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Background: Within-host models describe the dynamics of immune cells when encountering a pathogen,
and how these dynamics can lead to an individual-specific immune response. This systematic review
aims to summarize which within-host methodology has been used to study and quantify antibody kinet-
ics after infection or vaccination. In particular, we focus on data-driven and theory-driven mechanistic
models.
Materials: PubMed and Web of Science databases were used to identify eligible papers published until
May 2022. Eligible publications included those studying mathematical models that measure antibody
kinetics as the primary outcome (ranging from phenomenological to mechanistic models).
Results: We identified 78 eligible publications, of which 8 relied on an Ordinary Differential Equations
(ODEs)-based modelling approach to describe antibody kinetics after vaccination, and 12 studies used
such models in the context of humoral immunity induced by natural infection. Mechanistic modeling
studies were summarized in terms of type of study, sample size, measurements collected, antibody
half-life, compartments and parameters included, inferential or analytical method, and model selection.
Conclusions: Despite the importance of investigating antibody kinetics and underlying mechanisms of
(waning of) the humoral immunity, few publications explicitly account for this in a mathematical model.
In particular, most research focuses on phenomenological rather than mechanistic models. The limited
information on the age groups or other risk factors that might impact antibody kinetics, as well as a lack
of experimental or observational data remain important concerns regarding the interpretation of math-
ematical modeling results. We reviewed the similarities between the kinetics following vaccination and
infection, emphasising that it may be worth translating some features from one setting to another.
However, we also stress that some biological mechanisms need to be distinguished. We found that
data-driven mechanistic models tend to be more simplistic, and theory-driven approaches lack represen-
tative data to validate model results.
� 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC license

(http://creativecommons.org/licenses/by-nc/4.0/).
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1. Introduction

Understanding the mechanisms of within-host kinetics of the
humoral (and cellular) immune response to a viral, parasite, or bac-
terial infection is crucial to foresee better surveillance and inter-
vention strategies in the context of infectious diseases [1,2]. In
general, the immune response consists of innate and adaptive
immune systems. The innate immune system is active from birth
and provides a specific response to pathogens, whereas the adap-
tive or acquired immune system produces specific cells and mole-
cules to protect the body against invaders. Within the adaptive
immune response, we can distinguish between two types of immu-
nity, dependent on the functions of B- and T-cells. Serum antibod-
ies produced by B-cells and plasma cells induce humoral
immunity. More specifically, with the assistance of helper T-cells,
B-cells differentiate into long-living (in the bone marrow) plasma
cells that can produce antibodies against a specific antigen. Anti-
bodies can bind to antigens and neutralize them or cause lysis.
On the other hand, cell-mediated or cellular immunity is orches-
trated by activated T lymphocytes, which recognize infected cells
and achieve cell lysis [3]. Both cellular and humoral immune
responses are essential to generate short- and long-term immunity
in the host.

