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1. Introduction

The Feynman ratchet is a celebrated example of a thermal engine [1]. Designed to
illustrate the second law of thermodynamics, it is capable to extract useful work from a
heat flow between two thermal reservoirs at different temperatures. The engine consists
of two rigidly connected parts, a ratchet and pawl at one end of a rotational axle, and
vanes at the other end. Each part is immersed in a surrounding gas, and collisions
between the gas particles and the device cause a random rotational motion. The shape
of the ratchet introduces a rotational asymmetry which leads to a systematic rotation
in a certain direction [2], and is driven by the exchange of heat from the hot to the cold
reservoir. Using this rotation for example to lift a weight against the force of gravity, the
whole setup can deliver useful work. On the basis of hand-waving arguments, Feynman
claims in his Lectures on Physics that the engine is capable of operating at Carnot
efficiency. It was realized later [3] that the efficiency inevitably has to be lower, as the
engine is at all times in simultaneous contact with the two heat reservoirs, resulting in
a heat leakage.

A microscopic analysis of the dynamics and energetics of the original engine has
proven to be notoriously difficult. In part this is caused by the unavoidable recollisions
of the gas particles with the engine giving rise to correlations. Various approaches have
been considered to circumvent these difficulties, for example by modeling the collisions
by Langevin noise (e.g. [3, 4]) or by considering a discrete setup, e.g. [5, 6]. An alternative
approach was developed by Van den Broeck and co-workers in a series of papers in which
they meticulously stripped down the engine to its basic constituents [7–11], see also
[12]. Considering ideal gases and convex engine parts (which replace the vanes, ratchet
and pawl) an exact microscopic description is derived which is centered around the
stochastic time evolution of the (angular) velocity of the device. Analytical expressions
for the average velocity are obtained in the form of a series expansion in m/M , the mass
ratio between gas particles and device. Even in such an ideal situation, the interplay
between the geometry and the collisions is intricate and it is not at all obvious in which
direction the engine will turn. A description of the energetics was obtained by adding a
torque [13, 14]. In those papers the work and heat flows were derived from expressions of
the average velocity in the linear regime and making use of the Onsager symmetry. The
purpose of the present work is to go beyond the linear regime by setting the heat and
work variables on the same footing as the angular velocity. Such an extended framework

https://doi.org/10.1088/1742-5468/acc64e 2
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allows to calculate the average (and higher moments of) work and heat up to any order
of the thermodynamic forces.

The paper is organized as follows. Section 2 introduces the microscopic Feynman
ratchet and describes the dynamics of the engine as the result of the external torque
and collisions with the gas particles. Section 3 extends this framework by incorporating
both work and heat variables. The main results are presented in section 4, clarifying
the influence of the geometry on the motion of the rotor. Finally, we briefly conclude
in section 5.

2. Microscopic Feynman ratchet

The original Feynman ratchet was constructed by using a ratchet and pawl on one end
of a rigid rotational axle and a set of vanes on the other end. Because of the spatial com-
plexity of such a construction, colliding gas particles are very likely to collide with the
various engine parts more than once. This introduces correlations, and hence a memory,
making analytical calculations overwhelmingly complicated. In order to eliminate such
recollisions, and in effect make individual collisions to occur independently, we reduce
the setup to its essence [7]. The purpose of the vanes is to allow transfer of energy from
the gas particles to the engine and vise versa. The ratchet and pawl set-up introduces
a spatial asymmetry which ensures a difference between clockwise/anti-clockwise rota-
tion of the engine. A conceptually simple construction with these properties is shown
in figure 1(a). It consists of two objects rigidly connected by the rotational axis. For
such a construction recollisions can be reduced strongly (so that they can be neglected
in a subsequent analysis) by requiring (i) the shape of each object to be convex and (ii)
the total mass M of the engine to be much larger than the mass m of the gas particles.
The first requirement is purely geometrical and ensures that a gas particle is directed
away from the object after colliding. The second requirement ensures that a particle,
again after collision, is not caught up by the engine. Each object is surrounded by an
ideal gas at a certain temperature and density. In the context of a heat engine one of
the surrounding ideal gases is labeled as the cold reservoir (sub- or superscript c in the
calculations below) and the other one is then the hot reservoir (sub- or superscript h).
A rotational asymmetry is implemented by shaping the objects asymmetrically with
respect to their points of rotation (see figure 1(b)), and by arranging them in an asym-
metric fashion with respect to each other. Finally the last ingredient is a weight mounted
on the rotational axle which exerts a constant torque τ .

