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Abstract

With urinary proteomics profiling (UPP) as exemplary omics technology, this

review describes a workflow for the analysis of omics data in large study

populations. The proposed workflow includes: (i) planning omics studies and

sample size considerations; (ii) preparing the data for analysis; (iii) preprocessing

the UPP data; (iv) the basic statistical steps required for data curation; (v) the

selection of covariables; (vi) relating continuously distributed or categorical

outcomes to a series of single markers (e.g., sequenced urinary peptide fragments

identifying the parental proteins); (vii) showing the added diagnostic or prognostic

value of the UPP markers over and beyond classical risk factors, and (viii) pathway

analysis to identify targets for personalized intervention in disease prevention or

treatment. Additionally, two short sections respectively address multiomics studies

and machine learning. In conclusion, the analysis of adverse health outcomes in

relation to omics biomarkers rests on the same statistical principle as any other data

collected in large population or patient cohorts. The large number of biomarkers,

which have to be considered simultaneously requires planning ahead how the

study database will be structured and curated, imported in statistical software

packages, analysis results will be triaged for clinical relevance, and presented.
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1 | INTRODUCTION

Epidemiology is the science that studies the patterns,
causes, and effects of health and disease in populations
or patients. The fundamental, ethical, and scientific

principles that traditionally inspired epidemiology was to
acquire new scientific information that can be used to
maintain, enhance and promote people's health. Over the
past 20 years, scientists with a wide range of research
interests embraced the wave of rapidly evolving novel
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technologies. They are increasingly making use of the
opportunities offered by high‐throughput omics (genet-
ics, epigenetics, transcriptomics, proteomics, metabolo-
mics, etc.), deep DNA sequencing, greater access to
public large databases (genes, proteins, etc.), pooled
resources of longitudinal observations in a variety of
populations and patients, high‐speed information ex-
change via the internet, interaction with basic scientists
in multidisciplinary teams, and natural experiments (e.g.,
Mendelian randomization).

This review is primarily targeting an audience
consisting of physicians, trialists, and scientists of all
walks of clinical science with a good working knowledge
of applied statistics, but without professional statistical
expertise. These researchers are often overwhelmed by
the complexity of including omics data in the design,
execution, and analyses of their studies. This review
describes how omics data can be analyzed, using the
urinary proteomic profiling (UPP) as a working example,
given the experience of the authors in this particular field
and the relatively simple statistical concepts allowing its
evaluation. In addition, a PMC search was conducted
with as search terms in the title or abstract of
publications “statistical methods” AND omics. This
search generated a list of 140 articles published from
2007 until 2023. After browsing the abstracts, 30 relevant
papers were retained and read in detail. Additionally,
seven seminal articles were identified from the reference
lists of the initial 30 articles. Thus, moving beyond the
UPP, the literature search allowed adding references
throughout this review from omics fields other than UPP.
Given the emerging approaches described in the recent
literature, two short sections respectively dealing with
the analysis of multiomics data and artificial intelligence/
machine learning (ML), are broadening the scope of this
review. The analysis of multiomics data fits in the
workflow described in the article from preparing
preprocessing of the omics data up to the evaluation of
the added diagnostic or prognostic accuracy and identifi-
cation of molecular mechanisms (Tables 1 and 2) and
addresses the issue how to handle highly correlated data.
In contrast, ML is a completely different approach,
however, with a similar finality as the traditional
statistical methods, that is, the identification and valida-
tion of biomarkers as guide to a personalized approach to
prevention and treatment of disease.

2 | URINARY PROTEOMICS

In contrast to tissue and blood samples, urine can be
easily, repeatedly, and noninvasively collected. A 10‐mL
midmorning urine sample is all what is needed. The UPP

contains over 20,000 peptide fragments, which can be
detected by capillary electrophoresis coupled with mass
spectrometry (CE‐MS). Each peptide signal is character-
ized by its migration time and its spectrometric mass
(Figure 1). The CE‐MS procedure involves normalization
of the migration time and peak spectrometric intensity by
means of internal polypeptide standards ran along with
the samples. These peptides result from normal biologi-
cal processes and are unaffected by any disease studied so
far (Good et al., 2010; Mavrogeorgis et al., 2021; Mischak
& Schanstra, 2011). By sequencing the urinary peptide
fragments, currently over 5000 parental proteins were
identified, which reveal the pathogenic molecular
processes, explaining why UPP analyses often focus on
peptides with known amino‐acid chain (Figure 1).

To address the heterogeneity and complexity of
diseases and to increase the diagnostic and prognostic
information, single urinary peptides can be combined
into multidimensional disease‐specific classifiers, such as
HF1 for a symptomatic left ventricular diastolic dys-
function (Zhang, Ravassa, et al., 2017; Zhang et al., 2019)
or CKD273 for imminent decline of glomerular filtration
to below 60mL/min/1.73m2 (Tofte et al., 2020). Com-
pared with single biomarkers, such as for instance
circulating atrial peptides in the case of left ventricular
dysfunction (Zhang, Ravassa, et al., 2017; Zhang et al.,
2019) or biomarkers associated with chronic kidney
disease (Wasung et al., 2015), multidimensional UPP
classifiers not only increase precision but also have less
inherent variability.