Within-host kinetics refers to dynamics of immune cells and
antibodies in individuals (or animals) which are linked to specific
biological mechanisms and for which the extent and evolution
with time since infection or vaccination are potentially
individual-specific. To facilitate both individual- and population-
based perspectives, within-host models often allow for the specifi-
cation of individual-level effects or individual-specific parameters
reflecting differences in terms of individual immune responses
on top of model parameters that are shared among individuals
[4,5]. The dynamics of immune cells, for instance, describe the life
cycle of the immune response and covers all different mechanisms
by which a microorganism triggers the activation of long- and
short-term immune cells to defeat micro-organisms [4,6]. Further-
more, for many (viral) diseases, there is considerable uncertainty
regarding the immune response, e.g., how long do antibodies per-
sist and protect individuals against (re)infection, and whether
immunity against certain pathogens is long-lasting (or potentially
lifelong). On top of that, age (and other factors) might impact the
dynamics of the immune response [2], and waning of the humoral
immune response may differ when induced by natural infection or
vaccination. It is worth noting that upon exposure, infection his-
tory might play a role in protection against new infections. For
example, in case of SARS-CoV-2 infection, an individual’s immune
state is activated, possibly impacted by pre-existing antibodies,
otherwise known as immunoglobulins (i.e., IgG, IgM, and IgA anti-
bodies) to other coronaviruses or previous infections with other
variants, leading to differential severity of the disease [7,11].
Within the set of antibodies, different temporal dynamics are
encountered, in particular, IgG antibodies tend to peak last [7,8].
Moreover, one can hypothesize that vaccinated individuals develop
a similar immune response, however, history of exposure or infec-
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tion may also be a fundamental factor contributing to individual
heterogeneity in antibody production and persistence after vacci-
nation. Within-host modeling approaches can be based on a set
of mathematical (differential) equations describing the evolution
of specific quantities over time. As such, we will distinguish
between mathematical models, or so-called mechanistic models,
and purely statistical models, referred to as phenomenological
models in this manuscript. For example, Leuridan et al. [36] inves-
tigated several phenomenological models, such as the exponential
decay, or a Gompertz model, to study the antibody decay and
quantify the association between the covariates and the antibody
response. Note that in general, phenomenological models can be
parametric, semi-parametric or non-parametric in nature. We
stress the importance of mechanistic models, since they have a bio-
logical or physical meaning, thereby explaining interactions
between different model components through time, or time and
space, whereas phenomenological models try to quantify the asso-
ciation between an independent variable and observed dependent
variables or covariates.

Mathematical models are typically expressed in terms of a sys-
tem of mathematical equations describing the evolution or flow of
subjects, individuals, substances, etc. over time or between differ-
ent compartments or subpopulations. Such mechanistic models are
often formulated based on a system of partial differential equa-
tions (PDEs) which, under certain conditions, can simplify to a
set of ordinary differential equations (ODEs). For example, one of
the simplest models found in this review, defined boosting of anti-
body production followed by a simple exponential decay of antibo-
dies [6]. Next to deterministic models, having a unique solution for
the set of ODEs, stochastic models describe the change in variables
relying on stochastic processes and probability distributions for
transition probabilities. Next to deterministic and stochastic mod-
els, subject-specific approaches relying on the specification of ran-
dom effects are possible thereby accounting for individual
variability in antibody kinetics [9].

During this review we classified the selected mechanistic mod-
els into data-driven or theory-driven approaches, where the first
represent models that are fitted to observed data (i.e., combining
mathematical and statistical modeling techniques) and the latter
solely investigating properties of a model (e.g., the impact of vary-
ing a specific model parameter) without contrasting it with
observed data.

When studying antibody kinetics with phenomenological mod-
els, one focuses on relationships between covariates and antibody
kinetics, without necessarily capturing the underlying biological
mechanisms that are responsible for such associations. As an alter-
native to phenomenological approaches, within-host models offer
an elegant way of describing antibody kinetics in terms of such
mechanisms. More specifically, as it is important to consider differ-
ent immune cells that are responsible for antibody production,
within-host models are well-suited to describe processes responsi-
ble for antibody kinetics and to unravel how specific components
of the immune system interact. Consequently, having more knowl-
edge about antibody kinetics may help to solve one of the many
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logistic issues of vaccination strategies and prevention of future
outbreaks.

This review aims at presenting a comprehensive overview of
the different within-host modeling approaches used to describe
antibody kinetics, including the dynamics of humoral immune
responses and other biological mechanisms. Moreover, in doing
so we study approaches for vaccine-induced immunity and immu-
nity induced by natural infection separately.
2. Methods

A protocol for the study described in this manuscript has been
published in PROSPERO, CRD42022309251 [12]. The search strat-
egy and eligible publications retrieved from the search are summa-
rized according to the PRISMA guidelines [13].
2.1. Eligibility criteria

Studies including healthy participants that took part in a vacci-
nation trial and were followed up over time, and studies including
individuals that were infected by a specific pathogen were consid-
ered eligible for inclusion. Therefore, both observational and
experimental studies were identified. For the latter, open-label,
single-blind, or double-blind, Phase I, Phase II and Phase III ran-
domized controlled trials were considered.