By construction, the whole engine has only one degree of freedom, namely the rota-
tion around the connecting axle. Its dynamical state is thus fully described by the
instantaneous angular velocity ω. In time this velocity changes either due to random
collisions of gas particles with any of the two convex objects, or due to the action of
the external torque. The effect of the latter is deterministic and described by

I
dω

dt
= τ (1)

https://doi.org/10.1088/1742-5468/acc64e 3
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Figure 1. (a) Sketch of the system under consideration: the engine consists of two
convex objects rigidly connected by an axle, which serves as the fixed rotational
axis. Mounted along the axle is a weight, which is lifted as a result of the collisions
of the gas particles with the convex objects. (b) Each convex object is homogeneous
along the rotational axis, which allows for a two dimensional analysis. Shown is a
top view of the object, indicating the geometrical parameters necessary to describe
the collisions with the gas particles.

where I is the total moment of inertia around the rotational axis of the whole engine.
Quantifying the effect of collisions is more elaborate. Before we start let us set the

scene as follows. The surfaces of the convex objects and the gas particles are taken to be
smooth, so no tangential forces occur during collisions. As a consequence, collisions of
gas particles with the objects’ sides which are oriented perpendicular to the connecting
axle do not affect ω. Additionally we take the convex rotors to not vary in shape along
the direction of the rotational axis, as seen in figure 1(a). Hence collisions with the
engine can be analyzed in an effective two-dimensional setup. In order to calculate
the effect of a collision, we only need to consider a two-dimensional convex object as
sketched in figure 1(b). It is free to rotate around a fixed axis, which is orthogonal to
the plane of the object. In that plane we choose a fixed coordinate system with origin
located a the center of rotation such that the z -axis coincides with the rotational axis.
The orientation of the x and y axis is arbitrary. The instantaneous angular velocity is
therefore ω⃗ = ωe⃗z. The velocity V⃗ of an arbitrary point r⃗ = (x,y) on the surface of the

object is V⃗ = ω⃗× r⃗ = ω(−y,x). The orientation of the surface at a point r⃗ is specified
by the angle φ between the x -axis and the tangential unit vector t̂= (cosφ,sinφ). The
normal to the surface pointing outward is n̂= (sinφ,−cosφ).

We now consider a gas particle with mass m and (pre-collisional) speed v⃗ = (vx,vy)
as it hits the surface of one of the objects α ∈ {c,h} at position r⃗ = (x,y) which moves
with (pre-collisional) velocity ω(−y,x). For analyzing this collision we need to consider
the total mass M and total moment of inertia I around the rotational axis of the
engine as a whole, i.e. of both convex rotors taken together, because they are rigidly
connected. The post-collisional velocities (labeled with a prime ′ within this section) can
be calculated on the basis of the following conservation laws [14, 15]. First, taking the

https://doi.org/10.1088/1742-5468/acc64e 4
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collisions to occur instantaneously, so that the external torque does not affect ω during
the collision, the angular momentum along the z -axis is conserved,m(xv ′

y − yv ′
x)+ Iω ′ =

m(xvy − yvx)+ Iω. Second, as there are no tangential forces the tangential velocity of
the gas particle is conserved, v⃗ ′ · t̂= v⃗ · t̂. Third, total energy is conserved which, together
with the first two conditions, is equivalent to the condition that the normal component
of the relative velocity changes sign, (v⃗ ′− V⃗ ′) · n̂=−(v⃗− V⃗ ) · n̂. These three conditions
uniquely determine the post-collisional velocities,

ω ′ = ω+
2ε2gα(V⃗ − v⃗) · n̂
RI(1+ ε2g2α)

, (2a)

v ′
x = vx+

2sinφ(V⃗ − v⃗) · n̂
1+ ε2g2α

, v ′
y = vy −

2cosφ(V⃗ − v⃗) · n̂
1+ ε2g2α

(2b)

for which the following quantities are introduced:

ε=
√
m/M , (3a)

RI =
√
I/M , (3b)

gα ≡ gα(x,y,φ) =
x

RI
cosφ+

y

RI
sinφ . (3c)

Note that the first two parameters, the mass ratio ε and the radius of inertia RI ,
are global properties of the engine, whereas the third quantity gα contains information
on the geometry (see figure 1(b)) of the specific part of the engine which is hit by the
gas particle in one of the reservoirs and therefore carries the subscript α ∈ {c,h}.

