
VCT VCC

]
(8)

The variance of the GPC statistics thus requires two counting steps. In the first step,
the expected values E(Te), E(Ce) and the expected value of an ordered pair of edges (e, f ),
not necessarily distinct, E(TeTf ), E(TeC f ), E(CeTf ), and E(CeC f ) are computed using
elementary calculations involving binomial coefficients. These calculations differ between
edge pairs, depending on the trial arm assignments and the geometric relationship of the
edges. Note that because the variance matrix is symmetric, we do not explicitly need
the individual terms E(CeTf ). In the second step, the number of times that each of these
geometric configurations of edges is present in the data set is counted.

3. The Permutation Distribution

In this section, it is shown that our derivation of the graph theory concepts lead to
the exact same permutation test as proposed by Gehan [10], Gilbert [11], Mantel [20] and
Finkelstein and Schoenfeld [6]. It allows, however, to develop a permutation test for the
win ratio, and it can be extended to a bootstrap test.

In a permutation test, subjects are randomly re-sampled to the treatment groups
without replacement. If all (m+n

m ) possible permutations of m treatment assignments and n
control assignments are considered, the WT and WC in each of these permutation samples
will lead to their permutation distribution. The expectations, variances, and covariance of
this permutation distribution of WT and WC can be calculated explicitly. An edge will thus
always join the same subjects, but whether or not this edge contributes to the treatment
wins or control wins depends on the treatment assignment in the permutation sample.

The expectations of WT and WC are the same in the permutation distribution (Supple-
mentary Material S1 Section S4.1):

EP(WT) = EP(WC) =
mn

N(N − 1) ∑
e

we.

These provide the second half of the Equation (7). For our small example (Figure 1),

the expectations of WT and WC equal
6

5× 4
(1 + 2 + 3 + 4 + 5 + 1) = 4.8.

The variance for the treatment wins, WT, is then (Supplementary Material S1 Section S4.3)

VarP(WT) =
mn

N(N − 1) ∑
v

Is
v +

mn(m− 1)
N(N − 1)(N − 2) ∑

v
(I2

v − Is
v) +

mn(n− 1)
N(N − 1)(N − 2) ∑

v
(O2

v −Os
v)

+
mn(m− 1)(n− 1)

N(N − 1)(N − 2)(N − 3)

{
(∑

v
Iv)

2 −∑
v

[
Is
v + (I2

v − Is
v) + (O2

v −Os
v) + 2IvOv

]}

−
[

mn
N(N − 1) ∑

v
Iv

]2

,
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with

Iv = ∑
i

we the column sums of we for vertex v.

Is
v = ∑

i
w2

e the column sums of w2
e for vertex v.

Ov = ∑
j

we the row sums of we for vertex v.

Os
v = ∑

j
w2

e the row sums of w2
e for vertex v.

Note that ∑v Iv = ∑v Ov = ∑e we and that, due to the symmetry of the U-matrix,
the column sums of we (or entries with uij > 0) are equal to the row sums of uij < 0.

The variance for WC is similar, but with the roles of Iv and Ov reversed. The covariance
of WT and WC equals (Supplementary Material S1 Section S4.3):

CovP(WTWC) =
mn

N(N − 1) ∑
v

IvOv +
mn(m− 1)(n− 1)

N(N − 1)(N − 2)(N − 3)

{
(∑

v
Iv)

2 −∑
v

[
Is
v + (I2

v − Is
v)

+(O2
v −Os

v) + 2IvOv

]}
−
[

mn
N(N − 1) ∑

v
Iv

]2

Finally, the variance of the Finkelstein–Schoenfeld statistic, the net treatment benefit
and win ratio statistic can be calculated from (3)–(6). For the Finkelstein–Schoenfeld statistic
(and the net treatment benefit), the exact permutation variance simplifies to simple row
sums of uij (Figure 3):

VarP(WT −WC) = VarP(WT) + VarP(WC)− 2CovP(WTWC)

=
mn

N(N − 1)

(
∑
v

O2
v − 2 ∑

v
IvOv + ∑

v
I2
v

)
=

mn
N(N − 1) ∑

v
(Ov − Iv)

2

It is easy to see that this is equal to (2), as proposed by Gehan [10], Gilbert [11], Mantel [20]
and Finkelstein and Schoenfeld [6].