Publications were excluded when immunogenicity dynamics
were studied under a drug therapy intervention to inhibit the viral
load of the virus. Moreover, we did not include publications of
studies conducted in animals or that included in-vitro experimen-
tal data.

Although the focus is on the study of different models in the
context of within-host kinetics, eligibility criteria are formulated
in terms of study design and endpoints being related to antibody
evolution over time. For the ‘‘data-driven” approaches, the choice
of different models to study within-host kinetics is largely deter-
mined by the availability of longitudinal data on the evolution of
immune cells and antibodies. For theory-driven approaches, no
explicit link to a specific data structure is required for inclusion,
though focus should be on within-host kinetics. Therefore, the eli-
gibility criteria reported on in Section 2.1 are primarily of impor-
tance regarding data-driven approaches described below. Studies
that did not accommodate antibody change over time were consid-
ered not eligible for inclusion into this review.
2.2. Search procedure

The keywords of the search string were defined based on key-
words used in papers from experts on the field of within-host
mathematical modeling. Consequently, a search of potential eligi-
ble papers was conducted by using the keywords ‘within-host
mathematical model’ or ‘infectious disease mathematical model’.
Through synonyms of the aforementioned keywords we developed
the query to find literature in this systematic review: (‘‘Mathemat-
ical Model” OR ‘‘Longitudinal data analysis”) AND (‘‘Within-host”
OR ‘‘Individual estimate” OR ‘‘Individual-specific”) AND (‘‘Antibody
Dynamic” OR ‘‘Antibody Persistence” OR ‘‘immunity waning” OR
‘‘dynamics of immune cells”). PubMed and Web of Science data-
bases were screened to identify relevant literature in English up
to May 2022. In addition, EndNote was used to discard duplicate
papers and manage references of publications that were retrieved.
Lastly, a citation search was performed from the retrieved papers
to amplify the literature in this field.
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2.3. Outcome

The primary outcome of interest was a mathematical model
looking at antibody kinetics. Furthermore, other biological mecha-
nisms that may interact with antibody production were gathered,
such as humoral cells, age, time of exposure, and other biological
phenomena.

2.4. Selection process

One reviewer (IGF) assessed the selected papers based on
abstract and title. Publications that met the eligibility criteria were
included in the review. We were not able to assess the risk of bias,
since the outcomes in the retrieved studies varied. Furthermore,
the type of study was at times hard to classify, as the description
of the study design and data were either incomplete or absent. In
case of disagreement, senior authors (BO, SA, NH) were consulted
to make a final decision on the inclusion or exclusion of a paper.
The full-texts of eligible publications were screened in the second
round of the literature review.

2.5. Data collection process

We collected information about the pathogen being studied,
type of data, study design (how many groups were included in
the trial), the number of measurements, and research question.
Furthermore, we summarized only the methodology on mechanis-
tic models, i.e., their compartments and parameters, as well as the
type of outcome, type of mechanistic model, method of inference
or analytical analysis, and model selection. An overview of the col-
lected data from the eligible publications is presented in Table 1
and 2 for dynamics after vaccination and natural infection,
respectively.
3. Results

The aim of this systematic review is to collect and unravel
which mechanistic approaches have been used in literature to
study antibody kinetics. Therefore, we studied data-driven and
theory-driven approaches, where the latter approaches usually
having no data to support the models and thus not requiring statis-
tical techniques to estimate their parameters.

Fig. 1 shows a flow chart is presented describing each retrieval
decision during the search. In total, 78 unique publications were
identified and included. Following the flow chart, selected papers
were classified in different categories, as provided by Fig. 2. In par-
ticular, whereas 25 studies focused on vaccine-induced immunity
only 14 papers considered immune dynamics after natural infec-
tion. These 39 publications were retrieved based on our query
(see Fig. 2). Once the papers obtained from the query were
screened, a citation search for the retrieved papers was conducted.
A total of 7 studies on ODE-based modelling and 32 studies in
which a phenomenological model was used, were retrieved for
which the classification is presented in Fig. 2. These ODE-based
mathematical models that were not found in the original query
[14–19], used more refined keywords such as T-cell responses,
antibody-producing cells, or vaccine strategies, which were not
precisely defined in our search string.