3 | STATISTICAL WORKFLOW

The workflow to analyze the UPP described in the
following sections (Table 2) has been applied in multiple
peer‐reviewed research articles published in the literature
dealing with adverse cardiovascular (Htun et al., 2017;
Zhang et al., 2015) or noncardiovascular (Staessen
et al., 2022; Yang et al., 2022) health outcomes, left
ventricular dysfunction (He, Melgarejo, et al., 2021; Zhang
et al., 2016, 2019; Zhang, Ravassa, et al., 2017) or chronic
kidney disease (Pontillo et al., 2017; Tofte et al., 2020).
However, based on the PMC review, references from
omics fields other than UPP provide accessible links to
further reading.

3.1 | Preparing for data collection

Previous publications described in detail the scientific
requirements for setting up and reporting on proteomic
biomarker data (Latosinska et al., 2019). Sample size
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determination is a fundamental step in the design of
experiments (Mischak et al., 2010; Sui & Zheng, 2016).
Over and beyond statistical considerations, sample size of
any study depends on the hypothesis to be tested, the
presumed effect size of an intervention or the presumed
association size in an observational study, the variance
and covariance matrices of the variables in an analysis
data set. In addition, sample size calculations must be
informed by prior knowledge and by the intended
statistical methods that will be applied for analysis.

Methods for sample size determination are abundant
for univariable analysis methods, but scarce in the
multivariable case. Several publications provide guidance
in computing sample size (Saccenti & Timmerman,
2016; Sui & Zheng, 2016) and are implemented in
most statistical packages, such R (https://rpubs.com/
mbounthavong/sample_size_power_analysis_R) or SAS
(Castelloe & Cybrynski, 2017). By definition, omics are
multivariable in nature and are commonly investigated
using multivariable statistical methods, such as principal
component analysis (PCA) and partial least squares
analysis (PLS‐A) for continuously distributed outcomes

or partial least squares discriminant analysis (PLS‐DA) for
categorical outcomes. No simple approaches to sample
size determination exist for PLS‐A and PLS‐DA (Saccenti
& Timmerman, 2016). Models for the univariable case can
be extended to a multivariable design, when multiple
omics signals are measured in one or more groups. For the
two‐group case the Hotelling T2 test (i.e., the multivariate
extension of the classical t‐test) can be used; multigroup
cases and complex experimental designs involving
repeated measures or different experimental factors can
be addressed by multivariable analysis of variance, or
variants thereof (Saccenti & Timmerman, 2016).

A crucial consideration related to sample size is that
the results of any omics study must be confirmed in at
least one independent sample set (Mischak et al., 2010).
Bootstrapping or permutation strategies cannot confi-
dently replace validation of the test results in one or more
independent replication data sets. The sampling and
characteristics of the validation population should be
reported, and the analysis should be symmetrical in
the test and validation data sets; any deviations should be
reported (Table 1). The concept of having a test/discovery

FIGURE 1 Urinary proteomics by application of capillary electrophoresis coupled with mass spectrometry. Low molecular weight
peptides are first separated by capillary electrophoresis (A). Normalized molecular mass (y‐axis) is plotted against normalized capillary
electrophoresis migration time (x‐axis) in a three‐dimensional graph representing 230 patients with chronic kidney disease and 379 healthy
controls representation (A). (B) Differential signal intensity of 273 urinary peptides separating patients with chronic kidney disease and
healthy controls. By sequencing the urinary peptide fragments, the parental proteins can be identified (C). The multidimensional classifier
CKD273 includes fragments of multiple parent proteins, which are involved in the pathogenic process (D). Reproduced with permission
from Good et al. (2010). [Color figure can be viewed at wileyonlinelibrary.com]
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data set and one or more replication data sets is
applicable to all omics fields. Thinking before starting
might also involve reading the required quality standards
at the stage of submitting omics results for publication
(Mischak et al., 2010).

3.2 | Preprocessing of the omics data

Preprocessing is a crucial step in analysis of any omics
data. Preprocessing refers to preparing the omics data set
for statistical analysis. However, each type of omics data
has specific approaches to preprocessing, which is also
dependent on the techniques applied to quantify markers
in an omics data array (Leek et al., 2010; Voillet
et al., 2016). For instance, in UPP, proteomic or
metabolomic data sets, a strategy has to address signals
below the detection limit of the applied technology, while

in genetic data sets missing genotypes might have to be
imputed based on known sequence of the human
genome and the recombination rate of the loci of interest
(Yang et al., 2022). All omics approaches should include
a stringent quality control policy ensuring that the data
are reproducible.

There is a need to incorporate adjustment for batch
effects as a standard step in the analysis of high‐
throughput data analysis along with normalization,
exploratory analyses, and final significance calculation
(Leek et al., 2010). Batch effects can for instance occur,
when mass spectrometers are replaced with devices with
higher precision. Batch effects, when occurring in large
studies with a single omics technology, can be corrected
for by using statistical methods, such as simply centering
the data from each batch separately before combination
or other more complex approaches (Leek et al., 2010). In
terms of data integration in multiomics studies, the ideal

TABLE 1 Requirements for scientific reporting of proteomic biomarker data.

Describe and justify the clinical question,
outcomes, and selection of subjects

Describe the clinical question and justify why it is of interest; describe what
outcomes are assessed and comment on their clinical validity, potential for
misclassification, and verification bias, if pertinent; clarify what the eligibility
criteria for the selected study populations are and justify specific choices.

Describe the assessed subjects Provide demographic information on ethnicity, sex, age, and concomitant
medications at a minimum, and all relevant disease‐related and clinical
variables.