Figure 3. Graphical representation of counts needed of a score matrix U, with entries uij, to calculate
the exact permutation variance for the win difference and net treatment benefit. With Ov, the row
sums of uij > 0, and with Iv, the columns sums of uij > 0 of a vertex v. Due to the symmetry of the
matrix, the row sums of uij < 0 are equal to −Iv and Ov − Iv equals the row sums of uij.

For our small example (Figure 1), it is possible to take every permutation sample, cal-
culate the win difference for each sample and determine the variance of the win differences.
If we do this, the variance coincides with what is calculated using the exact permutation
formulas (see Supplementary Material S2, Section S1.1):
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VarP(WT −WC) =
6

5× 4
× 52 = 15.6.

Other examples can be found in Supplementary Material S2, Section S1.2.

4. The Bootstrap Distribution

Using a similar approach, we can now also develop a closed-form formula for the
bootstrap distribution for both the net treatment benefit and the win ratio rather than the
originally proposed re-sampling bootstrap test [8] for testing the hypothesis H0 : ∆ = 0 or
H0 : Ψ = 1 or for the confidence interval construction.

In a bootstrap, subjects are randomly re-sampled with replacement within their treat-
ment group. If all possible bootstrap samples, mmnn in total, are considered, the number
of treatment wins, WT and control wins, WC, in each of these samples will lead to their
bootstrap distribution. The expectations, variances, and covariance of this bootstrap dis-
tribution of WT and WC can also be calculated explicitly, following a similar reasoning
as in the permutation. This method will be more accurate than actually re-sampling via
bootstrap, since the randomization error is eliminated.

Since the bootstrap uses the same observed information as the permutation, the graph
G described in Section 2 remains useful. The edges and vertices remain the same as
previously. However, since an edge e can now be repeated in a sample, be present once,
or not be present at all, the number of times an edge contributes to a win in T or C can
now be between 0 and n, respectively, m. Additionally, since subjects or vertices remain
in their treatment arm over the bootstrap samples, edges joining vertices within the same
treatment arm (Di = Dj) will never be a win in any bootstrap sample, and they will also
not contribute to the variance. In other words, the variance of wins in a bootstrap sample
does not depend on the within-arm comparisons. This is in contrast to the permutation
variance, where within-arm comparisons contribute to the final variance.

There are thus (WT + WC)
2 ordered pairs of edges corresponding to wins and con-

tributing to the variance. Let the indicator Dv = 1 when Di = 1 and Dj = 0, and Dv = 0
when Di = 0 and Dj = 1. An edge corresponding to a treatment win (uij > 0 for Dv = 1
and uij < 0 for Dv = 0) or a control win (uij < 0 for Dv = 1 and uij > 0 for Dv = 0) in the
observed data will be called a treatment edge or a control edge.

One could also consider bootstrap sampling from the entire population to test the
same null hypothesis of the permutation test, H0 : F1 = F2. The formulas of the one-
sample bootstrap are similar in spirit to those given here, and they are detailed in the
Supplementary Material S1, Section S6.

Using elementary sums of multinomial coefficients, the expectations of WT and WC
are shown to be EB(WT) = ∑e weTe = WT and similarly, EB(WC) = ∑e weCe = WC
(Supplementary Material S1, Section S5.1). Consequently, the expectation of the win
difference EB(WT −WC) = WT −WC and the approximation of the expectation for the win
ratio EB(WT)/EB(WC) = WT/WC.

The variance for the treatment wins, WT, is then (Supplementary Material S1 Section S5.3)

VarB(WT) = ∑
Dv=1

#Ts
v +

n− 1
n ∑

Dv=1
#T2

v +
m− 1

m ∑
Dv=0

#T2
v −

m + n− 1
nm

W2
T (9)

with

#Tv = ∑ we the row (Dv=1) and column (Dv=0) sums of we > 0 for vertex v.

#Ts
v = ∑ w2

e the row (Dv=1) and column (Dv=0) sums of w2
e for we > 0 vertex v.