Despite the importance of studying antibody kinetics using a
mechanistic model, only 20 publications out of a total of 1592
papers accounted for this. Within the group of mechanistic models,
we focus on 8 studies related to vaccine-induced immunity, and 12
studies investigating dynamics after natural infection, as described
in Fig. 2. In addition to the mechanistic models, in the context of
vaccine-induced antibody kinetics there were 49 studies on phe-



Table 1
Mathematical models in the context of vaccine-induced immunity.

Author and Year Pathogen Antibody
half-life

Sample size Data points Method Hierarchical
vs non-
hierarchical

Compartments Inference/Analytical
analysis

Model selection

Pasin et al., 2019 Ebola 24 days
after
vaccination.
Confidence
interval (CI)
(22,26)

59
participants
in each study
(UK, Kenya,
East Africa)

A baseline measurement and
7 days after the first dose are
collected in all groups. Depending
on the group, blood samples are
collected either on days 29, 36,
50, 180, 240, and 360, or on days
29, 57, 64, 78, 180, 240, and 360

Data-driven ODE-
based

Hierarchical Short-lived and
long-lived plasma
cells yielding to
antibody production

Likelihood-based coupled
with MCMC samples

Nonpenalized
loglikelihood based
cross-validation
criterion (LCVa)/
Akaike Information
Criterion (AIC) and
Bayesian Information
Criterion (BIC)

Andraud et al., 2012 Hepatitis
A

17.5 to 26
days

289 in the
first group
and 113 in
the second
group

1,12, 18, 24, 30, 36, 42, 48, 50, 66,
78, 90, 102, 114 and 126 months
in the first group and 1, 6, 12, 18,
30, 42, 54, 66, 78, 90, 102 and 114
in the second group

Data-driven ODE-
based

Hierarchical Short-lived and
long-lived plasma
cells yielding to
antibody production

Likelihood-based coupled
with MCMC samples

AIC

Keersmaekers et al.,
2019

Varicella – 155 Baseline measurement, and 1 and
12 months after vaccination for B-
cells. For T-cells baseline
measurement, 1, 2, 3, and
12 months after vaccination were
collected

Data-driven ODE-
based

Hierarchical B and T cells
Dynamics with
further contrast
between short-
living and long-
living B and T cells

Likelihood-based couples
with MCMC samples

AIC

Author and Year Pathogen Antibody
half-life

Sample size Data points Method Hierarchical
vs non-
hierarchical

Compartments Inference/ Analytical
analysis

Model selection

Berbers et al., 2013 [20] Pertussis – 178. A third
sample was
collected on
113 out of
178
participants

Before vaccination, 4–6 weeks
post vaccination, and 2 years after
for a sample of 13 participants

Data-driven ODE-
based

Hierarchical Production and
decay of antibodies

Bayesian hierarchi cal frame
work

–

Bonin et al., 2020 Yellow
fever

– We refer to
the reader to
go to Tables
6–9

First scenario: Before vaccination,
30–45 days, 1–5 years, 5–9 years,
10 years post vaccination. Second
scenario: 5–9 years and 10 years
after vaccination, 30–45 days, 1–5
years, 5–9 years, and 10 years
post booster. For more details, we
refer to the reader to go to
references 3, 19–25 of this paper

Theory- driven
ODE-based

Non-
hierarchical

Vaccine virus,
Antigen- presenting
cells (APCs), CD4+
and CD8+ T cells,
short and long-lived
plasma cells,
memory B cells, and
antibodies

– Comparison of the
solution of the model
with the
experimental data

Bonin et al., 2018 Yellow
fever

– Data from
Martins et al.
[40] 900

Before vaccination, 3 to 7 days
after vaccination, and 30 days
after vaccination. Some of the
participants were retested 10
months after the vaccine

Theory- driven
ODE-based

Non-
hierarchical

Vaccine virus, APCs,
CD8+ T cells, short-
lived and long-lived
plasma cells,
memory B cells and
antibodies

