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Abstract   18 

Photoautotrophic microalgae such as the marine microalga Nannochloropsis, are unicellular organisms 19 

able to synthesise valuable lipids for application in food, aquaculture, agriculture, and bioenergy. Their 20 

rigid cell walls limit the extraction of lipids. Therefore enzyme-assisted disruption methods are often 21 

used to increase the lipid extraction yield. While enzyme-assisted disruption of Nannochloropsis can 22 

increase lipid extraction yield, the enzyme and solvent selection, as well as treatment conditions vary 23 

considerably in the literature. This review gives an overview of recent literature on enzyme-assisted 24 

disruption of Nannochloropsis to increase lipid extraction yield. Our aim is to provide guidelines and 25 

good practises for enzyme selection, pre-treatment, and post-treatments which can be extrapolated 26 

to other oleaginous microalgae.  27 

 28 

Introduction 29 

Oleaginous photoautotrophic microalgae are unicellular organisms able to synthesise valuable 30 

components for application in human nutrition, agriculture, aquaculture, and bioenergy. These 31 

microalgae accumulate lipids and only need light, carbon dioxide and an inorganic source of nitrogen 32 

and phosphorous to grow. They can be cultivated at locations unfit for conventional agriculture [1]. 33 

These microalgae are therefore an interesting, sustainable and novel biomass [2]. Several microalgae 34 

species have rigid cell walls (CW) which act as barrier to lipid extraction. CW can be disrupted to 35 

increase subsequent lipid extraction or to improve the bio-accessibility and digestibility of lipids in food 36 

applications [3]. Multiple disruption techniques have been studied with these aims. These include  37 

physical (e.g.: high pressure homogenisation, bead milling, ultrasonication, pulsed electric field) and 38 

(bio)chemical methods (e.g.: hydrothermal, acid or alkaline treatment, enzyme-assisted disruption) 39 

[4,5]. Enzyme-assisted disruption (EAD) has advantages compared to other cell disruption methods as 40 

it can be performed under milder operating conditions, requires less capital investment for specialised 41 

equipment [6], is associated with decreased energy costs [7], and can be tailored towards the 42 

disruption of specific microalgal species or components within the microalgal CW. 43 
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In this review, the oleaginous marine microalga Nannochloropsis (Eustigmatophycea) is used as case 44 

study of EAD to increase lipid extraction. Note that recently some Nannochloropsis species have been 45 

redefined into a new genus, Microchloropsis [8]. In this review we include both Nannochloropsis and 46 

taxa originally assigned to Nannochloropsis that have now been re-assigned to Microchloropsis. 47 

Hereafter, we refer to this ensemble as Nannochloropsis. Nannochloropsis has received interest for 48 

(potential) application in food due to its ability to synthesise nutritionally valuable omega-3 poly-49 

unsaturated fatty acids, such as eicosapentaenoic acid (C20:5n-3) [9], carotenoids, α-tocopherol [10] 50 

and vitamin D3  [11]. This genus also functions as a model organism for algal biofuel production as it can 51 

accumulate up to ~70% of its dry weight as lipids [12]. However, the lipids in Nannochloropsis are 52 

surrounded by an especially rigid CW acting as a barrier for their extraction. This necessitates the use 53 

of a cell disruption technique that liberates these lipids from the Nannochloropsis cell. This review aims 54 

to provide an overview of the recent advances in EAD of the microalga Nannochloropsis to increase 55 

lipid extraction yield (also called lipid yield, oil yield or lipid extraction efficiency by other authors) and 56 

to provide guidelines and good practises for enzyme selection, pre-treatment, and post-treatments 57 

(Figure 1). These guidelines and good practises can be extrapolated to other oleaginous microalgae.  58 

 59 

 60 

Figure 1 Processing of Nannochloropsis biomass from dilute culture to extracted lipids using enzyme-assisted disruption 61 

Enzyme selection: cell wall composition is key 62 

EAD is used to hydrolyse specific bonds in the CW constituents. Hence, a detailed understanding of the 63 

cell wall composition (CWC) and structure, as well as of the substrate and hydrolysis reaction specificity 64 

of the added enzyme(s) formulation (EF) is required. The Nannochloropsis CW (Figure 2) is composed 65 
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of a thinner, outer algaenan-based layer and a thicker cellulosic inner layer containing cellulose and 66 

hemicellulose [13]. The outer algaenan layer consists of highly saturated aliphatic material [13]. The 67 

main monosaccharide in the cellulosic layer is glucose (75-98%) [14–16]. Other monosaccharides 68 

originate from hemicellulose. Amino acids make up approximately 6% of the CW, indicating the 69 

presence of proteins [13]. Nannochloropsis CWC and thickness depends on the strain and the salinity 70 

of the cultivation media [16]. In addition, nitrogen limited cultivation conditions increase  CW thickness 71 

due to an increase in cellulose content [14,17,18]. We suggest that one must determine the 72 