The variance of WC is obtained similarly by replacing all treatment with control
parameters and defining #Cv as the row (Dv=1) and column (Dv=0) sums of we < 0 for
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vertex v and #Cs
v as the row (Dv=1) and column (Dv=0) sums of w2

e for we < 0 vertex v. The
covariance equals (Supplementary Material S1 Section S5.3):

CovB(WTWC) =
n− 1

n ∑
Dv=1

#Tv#Cv +
m− 1

m ∑
Dv=0

#Tv#Cv −
m + n− 1

nm
WTWC (10)

Finally, the variance of the Finkelstein–Schoenfeld statistic, the net treatment benefit
and win ratio statistic can be calculated from (3)–(6). For the Finkelstein–Schoenfeld statistic
and the net treatment benefit, the exact bootstrap variance simplifies to row and column
sums of #T and #C counts (Figure 4).

Figure 4. Graphical representation of counts needed of a U matrix to calculate the exact bootstrap
variance for the win difference and net treatment benefit. Notice that the ∑Dv=1 #Tv = WT and
∑Dv=1 #Cv = WC.

For our small example (Figure 1), it is possible to take every bootstrap sample, calculate
the win difference for each sample and determine the variance of the win differences. If we
do this, the variance coincides with what is calculated using the exact bootstrap formulas
(see Supplementary Material S2, Section S2.1):

VarB(WT −WC) = VarB(WT) + VarB(WC)− 2CovB(WTWC)

=
n− 1

n

[
∑

Dv=1
(#Tv − #Cv)

2
]
+

m− 1
m

[
∑

Dv=0
(#Tv − #Cv)

2
]

+ ∑
Dv=1

#Ts
v + ∑

Dv=1
#Cs

v −
m + n− 1

nm
(WT −WC)

2

=
2
3
(5) +

1
2
(25) + 10 + 25− 4

6
(4− 5)2 = 50.17

Other examples can be found in Supplementary Material S2, Section S2.2.

5. Complexity

In any GPC analysis, a bounded number of computations for each pair of patients is
performed to obtain the score matrix U, and the number of pairs is O(N2). The complexity
of computing U is therefore O(N2). It is conceivable that one could reduce the complexity
for special cases of GPC, however, our analysis works for arbitrary skew matrices, and in
such cases, every pair of patients must be examined at least once.

For the variance of a GPC statistic, one could in principle consider all possible permu-
tations or bootstrap samples, compute the numbers of treatment and control wins for each
sample, and then compute the mean and variances. Such a computation would be expo-
nential in N and hence completely unsatisfactory for a real example. We have performed
such computations in some very small examples as a test of our algorithm (Supplementary
Material S2).
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For a specific vertex v, in order to compute the various vertex-dependent terms in
the variance formulas, (Iv, Is

v, Ov, Os
v, #Tv, #Cv, #Ts

v, and #Cs
v), each other vertex must

be examined once. Thus, the complexity of the computation at each vertex is O(N),
and computing at all vertices is thus O(N2). The total number of edges and the wins
WT and WC are computed from these numbers in an additional O(N) steps, and the final
computations are O(1). Accordingly, the time complexity of both the permutation and
bootstrap algorithms is O(N2).

The exact computations will be faster than evaluating a large number of any permuta-
tion or bootstrap re-sampling, because evaluating only one sample is already O(N2).

6. Simulations

Similarly as for the Finkelstein-Schoenfeld test, inference for the permutation and
bootstrap test is based on the standard normal assumption for the net treatment benefit and
lognormal assumption for the win ratio of the asymptotic distribution of the permutation
and bootstrap test statistic. While both the permutation and the bootstrap serve for hy-
pothesis testing, albeit testing slightly different null hypotheses (see Introduction), only the
bootstrap is additionally useful for confidence interval construction. As the permutation is
estimating the variance under the null hypothesis, it is expected that the estimation bias of
the variance under the alternative hypothesis will increase with increasing effect size. Since
the bootstrap is estimating the variance under the alternative hypothesis, the bootstrap
asymptotic distribution may be more likely to deviate from normality close to the bound-
ary of potential values, which is 1 (or −1) for the NTB. Therefore, we will additionally
evaluate an inverse hyperbolic tangent transformation of the test statistic, which limits
the confidence interval within the boundaries of the NTB and under which the normality
assumption may hold for smaller sample sizes [29].