Describe sampling Provide an accurate description of the sampling conditions and procedures
(including the collection process and any manipulation of the sample before
storage, the time between sampling and storage, storage conditions, and the
addition of any protease inhibitors and/or preservatives). Justify the sampling
choices according to the literature or supporting experimental data.

Describe experimental methodology The procedure, as well as the observed standard deviation of technical
specifications related to the procedure, should be given. To attribute the same
identity to a certain feature in several independent analyses, accepted
deviations of mass and other parameters (retention time, migration, position on
gel, etc.) must be reported. Also, the observed deviation in identifying
parameters and (relative) abundance, when the same sample is analyzed
repeatedly, must be reported.

Describe the statistical evaluation Provide details on determination of sample size, statistical analysis plan (for
appraising calibration, discrimination, and/or reclassification), any
consideration or adjustment for covariates (including treatment, whenever
pertinent), methods for adjustment for multiplicity, and parameters used in
complex machine‐learning approaches, whenever pertinent. Clarify which
analyses are predefined and which are post hoc.

Validate results The results must be confirmed in at least one independent sample set. The
sampling and characteristics of the validation population should be reported,
and the analysis should be symmetrical in the test and validation data sets; any
deviations should be reported.

Acknowledge limitations No study is perfect; limitations and their potential impact on the results should be
clearly acknowledged.

Take responsibility The contributions of each author should be clearly stated.
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situation is to have samples originating from the same
biological source material. For instance, a piece of tissue
may be cut into two sections, and one is used for
metabolomics analysis, whilst the other is used to
extract RNA.

In UPP and other omics, the handling of non‐
detectable or missing data is a key issue to be addressed.
As mentioned earlier, the UPP includes over 20,000
peptides, of which 25% have been sequenced. UPP
analyses often focus on sequenced peptides, because
these peptides allow identification of the parent proteins
from which they are derived. However, these peptides are
seldom detectable in all study participants. There are
several ways to deal with explanatory (omics) variables
below the measurement threshold (Schisterman et al.,
2006; Shaori & Dubé, 2018). In previously published
papers relating adverse health outcomes to the UPP, one

requirement in the analysis was that sequenced urinary
peptides should have detectable signal in at least 30% of
participants (Martens et al., 2021) or in a more
conservative approaches in at least 70% (Htun et al., 2017)
or even 95% (Zhang et al., 2016) of study participants.
Undetectable peptides were set at the distribution
minimum (Lazar et al., 2016) or zero (He, Mischak,
et al., 2021) before rank normalization. However, if a
logarithmic transformation of an omics data set is being
considered, missing values cannot be set to zero. In
multiomics studies more complex imputation methods
are necessary. A multifactor analysis (MFA) approach
has been proposed and validated (Voillet et al., 2016).
MFA compares and integrates multiple layers of infor-
mation. Multiple imputation involves filling the missing
rows with plausible values, resulting in M‐completed
data sets. MFA is then applied to each completed data set

TABLE 2 Schematic representation of the statistical workflow for the molecular analyses.

Analysis step Methodology and statistical approach

Preprocessing of the omics data Preprocessing is required to removed biases in the omics data for instance inherent to the
technological platform used or originating from batch effects

Preparing for analysis Checking distributions (Shapiro–Wilk or Kolmogorov–Smirnov test), logarithmic transformation,
rank normalization, removal of outliers

Basic statistical approaches Large‐sample z test, t‐test or ANOVA (means); χ2 statistic or Fisher exact test (proportion); log‐rank
test (survival functions); analyses across quantiles of biomarkers; scatterplots; standardization of
rates

Identification of covariables Stepwise linear or stepwise logistic regression

Analyses with continuous outcome

Single urinary peptides, one at a time

Cross‐sectional analyses Multivariable‐adjusted linear regression, correction for multiple testing

Longitudinal analyses Multivariable‐adjusted linear regression (including adjustment for the baseline value of the outcome,
if available) with correction for multiple testing

All markers

Cross‐sectional analyses Partial least squares analysis

Longitudinal analyses Partial least squares analysis

Analyses with categorical outcome

Single markers, one at a time

Cross‐sectional analyses Multivariable‐adjusted logistic regression with correction for multiple testing

Longitudinal analyses Multivariable‐adjusted Cox regression with correction for multiple testing

All markers

Cross‐sectional analyses Partial least squares discriminant analysis

Longitudinal analyses Partial least squares discriminant analysis

Prediction of adverse outcomes Integrated discrimination improvement, net reclassification improvement, optimized thresholds,
2 × 2 classification tables, log‐rank test, receiver operating characteristic curve, c‐statistic

Molecular pathways PANTHER, DAVID, IPA, Cytoscape, Proteasix, …

Abbreviations: ANOVA, analysis of variance.
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to produce M different configurations (the matrices
of coordinates of individuals). Finally, the M configura-
tions are combined to yield a single consensus solution
(Voillet et al., 2016).

3.3 | Preparing for analysis

For a long time, the analysis of omics data has been
dominated by parametric statistics due to their theoreti-
cal soundness, relative ease of use, computational
efficiency, and intuitive interpretation (Manduchi et al.,
2022). Preparing for analysis refers to checking whether
the assumptions underlying parametric statistics are
fulfilled. Before statistical analysis, the distribution of
continuous variables should be checked for deviation
from normality. Most, if not all statistical software
packages (e.g., MedCalc, SAS, SPSS, Stata, R, etc.),
include the Shapiro–Wilk and Kolmogorov–Smirnov test
to check whether the study sample has been generated
from a normal distribution. The Shapiro–Wilk test is
more appropriate for sample sizes less than 50, although
it can also handle larger sample sizes, while
Kolmogorov–Smirnov test is applicable when the sample
size is 50 or larger. For both tests, the null hypothesis
states that data are taken from normal distribution, so
that a significant test statistic rejects this assumption.