(monosaccharide) composition and the chemical bonds present in the CW, to select the appropriate 73 

EF which will specifically target and degrade CW components. Recent literature (Table 1) describing 74 

EAD of Nannochloropsis relies on a few articles (e.g. [13,19]) for their enzyme selection. All authors 75 

concluded that the applied EF increased the lipid extraction yield from Nannochloropsis (Table 2). 76 

However, there is no clear trend in the type and combinations of EF that are most successful in 77 

increasing the lipid extraction yield. A possible explanation for these variable results is the authors 78 

reliance on predetermined Nannochloropsis CWC which, as stated above, varies depending on strain 79 

and cultivation conditions. For example, Maffei et al. [20] combined cellulase with mannanase as 80 

hemicellulytic enzyme based on the results of Vieler et al. [19] who had shown that mannose is the 81 

second most abundant monosaccharide in the CW of Nannochloropsis oceanica. However, in the work 82 

of Bernaerts et al. [21], galactose is the second most abundant monosaccharide, followed by mannose 83 

and ribose in equal percentages. Therefore, we discourage reliance on previously reported CWC of 84 

Nannochloropsis for the selection of CW degrading EF. Rather we recommend determining the CWC 85 

using the monosaccharide composition and total protein or amino acid content e.g. as described by 86 

[21] and [13] respectively. Thereafter, this information can be used  for the selection and subsequent 87 

interpretation of the mechanism causing the EAD. This approach should prevent unnecessary 88 

experimental set-ups containing EF that target components absent or present in minor quantities.  89 
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 90 

Figure 2 Schematic representation of the Nannochloropsis cell and cell wall, with N: nucleus, CL: chloroplast, LB: lipid body 91 
based on  [13,15,17]  92 

 93 

Enzyme selection: Enzyme formulation 94 

To date, commercially available EF are used to weaken the Nannochloropsis CW. Usually, only the main 95 

enzymatic activity of these EFs is reported. The catalytic activity of pure enzymes is classified using EC 96 

numbers. Commercial EF are produced by micro-organisms and purified [22,23]. They are therefore 97 

often mixtures of several different EC enzymes. While some authors report the side activities of the EF 98 

used [24], this is only possible if the enzyme suppliers report the known side activities. These unknown 99 

or unreported enzymatic side activities may e.g., lead to undesired formation of free fatty acids (FFA) 100 

by lipase side activity. For instance, Blanco-Llamero et al. [25] observed an increase in FFA after 101 

ultrasound-assisted enzymatic pre-treatment compared to the control. Maffei et al. [20] observed 102 

polypeptide degradation or restructuring after treatment with (combinations) of cellulase and 103 

mannanase, indicating possible protease side activity. However, in both cases it was not established 104 

that these changes were caused by enzymatic side activity. It cannot be excluded that these changes 105 

were the result of e.g., endogenous lipases or proteases. Therefore, in an ideal case we suggest that 106 

anyone working with EF inform themselves about possible side activities by inquiring for information 107 
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with the EF supplier or by determining the side activity themselves. In addition, the experimental set-108 

up itself should contain controls (blanks) in which the biomass is exposed to the same EAD conditions 109 

in the absence of enzymes to distinguish possible endogenous enzyme activities from the activities of 110 

added EF. Finally, the costs, feasibility, and availability of the EF must be considered. For instance, 111 

utilization of immobilized enzymes for CW disruption allows recovery and reuse of the enzymes, 112 

potentially enhancing economic viability and sustainability of the entire process [26].  113 

Table 1 Pre-treatment, enzyme-assisted disruption conditions, enzyme(s), controls, post-treatment, and extraction solvent 114 
reported for the enzyme-assisted disruption of Nannochloropsis 115 

  116 
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Optimal enzymatic incubation conditions  118 

Enzymes catalyse reactions within limited ranges of conditions such as appropriate pH, temperature, 119 

and ionic strength. Changes in protein structure occur outside this range resulting in loss of the enzyme 120 

activity [27]. The EF optimal temperature and pH are stated on the product data sheet. These optima 121 

are however determined under optimal conditions for the hydrolysis of standard products such as 122 

carboxymethyl cellulose [28] or by using filter paper activity [29]. Due to the standardised substrate 123 

and nature of these methods, these optimal conditions may deviate from the optimal conditions for 124 

the Nannochloropsis CW. To ensure constant and optimal pH, the pH of the Nannochloropsis algal 125 

biomass solution has been modified using several different buffers (citric acid-sodium citrate [30,31], 126 

acetate buffer [24], phosphate buffer [32]) (Table 1). pH adjustment using only acids (as applied by e.g. 127 