By means of a simulation study, the appropriateness of the normality assumption is
evaluated by means of the nominal type I error and the confidence interval coverage for
small samples. The simulated samples contain 5, 10, 15, 20, 25, 30, 40, 50 or 75 observations
from a normal distribution N(0.3, 0.1) for the experimental arm and an equal number of
observations from a N(µ, 0.1) distribution with µ = 0.3, 0.264, 0.205, 0.119 for the control
arm. These correspond to a net treatment benefit of 0, 0.2, 0.5 and 0.8. Each simulation is
repeated 10,000 times.

The permutation test controls the nominal alpha level well, even for very small sample
sizes of five observations per treatment arm (Figure 5). The bootstrap test and its inverse
hyperbolic tangent transformation on the other hand require at least 30–40 observations
per treatment arm.

Figure 5. Type I error of the permutation, bootstrap and the inverse hyperbolic tangent (arctanh)
transformation of the bootstrap test for varying sample sizes.
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As anticipated, the confidence interval coverage based on the permutation distribution
is good under the null hypothesis, but it increasingly deteriorates with increasing effect
size (Figure 6). The coverage for the transformed bootstrap is for all effect sizes better in
range than the untransformed bootstrap, and depending on the effect size requires 20–30
observations per treatment arm.

Figure 6. Confidence interval coverage of the permutation, bootstrap and the inverse hyperbolic
tangent (arctanh) transformation of the bootstrap test for varying treatment effects and sample sizes.
NTB = net treatment benefit.

Further evaluation of the permutation and bootstrap Type I error control and confi-
dence interval coverage, in comparison with other GPC methods for inference and with
other type of data, is available in Verbeeck et al. [30].

7. Illustration

The rare, genetic skin disease epidermolysis bullosa simplex (EBS) is characterized by
the formation of blisters under low mechanical stress [31]. An innovative immunomodu-
latory 1% diacerein cream was postulated to reduce the number of blisters compared to
placebo and evaluated in a randomized, placebo-controlled, double-blind, two-period cross-
over phase II/III trial in 16 pediatric patients [32]. After daily treatment during 4 weeks
and monitoring for an additional 3 months, patients crossed over to the opposite treatment
after a washout period. In each treatment period, both the number of blisters in a treated
body surface area were counted and the quality of life (QoL) was assessed. The primary
endpoint, the proportion of patients with more than 40% reduction in blisters at week 4
compared to baseline, however, leads to inconclusive results [32]. The primary analysis
with the Barnard [33] test requires separate analyses per treatment period, which showed
that during the first treatment period, there was a treatment effect in favor of the diacerein
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cream (p = 0.007) in contrast to the second treatment period (p = 0.32). Wally et al. [32]
discuss reasons why the second period effect might be smaller.

Since the Barnard test is ignoring the cross-over design and the QoL, it only uses a
fraction of the available information in the EBS trial. It is well known that the QoL of
EBS patients is poor due to the hindrance of daily activities by the blisters [32]. While the
reduction in the number of blisters is important, the healing but not yet disappearance of a
blister may affect positively the QoL outcome, which is relevant for both the patient and
clinician. The ability to add the QoL outcome with the blister outcome is clinically very
relevant and very straightforward with GPC. We will re-analyze the EBS trial with a GPC
both when prioritizing and not prioritizing the outcomes. Although GPC variants exist
for matched designs [34], such as cross-over trials, under certain circumstances, which are
applicable in the general GPC test, the matching can be ignored [35]. This means that we
can consider the contribution of each subject to both treatment periods as a contribution of
two independent subjects. Hence, the re-analysis will include all available information in a
single analysis, which evades difficulties in interpreting conflicting results from separate
analyses per treatment period.

The GPC permutation hypothesis test of the binary 40% reduction in blisters outcome
and the continuous change in QoL outcome separately does not show evidence of a
treatment effect of diacerin on the reduction in blisters (p = 0.0701), while there is evidence
for improvement in QoL (p = 0.0019) (Table 1). In a prioritized GPC permutation test,
where the blisters are evaluated first in the pairwise comparisons, there is evidence for a
positive treatment effect of diacerin (p = 0.0051) (Table 1). In addition, when evaluating
all pairs for both outcomes in a non-prioritized GPC, the permutation test shows evidence
for a positive treatment effect (p = 0.0022) (Table 1). In addition, the confidence intervals
around the net treatment benefit, obtained using the inverse hyperbolic tangent bootstrap,
show that there is evidence for a treatment effect by diacerein, 59% (95% CI: 19–82%) with
the prioritized GPC and 48% (95% CI:21–68%) for the non-prioritized GPC (Table 1).