If the statistical methods applied for data analysis
assume normally distributed variables, such variables
have to be normalized by a logarithmic or other
transformation. This is not necessary if nonparametric
statistics are used, which often rely on ranking rather
than numerical values. Given the normalization applied
during the CE‐MS procedure, the signals generated by
the urinary peptides are dimensionless. Their distribu-
tions can be rank normalized (Figure 2) by sorting
measurements from the smallest to the highest and then
applying the inverse cumulative normal function
(Blom, 1958). The distribution of multidimensional
UPP classifiers generally do not violate the normality
assumption to the extent that a transformation is needed
(Tofte et al., 2020; Zhang et al., 2019). Over the past
decade, ML has developed into a powerful instrument in
the analysis of multiomics data, in which the number of
signals to be analyzed far exceeds the number of
individuals or experimental units. The assumptions
underlying parametric statistics, such as normality of
distributions, are not required to be fulfilled in ML
algorithms (Cazaly et al., 2019; Manduchi et al., 2022)
and for that matter also in exploratory methods, such as
PLS‐A.

Outliers can be removed if an individual's value is
3‐SDs or more distant from the group mean of the

distribution after transformation if so required. However,
removing outliers should be accompanied by checking
potential experimental or biological reasons for this
specific behavior or keying errors in entering clinical
variables. Duplicate data entry and comparing the
resulting data sets can remove most, albeit not all, of
such errors, in particular, if the fault is in the (paper)
source from which clinical data or ICD codes for the
cause of mortality are entered. Duplicate entry is
obviously not needed, when omics markers or clinical
data are directly imported in the statistical software from
the devices generating the omics signals or e‐health
records, respectively. However, in some countries, such
as for instance Belgium, the General Data Protection
Rules (Vlahou et al., 2021) makes direct entry of clinical
data in an analysis data set very difficult, often requiring
years of discussion with the relevant Ethics Committee,
so that often the authors had to resort to paper files.

3.4 | Basic statistical approaches

Before any adjustment or multivariable modelling, most
analyses will start by showing patient characteristics by
categories of the “exposure” variable, for example, by
quantiles of a multidimensional UPP classifier. For
continuously distributed outcome variables (Figure 3),
boxplots can be generated showing the association
between the outcome of interest and the omics classifier
(Staessen et al., 2022). Depending on the sample size and
data structure, means can be compared using the large‐
sample z‐test, t‐test, or analysis of variance (ANOVA),
proportions by the χ2 statistic or Fisher's exact test, and
survival function estimates by the log‐rank test. The
Fisher test is indicated, when cells in a frequency table
are empty or include few study participants. The χ2

statistic is typically used in case‐control studies. In
longitudinal studies, the change in classification vari-
ables can be addressed by application of the McNemar
test. If prevalence or incidence rates need standardization
across subgroups, for example, across cohorts making up
the study population, sex, age groups, or any combina-
tion thereof, two approaches are commonly applied. One
is used when the “standard” is the demographic
structure of the study population (direct method) and
the other is applied when the “standard” is a set to
specific event rates observed in a reference population
(indirect method). The direct standardization is the
method of choice for large study samples, while the
indirect one is applied to studies of relatively small
dimensions (Tripepi et al., 2010). Standardized rates
express the absolute risk associated with an exposure
variable or categories thereof. The 95% confidence
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intervals of rates can be computed as R± 1.96 × √
(R× (100 –R)/T), where R is the rate and T is the
number of patients at risk of developing an adverse
outcome.

3.5 | Identification of application of
covariables

To identify covariables to be retained in the analyses,
continuous outcomes or categorical outcomes will be
regressed on covariables of potential relevance, using a
stepwise procedure with p‐values for covariables to
enter and stay in the model set at 0.15. A p‐value of 0.15
allows for retaining covariables in the statistical
modelling that are not formally significant, but might
still be relevant. Linear regression is applicable for

continuously distributed outcomes, logistic regression
for categorical—usually binary—outcomes, and propor-
tional hazard (Cox) regression for modelling the log‐
linear association of time to a categorical outcome and
an explanatory set of variables. Similar procedures,
either based on p‐values or other statistics including
Akaike information criterion or the Bayesian informa-
tion criterion, and so forth, are available in licensable or
publicly accessible statistical software packages, such as
R. Once a group of covariables is identified, a constant
set should be used throughout a given analysis for all
related continuous and categorical outcomes.