Knowledge of the post-collisional velocities as a function of the pre-collisional ones
allows to derive the probability per unit time Kα(ω

′|ω)dω ′ for the angular velocity to
change from ω to a value in the infinitesimal interval [ω ′,ω ′+ dω ′] due to collisions of
gas particles with the convex object in reservoir α ∈ {c,h}:

Kα(ω
′|ω) =

ˆ
dSα

ˆ
dvx
ˆ

dvy ραϕα(vx,vy)Θ[(V⃗ − v⃗) · n̂]

×
∣∣∣(V⃗ − v⃗

)
· n̂
∣∣∣ δ[ω ′−ω− 2ε2gα(V⃗ − v⃗) · n̂

RI(1+ ε2g2α)

]
. (4)

This expression is explained as follows. First there is the integral over the object’s
one-dimensional surface Sα which adds up the contributions from all possible points
of impact. For each point of impact, the Dirac-δ function picks out those velocities
v⃗ of the incoming gas particles which lead to the required change ω ′−ω in angular
velocity. The Heaviside-function Θ ensures that the gas particle is moving toward the
rotating object. The likelihood for a collision with that specific velocity depends on the

https://doi.org/10.1088/1742-5468/acc64e 5
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properties of the ideal gas in the reservoir α ∈ {c,h} that enter the equation via the
particle density ρα and the Maxwell-Boltzmann distribution ϕα(vx,vy) at temperature
Tα. As this distribution is Gaussian the velocity integrals can be done explicitly and
one obtains the expression

Kα(ω
′|ω) = ρα

4

√
I2

2πmkBTα

ˆ
dSαΘ

[
ω ′−ω

gα

]
|ω ′−ω| (1+ ε2g2α)

2

ε2g2α

× exp
[
− I

2kBTα

(
ωεgα+

(ω ′−ω)(1+ ε2g2α)

2εgα

)2
]
. (5)

Finally, since the collisions in the hot and cold gas reservoir occur independently of each
other, the contributions from the two convex objects simply add up, such that the total
rate for transitions of the angular velocity from ω to ω ′ is Kc(ω

′|ω)+Kh(ω
′|ω).

Having established the transition rates, cf equation (5), together with the determ-
inistic evolution due to the torque given by equation (1), it is straightforward to write
down the Master equation describing the time evolution of the probability density
P (t;ω)

∂P (t;ω)

∂t
= − τ

I

∂P (t;ω)

∂ω
+

ˆ
dω ′ [Kc(ω|ω ′)+Kh(ω|ω ′)]P (t;ω ′)

−
ˆ

dω ′ [Kc(ω
′|ω)+Kh(ω

′|ω)]P (t;ω) . (6)

Instead of solving this equation for P (t;ω) directly, we use a different approach by
focusing on the moments of the distribution P (t;ω),

⟨ωn⟩ ≡
ˆ

dω ωnP (t;ω) . (7)

Using these moments, the master equation can be transformed to the equivalent
(infinite) set of evolution equations [12, 15]:

d
dt⟨ω

n⟩= nτ

I
⟨ωn−1⟩+

n∑
k=1

(
n

k

)〈
ωn−k

[
a
(c)
k (ω)+ a

(h)
k (ω)

]〉
. (8)

Here we introduced the so-called jump moments

a(α)n (ω)≡
ˆ

dω ′ (ω ′−ω)nKα(ω
′|ω) (9)

for the each of the reservoirs α ∈ {c,h}. The equations for the first two moments are

d
dt⟨ω⟩=

τ

I
+ ⟨a(c)1 (ω)⟩+ ⟨a(h)1 (ω)⟩ , (10a)

https://doi.org/10.1088/1742-5468/acc64e 6
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d
dt⟨ω

2⟩= 2τ

I
⟨ω⟩+2

〈
ω
[
a
(c)
1 (ω)+ a

(h)
1 (ω)

]〉
+ ⟨a(c)2 (ω)⟩+ ⟨a(h)2 (ω)⟩ . (10b)

Since there is no approximation involved in deriving (8), these set of equations is fully
equivalent to the master equation (6), and is equally difficult to solve analytically. We
thus solve (10a), (10b) only in the stationary limit, and resort to using an expansion in

the small parameter ε=
√
m/M . An outline of the procedure is given in the appendix.