[33]) does not guarantee constant pH during the enzymatic incubation. In the latter case, we advise 128 

researchers to document pH progression throughout the enzymatic incubation as a slight change in pH 129 

may increase or decrease the enzyme activity. In addition, combining several commercial EF is only 130 

reasonable if their pH and temperature optima are similar. The type of agitation, distribution of the 131 

microalgal material in the buffer medium (e.g., fully dispersed as single cells, or as agglomerates of 132 

multiple cells), and the viscosity of the medium also plays a role in the ability of the EF to reach the 133 

Nannochloropsis CW substrate.  134 

 135 

Enzyme concentration 136 

The SI unit of enzyme activity is the katal (mol s -1), but in practise, it is reported in U (µmol min-1) [27]. 137 

Several authors (Table 1 and Table 2) applied cellulase to disrupt the Nannochloropsis CW, but they 138 

did not always clearly report the enzyme activity and dosage. When a dosage is reported, the 139 

component that is added, in this case enzymes, is reported in the numerator, while the biomass 140 

amount is reported in the denominator. In the case of EAD of Nannochloropsis, the values in the 141 

nominator are however reported as mg protein [24], mg enzyme [25] or in U per unspecified volume 142 

of wet N. oculata biomass (18% DM) [33]. The denominator is reported on dry weight [34], on volume 143 
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of biomass slurry [30], or per gram (presumably on dry biomass) [20,31]. These varying ways of 144 

reporting the enzyme dosage and the lack of reporting on total volume of used biomass slurry or mass 145 

of dry biomass make comparisons between the different studies almost impossible. We therefore 146 

strongly recommend the requirement to report the enzyme activity, as well as enzyme dose and mass 147 

or volume of the biomass. This requirement should ensure the feasibility of replication of experiments.  148 

  149 
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Table 2 Overview of enzyme (combinations) and enzyme-assisted disruption conditions leading to optimal lipid extraction 150 
yield 151 

 152 

 153 

Mixtures of enzyme formulations and synergy 154 

Due to the diverse composition of the Nannochloropsis CW, combinations of EF have often been used 155 

to disrupt the CW (Table 2). For example, Blanco-Llamero et al. [25] found that the use of only cellulase 156 
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does not increase the lipid extraction yield compared to control extractions. However, Zhao et al. 157 

[30,31] showed that cellulase alone increases the lipid extraction yield, but the highest lipid extraction 158 

yield was obtained when cellulase was combined with laccase. He et al. [33] and Maffei et al. [20] also 159 

concluded that cellulase alone can increase the lipid extraction yield, but combining cellulose with 160 

papain, hemicellulase and pectinase, or with mannanase respectively, increases the lipid extraction 161 

yield. This increase in lipid extraction yield is attributed to synergistic effects between the enzymes 162 

[30,31,34]. A synergy of enzymes is ‘the ratio of the rate or yield of product release by enzymes when 163 

used at the same time to the sum of rate or yield of these products when the enzymes are used 164 

separately in the same amounts as they were employed in the mixture’ [35]. A synergy observation 165 

during EAD of Nannochloropsis CW is however often based on an increase in lipid extraction yield  166 

[31,33]. This is often an indirect method for measuring the reaction that is catalysed by the enzymes. 167 

When claims regarding synergy are made, direct methods measuring the targeted product release are 168 

advised. For instance, when (hemi)cellulases are used, a more correct method to claim synergy would 169 

be to measure the release of specific saccharides. We conclude that statements about the synergy of 170 

enzymes should thus be avoided if not substantiated with measurements of the targeted product 171 

release. In contrast, some combinations of enzymes did not result in increased lipid extraction yield 172 

and so-called ‘synergy’. Castejón and Marko [24] observed that a mixture of three commercially 173 

available EF composed of several carbohydrases, cellulase and glucoamylase respectively, does not 174 

significantly increase the lipid extraction yield compared to control extractions, while the individual EF 175 

were able to increase the lipid extraction yield. The latter results indicate a possible inhibitory 176 

interaction between the three commercially available EF. It has been reported that cellobiose inhibits 177 

cellulase activity and glucose can inhibit ß-glucosidase [36]. 178 

In addition, simultaneous or sequential application of enzymes to the Nannochloropsis CW should be 179 

considered when applying multiple EF. If proteases, as e.g. in the work of Chen et al. (2017) [37], were 180 

added to combinations of pectinase, lysozyme and cellulase, the lipid extraction yield declined. The 181 
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authors attributed this to unfavourable pH conditions, however it could also be possible that the 182 

protease is acting on the pectinase, lysozyme and cellulase itself as they are proteins.  183 