– Comparison of the
solution of the model
with the
experimental data

Bonin et al., 2017 Yellow
fever

– Kay et al.
[43] N = 30;
[42] N =
824

Kay et al. [43] collected data before vaccination
and on day 21, also 26 subjects provided a
third serum sample at month 8. In the second
study, the authors did not explicitly specified
but there was a follow-up period of 141
months [42]

Theory-
driven
ODE-
based

Non-
Hierarchical

Vaccine virus and CD4+ T cells,
short-lived and long-lived
plasma cells, B cells and
antibodies

– Comparison of the
solution of the model
with the experimental
data

Balelli et al., 2020 Ebola 23.9 days
after
vaccination.
CI (22,26)

177 Days 1, 8, 29, 36, 50, 180, 240, and 360 for
group receiving the second dose at day 29th,
and for the group receiving the second dose at
day 57th samples were collected at days 1, 8,
29, 57, 64, 78, 180, 240, and 360

Theory-
driven
ODE-
based

Hierarchical Vaccine antigen, memory B
cells, short-lived and long-
lived cells, and specific
antibodies

Studied structural
identifiability for
the model
calibration

–

I.G
arcia-Fogeda,H

.Besbassi,Y.Larivière
et

al.
V
accine

41
(2023)

3701–
3709
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Table 2
Mathematical models in the context of natural infection immunity.

Author and Year Pathogen Antibody half-life Sample
size

Data points Method Hierarchical
vs non-
hierarchical

Compartments Inference/
Analytical
analysis

Model
selection

Teunis et al., 2016 Pertussis – 121
(Versteegh
et al. [14])

Measure after 3 months of
symptom onset and after a
year of infection

Data-
driven
ODE-
based

Hierarchical Multiple compartments where
antibodies are produced and then
interact with antigens

Bayesian
hierarchical
framework

–

de Graaf et al.,
2014

Pertussis 727 days 121 Measurements were taken at
the baseline, and then
patients were followed up for
10 years and sera was taken
at irregular intervals

Data-
driven
ODE-
based

Hierarchical Pathogen concentration which
interact with the immune or
antibody level

Bayesian
hierarchical
framework
using Markov
Chain Monte
Carlo (MCMC)

–

White et al., 2014 Malaria Depending on the antigen different estimates
are observed. Ghanian children range from (7–
56) Model 1, (13–37) Model 2, (11–26) Model
3. Gambian children (32–176) Model 1, (8–16)
Model 2, and (3–18) Model 3

151; 124 at birth; 2, 4, and 6 weeks
after birth and then every
4 weeks up to 2 years in
group 1. Every-two weeks up
to three months in group 2

Data-
driven
ODE-
based

Hierarchical Model 1: Antibodies interact with
antigens. Model 2: Plasma cells
yield to antibodies. Model 3:
Short-lived and long-lived
plasma cells yield to antibodies

Bayesian
hierarchical
framework

–

Author and Year Pathogen Antibody
half-life

Sample
size

Data points Method Hierarchical
vs non-
hierarchical

Compartments Inference/
Analytical
analysis

Model
selection

Sasmal et al., 2019 Dengue
virus

– – – Theory-
driven
ODE-
based

Non-
hierarchical

Healthy cells, infected cells, dengue secondary virus, T-cells, cytokines, B-
cells, homogeneous antibody after secondary infection, antibody specific for
the secondary infection, memory cells, and the heterogeneous antibody

Stability And
equilibria of the
model is studied

–

Alshaikh et al.,
2021

HIV-
HTLV
co–
infection

– – One measurement Theory-
driven
ODE-
based

Non-
hierarchical

CD4+T cells, HIV-infected cells, HTLV- infected cells, free HIV particles, and
antibodies

Stability and
endemic equilib
rium criteria are
studied

–

Versteegh et al.,
2015

Pertussis – 121 Measure after 3 months
of symptom onset and
after a year of infection

Data-
driven
ODE-
based

Hierarchical Pathogen concetration and antibody production Bayesian
hierarchical
framework