Specifically, we find

⟨ω⟩= τ

γc + γh
+

τ 2

(γc + γh)2
mR3

I

(
⟨g3c⟩ρc + ⟨g3h⟩ρh

)
γc + γh

+
m

M
kB(Th −Tc)

RI

(
γh⟨g3c⟩ρc − γc⟨g3h⟩ρh

)
(γc + γh)2

+ . . . (11)

and

⟨ω2⟩= τ 2

(γc+ γh)
2 +

kB
I

γcTc + γhTh
γc + γh

+ . . . (12)

where we introduced the friction coefficients [14, 15]

γα = 2ρα

√
2mkBTα

π
R2

I⟨g2α⟩ . (13)

The symbol ⟨gkα⟩ (for k = 1,2,3, . . .) denotes a average of gkα, defined in equation (3c),
over the surface of the object in reservoir α3,

⟨gkα⟩=
ˆ

dSα g
k
α =

ˆ
dSα

(
x

RI
cosφ+

y

RI
sinφ

)k

. (14)

Figure 2 demonstrates that the theoretical prediction equation (11) for the average
angular momentum agrees remarkably well with molecular dynamics simulations of our
construction of the Feynman ratchet.

3. Energetics and thermodynamics: general framework

Having established the dynamics of the angular velocity ω, via the master equation
and corresponding transition rates, we now add the thermodynamic quantities into
the framework. In the context of the ratchet system from figure 1 these quantities are
heat Qc and Qh and work W. We define them as positive if delivered to the system.
All energy exchanges are mediated by the rotational movement of the engine, and the
conceptual simplicity makes a clean distinction between heat and work straightforward.

3 Note that this definition differs from the definition we used in [15] by a factor of unit length representing the total ‘surface’ of
the object.

https://doi.org/10.1088/1742-5468/acc64e 7
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Figure 2. Average rotational speed ⟨ω⟩ as a function of the torque τ : comparison
between theory, equation (11), and simulations. Simulations use an event-driven
molecular dynamics code with a fluctuating number of point-like gas particles: each
convex object is surrounded by a ‘simulation box’ containing an ideal gas, which
is maintained in equilibrium at specific density and temperature by extracting and
injecting gas particles through the box walls at the appropriate rates and velocities;
see [15] for more details. The error bars for the numerical data are smaller than the
symbol size. Inset: Side-view of the system, cf figure 1. The two objects are isosceles
right triangles, arranged in a mirror-symmetric way. The filled dot tags the common
axis of rotation (with RI =

√
2/3), the two patterned dots represent the center of

masses of the two triangles. The system parameters are:M =20,m =1, ρc = 0.0025,
Tc = 1, ρh = 0.0025, Th = 2, kB = 1. Per data point, the simulations tracked about
5.2× 108 collisions in the cold reservoir, and about 7.3× 108 in the hot reservoir.

At a momentary rotational speed ω, the rate of work (power) delivered by the external
torque is given by

dW
dt = τω . (15)

The exchange of heat with the reservoirs is due to the instantaneous collisions of the
engine with the gas particle. As each collision is elastic, the kinetic energy change of the
imparting gas particle is fully transferred to the rotational energy of the engine. Hence,
upon a collision with a gas particle in reservoir α (∈ {c,h}) that changes the angular
velocity from ω to ω ′, the amount of heat received from the reservoir is given by the
corresponding change of kinetic energy

∆Qα =
I

2

[
(ω ′)2−ω2

]
. (16)

https://doi.org/10.1088/1742-5468/acc64e 8
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It is clear from these definitions that, while work and heat are fluctuating random
variables as they depend on ω, energy conservation is fulfilled at the level of individual
trajectories. Our main goal is to analyze the thermodynamic properties of the engine
by calculating the lowest order moments ⟨Qc⟩, ⟨Qh⟩, and ⟨W ⟩.

The first step is to incorporate the new quantities as extra variables into the Master
equation. The full state is then given by the combined set of variables ω, W and Qα,
where α ∈ {c,h} can be chosen to represent either of the reservoirs. The time evolution
of the probability density P (t;ω,W,Qα) is

∂P (t;ω,W,Qα)

∂t
=−τ

I

∂P (t;ω,W,Qα)

∂ω
− τω

∂P (t;ω,W,Qα)

∂W

+

ˆ
dω ′Kα(ω|ω ′)P (t;ω ′,W,Qα−∆Qα)

+

ˆ
dω ′Kᾱ(ω|ω ′)P (t;ω ′,W,Qα)

−
ˆ

dω ′ [Kc(ω
′|ω)+Kh(ω

′|ω)]P (t;ω,W,Qα) . (17)

Compared to equation (6) there is an extra term related to the (deterministic) evolution
of W. Moreover, upon a collision one has to keep track of the reservoir, i.e. a collision in
reservoir α induces a corresponding change of Qα, while collisions in the other reservoir
(denoted by ᾱ) only change ω. Integrating out the W and Qα dependence leads to
equation (6).