For continuous outcomes, accounting for covariables
can be done by including the covariables plus the omics
variable (e.g., the UPP classifier or a urinary peptides) in
the same regression model, or alternatively, by standard-
ization of the dependent variable, using the β‐coefficients

FIGURE 2 Rank normalization of a urinary peptide fragment derived from collagen 1. (A, B) Distribution plots before (A) and after
(B) rank normalization; (C, D) Normal percentile plots before (C) and after (D) rank normalization. The solid and dotted lines represent
the normal and kernel density distributions. N, M, and SD refer to the number of patients, the arithmetic means, and standard deviation.
W is the Shapiro–Wilk statistic and P is the associated significance. A significant Shapiro–Wilk test indicates deviation from the normal
distribution. [Color figure can be viewed at wileyonlinelibrary.com]
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of the regression model associating the dependent
variable with the covariables. Both approaches yield the
same estimates (partial regression coefficient and
p‐value) for the association between the dependent and
omics variable. In an exemplary case analysis of aortic
pulse wave velocity (PWV) as outcome, stepwise regres-
sion identified sex (x1; coded 0,1), age (x2), body mass
index (x3), heart rate (x4), mean arterial pressure (x5),
smoking (x6; 0,1), daily consumption of alcoholic
beverages (x7; 0,1), and the presence of type‐2 diabetes
(x8; 0,1) as being significantly associated with PWV
(Hansen et al., 2006). In this example, PWV can be
replaced by any continuously distributed dependent
variable and the explanatory and omics variables by
any different set of variables.

• Using plain adjustment, the model would be written
as: y (PWV) = (β1 × x1) + (β2 × x2)+ ··· +(β8 × x8), where
β1–β8 are the partial regression coefficients relating the
outcome to the covariables. Next the model can be

expanded by including the omics variable. The PWV
variability explained by the model is subtracted from
the actually observed PWV, thereby reducing the scale
of PWV and rendering the interpretation of the model
less straightforward.

• As an alternative, before entering the UPP biomarker
in the model, the continuously distributed outcome
can be standardized to the average of the distributions
in the study population. The standardized outcome
variable can be computed as PWV –(β1 × (x1i−x1m)) –
(β2 × (x2i–x2m)) – ··· –(β8 × (x8i–x8m)), where β1–β8 are
the signed partial regression coefficients, x1i−x8i are
the values of the covariable in each individual, and
x1m−x8im are the population means of the covariables.
With the standardized outcome as dependent variable
(y), the omics variable can then be entered as
independent variable. This approach will not rescale
the dependent variable and make interpretation of
the association between the dependent variable
and the omics variable easily interpretable.

Using logistic and Cox regression, the same approach
mutatis mutandis can be applied for standardization of
the association between a categorical or binary outcome
and an independent variable, for example, a multi-
dimensional UPP classifier or single peptide fragments.
Instead of the standardizing the continuously distributed
outcome variable, here, standardization pertains to the
predicted risk of each individual of experiencing an
adverse health event or the predicted probability that an
individual belongs to a category of interest.

3.6 | Continuous outcomes in relation
to single urinary peptides

The same principles apply to the cross‐sectional and
longitudinal analyses of a continuous outcome. While
accounting for covariables (Zhang et al., 2017b), as
outlined in the previous section, the continuous outcome
of interest can be regressed on each of the urinary
peptides to construct –log10 probability plots (Figure 4).
In line with other omics‐wide analyses, this approach can
be referred to as a proteome‐wide analysis. In this omics‐
wide approach, based on the number of UPP markers, a
correction for multiple testing has to be applied, such as
the Bonferroni correction, the Bonferroni step‐down
(Holm) correction (Holm, 1979), or the Benjamini and
Hochberg false discovery rate (Benjamini & Hochberg,
1995). The Bonferroni correction is the most and the false
discovery rate least stringent. For the thousands of
signals included in any omics data set, the Bonferroni
approach is too stringent and the false discovery rate is

FIGURE 3 Boxplots showing the distributions of the urinary
biomarker COV50 at baseline by the worst World Health
Organization (WHO) score attained during follow‐up in the initial
(blue) and continued recruitment (pink) cohorts. The central line,
the upper and lower lines, and the upper and lower caps represent
the median, interquartile range, and the 10th to 90th percentile
interval. The arithmetic means and extreme measurements are
represented by circles inside the box and outside the whiskers,
respectively. The arithmetic means and the number of data points
contributing to each whisker plot is given within the boxes. The
p value denotes the overall between‐WHO category significance
derived by analysis of variance (ANOVA). Reproduced from Staessen
et al. (2022). [Color figure can be viewed at wileyonlinelibrary.com]
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commonly applied. Other methods of dealing with the
large number of models to be run—one for each omics
signal—are based on the strong correlative nature of the
omics features, for instance by accounting for the fact
that multiple sequenced urinary peptide fragments are
derived from the same parental protein, often a collagen
(Martens et al., 2021). The peptide fragments originating
from the same protein can be checked for the direction-
ality of their association and ordered according to their
multiple testing significance. If there is consistency in the
directionality of the regression coefficients relating the
outcome of interest to the set of urinary peptides
originating from the same protein the fragment with
the highest significance can be retained in the analysis.
This data reduction step can be implemented by elastic
net regression with determination of the λ1 and λ2 by

random cross‐validation and a bootstrap procedure to
obtain the final estimates of coefficients with 95%
confidence interval (Zou & Hastie, 2005).

In longitudinal analyses, in which a continuous
outcome (e.g., the glomerular filtration rate or right
heart hemodynamic measurements) is predicted from a
baseline biomarker, the baseline value of the trait of
interest should be accounted for (Zhang et al., 2017b).
If outcome, biomarkers and covariables are available at
multiple time points, mixed models can be applied to
account for clustering of observations within individuals.
In such models, the biomarkers and covariables are
modelled as fixed effects, whereas the random and
unmeasurable variability between individuals (or clusters
in a study) is accounted for as a random effect (Littell
et al., 1996). Mixed models can also accommodate
randomly missing values or for a variable number of
time points per individual. All observations are used in
the mixed model procedure, whereas in general linear
models individuals with missing variables are discarded
in the analysis (Littell et al., 1996).