 184 

Pre-treatment 185 

Pre-treatment of the biomass includes any step in the microalgal processing chain between the stage 186 

where the dilute Nannochloropsis culture is ready for harvest and the start of the enzymatic treatment 187 

(Figure 1). Pre-treatment of lignocellulose-rich biomass before enzymatic incubation is a well-known 188 

method to remove lignin and increase the susceptibility and accessibility of the enzymes towards the 189 

cellulose biomass [38]. Analogous, pre-treatments of Nannochloropsis biomass before enzymatic 190 

incubation have been applied (Table 1). Chen et al. (2017) [37] performed simultaneous alkaline and 191 

thermal pre-treatment at pH 9.0 for 5h at 80 ⁰C before enzyme treatment. They showed that the 192 

alkaline pre-treatment in combination with enzymatic incubation led to the extraction of more than 193 

double the amount of fatty acids. However, they did not report the effect of the alkaline pre-treatment. 194 

It can therefore not be excluded that the attributed effect can be allocated to the alkaline pre-195 

treatment itself. A similar remark can be made about the work of Wu et al. [39], who also observed 196 

the highest lipid extraction yield when alkaline pre-treatment was applied before EAD without 197 

reporting the effect of the individual treatments. Chen et al (2016) [34], observed that thermal lysis 198 

before enzymatic cell disruption increased the lipid extraction yield compared to either method alone. 199 

We advise that when applying EAD, a pre-treatment of Nannochloropsis can be used, but experimental 200 

designs should allow for distinction between the influence of the pre-treatment and the influence of 201 

the EAD on lipid extraction yield.  202 

Post-treatment  203 

After EAD, the lipids must be extracted from the Nannochloropsis biomass. The extraction solvent used 204 

greatly influences the type and quantity of lipids extracted [40]. In addition, the extraction solvent 205 

should be selective for the extraction of lipids and have minimal co-extraction of ‘impurities’ such as 206 

proteins and polysaccharides as the lipid extraction yield is often determined gravimetrically. For 207 
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instance (Table 1), Zhao et al. [30,31] used ethanol to extract lipids from Nannochloropsis, while this 208 

solvent co-extracts many non-lipid components [40]. With hexane/isopropanol, used by Maffei et al. 209 

and Zuorro et al. [20,41,42], co-extraction is less pronounced [40]. Optimised protocols using 210 

chloroform and methanol that can extract all lipids from the microalgal biomass directly should be 211 

avoided as they do not give insight in the increase in lipid extraction yield caused by EAD. However, 212 

these protocols should be used to analytically determine the total lipid content in the biomass, so that 213 

the increase in lipid extraction yield by EAD can be compared relative to the total lipid content, which 214 

aids interpretation of the effectiveness of EAD [43].  Maffei et al. and Zuorro et al. [20,41,42] apply the 215 

latter, but others (e.g. [24,25,30,31]) define the lipid extraction yield based on mass of the biomass.  216 

The use of different extraction solvents (Table 1) which themselves influences the type and total mass 217 

of lipids extracted (Table 2), and the varying definitions of ‘lipid extraction yield’, complicate comparing 218 

the effectiveness of the EAD between various studies. Finally, it is recommended to extract the lipids 219 

under temperature and time conditions that do not affect the lipids themselves.  220 

 221 

Conclusion and perspective 222 

EAD of Nannochloropsis can improve the lipid extraction yield. Many different (mixtures of) EF at 223 

varying pH, temperatures and treatment times have been applied. No standard solvent is used to 224 

extract the lipids to determine the EAD efficiency. In addition, appropriate control extractions without 225 

enzymes are often lacking or not well defined. For progress in the field of EAD, a thorough selection of 226 

appropriate EF based on CW composition should be implemented. Side activities of the EF, especially 227 

related to lipid degradation, should be investigated. Activity and dosage of the enzymes should be 228 

reported to ensure replication. Optimal conditions for EAD should be sought for. When a pre- 229 

treatment method is applied, the individual contribution of the pre-treatment should be 230 

distinguishable from the EAD effect on lipid extraction yield. We believe that following these 231 

recommendations will allow researchers to make strides in this field.  232 
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