As before, instead of solving the master equation, we turn our attention directly to
the moments. The time-evolution of any moment of the quantities of interest ω, W and
Qα can be calculated according to

⟨f(ω,W,Qα)⟩=
ˆ

dωdWdQα f(ω,W,Qα)P (t;ω,W,Qα) , (18)

where the function f denotes an arbitrary combination of its arguments. The evolution
equations for the lowest order moments of work and heat are then

d
dt⟨W ⟩= τ⟨ω⟩ (19)

and

d
dt⟨Qα⟩= I⟨ωa(α)1 (ω)⟩+ I

2
⟨a(α)2 (ω)⟩ . (20)

A straightforward calculation yields

d
dt⟨W +Qh +Qc⟩=

d
dt

I⟨ω2⟩
2

, (21)

which simply expresses conservation of energy. One notices that the equation for the
heat depends only on the jump moments of ω. This is a direct consequence of the fact

https://doi.org/10.1088/1742-5468/acc64e 9
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that the stochasticity of the heat Qα is determined solely by the stochasticity of ω.
The expression in equation (20) is obtained from the master equation, equation (17),
by multiplying it with Qα and integrating over all variables ω, Qα, W. This reduces
the equation to d⟨Qα⟩/dt=

´
dωdω ′∆QαKα(ω

′|ω)P (t;ω), where ∆Qα depends on both
ω and ω ′ according to equation (16). In order to express this integral in terms of the
jump moments, equation (9), we rewrite ∆Qα in powers of (ω ′−ω), i.e. (ω ′)2−ω2 =
(ω ′−ω)2+2ω(ω ′−ω); from this, equation (20) directly follows.

4. Energetics and thermodynamics: results and discussion

The explicit expressions for work and heat quickly become unwieldy and, apart from
the already introduced ε expansion, we consider an additional expansion in terms of
the so-called thermodynamics forces. These forces appear naturally when looking at the
entropy production. From now on we focus on the stationary operation of the machine
for which ⟨Ẇ + Q̇h + Q̇c⟩= 0, where the dot denotes the time-derivative.

The entropy production rate in the reservoirs is given by the combined heat
dissipation

⟨Ṡ⟩=−⟨Q̇h⟩
Th

− ⟨Q̇c⟩
Tc

. (22)

Eliminating one of the heat flows in favor of the work (cf conservation of energy) and

noting that ⟨Ẇ ⟩= τ⟨ω⟩ allows to reformulate this entropy production into the following
two alternatives

⟨Ṡ⟩= ⟨ω⟩ τ
Th

−⟨Q̇c⟩
(

1

Tc
− 1

Th

)
= ⟨ω⟩ τ

Tc
+ ⟨Q̇h⟩

(
1

Tc
− 1

Th

)
. (23)

There is a priori no preference to choose one over the other, and so we choose to
symmetrize by taking the arithmetic mean

⟨Ṡ⟩= ⟨ω⟩τ
2

(
1

Th
+

1

Tc

)
+

⟨Q̇h⟩− ⟨Q̇c⟩
2

(
1

Tc
− 1

Th

)
. (24)

This expression is easily cast into the familiar bilinear form

⟨Ṡ⟩= J1X1+ J2X2 (25)

after identifying the two thermodynamic forces

X1 =
τ

2

(
1

Th
+

1

Tc

)
, X2 =

1

Tc
− 1

Th
, (26)

and fluxes

J1 = ⟨ω⟩ , J2 =
⟨Q̇h⟩− ⟨Q̇c⟩

2
. (27)

https://doi.org/10.1088/1742-5468/acc64e 10
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As both fluxes depend on the thermodynamic forces, a series expansion leads in lowest
order to the well-known Onsager coefficients

J1 = L11X1+L12X2 , (28)

J2 = L21X1+L22X2 . (29)

The off-diagonal elements fulfil the Onsager symmetry L12 = L21.
Introducing the reference temperature

1

T
=

1

2

(
1

Th
+

1

Tc

)
(30)

allows to substitute τ , Th and Tc as

τ =X1T ,
1

Th
=

1

T
− X2

2
,

1

Tc
=

1

T
+

X2

2
. (31)