For analyses of single sequenced urinary peptides, in
multiple publications only those peptides with a detect-
able signal in at least 95% of participants might be
analyzed (Huang, Trenson, et al., 2018; Zhang et al., 2016;
Zhang et al., 2017b). However, ignoring biomarkers with
missing values might waste potentially important infor-
mation, explaining why in other studies of a more
exploratory nature, this threshold was relaxed to 70%
(Rossing et al., 2016) or even lower (Good et al., 2010). If
the goal of the study is to gain deeper insight in
pathophysiological pathways leading to adverse health
outcomes, a conservative threshold (95% of participants
with detectable signal), decreases the risk of false positive
findings and reduces the penalty for multiple testing.

In analyses of multiple urinary peptides or metabo-
lites, as applied in several publications by the authors of
this review focusing on UPP (Huang, Van Keer, et al.,
2018; Huang et al., 2019; Zhang et al., 2017b) or the
circulating metabolome (Zhang, Marrachelli, et al., 2017),
the supervised dimension reduction method PLS‐A can
be applied. PLS‐A is a statistical technique that con-
structs models for continuous outcomes in relation to
correlated high‐dimensional explanatory variables
(Bartel et al., 2013; Cavill et al., 2016; Csala et al., 2020;
Tobias, 1997; Trygg & Wold, 2002). PLS‐A allows
identifying a set of independent latent factors that are
linear combinations of the urinary peptides and that
maximize the covariance between the omics markers
(e.g., urinary peptides) and the variable describing the
outcome of interest. The smallest number of latent
factors can be retained in the analysis, as assessed by the
van der Voet T2 statistic. The importance of each urinary

FIGURE 4 –Log10(p) probability plot of the multivariable‐
adjusted associations of renal function phenotypes with the urinary
peptides. Estimated glomerular filtration rate (eGFR) indicates the
glomerular filtration rate derived from serum creatinine. All analyses
were adjusted for mean arterial pressure, waist‐to‐hip ratio, smoking,
plasma glucose, γ‐glutamyltransferase, total‐to‐HDL cholesterol
ratio, 24‐h albuminuria, and use of diuretics, inhibitors of the renin‐
angiotensin system (β‐blockers, angiotensin‐converting‐enzyme
inhibitors, and angiotensin type‐1 receptor blockers) and
vasodilators (calcium‐channel blockers and α‐blockers). The
longitudinal analysis of change in eGFR as continuous variable was
additionally adjusted for baseline eGFR and follow‐up duration. The
horizontal line denotes the significance level with Bonferroni
correction applied. Red dots represent mucin‐1 and green dots the
other peptides passing the Bonferroni‐corrected significance
thresholds. Reproduced from Zhang et al. (2017b). [Color figure can
be viewed at wileyonlinelibrary.com]
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marker in the construction of the PLS‐A factors will
subsequently be assessed from the Variable Importance
in Projection (VIP) scores of Wold with the threshold set
at approximately 1.5 or an alternative value. PLS‐A
allows constructing V‐plots (Figure 5), in which VIP
scores and the rescaled and centered correlation
coefficient among variables are plotted along the vertical
and horizontal axis, respectively (Zhang et al., 2017b).
Plotted biomarkers associated with high VIP score and
low correlation coefficients (top left quadrant of the plot)
identify predictors of an adverse outcome, whereas those
associated with high VIP score but high correlation
coefficient (top right quadrant) is inversely associated
with an outcome. The PLS approach does not require to
adjust for multiple testing, because the minimum set of
latent factors is analyzed in relation to the outcome
variable in a single run.

3.7 | Categorical outcomes in relation to
single urinary peptide

Analyses of categorical outcomes will follow the
same principles as those with continuous outcomes.
Multivariable‐adjusted relative risk can be computed by
logistic regression or Cox regression. Logistic regression
is appropriate for cross‐sectional designs or prospective
analyses, in which the follow‐up duration is approxi-
mately similar in all patients. To model time to an

adverse health outcome or until the censoring date, Cox
regression will be the approach of choice. Mixed models
can also accommodate categorical outcomes. If multiple
biomarkers are assessed simultaneously, then construct-
ing –log10 plots provides a way to present the results
graphically and to adjust for multiple testing. Partial least
square discriminant analysis (PLS‐DA) combines highly
correlated biomarkers into a single analysis and allows
constructing V‐plots for categorical outcomes.

3.8 | Evaluation of added diagnostic or
predictive accuracy

If the discriminatory threshold of a biomarker is known,
computing its diagnostic or predictive value can be
simply done from 2 × 2 tables providing sensitivity,
specificity, positive and negative predictive value, and
the misclassification rate. Optimal discrimination limits
for a biomarker can be determined by maximizing the
Youden index, that is, the maximum of sensitivity plus
specificity minus 1 (Ruopp et al., 2008).

The added value of a biomarker (continuous or
categorical), over and beyond a set of covariables, can be
assessed from the integrated discrimination improve-
ment (IDI) and the net reclassification improvement
(NRI) (Pencina et al., 2008, 2011). IDI is the difference
between the discrimination slopes of the basic model
and the basic model extended with the biomarker.