–

Author and Year Pathogen Antibody
half-life

Sample size Data points Method Hierarchical
vs non-
hierarchical

Compartments Inference/
Analytical
analysis

Model selection

Mehra et al., 2021
[35]

Malaria 3, 6
months
to a year

– One
measurement

Theory- driven
ODE-based

Hierarchical Antibody response produced by mosquito bites – –

Gujarati and
Ambika, 2014

Dengue
virus

– 68 (34 first
infected, and 34
re-infected)

One
measurement

Theory- driven
ODE-based

Non-
hierarchical

Healthy cells, infected cells, dengue virus particles,
lymphocytes and neutralizing antibodies

Stability of the
equilibrium state
is studied
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Fig. 1. PRISMA flow diagram for systematic reviews which includes searches of registers and other sources. The left columns represented the screening procedure of the
search string used in PubMed and WoS, describing the reason why some studies were discarded in each round. The right column represents the screening procedure through
citation search and the studies that were collected by author’s name prior to the reports found in the left hand side by the query.

I. Garcia-Fogeda, H. Besbassi, Y. Larivière et al. Vaccine 41 (2023) 3701–3709
nomenological models, such as Hens et al. [19] in which a linear
mixed effect model (LMM) was used. In contrast, we did not find
an extensive literature on phenomenological approaches in the
context of natural infection, as depicted in Fig. 2.

The results obtained on mechanistic models are presented in
Tables 1 and 2. We studied separately vaccine-induced and natural
infection settings as the biological mechanisms could potentially
differ between one and other. These tables obtain several different
pathogens, e.g., the Ebola virus [22,23], the yellow fever virus [24–
26], HIV [27], and the Dengue virus [28,29] among others. Some of
the retrieved papers did not refer to a specific pathogen [15].

It is apparent from these tables that in vaccine trials, a higher
frequency of sampling is observed, with samples taken before
and after the prime dose. Study designs typically consist of yearly
measurements, with more samples taken during the first year after
vaccination. Sampling frequency when studying antibody kinetics
after natural infection was found to be different, with generally a
longer follow-up period for individuals, though with sampling
times mostly within the first six months after infection. In some
cases, data collection is found to show a seasonal pattern as, for
example, viral respiratory pathogens show higher circulation in
winter, while this pattern may be different for other pathogens
as they are influenced by environmental factors, for example [21].

The estimated half-life of antibodies is of great importance in
data-driven mechanistic models as it governs the waning process,
whereas for theory-driven mechanistic models the parameter is
fixed to a value obtained from available literature [30]. We found
IgG antibody half-life values after vaccination, such as Pasin et al.
[22] of 24 days (95 %) CI: [21, 26] for Ebola virus. Similarly,
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Andraud et al. [5] reported a 95 % CI of [17.5, 26] days for Hepatitis
A. In contrast, White et al. [6] provided a wide range of plausible
antibody half-lives depending on the model, study population,
and antigen of malaria.

In this systematic review we distinguished between theory-
driven (11), and data-driven (8) approaches, except for one mixed-
methods approach [17] for which the authors reported the theoret-
ical model and stability criteria, while some parameters were esti-
mated. However, the type of inference was not defined in the
manuscript. Theory-driven approaches typically study more com-
plex dynamics that translate into multiple compartments and vari-
ous interconnections between them. Importantly, as these
approaches are not data-driven, the realism behind these more
complicated structures is not necessarily verifiable based on avail-
able data. For example, Balelli et al. [18] emphasized and added a
specific memory B cell component. The memory B cell component
was used to evaluate the magnitude of the immunological memory
response induced by a booster dose. Alternatively, the following
papers shared similarities in describing dynamics of the humoral
response while starting from a population of susceptible cells. For
instance, Alshaikh et al. [27] studied the activation of antibodies
under (co)infection with HIV and HTLV. Sasmal et al. [31] described
a (re)infection flow produced after the first infectionwhile account-
ing for antibodies that are homogeneous with respect to primary
infection, but heterogeneous to secondary infection with another
serotype. Similarly, Nikin-Beers et al. [17] studied a secondary Den-
gue virus infection to determine the role of antibodies in inducing
severe disease. By accounting for this, the authors emphasized the
role of long-lived plasma cells after first infection.