Finally we are in a position to give the expressions for work and heat in terms of the
relevant thermodynamic forces. These are obtained by a series expansion in both ε and
the thermodynamic forces X 1 and X 2 (see the appendix). For the work we find

⟨Ẇ ⟩= 1

vmR2
I

T 2X2
1

⟨g2c⟩ρc + ⟨g2h⟩ρh

+
kBT

vI
ρcρh

RI

(
⟨g3c⟩⟨g2h⟩− ⟨g2c⟩⟨g3h⟩

)
(⟨g2c⟩ρc + ⟨g2h⟩ρh)

2 T 2X1X2+ . . . (32a)

The expressions for the heat are

⟨Q̇c⟩= − kBT

vI
ρcρh

RI(⟨g3c⟩⟨g2h⟩− ⟨g2c⟩⟨g3h⟩)
(⟨g2c⟩ρc + ⟨g2h⟩ρh)

2 TX1

− m

M
vkBT

⟨g2c⟩⟨g2h⟩ρcρh
⟨g2c⟩ρc + ⟨g2h⟩ρh

TX2

+
kBT

4vI
ρcρhT

2X1X2

×
RI

[
⟨g2c⟩ρc

(
19⟨g2c⟩⟨g3h⟩− 5⟨g2h⟩⟨g3c⟩

)
−⟨g2h⟩ρh

(
⟨g2c⟩⟨g3h⟩− 15⟨g2h⟩⟨g3c⟩

)]
(⟨g2c⟩ρc + ⟨g2h⟩ρh)

3

− 1

vmR2
I

⟨g2c⟩ρc

(⟨g2c⟩ρc + ⟨g2h⟩ρh)
2T

2X2
1

− vkBT

4

m

M

⟨g2c⟩⟨g2h⟩ρcρh
(
⟨g2c⟩ρc −⟨g2h⟩ρh

)
(⟨g2c⟩ρc + ⟨g2h⟩ρh)

2 T 2X2
2 + . . . , (32b)
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and

⟨Q̇h⟩=
kBT

vI
ρcρh

RI(⟨g3c⟩⟨g2h⟩− ⟨g2c⟩⟨g3h⟩)
(⟨g2c⟩ρc + ⟨g2h⟩ρh)

2 TX1

+
m

M
vkBT

⟨g2c⟩⟨g2h⟩ρcρh
⟨g2c⟩ρc + ⟨g2h⟩ρh

TX2

− kBT

4vI
ρcρhT

2X1X2

×
RI

[
⟨g2c⟩ρc

(
15⟨g2c⟩⟨g3h⟩− ⟨g2h⟩⟨g3c⟩

)
−⟨g2h⟩ρh

(
5⟨g2c⟩⟨g3h⟩− 19⟨g2h⟩⟨g3c⟩

)]
(⟨g2c⟩ρc + ⟨g2h⟩ρh)

3

− 1

vmR2
I

⟨g2h⟩ρh

(⟨g2c⟩ρc + ⟨g2h⟩ρh)
2T

2X2
1

+
vkBT

4

m

M

⟨g2c⟩⟨g2h⟩ρcρh
(
⟨g2c⟩ρc −⟨g2h⟩ρh

)
(⟨g2c⟩ρc + ⟨g2h⟩ρh)

2 T 2X2
2 + . . . , (32c)

where we defined the thermal velocity

v =

√
8kBT

πm
. (33)

Conservation of energy ⟨Ẇ ⟩+ ⟨Q̇h⟩+ ⟨Q̇c⟩= 0 follows immediately upon inspection.
The above expressions are the central result of this work. They express the first

moments of thermodynamic quantities in the form of series expansion in both ε and the
thermodynamic forces X 1 and X 2, and incorporate in all detail the geometry of each
part of the engine. Figures 3 and 4 compare these results, equations (32a)–(32c), with
molecular dynamics simulations of the ratchet construction. The approach taken here
allows to go well beyond the thermodynamical linear regime. Although the algebraic
calculations quickly become tedious and cumbersome, they are straightforward and
easily achievable using a symbolic computation software tool.