FIGURE 5 V‐plots generated by partial
least square analysis. Variable Importance in
Projection (VIP) scores indicate the importance
of each urinary fragment in the construction of
the partial least square factors and are plotted
against the centered and rescaled correlation
coefficients. The correlation coefficients reflect
the associations of the multivariable‐adjusted
eGFR with the urinary fragments. Fragments
associated with reduced eGFR (left side of the V‐
plot) include, among others, p8342 and p77763.
p35339 was associated with higher eGFR (right
side of the V‐plot). Colors identify fragments
derived from collagen I (blue), II (grey), III
(red), IV (brown), the mucin‐1 subunit α
(orange), fibrinogen (green), protocadherin‐12
(purple), retinol‐binding protein 4 (pink),
stabilin‐2 (yellow) and uromodulin (black). For
details, refer to Zhang et al. (2017b). [Color
figure can be viewed at wileyonlinelibrary.com]
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The discrimination slope is the difference in predicted
probabilities (%) between subjects with and without
endpoint. To calculate NRI, the risk of an adverse health
outcome in each individual can be derived from a Cox
model with and without the omics biomarker. If P(up/
event) is the percentage of subjects with events whose
predicted probability is increased by adding the bio-
marker to the model and if P(up/nonevent) is the
percentage of subjects without events whose predicted
probability is increased, then NRI equals 2 × (P[up/
event]–P[up/nonevent]). IDI and NRI provide comple-
mentary information. Indeed, if adding a biomarker to a
model increases the predicted probability in cases, this is
reflected by a significant increase in IDI, while NRI
indicates the extent by which a biomarker improves
diagnostic accuracy. Although applied frequently, expert
statisticians suggested that IDI and NRI have limitations
(Kerr et al., 2014). If IDI and NRI are computed, they
recommended retaining existing descriptive terms, such
as the true‐positive and false‐positive classification rates,
or testing the null hypothesis of no prediction increment
from modelled regression coefficients (Kerr et al., 2014).
Finally, the capability to discriminate between patients
with or without adverse health outcomes can also be
assessed by constructing receiver operating characteristic
(ROC) curves and by calculating the area under the ROC
curve (AUC), as shown in Figure 6. The DeLong method
provides a way to compute 95% confidence intervals of
the AUC.

3.9 | Molecular pathways

To ensure detection of relevant molecular pathways
and to build a network of biologically meaningful
interactions, advanced bioinformatics tools should be
used in combination with the literature (Bhat
et al., 2015; Latosinska et al., 2017). Functional
analysis of the features can be performed using
open‐source tools, such as the Protein Annotation
Through Evolutionary Relationship (PANTHER) soft-
ware (Mi et al., 2013) or the DAVID software suite for
pathway and functional annotation (Huang et al.,
2009). Additional tools include Ingenuity Pathway
Analysis (IPA), Cytoscape's plugins like ClueGO and
CluePedia, and the GO, KEGG, and REACTOME
databases. In addition, in the case of UPP analyses,
proteases responsible for the generation of urinary
biomarkers should be investigated in silico, using
Proteasix (Klein et al., 2013) and the information
obtained in the pathway analysis. The hypothesis is
that changes in protease activity might be linked to
disease pathophysiology. However, proteases active

along the nephron and distal urinary tract might
affect the urinary peptide fragments detected by
UPP analysis. However, in a placebo‐controlled study
of a dipeptidyl peptidase‐4 inhibitor (Siwy et al., 2019),
the UPP included pairs of peptide chains, that
is, the substrate for the protease activity (e.g.,
PPGPPGKNGDDGEAGKPG) and the resulting break-
down product (e.g., GPPGKNGDDGEAGKPG). Thus,
protease analyses are useful to check this possibility.

4 | MULTIOMICS APPROACHES

State‐of‐the‐art next‐generation sequencing, transcrip-
tomics, proteomics, and other high‐throughput omics
technologies enable the efficient generation of large
experimental data sets on the same individual or
experimental unit, but require dimension reduction
approaches (Csala & Zwinderman, 2019; Meng et al.,
2016). Canonical correlation analysis (CCA) and redun-
dancy analysis (RDA) are widespread in the omics data
analysis field. Simply stated, CCA is a technique for
analyzing the relation between two sets (or groups) of
variables (Kuhfield et al., 2017). Each set can contain
multiple variables. Given two sets of variables, canonical
correlation analysis finds a linear combination from each
set, called a canonical variable, such that the correlation
between the two canonical variables is maximized. This
correlation between the two canonical variables is the
first canonical correlation. The first canonical correlation
is at least as large as the multiple correlation between any
variable and the opposite set of variables. The coefficients
of the linear combinations are canonical coefficients or
canonical weights. Canonical coefficients can be normal-
ized, such that each canonical variable has a variance of
1. Canonical correlation analysis continues by finding a
second set of canonical variables, uncorrelated with the
first pair that produces the second‐highest correlation
coefficient. The process of constructing canonical vari-
ables continues until the number of pairs of canonical
variables equals the number of variables in the smaller
group. Each canonical variable is uncorrelated with all
the other canonical variables of either set except for the
one corresponding canonical variable in the opposite set
(Kuhfield et al., 2017).