Fig. 2. Classification of the selected studies in the systematic review, differentiating
between the source of immunity, type of model and finding source.
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Several of the data-driven mechanistic approaches retrieved in
our search focused on populations of short- and long-lived plasma
cells [5,6,22,32]. The differential equations describing transitions
among these populations differ between studies of vaccination
and natural infection. To further clarify, Keersmaekers et al. [32]
accounted for two vaccine doses relying on two smooth functions
describing the proliferation rates in long-lived cells. In contrast,
Pasin et al. [22] studied the proliferation of antibodies in relation
to binary explanatory variables, indicating when the visit after
the prime-boost occurred. On the other hand, White et al. [6] anal-
ysed the antibody titres per antigen, and when a boost of these
titres occurred, these authors assumed an exposure of that specific
antigen, which may not have coincided with the virus detection
methods.

With respect to the types of statistical models that have been
studied to infer the parameters of the mechanistic models, results
show that both linear and non-linear mixed-effects models have
been considered. Likelihood-based methods with Bayesian princi-
ples have relied on the estimation of their parameters through a
mixed-effects approach, while fully Bayesian approaches have
shown more variation in how these parameters were estimated.

Model comparison for data-driven models was often done using
AIC [5,22,32] and less often using LCVa or BIC [22]. Nonetheless,
White et al. [6] concluded that the model comparison was at times
challenging to evaluate, given the number of random effects and
parameters of the models in a Bayesian framework.

4. Discussion

Our review revealed that the literature about within-host mod-
els that study antibody kinetics is rather scarce and that more
research in this direction is warranted.

The first question in this review sought to determine which
mechanistic models have been used in literature and which biolog-
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ical processes were integrated into their core equations. As it was
mentioned in the introduction section, we distinguish throughout
the review between data-driven and theory-driven models, with
the latter often studying much more complex dynamics. On the
question of theory-driven mechanistic approaches, we note that
they typically study processes starting from a population of sus-
ceptible cells, followed by infected cells, T-cell and B-cell activa-
tion, to neutralising antibody production.

One of the recommendations we wish to make is to pay more
attention in future modelling work to the difference in prolifera-
tion rate of the virus in the context of natural infection or vaccina-
tion, since in the latter case the virus is unable to proliferate itself.
In contrast, data-driven approaches typically study the interaction
between pathogen concentration and antibody production site, or
the dynamics of short- and long-lived plasma cells and antibodies.

There were several noteworthy findings regarding the parame-
ters of these mechanistic models. Bonin et al. [24,25] included a
pre-existing innate immune response in one of the parameters of
the model, defined as the homeostasis rate. White et al. [6] studied
the impact of maternal immunity and malaria protection and
therefore integrated a parameter specifying maternal immunity.
Andraud et al. [5] formulated different hypotheses of the parame-
ters, such as the lifespan of antibodies being relatively short in
comparison to plasma cells, which allowed the authors to work
under different solutions of the model.

Regarding the inference used in data-driven mechanistic mod-
els, we found that most often fully Bayesian or likelihood methods
coupled with MCMC sampling were used. The latter approach is a
rather particular way to do inference for dealing with the inherent
complexity of fitting such models to data. Specific software like
NIMROD or Monolix has been developed and used relying on
MLE and maximum a posteriori (MAP) approaches [5,22,32]. For
this reason, it is not straightforward to strictly classify data-
driven approaches as purely frequentist or Bayesian.

The different studies use different software with different
options, for example in terms of the number of iterations, making
it hard to compare modelling approaches. For example, in fully
Bayesian approaches, Teunis et al. [33] used 10^6 MCMC iterations
in JAGS, while White et al. [6] ran 200 million MCMC iterations
though for the latter no specific software was reported.