Our approach extends the findings of [14]. In that work the authors considered an
identical setup as shown in figure 1 with the purpose to construct a chiral heat pump.
In such a setup the external torque is used to drive a heat flow from the cold to the
hot reservoir. The analysis of the device was done in the linear regime, making use
of Onsager symmetry to complete the off-diagonal elements, without deriving them
independently. However, as explained in [14], the external torque not only induces a
cooling flux, but also frictional heating in each reservoir. Since it is proportional to
⟨ω⟩τ , this frictional heating in fact is of second order in the torque, hence ∝X2

1 . A
consistent in-depth analysis of the chiral pump inevitably must go beyond the linear
regime. Our explicit results beyond the linear regime confirm the heuristic approach
presented in [14], but also reveal the appearance of additional non-linear terms in X1X2

and X2
2 .

https://doi.org/10.1088/1742-5468/acc64e 12



Energetics of a microscopic Feynman ratchet

J.S
tat.

M
ech.(2023)

043202

Figure 3. Average rate of work as a function of the torque τ : comparison between
theory and simulations. The error bars for the numerical data are smaller than
the symbol size. The system, and the simulation setup, are identical to the one in
figure 2. As theoretical predictions we show ⟨Ẇ ⟩ from equation (32a) (expressed
as a function of τ using X1 = τ/T , see equation (31)), and τ⟨ω⟩ with ⟨ω⟩ given in
equation (11). Recall that equation (32a) is the second-order expansion of τ⟨ω⟩ in
the thermodynamic forces X 1, X 2.

As an application of our results, we focus on the efficiency of the microscopic Feyn-
man ratchet. In the context of a heat engine, this efficiency is defined as the ratio of
work over input heat,

η =
−⟨Ẇ ⟩
⟨Q̇h⟩

. (34)

To see how this efficiency behaves upon varying the forces we write ⟨Ẇ ⟩= aX2
1 + bX1X2

and ⟨Q̇h⟩= cX1+ dX2, focusing for definiteness on the lowest orders where a, b, c and

d can be read of from equations (32a) and (32c). It is clear that ⟨Ẇ ⟩ equals zero for
either X1 = 0 (no external torque, and consequently no work) or X∗

1 =−(b/a)X2, also
known as the stopping force. In this case the torque exactly cancels the average angular
velocity such that ⟨ω⟩= 0. However, even without net rotation when ⟨Ẇ ⟩= 0 and hence

⟨Ṡ⟩= ⟨Q̇h⟩X2, there is still a steady entropy production given by ⟨Ṡ⟩= (−bc/a+ d)X2
2 .

Only when 0⩽X1 ⩽X∗
1 does the setup behave as a heat engine. Keeping X 2 fixed, it is

straightforward to prove that the delivered work is maximal when X1 =X∗
1/2 (see also

[16–18]). Setting X1 = λX∗
1 we find for the efficiency:

η =
(1−λ)λ

A−λ
TX2 (35)
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Figure 4. Average rate of heat as a function of the torque τ : comparison between
theory equations (32b), (32c) (expressed as a function of τ using X1 = τ/T , see
equation (31)) and simulations. The error bars for the numerical data are smaller
than the symbol size. The system, and the simulation setup, are identical to the
one in figure 2. We note that the average entropy production rate in the reservoirs,
equation (22), corresponding to the shown heat rates is essentially constant; it
varies by about 1% around the value ⟨Ṡ⟩= 0.000124 within the displayed range of
external torques.

with

A=
ad

bc
=

M

m

8⟨g2c⟩⟨g2h⟩
[
⟨g2c⟩ρc + ⟨g2h⟩ρh

]2
πρcρh [⟨g3c⟩⟨g2h⟩− ⟨g2c⟩⟨g3h⟩]

2 . (36)

Notice the presence of the factor M/m= 1/ε2 implying A ≫ λ. Expressing TX 2 in
terms of the Carnot efficiency ηC yields

TX2 =
2ηC

2− ηC
≈ ηC , with ηC = 1− Tc

Th
, (37)

with the last approximation being valid for small temperature differences. We can con-
clude that the efficiency of the Feynman ratchet evaluated in the limit ε≪ 1 is just
a small fraction of the Carnot efficiency. The reason we find an efficiency well below
Carnot is related to (i) heat leakage and (ii) our expansion in the mass ratio m/M . The
expressions for the heat rates, equations (32b) and (32c), have identical linear terms
with opposite signs. Hence, these terms represent heat transfer from the hot to the
cold reservoir, directly contributing to the heat leakage. Only differences at nonlinear
order quantify the average work rate. In addition to its expansion in the thermodynamic
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forces this average work rate, being proportional to ⟨ω⟩, furthermore scales with m/M
(see the third term in equation (11) and also [14]).