Table 1. EBS trial data analysis of the composite blister and QoL outcomes with the prioritized and
non-prioritized GPC. WT = number of wins for the diacerein arm, WC = number of wins for the
placebo arm, W0 = number of ties, NTB = net treatment benefit, CI = confidence interval.

WT WC W0 NTB (95%CI) p-Value
Two-Sided

Prioritized GPC

Blister 99 (44%) 24 (11%) 0.33
QoL 72 (32%) 14 (6%) 0.26
Total 171 (76%) 38 (17%) 16 (7%) 0.59 (0.19;0.82) 0.0051

Non-Prioritized GPC

Blister 99 (44%) 24 (11%) 102 (45%) 0.33 0.0701
QoL 162 (72%) 22 (10%) 41 (18%) 0.62 0.0019
Total 0.48 (0.21;0.68) 0.0022

8. Discussion

Efficient closed-form formulas to compute the expectation and the variance of the
permutation and bootstrap distribution of GPC statistics are developed using graph theory
notation. These methodologies are shown to give the exact means and variances and
are not subject to sampling errors, which do result from any randomized permutation or
bootstrap test. Additionally, it is shown that the time complexity is O(N2), which is faster
than any randomization permutation or bootstrap test. Since in most of the applications
of the GPC statistics, only the means and variances are used [36–45], the proposed exact
methods eliminate the need for randomization tests. In order to construct a hypothesis test
for the GPC statistics, any use of the means and variances would require the assumption of
asymptotic normality. This normality assumption is either explicit or implicit in the various
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references. The normality assumption does seem satisfactory in simulations [30], even for
sample sizes as small as 10 observations for the null permutation distribution, which is in
concordance with the results from Gehan [10]. Slightly larger sample sizes are required
for the null bootstrap distribution, which has been show to be normal for U-statistics [46],
such as the net treatment benefit. Further research is required to improve the small sample
behavior of the exact bootstrap test, which may include an Edgeworth expansion [29],
alternative transformations [47], small sample corrections [48], wild bootstrap [49] or
fractional-random-weighted bootstrap methods [50].

Even though the mean and variance for the null permutation distribution for absolute
GPC statistics, such as the Finkelstein–Schoenfeld statistic and net treatment benefit, has
been established in the literature [6,10,11,20], using the graph theory notation allows
easy extension to the relative GPC statistic win ratio, allows extension to the bootstrap
distribution with sampling within the treatment group and sampling over the entire
population and allows the generalization to score entries in R, which result from non-
prioritized GPC and censoring correcting algorithms. Because of the special structure
of GPC, we are able to determine the expected value and variance from the bootstrap
distribution without actually using the randomization. This is not a unique feature, since
Efron has shown that in some other statistics, the exact values for the bootstrap distribution
can be computed [51] (Section 10.3). Our proposed approach means an improvement in
both accuracy and speed for the win ratio bootstrap test [40–45].

In the case of a single outcome variable without censoring, the Mann–Whitney test [9],
the Finkelstein–Schoenfeld formula (2) and the exact formula will all agree, because all
are based on counting arguments using the exact permutation distribution of the trial
arms. Similarly, in the case of a single outcome variable with censored observations,
the Gehan–Wilcoxon test [10], Finkelstein–Schoenfeld formula (2) and the exact formula will
agree. The exact computation of the bootstrap mean and variance is as easy as that for the
permutation mean and variance used for the Mann–Whitney, Wilcoxon, or Gehan–Wilcoxon
analyses. Accordingly, the bootstrap evaluation could be considered a practical alternative
to the original permutation test-based analyses. It is important to note that for the GPC
permutation and bootstrap test, the slightly different null hypotheses (see introduction) are
subject to different assumptions. For example, when the observations in each treatment
arm come from distributions with equal location but highly different variability, then we
are under the null hypothesis for the bootstrap test but not for the permutation test [52].
Although, both tests are only consistent against location shift alternatives [21,22].