From the late 2000s, statisticians developed modified
versions of CCA that are better adapted to the high‐
dimensional structure of multiomics data. Among them,
penalized canonical correlation analysis, regularized
canonical correlation analysis, sparse canonical correla-
tion analysis, and penalized canonical correlation analy-
sis. These procedures applied a form of penalization to
the organic CCA framework, which makes penalized

STATISTICAL APPROACHES IN OMICS ANALYSES | 11
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FIGURE 6 Performance of the COV50 urinary marker on top of other baseline risk factors in the full data set for contrasting
mortality versus survival (A–C) and for progression versus nonprogression in the baseline World Health Organization (WHO) score
during follow‐up (D–F). The base model included sex, age, body mass index, and the presence of comorbidities: hypertension, heart
failure, diabetes, and cancer. In subsequent steps, the baseline WHO score was added and next COV50 as a continuously distributed
variable (B, E) or as a categorized variable based on an optimized threshold of 0.47 for mortality (C) or 0.04 for a worsening WHO score
(F). At each step, the p‐values are for the comparison with the preceding model. For details, refer to Staessen et al. (2022). [Color figure
can be viewed at wileyonlinelibrary.com]
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forms of CCA applicable to high‐dimensional data and,
in most cases, results in models that include only a subset
of the original variables from the data sources (i.e.,
variable selection). Variable selection is a desirable
property when the original variables are too numerous
to be interpretable in the results of the analysis, which is
exactly the case with multiomics data. A description
of the exact properties of variable selection, which
depends on the type of penalization applied, is beyond
the scope of this article and has been reviewed and
put into context elsewhere (Csala & Zwinderman, 2019;
Wang et al., 2022).

5 | ML

ML refers to approaches by which computers learn from
data to accomplish certain tasks, without a programmer
having to specify every single algorithmic instruction
(Manduchi et al., 2022). ML is particularly applicable to
the omics data, in which the number of predictors (e.g.,
single urinary peptides) is much larger than the number
of individuals or experimental units. Supervised ML
involves generating a predictive model, which through a
training step learns a general rule to produce a desired
output. Once the general rule is established, the trained
model can be applied to new input data of the same type.
The input data consist of independent or explanatory
data, in which for instance the individual in an omics
study represents the observation. The dependent or
response variable is the output of interest (Manduchi
et al., 2022), for instance coronary heart disease in
relation to a multitude of risk factors (Forrest et al., 2023).
ML procedures can have parameters and hyperpara-
meters. Parameters are internal configuration variables
learned from the data, while hyperparameters refer to
values that have been specified before the ML starts. The
root mean squared error, that is, the square root of the
averaged squared differences between true and predicted
values is a metric describing the accuracy of a predictive
ML model. However, there are many other choices
that can be selected when optimizing algorithms and
hyperparameters (Zheng, 2015). In most cases, one has to
tune the choice of the ML algorithm and its hyperpara-
meters. This can be done using an independent valida-
tion set, with samples drawn from the same population
as the training set. A standard approach is the so‐called
the k‐fold cross‐validation. This procedure involves
subdividing the input data into k subsets or equal size.
One of the subsets serves to validate the algorithm and
the hyperparameters as determined in the remaining k–1
subsets. The procedure is k times repeated. Finally, the
selection yielding the best average performance across

the k‐fold runs is accepted and the corresponding model
is fit to the entire training set and evaluated on a hold‐out
testing set (Manduchi et al., 2022). Multiple permutations
are an inspection/interpretation technique that can also
be used to interpret any fitted “black‐box” ML model and
to understand, which features drive the trained estimator
(Casalicchio et al., 2019).

Any ML application should be carefully configured
and tuned with as finality to provide reproducible results,
whenever it is applied (Manduchi et al., 2022). Fortu-
nately, Automated ML is available to biomedical
researchers, in particular the intended readers of this
article, who have little experience in writing ML
procedures. Automated ML refers to automating single
steps in a ML algorithm, such as feature engineering or
hyperparameter optimization of an algorithm for a
specific scientific objective. Moreover, auto ML code
able to handle multiple tasks can be downloaded from
several software sites. Such applications are particularly
appealing to nonexpert users as they provide tailor‐made
solutions (Waring et al., 2020). A detailed description of
the multitude of approaches to auto ML falls beyond the
scope of this article and has been reviewed in detail
elsewhere (Manduchi et al., 2022; Waring et al., 2020).
Needless to state that over the past decade open‐source
software has stimulated the exponential growth of
supervised and non‐supervised ML applications. Open
source specifically refers to making the source code for
the software publicly available, either by distributing the
software directly as source code at no cost, or by
maintaining a source code repository, which end‐users
can change and improve. Names of the open‐source
algorithms and download sites have been listed in
previously published reviews focused on ML (Manduchi
et al., 2022; Waring et al., 2020).

6 | CONCLUSIONS

Basically, the analysis of adverse health outcomes in
relation to omics data rests on the same statistical
principle as any other data collected within large
population or patient cohorts. The only difference resides
in the large number of biomarkers (“exposure” data
points), which all have to be considered simultaneously.
This requires planning ahead how data will be struc-
tured, imported in statistical software packages, results
will be triaged on relevance, and how markers will be
presented to the readers. From a more general viewpoint,
the introduction and use of omics markers in clinical and
population science revolutionized thinking and almost
unlimitedly expanded the working horizon of scientists.
Epidemiological studies in population or well‐defined
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patient cohorts with long follow‐up provide unbiased
estimates of the prevalence and prognostic significance of
risk factors and health‐related events and generate the
ultimate validation of potential disease‐causing mecha-
nisms identified in experimental studies. Conversely,
population and patient studies also generate hypotheses
for mechanisms to be tested in experimental studies.
Thus, omics studies will increasingly contribute to
personalized evidence‐based medicine and translating
experimental findings into clinically applicable strategies
for prevention and disease management.
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