5. Conclusion

A unified framework is developed which treats the dynamical and thermodynamic vari-
ables of the microscopic Feynman ratchet on an equal footing. This allows for a detailed
and systematic investigation of the thermodynamic performance. Explicit expressions
are given for the lowest order moments of all the variables in the form of a series expan-
sion in both m/M and the thermodynamic forces. As a result it becomes possible to
investigate the engine’s performance in a systematic way beyond the linear regime.
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Appendix. ε-expansion

We now outline the ε-expansion that allows to obtain stationary solutions for the evol-
ution equation (8) of the angular velocity moments ⟨ωn⟩. The approach followed here
is a generalization of the one presented in [15] to include (i) two reservoirs at different
temperatures and (ii) the external torque τ .

To start we recall the collision rule (2a)

ω ′ = ω+
2ε2gα(V⃗ − v⃗) · n̂
RI(1+ ε2g2α)

(A1)

which shows that change in velocity ω ′−ω due to collisions is of order ε2. Hence for
small ε the transition rates Kα(ω

′|ω) vanish rapidly for increasing ω ′−ω. Apart from
collisions, ω also changes due to the torque. In order for both these changes to be of
order ε2 we rescale the torque

τ = ε2Γ. (A2)

Finally, we note that M, through the angular momentum I, also appears implicitly
in the velocity ω, as anticipated from the equipartition principle I⟨ω2⟩ ∝ kBT where
T is the reference temperature defined in equation (30). Therefore, we switch to the
dimensionless quantity Ω, defined as:

Ω :=

√
I

kBT
ω . (A3)
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In terms of Ω, equation (8) becomes

d
dt⟨Ω

n⟩= nε2F ⟨Ωn−1⟩+
n∑

k=1

(
n

k

)〈
Ωn−k

[
A

(c)
k (Ω)+A

(h)
k (Ω)

]〉
, (A4)

with F = Γ/
√
IkBT and A

(α)
n (Ω) the rescaled jump moments whose explicit expression

reads:

A(α)
n (Ω) = ρα

√
kBTα

2πm

ˆ
dSα

(√
2Tα

T

2εgα
1+ ε2g2α

)n

e−
T

2Tα
(Ωεgα)2

×

[
Γ
(
1+

n

2

)
Φ

(
1+

n

2
;
1

2
;
TΩ2ε2g2α

2Tα

)

−
√

2T

Tα
ΩεgαΓ

(
3+n

2

)
Φ

(
3+n

2
;
3

2
;
TΩ2ε2g2α

2Tα

)]
. (A5)

The function Φ(a;b;z) is Kummer’s confluent hypergeometric function [19] defined as
the series

Φ(a;b;z) =
∞∑
n=0

(a)n
(b)n

zn

n!
= 1+

a

b
z+

a(a+1)

b(b+1)

z2

2!
+ . . . (A6)

where (a)n is the Pochhammer symbol

(a)0 = 1 and (a)n = a(a+1)(a+2) . . .(a+n− 1) for n= 1,2,3, . . . . (A7)

Expanding the rescaled jump moments in ε and inserting the result into (A4) leads to
an infinite set of coupled linear equations for the moments ⟨Ωn⟩ of the following form

d
dt⟨Ω

n⟩= cn0+ cn1⟨Ω⟩+ cn2⟨Ω2⟩+ cn3⟨Ω3⟩+ . . . , (A8)

with coefficients cnm depending on the various parameters of the system, including
for example ε, densities, temperatures, geometries etc. A time-independent solution,
d
dt⟨Ω

n⟩= 0, for this infinite set of coupled equations for the moments is obtained by
formally writing each moment in (A8) as a series expansion in ε,

⟨Ωn⟩= α
(n)
0 +α

(n)
1 ε+α

(n)
2 ε2+ . . . , (A9)

and solving for the coefficients up to the desired order in ε. Transforming back to the
original variables ω and τ , plugging in ε=

√
m/M and using the definition for gkα given

in equation (14) leads to the expressions equations (11) and (12).

Once the moments are obtained, the calculation of ⟨Ẇ ⟩, ⟨Q̇c⟩ and ⟨Q̇h⟩ as given

in equations (32a)–(32c) follows directly. For ⟨Ẇ ⟩= τ⟨ω⟩ it suffices to substitute ⟨ω⟩
and further expand in the thermodynamic forces. The expressions for ⟨Q̇c⟩ and ⟨Q̇h⟩
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are obtained from equation (20) by first expanding the RHS in ε, substituting for the
moments, and then again a final expansion in the thermodynamic forces.
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