Another interesting finding in these data-driven approaches,
especially in fully Bayesian approaches, was the difficulty to come
up with an accurate model comparison. According to Gelman et al.
[34] the Watanabe-Akaike information criteria (WAIC) using cross-
validation may be the preferred choice, since it adds a correction
for the effective number of parameters to adjust for overfitting,
and it may have fewer stability problems than the AIC and the
Deviance Information Criterion (DIC). However, most of the models
presented in this review used AIC and at times BIC or LCVa.

As was pointed out in the introduction to this paper, mathemat-
ical models are classified into mechanistic models and phe-
nomenological models. We could in this review distinguish
between parametric, semi-parametric and non-parametric phe-
nomenological approaches. A well-known example of parametric
approaches is the LMM, as can be illustrated in the work by Bovier
et al. [37] assuming that the log-antibody titres and random effects
follow a normal distribution. In contrast, non-parametric models
do not make any assumptions and allow the estimation of the
parameters to adapt to the pattern of the data. A classic example
of non-parametric approaches can be illustrated in the work by
Geistanger et al. [38], in which the authors used a local regression
approach, not specifying any a priori shape when modelling IgA
data.

Having discussed the nature of such phenomenological models,
we now introduce which parametric assumptions have been used
to study the relationship between the predictor and the response
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variables. Results show that linear (linear regression, fractional
models) to non-linear (exponential decay, power-law models)
mixed approaches have been used. A useful example of linear mod-
els is the work by Hens et al. [19] which considered fractional poly-
nomials with and without covariates and studied different degrees
within these models to fit the data. Another well-known example
of linear approaches by Aregay et al. [10] uses a linear mixed-
effects model to estimate the subject-specific trajectories of HPV
antibody titres over time. The model includes a fixed-effect quad-
ratic polynomial to capture the overall trend of the antibody titres,
as well as a random intercept and slope to account for the individ-
ual variability in the antibody responses. The distinction with non-
linear approaches is further exemplified in studies such as Tiru
et al. [39] and Leuridan et al. [36]. The first used the so-called cat-
alytic model, which essentially represents a non-linear function of
time, and the model parameters include the initial antibody level,
the decay rate, and the plateau level. The second, used an exponen-
tial decay, generalized exponential decay, and a Gompertz model
to study the antibody decay and quantify association with
covariates.

Returning briefly to the subject of study design as mentioned in
the results section, it is worth mentioning how required sample
size, the timing of sampling, follow-up period, frequency, and from
whom samples are taken may be crucial to inform within-host
models [41]. Therefore it is essential to think carefully about the
design of a study before it is implemented.

A limitation of this review is that more search strategies con-
cerning data-driven mechanistic models, or using search terms
such as antib* or vaccin*, could have been used. However, since
plenty of publications had to be discarded, and the use of citation
search did not increase the number of papers, we decided to
adhere to the current query, as described in the protocol of the
review, CDR42022309251 [12].

The strength of our study is that it focuses on mathematical
models, and more specifically mechanistic models, synthesizing
the types of populations that have been considered to study anti-
body kinetics, and its underlying hypotheses that motivated the
model development. Within data-driven mechanistic models, our
review gives an overview of which statistical approaches have
been studied to infer their parameters from data. To the best of
our knowledge, this review is the first one to focus on mechanistic
models to study antibody kinetics. In future investigations, it might
be possible to use and build on modelling techniques as found in
this review.

5. Conclusions

This systematic review underlines that more research needs to
be done in data-driven mechanistic approaches to study the wan-
ing of humoral immunity. Although the use of phenomenological
models is widely used especially in the context of vaccination,
these are limited to studying the association between antibody
decay and its covariates. In addition, more research is needed on
the methods of inference in data-driven mechanistic models, such
as semi-parametric to full parametric tools, as well as incorporat-
ing more data and measurements to feed the model.

An important consideration for future modeling work, is that
there exist differences between pathogens in terms of immune
responses. Hence, some immune cells, times of antibody decay
and exposure to different antigens are not directly comparable
for all pathogens, which can lead to think about pathogen-
specific compartments to describe the respective humoral immune
response. However, an essential remark by de Graaf et al. [30], is
that these models can not consider too many parameters, since
that would lead to overfitting. Therefore, similarities exist between
the compartments and parameters considered in different models.
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