In addition to randomization hypothesis tests for the GPC statistics, asymptotic tests
have been proposed as well [14,26,27]. In a direct comparison of the asymptotic tests and
the exact methods for the net benefit and win ratio statistics under location shift models,
with respect to type I error control, small sample bias and 95% confidence interval coverage,
the exact methods are more accurate and at least as fast [30]. Especially in sample sizes
below 100–200 subjects, the exact permutation test clearly outperforms the asymptotic
based tests.

Recently, a hypothesis test for the net treatment benefit has been suggested based
on U-statistic decomposition [52]. Interestingly, the variance estimator obtained from the
second-order Hoeffding decomposition of the GPC statistics exactly equals the variance of
the bootstrap distribution (Appendix B).

Importantly, the application of the variance of the permutation and bootstrap dis-
tribution assumes that the score in a pair of subjects remains constant over all possible
permutation and bootstrap samples. For example, in the GPC scoring algorithms that use
Kaplan–Meier estimators within treatment arms to correct for censored observations [15,17],
the score in a pair differs between permutation and bootstrap samples. It is therefore not
recommended to use the exact permutation and bootstrap inference for these scoring al-
gorithms. Similarly, in the inverse probability censoring weighting algorithms [18,53] and
the algorithm using the joined Kaplan–Meier estimators over both treatment arms [16], the



Mathematics 2023, 11, 1502 14 of 19

score in a pair remains constant in all permutation samples but not in all bootstrap samples.
Only the exact permutation inference is thus recommended for these scoring algorithms.
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Cov covariance
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Appendix A. Expectation and Variance of Finkelstein–Schoenfeld Statistic

We find the expectation and variance of the FS statistic by treating D1, . . . , DN as
random variables and the scores U1, . . . , UN as fixed quantities. Then

E(Di) = m/N. (A1)

For the variance, we have

Var(Di) = E(D2
i )−E(Di)

2

= m/N − (m/N)2

=
mn
N2 (A2)

and for i 6= j

Cov(Di, Dj) = E(DiDj)−E(Di)E(Dj)

=
m(m− 1)
N(N − 1)

− m2

N2

= − mn
N2(N − 1)

(A3)
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For the test statistic FS, use (A1) to obtain

E(FS) = E
(

N

∑
i=1

DiUi

)

=
N

∑
i=1

E(Di)Ui

=
m
N

N

∑
i=1

Ui

= 0,

and using (A2) and (A3)

Var(FS) = Var

(
N

∑
i=1

DiUi

)

=
N

∑
i=1

N

∑
j=1

UiUjCov(Di, Dj)

=
N

∑
i=1

Var(Di)U2
i +

N

∑
i=1

∑
j 6=i

Cov(Di, Dj)UiUj

=
mn
N2

N

∑
i=1

U2
i +

mn
N2(N − 1)

N

∑
i=1

U2
i

=
mn

N(N − 1)

N

∑
i=1

U2
i .

Appendix B. Equality of the Variance of the Bootstrap Distribution and the U-Statistic
Second-Order Hoeffding Decomposition Estimator

In the following, we will show that the variance estimator from the second-order Hoeffd-
ing decomposition in Ozenne et al. [52] equals the variance of the bootstrap distribution. We
will restrict ourselves to a U-matrix with entries in {−1, 0, 1}, following Ozenne et al. [52].

Using the second-order Hoeffding decomposition, the variance of WT , which is the
variance estimator (nm2)σU+ ,U+ in the notation of Ozenne et al. [52], equals:

Var(WT) = nm
[n− 1

m

m

∑
i=1

(ĥ+1 (i))
2 +

m− 1
n

n

∑
j=1

(ĥ+1 (j))2 + U+(1−U+)
]

Following Ozenne et al. [52], ĥ+1 (i) =
#TDv=1

n − WT
nm , ĥ+1 (j) =

#TDv=0
m − WT

nm and
U+ = WT

nm . Thus:
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Var(WT) = nm
[n− 1

m

m

∑
i=1

(#TDv=1

n
− WT

nm

)2

+
m− 1

n

n

∑
j=1

(#TDv=0

m
− WT

nm

)2
+

WT
nm
−
(WT

nm

)2]
= nm

[n− 1
m

(∑Dv=1 #T2
v

n2 − 2
n2m

WT ∑
Dv=1

#Tv + m
(WT

nm

)2)
+

m− 1
n

(∑Dv=0 #T2
v

m2 − 2
nm2 WT ∑

Dv=0
#Tv + n

(WT
nm

)2)
+

WT
nm
−
(WT

nm

)2]
=

n− 1
n ∑

Dv=1
#T2

v −
2(n− 1)

nm
WT ∑

Dv=1
#Tv +

(n− 1)
nm

W2
T

+
m− 1

m ∑
Dv=0

#T2
v −

2(m− 1)
nm

WT ∑
Dv=0

#Tv +
(m− 1)

nm
W2

T + WT −
1

nm
W2

T

Since due to symmetry ∑Dv=1 #Tv = ∑Dv=0 #Tv = WT :

Var(WT) = WT +
n− 1

n ∑
Dv=1

#T2
v +

m− 1
m ∑

Dv=0
#T2

v −
2(n− 1)

nm
W2

T +
(n− 1)

nm
W2

T

− 2(m− 1)
nm

W2
T +

(m− 1)
nm

W2
T −

1
nm

W2
T

= WT +
n− 1

n ∑
Dv=1

#T2
v +

m− 1
m ∑

Dv=0
#T2

v −
m + n− 1

nm
W2

T

Since ∑Dv=1 #Ts
v = ∑Dv=1 #Tv = WT when entries in the U-matrix are restricted to

{−1, 0, 1}, it follows that Var(WT) = VarB(WT) (see Equation (9)).
Similarly, it can be shown that the variance of WC, which is the variance estimator

(nm2)σU− ,U− in the notation of Ozenne et al. [52] equals VarB(WC).
Finally, the Cov(WTWC) or (nm2)σU+ ,U− in the notation of Ozenne et al. [52] is:

Cov(WTWC) = nm
[
(n− 1)

m

∑
i=1

ĥ+1 (i)ĥ
−
1 (i) +

m− 1
n

n

∑
j=1

ĥ+1 (j)ĥ−1 (j)−U+U−)
]

Following Ozenne et al. [52], ĥ+1 (i) =
#TDv=1

n − WT
nm , ĥ+1 (j) = #TDv=0

m − WT
nm , U+ = WT

nm ,

ĥ−1 (i) =
#CDv=1

n − WC
nm , ĥ−1 (j) = #CDv=0

m − WC
nm , U− = WC

nm . Thus:

Cov(WTWC) = nm
[n− 1

m

m

∑
i=1

(#TDv=1

n
− WT

nm

)(#CDv=1

n
− WC

nm

)
+

m− 1
n

n

∑
j=1

(#TDv=0

m
− WT

nm

)(#CDv=0

m
− WC

nm

)
− WTWC

(nm)2

]
= nm

[n− 1
m

(∑Dv=1 #Tv#Cv

n2 − ∑Dv=1 #TvWC

n2m
− ∑Dv=1 #CvWT

n2m
+ m

WTWC
(nm)2

)
+

m− 1
n

(∑Dv=0 #Tv#Cv

m2 − ∑Dv=0 #TvWC

nm2 − ∑Dv=0 #CvWT

nm2 + n
WTWC
(nm)2

)
− WTWC

(nm)2

]

Since due to symmetry ∑Dv=1 #Tv = ∑Dv=0 #Tv = WT and ∑Dv=1 #Cv = ∑Dv=0
#Cv = WC:
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Cov(WTWC) = nm
[n− 1

m

(∑Dv=1 #Tv#Cv

n2 − 2
WTWC

n2m
+ m

WTWC

(nm)2

)
+

m− 1
n

(∑Dv=0 #Tv#Cv

m2 − 2
WTWC

nm2 + n
WTWC
(nm)2

)
− WTWC

(nm)2

]
=

n− 1
n ∑

Dv=1
#Tv#Cv +

m− 1
m ∑

Dv=0
#Tv#Cv −

(n− 1) + (m− 1) + 1
nm

WTWC

=
n− 1

n ∑
Dv=1

#Tv#Cv +
m− 1

m ∑
Dv=0

#Tv#Cv −
(m + n− 1)

nm
WTWC

From which it follows that Cov(WTWC) = CovB(WTWC) (see Equation (10)).
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